


#### Prospecțiuni geotehnice în construcții

MD-2036, mun. Chişinău, str. Uzinelor, 211 Tel. GSM +373 69 045 716;

Email: ingeotech.grup@gmail.com

Object № 154-GI/2020

### RAPORT TEHNIC

Cu privire la executarea lucrărilor de prospecțiuni geotehnice pentru obiectul:

«Proiectarea centrului comercial din r-nul Orhei, mun. Orhei, nr.cad. (6401307.195)»

CHIŞINĂU 2020

### «INGEOTECH GRUP» S.R.L.

Объект № 154-GI/2020

## ТЕХНИЧЕСКИЙ ОТЧЕТ

Об инженерно-геологических изысканиях выполненных по объекту:

«Proiectarea centrului comercial din r-nul Orhei, mun. Orhei, nr.cad. (6401307.195)»

Директор д.т.н. Чебан О.С.

Руководитель работ д.т.н. Полканов В.Н.

Экз. №

Кишинев 2020

### ОГЛАВЛЕНИЕ

к отчету об инженерно-геологических изысканиях, выполненных на объекте: «Proiectarea centrului comercial din r-nul Orhei, mun. Orhei, nr.cad. (6401307.195)»

|            | Оглавление                                                             | 2        |
|------------|------------------------------------------------------------------------|----------|
| 1.         | Общие положения                                                        | 3        |
|            | 1.1.Лист рассылки экземпляров                                          | 3        |
|            | 1.2.Исполнители                                                        | 4        |
|            | 1.3.Обзорная схема                                                     | 4        |
|            | 1.4.Основные обозначения                                               | 5        |
|            | 1.5.Техническое задание                                                | 6        |
| <b>2</b> . | Пояснительная записка                                                  | 6        |
|            | 2.1.Введение                                                           | 6        |
|            | 2.2.Изученность инженерно-геологических условий                        | 7        |
|            | 2.3. Физико-географические и техногенные условия                       | 7        |
|            | 2.4. Геологическое строение                                            | 7        |
|            | 2.5.Сводный инженерно-геологический разрез                             | 8        |
|            | 2.6.Свойства грунтов                                                   | 8        |
|            | 2.7. Гидрогеологические условия                                        | 9        |
|            | 2.8.Инженерно-геологическая характеристика площадки                    | 10       |
|            | 2.9.Специфические грунты                                               | 10       |
|            | 2.10.Заключение                                                        | 10       |
|            | Список использованных материалов                                       | 14       |
| Пр         | иложение 1. Расчетные и нормативные характеристики грунтов             | 2 листа  |
| Пр         | иложение 2. Результаты расчета физических характеристик грунтов        | 1 лист   |
| Пр         | иложение 3. Результаты определения гранулометрического состава грунтов | 1 лист   |
| Пр         | иложение 4. Результаты определения химического анализа воды            | 1 лист   |
| Пр         | иложение 5. Карта фактического материала                               | 1 лист   |
| Пр         | иложение 6. Геологические колонки скважин                              | 8 листов |
| Пр         | иложение 7. Инженерно - геологические разрезы                          | 8 листов |
|            |                                                                        |          |

| Изм. | Лист | № док. | Подп. | Дата |
|------|------|--------|-------|------|

### 1.1. Лист рассылки экземпляров

| Nº | Организация             | Адрес                                | Количество<br>экземпляров |
|----|-------------------------|--------------------------------------|---------------------------|
| 1  | «INGEOTECH GRUP» S.R.L. | RM, mun.Chişinău, str. Uzinelor, 213 | 1                         |
| 2  | Primaria mun.Orhei      | RM, mun.Orhei, str. V.Mahu, 160      | 2                         |
| 3  | Архив                   |                                      | 1                         |

### 1.2. Исполнители:

| Руководитель работ        | д.т.н. Полканов В.Н.                      |  |
|---------------------------|-------------------------------------------|--|
| Ответственные исполнители | д.т.н. Полканов В.Н.<br>д.т.н. Чебан О.С. |  |
| Полевые работы            | Чебан О.С.<br>Кожин А.Н.<br>Хоров А.Н.    |  |
| Лабораторные работы       | Полканов В.Н.<br>Герман Р. 3.             |  |
| Камеральная обработка     | Полканов В.Н.<br>Чебан О.С.               |  |

## 1.3. Обзорная схема



|      |      |        |       |      |             | Лист |
|------|------|--------|-------|------|-------------|------|
|      |      |        |       |      | 154-GI/2020 | 2    |
| Изм. | Лист | № док. | Подп. | Дата |             | ٥    |

#### 1.4. Основные обозначения

– плотность грунта, г/см³

 $ho_s$  — плотность частиц грунта, г/см $^3$ 

 $\rho_{d}$  — плотность сухого грунта (скелета), г/см<sup>3</sup>

р<sub>sat</sub> – плотность грунта, насыщенного водой, г/см³

W – влажность, проц.

W<sub>L</sub> − влажность на границе текучести, проц.

W<sub>P</sub> – влажность на границе раскатывания, проц.

I<sub>Р</sub> – число пластичности, дол. ед.

I<sub>L</sub> – показатель текучести дол. ед.

е – коэффициент пористости, дол. ед.

n – пористость, дол. ед.

S<sub>r</sub> – степень влажности, дол. ед.

Ф – угол внутреннего трения, град.

С – удельное сцепление, кПа

Е – модуль деформации, МПа

 $R_0$  — условное расчетное сопротивление грунта, кПа

K<sub>Ф</sub> − коэффициент фильтрации, м/сутки

| Изм. | Лист | № док. | Подп. | Дата |
|------|------|--------|-------|------|

### 1.5. Техническое задание

на производство инженерно-геологических изысканий на объекте:

# «Proiectarea centrului comercial din r-nul Orhei, mun. Orhei, nr.cad. (6401307.195)»

| 1. PARTEA GENERALĂ (ОБЩИЕ ДАННЫЕ):                                   |                                                                                      |  |  |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|
| 1.1. Denumirea completă a obiectivului (полное название объекта):    | «Proiectarea centrului comercial din r-nul Orhei, mun. Orhei, nr.cad. (6401307.195)» |  |  |  |  |
| 1.2. Amplasamentul obiectivului (местоположе-                        | nr.cad. 6401307.195, r-nul Orhei, mun. Orhei                                         |  |  |  |  |
| ние объекта):                                                        |                                                                                      |  |  |  |  |
| 1.3. Beneficiarul (заказчик):                                        | Primaria mun.Orhei                                                                   |  |  |  |  |
| 1.4. Proiectantul general (ген. проектировщик):                      |                                                                                      |  |  |  |  |
| 1.5. Stadiul proiectării (Стадия проектирования):                    | П                                                                                    |  |  |  |  |
| 2.PROSPECȚIUNI TEHNICO-GEOLOGICE (ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ ИЗЫСКАНИЯ) |                                                                                      |  |  |  |  |

2.1. Edficiile și construcțiile în curs de proiectare și caracteristica lor (сооружения и строения на стадии проектирования и их характеристика):

| <b>№</b><br>п/п | Наименование зданий и сооружений и № поз. по генплану | Уровень от-<br>ветственно-<br>сти | Этаж-<br>ность                  | Тип<br>фундаментов                                    | Глубина зало-<br>жения фунда-<br>ментов, м           | Чувствительность<br>к неравномерным<br>осадкам           | Проектная<br>глубина<br>скважин, м |
|-----------------|-------------------------------------------------------|-----------------------------------|---------------------------------|-------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|------------------------------------|
|                 |                                                       | Габариты в<br>м, ДхШ              | Высота<br>соору-<br>жений,<br>м | Нагрузки на<br>п.м., опору,<br>сваю, 1 м <sup>2</sup> | Глубина под-<br>вала от по-<br>верхности<br>земли, м | Планировка территории срезкой или подсыпкой (абс. отм),м | Количе-<br>ство сква-<br>жин, шт.  |
| 1               | 2                                                     | 3                                 | 4                               | 5                                                     | 6                                                    | 7                                                        | 8                                  |
| 1               | Гражданское здание<br>(административное,              | II                                | 1-2                             | ленточный,<br>отдельно сто-<br>ящий                   | 1,0-1,5                                              |                                                          | 8-10                               |
|                 | коммерческое)                                         | 60,0x20,0                         | 5-8                             | 120-150 кН/м<br>500-800 кН                            | -                                                    |                                                          | 8                                  |

| 2.2. Cerințe particulare sau suplimentare către efectuarea prospecțiunilor sau către materialele de gestiune (индивидуальные или дополнительные требования для выполнения инженерных изысканий или к стройматериалам) | уточнить: сейсмичность площадки строительства; наличие опасных геологических процессов и явлений, осложняющих строительство. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 2.3. Lista materialelor urmînd a fi prezentate în rezultatul lucrărilor (список материалов, которые                                                                                                                   | отчет в 3-х экз.                                                                                                             |
| необходимо представить по завершению работ)                                                                                                                                                                           |                                                                                                                              |
| 3. ANEXE LA SARCINA TEHNICĂ (ПРИЛОЖЕНИЯ К ТЕ                                                                                                                                                                          | ANNIECKOMA SVUVINIO/                                                                                                         |
| 3.1 План застройки участка                                                                                                                                                                                            | АПИЧЕСКОМУ ЗАДАПИЮ)                                                                                                          |

3.1. План застройки участка

3.2. Топографический план участка

| (Ф.И.О., Подпись) |                                                      |
|-------------------|------------------------------------------------------|
|                   |                                                      |
| (Ф.И.О., Подпись) |                                                      |
| Чебан О.С.        |                                                      |
| (Ф.И.О., Подпись) |                                                      |
| 12.12.2020        |                                                      |
|                   | (Ф.И.О., Подпись)<br>Чебан О.С.<br>(Ф.И.О., Подпись) |

|      |      |        |       |      |             | Лист |
|------|------|--------|-------|------|-------------|------|
|      |      |        |       |      | 154-GI/2020 | 5    |
| Изм. | Лист | № док. | Подп. | Дата |             | 5    |

### 2. Пояснительная записка

#### 2.1. Введение

Инженерно-геологические изыскания по объекту: «Proiectarea centrului comercial din r-nul Orhei, mun. Orhei, nr.cad. (6401307.195)», выполнены «INGEOTECH GRUP» S.R.L. на основании договора № 154-GI/2020 и технического задания, согласованным с Заказчиком.

Целью настоящих инженерно-геологических исследований являлось:

- изучение геологического строения толщи грунтов;
- описание условий и характера залегания грунтов основания;
- изучение гидрогеологических условий;
- определение физико-механических характеристик грунтов;
- анализ полученных результатов полевых исследований и лабораторных испытаний с целью оценки несущей способности грунтов основания и выбора расчетных значений физико-механических характеристик грунтов;
- составление заключения для планируемого строительства на стадии проектной документации.

На участке был проведен комплекс инженерно-геологических работ: сбор и изучение материалов ранее проведенных изысканий, рекогносцировочное обследование участка и прилегающей территории, бурение скважин с отбором проб грунта и подземных вод.

Виды и объемы работ представлены в табл. 2.1.

Таблица 2.1

| № п/п | Наименование работ                                       | Единица<br>измерения | Кол-во |
|-------|----------------------------------------------------------|----------------------|--------|
|       | 1.Полевые работы                                         |                      |        |
| 1     | Механическое бурение ударно-канатным методом             | П.М.                 | 72,5   |
| 2     | Отбор проб грунта ненарушенной / нарушенной<br>структуры | проба                | 13 / 9 |
| 3     | Отбор пробы воды                                         | проба                | 1      |
|       | 2. Лабораторные испытания                                |                      |        |
| 1     | Физические свойства грунтов                              | определение          | 22     |
| 2     | Гранулометрический состав                                | определение          | 9      |
| 3     | Химанализ воды сокращенный                               | определение          | 1      |

Полевые инженерно-геологические работы проводились с 18 декабря 2020 г. до 24 декабря 2020 г., под руководством инж. Чебан О.С.

Бурение скважин выполнено буровой бригадой Хорова А.Н. на буровой установке УГБ-ВС1 механическим ударно-канатным методом, в местах возможного подъезда бурильного станка.

Пробурено 8 скважин, глубиной от 8,0 до 10,0 м, до проектной глубины, согласно выданному техническому заданию. Диаметр пробуренных скважин 127 мм, пробы отбирались тонкостенным грунтоносом диаметром - 108 мм.

Местоположение скважин показано на карте фактического материала.

Отбор, упаковка, транспортировка и хранение проб осуществлялась согласно ГОСТ 12071-2014. Определение физико-механических свойств грунтов выполнялось в специализированной геотехнической лабораторией согласно ГОСТ 30416-96.

Привязка скважин выполнена методом засечек.

Инженерно-геологические изыскания были выполнены в соответствии с техническим заданием, требований нормативных документов, согласно законодательству РМ.

|      |      |        |       |      |             | Лист |
|------|------|--------|-------|------|-------------|------|
|      |      |        |       |      | 154-GI/2020 | 6    |
| Изм. | Лист | № док. | Подп. | Дата |             | 0    |

Камеральная обработка материалов полевых и лабораторных исследований, составление пояснительной записки выполнены инж. Чебан О.С., под руководством д.т.н. Полканова В.Н.

#### 2.2. Изученность инженерно-геологических условий

На рассматриваемом участке результаты ранее проведенных изысканий не сохранились.

#### 2.3. Физико-географические и техногенные условия

Обследованная площадка под строительство расположена на земельном участке, под кадастровым номером 6401307.195, г. Оргеев, Оргеевского района.

Исследуемый участок территории по карте геоморфологического районирования расположен в Резинском подрайоне Приднестровской валообразной возвышенности.

В геоморфологическом отношении исследуемая территория приурочена к пойменной части р. Реут.

Территория слабопологая. Абсолютные отметки в пределах исследуемой площадки изменяются от 31,0 м до 34,0 м. Уклон составляет 1-2° в юго-восточном направлении.

Естественный рельеф претерпел незначительные изменения в ходе освоения территории, в частности была отсыпана толща насыпных грунтов (2,0-3,0 м) для поднятия и благоустройства площадки и засыпки мелких оврагов, также проведена посадка деревьев.

Климат умеренно-континентальный. Зима мягкая, короткая, лето жаркое, продолжительное. Среднегодовая температура воздуха для центральной части Молдовы — положительная: плюс 9,0...9,5°C. Самый холодный месяц — январь (средняя месячная температура: минус 3,0-5,2°C, абсолютный минимум: минус 31-34°C), самый теплый месяц — июль (средняя месячная температура: плюс 19,5-22°C, абсолютный максимум: плюс 38-41°C). Температура наиболее холодной пятидневки обеспеченностью  $P_{0,98}$ : минус 20°C.

Продолжительность периода с среднесуточной температурой 0°C составляет 82 суток.

Среднегодовое количество осадков – 380-550 мм. Основная часть осадков (4/5 от общего годового количества) выпадает в тёплый период года.

Снежный покров неустойчив. Число дней со снежным покровом в среднем достигает 50-60. В отдельные годы его почти не бывает. Средняя глубина промерзания грунтов достигает 30-35 см, наибольшая — 65-80 см.

Ветровой режим подчинён временам года. В целом для изучаемого участка центральной Молдовы, где долины ориентированы с северо-запада на юго-восток, наиболее часты северо-западные и юго-восточные ветры. Преобладают слабые (в среднем 2,4-4,5м/с), реже возникают умеренные (6-10м/с); максимальные скорости ветра (20-30м/с) наблюдаются редко.

По карте сейсмического районирования район изысканий относится к зоне 7-балльной сейсмичности по шкале MSK-64.

#### 2.4. Геологическое строение

В геологическом строении участка изысканий до разведанной глубины 10,0 м принимают участие: техногенные (tQ), современные почвенные образования (nQ), аллювиально-делювиальные (aQ), неоген-четвертичные (Q-N), неогеновые (N) отложения.

|      |      |        |       |      |             | Лист |
|------|------|--------|-------|------|-------------|------|
|      |      |        |       |      | 154-GI/2020 | 7    |
| Изм. | Лист | № док. | Подп. | Дата |             | /    |

Техногенные отложения: насыпные грунты, образовавшиеся в результате производственной и хозяйственной деятельности.

Современные четвертичные отложения: почвенно-растительный слой (чернозем).

Аллювиальные отложения: черные, темно-бурые глины, желто-серые, серые пески пылеватой и среднезернистой фракции.

Аллювиально-делювиальные отложения: желто-бурые суглинки.

Неоген-четвертичные отложения: зеленовато-серые, желто-серые глины.

Неогеновые отложения: светло-серые известняки.

Подробное описание инженерно-геологического строения приводится в геологических колонках скважин.

#### 2.5. Сводный инженерно-геологический разрез

- 1. Насыпные грунты (строймусор, с суглинистым заполнителем); tQ; Мощность: 1,3 м:
- 2. Почвенно-растительный слой; nQ; Мощность: 0,7-0,9 м;
- 3. Глины черные, темно-бурые, с прослоями супеси, полутвердые; ИГЭ-I; аQ; Мощность: 1,1-2,2 м;
- 4. Суглинки желто-бурые, с включениями карбонатов (окатыши), от полутвердых до мягкопластичных; ИГЭ-II, ИГЭ-III; adQ; Мощность: 0,6-4,2 м;
- 5. Глины зеленовато-серые, желто-серые, с прослоями супеси, полутвердые; ИГЭ-IV; Q-N; Мощность: 1,0-4,5 м;
- 6. Пески пылеватые желто-серые, с прослоями супеси и песка пылеватого, водонасыщенные; ИГЭ-V; аQ; Вскрытая мощность: 0,6-3,9 м;
- 7. Пески среднезернистые желто-серые, серые, с прослоями песка мелкого, водонасыщенные; ИГЭ-VI; аQ; Вскрытая мощность: 0,3-2,5 м;
- 8. Известняки светло-серые, водонасыщенные; ИГЭ-VII; N; Вскрытая мощность: 0,6-2,2 м;

### 2.6. Свойства грунтов

Во время изысканий детально изучались грунты, слагающие площадку. Произведен необходимый отбор проб ненарушенной и нарушенной структуры.

Лабораторные испытания грунтов включали определение физических параметров грунтов.

Прочностные и деформационные характеристики определены по табл. СНиП 2.02.01-83. Результаты исследований приведены в прилагаемых ведомостях.

Согласно ГОСТ 20522-96 в разведанной толще выделено 7 инженерно-геологических элементов (ИГЭ).

Таблица 2.2

| Номер ИГЭ и слоя грунта                                          | W        | ρ        | I <sub>P</sub> | lι       | S <sub>R</sub> |
|------------------------------------------------------------------|----------|----------|----------------|----------|----------------|
| ИГЭ-I: слой №3 - глины полутвер-<br>дые, ненабухающие;           | 24,028,0 | 1,851,93 | 18,024,0       | 0,080,24 | 0,820,91       |
| ИГЭ-II: слой №4 - суглинки по-<br>лутвердые, непросадочные;      | 19,020,0 | 1,992,01 | 8,09,0         | 0,130,22 | 0,860,87       |
| ИГЭ-III: слой №4 - суглинки мягко-<br>пластичные, непросадочные; | 25,028,0 | 1,951,95 | 11,015,0       | 0,450,67 | 0,920,97       |
| ИГЭ-IV: слой №5 - глины полутвердые, ненабухающие;               | 25,030,0 | 1,932,01 | 18,022,0       | 0,100,23 | 0,881,00       |

|      |      |        |       |      |             | Лист |
|------|------|--------|-------|------|-------------|------|
|      |      |        |       |      | 154-GI/2020 | o    |
| Изм. | Лист | № док. | Подп. | Дата |             | 0    |

|      | 9-V: слой №6 - пески пылеватые<br>насыщенные, средней плотности;             | 23,026,0 | 1,891,96 | - | - | 0,840,98 |
|------|------------------------------------------------------------------------------|----------|----------|---|---|----------|
|      | 9-VI: слой №7 - пески средней<br>юсти водонасыщенные, средней<br>юсти;       | 24,026,0 | 1,931,99 | - | - | 0,941,00 |
| насы | Э-VII: слой №8 - известняки водо-<br>щенные, сильно выветрелые,<br>иноватые; | -        | 1,82,1   | - | - | -        |

Применительно к выделенным ИГЭ проведена камеральная обработка полученных лабораторных данных физико-механических характеристик грунтов, позволившая получить нормативные и расчётные значения прочностных характеристик (Приложение 1).

### 2.7. Гидрогеологические условия

Исследуемый район относится к бассейну реки Реут.

Первый водоносный горизонт подземных вод «верховодка» вскрыт всеми скважинами. Водовмещающими породами являются песчаные грунты, суглинки, прослои песка в глинах. Водоупор вскрыт частично. Питание осуществляется за счет инфильтрации атмосферных осадков и утечек из коммуникаций. Областью разгрузки является пойма р. Реут. Водоприток – сильный, переменный. Воды – напорные. Величина напора составляет 1,0-2,4 м.

Глубины залегания по скважинам см. табл. 2.3.

Таблица 2.3

| <b>№</b><br>п/п | <b>№</b><br>СКВ | Абс. отм.<br>устья<br>сква-<br>жины, м | Появившийся<br>уровень под-<br>земн. вод, м | Абс. отм. по-<br>явивш.<br>уровня под-<br>земн. вод, м | Установив-<br>шийся уро-<br>вень подземн.<br>вод, м | Абс. отм.<br>установивш.<br>уровня под-<br>земн. вод, м |
|-----------------|-----------------|----------------------------------------|---------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|
| 1.              | 1               | 32,20                                  | 2,5                                         | 29,70                                                  | 1,2                                                 | 31,00                                                   |
| 2.              | 2               | 32,40                                  | 2,0                                         | 30,40                                                  | 1,0                                                 | 31,40                                                   |
| 3.              | 3               | 31,90                                  | 2,4                                         | 29,50                                                  | 1,2                                                 | 30,70                                                   |
| 4.              | 4               | 31,40                                  | 2,2                                         | 29,20                                                  | 0,4                                                 | 31,00                                                   |
| 5.              | 5               | 31,70                                  | 2,7                                         | 29,00                                                  | 0,3                                                 | 31,40                                                   |
| 6.              | 6               | 31,10                                  | 1,9                                         | 29,20                                                  | 0,8                                                 | 30,30                                                   |
| 7.              | 7               | 31,30                                  | 2,0                                         | 29,30                                                  | 0,6                                                 | 30,70                                                   |
| 8.              | 8               | 33,10                                  | 3,2                                         | 29,90                                                  | 1,8                                                 | 31,30                                                   |

Коэффициенты фильтрации грунтов согласно табличным данным [22]: для суглинков (слой №4) - 0,1-0,005 м/сутки; для глин (слой №3, 5) - 0,001-0,005 м/сутки; для песков среднезернистых (слой №7) - 5,0-20,0 м/сутки; для песков пылеватых (слой №6) - 1,0-3,0 м/сутки.

По результатам химического анализа подземные воды обладают сульфатной агрессией к бетону нормальной проницаемости в грунтах с  $K_{\phi}$ > 0,1 м/сут, слабоагрессивны на арматуру железобетонных конструкций по содержанию хлоридов при периодическом смачивании. Средне агрессивны к металлическим конструкциям по показателю pH.

Содержание ионов сульфатов ( $SO_4^-$ ) - 823,00 мг/л, карбонатов ( $HCO_3^-$ ) - 683,20 мг/л. За предполагаемый расчетный уровень подземных вод принять естественную дневную поверхность.

Поверхностный сток затруднен и не урегулирован. Площадка - естественно подтопляемая и затапливаемая.

|      |      |        |       |      |             | Лист |
|------|------|--------|-------|------|-------------|------|
|      |      |        |       |      | 154-GI/2020 | 0    |
| Изм. | Лист | № док. | Подп. | Дата |             | 9    |

### 2.8. Инженерно-геологическая характеристика площадки

План участка планируемого строительства представлен на карте фактического материала.

Исследуемый участок распахан. Используется под агроугодия. Непосредственно территория под строительство — свободная.

В ходе проведения буровых работ, в толще насыпных грунтов, были обнаружены остатки железобетонных конструкций (плиты, блоки), также, выявлено наличие засыпанных выгребных ям, что необходимо учитывать при проведении планировочных работ и разработке котлована.

Активные неблагоприятные физико-геологические явления и процессы (оползни, овраги, карст, суффозии и пр.) на площадке и в радиусе 200 м не зафиксированы.

Категория грунтов по сейсмическим свойствам приведена в Приложении 1. Согласно СНиП II-7-81\* (Примечание 1\* к таблице 1\*) суммарная мощность грунтов III категории в пределах 10-ти метровой толщи от планировочной отметки более 5 м.

Расчетную сейсмичность площадки строительства следует принять – 8 баллов.

Инженерно-геологические и гидрогеологические условия площадки строительства – условно-благоприятные (наличие специфических грунтов, многослойность пород, высокая степень обводнённости грунтов, заболачивание участка, постоянное подтопление и затапливание участка).

#### 2.9. Специфические грунты

К специфическим грунтам, встреченным на исследуемом участке, относятся:

техногенные (насыпные) грунты - слой №1, представленные смесью строймусора, суглинка и погребенной почвы. Насыпные грунты образовались в результате проведения планировочных работ для поднятия уровня площадки, а также во время прокладки инженерных сетей. Грунты — влажные, водонасыщенные, неслежавшиеся. Давность отсыпки менее 25 лет. Мощность слоя насыпи не выдержана, может изменяться от 2,0 до 4,0 м. В пределах толщи были зафиксированы полости, прослои рыхлого грунта, бытового мусора. Насыпные грунты неоднородны по составу и степени сжимаемости, как в вертикальном разрезе, так и по площади.

#### 2.10. Заключение

- 1. Выполненные инженерно-геологические работы соответствуют требованиям СНиП 1.02.07-87 на стадии проектной документации и рекомендуются для ее разработки.
- 2. По совокупности геоморфологических, геологических и гидрогеологических факторов согласно СНиП 1.02.07-87, Приложение 10, категория сложности инженерно-геологических условий II (средней сложности).
- 3. Толща грунтов до вскрытой глубины является неоднородной. Согласно ГОСТ 20522-96 в разведанной толще выделено 7 инженерно-геологических элементов (ИГЭ). Расчетные значения физических, прочностных и деформационных характеристик грунтов, необходимые для проектирования, приведены в Приложении 1. Приведенные в данном приложении значения действительны при условии сохранения естественного состояния грунтов и вне зоны сезонного промерзания.
- 4. К факторам, осложняющим строительство, следует отнести:
  - 8- ми балльную расчётную сейсмичность площадки строительства;

|      |      |        |       |      |             | Лист |
|------|------|--------|-------|------|-------------|------|
|      |      |        |       |      | 154-GI/2020 | 10   |
| Изм. | Лист | № док. | Подп. | Дата |             | 10   |

- залегание в активной зоне фундаментов грунтов, относящихся к 3-ей категории по сейсмическим свойствам;
- наличие сравнительно маломощных слоев грунта невыдержанных по глубине и простиранию, обладающих отличающимися характеристиками физико-механических свойств.
- затопление участка и подтопление грунтов основания;
- высокий уровень залегания подземных вод (расчетный уровень дневная поверхность);
- высокая степень водонасыщения грунтов. С учётом несогласного залегания слоев грунта в основании фундаментов это обстоятельство может привести к неравномерной консолидации (уплотнению во времени) и требует дополнительных расчетов;
- наличие насыпных грунтов.
- 5. Подземные воды на площадке были вскрыты всеми скважинами. Глубины залегания по скважинам см. табл. 2.3., карту фактического материала и колонки скважин. За предполагаемый расчетный уровень подземных вод принять естественную дневную поверхность.
- 6. По результатам химического анализа подземные воды обладают сульфатной агрессией к бетону нормальной проницаемости в грунтах с Кф> 0,1 м/сут, слабоагрессивны на арматуру железобетонных конструкций по содержанию хлоридов при периодическом смачивании. Средне агрессивны к металлическим конструкциям по показателю рН.
  - Содержание ионов сульфатов ( $SO_4^-$ ) 823,00 мг/л, карбонатов ( $HCO_3^-$ ) 683,20 мг/л.
- 7. Поверхностный сток затруднен и не урегулирован. Площадка естественно подтопляемая и затапливаемая.
- 8. Коэффициенты фильтрации грунтов согласно табличным данным [22]: для суглинков (слой №4) 0,1-0,005 м/сутки; для глин (слой №3, 5) 0,001-0,005 м/сутки; для песков среднезернистых (слой №7) 5,0-20,0 м/сутки; для песков пылеватых (слой №6) 1,0-3,0 м/сутки.
- 9. Активные неблагоприятные физико-геологические явления и процессы (оползни, овраги, карст, суффозии и пр.) на площадке и в радиусе 200 м не зафиксированы.
- Инженерно-геологические и гидрогеологические условия площадки строительства условно-благоприятные (наличие специфических грунтов, многослойность пород, высокая степень обводнённости грунтов, заболачивание участка, постоянное подтопление и затапливание участка).
- 11. Категория грунтов по сейсмическим свойствам приведена в Приложении 1. Согласно СНиП II-7-81\* (Примечание 1\* к таблице 1\*) суммарная мощность грунтов III категории в пределах 10-ти метровой толщи от планировочной отметки более 5 м. Расчетную сейсмичность площадки строительства следует принять 8 баллов.
- 12. Согласно п.1.5. СНиП 7-81\* площадка относится к неблагоприятной в сейсмическом отношении. При строительстве следует принять дополнительные меры по улучшению свойств грунтов основания и усилению конструкций.
- 13. К специфическим грунтам отнесены:
  - техногенные (насыпные) грунты слой №1, представленные смесью строймусора, суглинка и погребенной почвы. Насыпные грунты образовались в результате проведения планировочных работ для поднятия уровня площадки, а также во время прокладки инженерных сетей. Грунты влажные, водонасыщенные, неслежавшиеся. Давность отсыпки менее 25 лет. Мощность слоя насыпи не выдержана, может изменяться от 2,0 до 4,0 м. В пределах толщи

|      |      |        |       |      |             | Лист |
|------|------|--------|-------|------|-------------|------|
|      |      |        |       |      | 154-GI/2020 | 11   |
| Изм. | Лист | № док. | Подп. | Дата |             | 11   |

были зафиксированы полости, прослои рыхлого грунта, бытового мусора. Насыпные грунты неоднородны по составу и степени сжимаемости, как в вертикальном разрезе, так и по площади.

- 14. Застройка изучаемого участка целесообразна после проведения масштабных планировочных работ по поднятию территории и уррегулированию поверхностного водостока с обязательным соблюдением уклона, необходимого для обеспечения длительной устойчивости откосов выемок и насыпей.
- 15. Согласно выданному техническому заданию в качестве несущего слоя для фундаментов мелкого заложения будут служить глины темно-бурые (слой №3) и / или суглинки желто-бурые (слой №3).
- 16. При размещении фундаментов следует учитывать неоднородность геологического строения площадки и наклонное залегание слоев грунта, избегать размещения фундаментов в пределах различных ИГЭ.
  - В случае вынужденного размещения фундаментов в пределах различных ИГЭ следует выполнить мероприятия для преобразования строительных свойств грунтов основания (полной или частичной заменой в основании (в плане и по глубине) грунтов с неудовлетворительными свойствами распределительными подушками из гравия, щебня и т.п.;), а также конструктивные мероприятия, уменьшающие чувствительность сооружений к деформациям основания (повышение прочности и пространственной жесткости сооружений, в особенности конструкций фундаментно-подвальной части (введение дополнительных связей в каркасных конструкциях, устройство железобетонных поясов, разрезка сооружений на отсеки и т.п.).
- 17. Для повышения несущей способности основания рекомендуется устройство подушки из щебня крупной фракции, толщиной не менее 0,5 м (уточнить расчетом), также осуществить мероприятия для понижения уровня подземных вод (пластовый, пристенный дренаж и т.д.).
- 18. Учитывая, что возможность локального замачивания грунтов полностью исключить нельзя, в расчетах рекомендуется использовать характеристики грунтов в водонасыщенном состоянии.
- 19. Перед устройством фундаментов необходимо:
  - полностью удалить почвенно-растительный слой;
  - выполнить планировку территории;
  - предусмотреть мероприятия по отводу поверхностных и подземных (в случае вскрытия) вод;
- 20. В проекте необходимо предусмотреть:
  - мероприятия по урегулированию поверхностного стока во время эксплуатации здания (отмостки, водоотливы, желоба, ливневая канализация);
  - устройство вертикальной и горизонтальной гидроизоляции фундаментов и подземной части здания;
  - устройство водозащитных мероприятий (дренажные системы и др).
- 21. Строительные работы по устройству котлована и фундаментов следует проводить в сухое время года. По окончании работ нулевого цикла, обратную засыпку необходимо выполнить в кратчайшие сроки с соблюдением действующих норм.
- 22. С учетом плотности расположения на площадке инженерных коммуникаций, строительные работы по отрывке котлована вести только после согласования с инстанциями обслуживающие данные сети и последующего их переноса.

|      |      |        |       |      |             | Лист |
|------|------|--------|-------|------|-------------|------|
|      |      |        |       |      | 154-GI/2020 | 12   |
| Изм. | Лист | № док. | Подп. | Дата |             | 12   |

| 23. | Категории грунтов по трудности разработки согл<br>• насыпной грунт – пп. 15 а, 24 а, 33 в;<br>• почвенно-растительный слой – п.9 а,б,в<br>• песок – п.27 а,б,в;<br>• суглинок – п.33 а,б,в;<br>• глина – 8 г,д;<br>• известняк – 15 а,б,в; |               |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|     | Руководитель работ                                                                                                                                                                                                                         | Полканов В.Н. |
|     | Гл. специалист                                                                                                                                                                                                                             | Чебан О.С.    |
|     |                                                                                                                                                                                                                                            |               |
|     |                                                                                                                                                                                                                                            |               |
|     |                                                                                                                                                                                                                                            |               |
|     |                                                                                                                                                                                                                                            |               |
|     |                                                                                                                                                                                                                                            |               |
|     |                                                                                                                                                                                                                                            |               |
|     |                                                                                                                                                                                                                                            |               |
|     |                                                                                                                                                                                                                                            |               |
|     |                                                                                                                                                                                                                                            |               |
|     |                                                                                                                                                                                                                                            |               |
|     |                                                                                                                                                                                                                                            |               |
|     |                                                                                                                                                                                                                                            |               |
|     |                                                                                                                                                                                                                                            |               |
|     |                                                                                                                                                                                                                                            |               |
|     |                                                                                                                                                                                                                                            |               |

| Изм. | Лист | № док. | Подп. | Дата |
|------|------|--------|-------|------|

#### Список использованных материалов

#### Нормативная литература

- 1. СНиП 1.02.07-87. Инженерные изыскания для строительства.
- 2. СНиП 2.02.01-83\*. Основания зданий и сооружений.
- 3. CP F.01.02-2008. Proiectarea și construcția temeliilor și fundațiilor pentru clădiri și instalații
- 4. CP F.01.01-2007. Proiectarea și construcția fundațiilor pe piloți
- 5. СНиП II-7-81\*. Строительство в сейсмических районах.
- 6. СНиП IV-5-82 Сборник 1. Земляные работы.
- 7. СНиП 2.01.01-82. Строительная климатология и геофизика.
- 8. NCM A.06.01-2006. Protecţia tehnică a teritoriului, clădirilor şi construcţiilor contra proceselor geologice periculoase. Date generale.
- 9. NCM F.01.01-2007. Geofizica proceselor naturale periculoase.
- 10. ГОСТ 12071-2014. Грунты. Отбор, упаковка, транспортирование и хранение образцов.
- 11. ГОСТ 25100-2011. Грунты. Классификация.
- 12. ГОСТ 30416-96. Грунты. Лабораторные испытания. Общие положения.
- 13. ГОСТ 5180-84. Грунты. Методы лабораторного определения физических характеристик.
- 14. ГОСТ 12536-79. Грунты. Методы лабораторного определения зернового (гранулометрического) и микроагрегатного состава.
- 15. ГОСТ 12248-2010. Грунты. Методы лабораторного определения характеристик прочности и деформируемости.
- 16. ГОСТ 20522-96. Методы статистической обработки результатов испытаний.
- 17. ГОСТ 24143-80. Грунты. Методы лабораторного определения характеристик набухания и усадки.
- 18. ГОСТ 23161-78. Грунты. Метод лабораторного определения характеристик просадочности.
- 19. ГОСТ 25584-90. Грунты. Метод лабораторного определения коэффициента фильтрации.

#### Справочная литература

- 20. Пособие по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83) / НИИОСП им Герсеванова. –М.: Стройиздат, 1986. 415 с.
- 21. СП 11-105-97 Инженерно-геологические изыскания для строительства. Часть І. Общие положения. Госстрой РФ.
- 22. СП 11-105-97 Инженерно-геологические изыскания для строительства. Часть ІІ. Правила производства работ в районах развития опасных геологических и инженерно-геологических процессов. Госстрой РФ.
- 23. СП 11-105-97. Инженерно-геологические изыскания для строительства. Часть III. Правила производства работ в районах распространения специфических грунтов. Госстрой РФ.
- 24. Справочное пособие для обработки материалов инженерно-геологических изысканий. –М.: ДАР\ВОДГЕО, 2005. -94 с.
- 25. Справочник гидрогеолога. Москва, 1982 г.
- 26. Справочник геотехника. Основания, фундаменты и подземные сооружения. М.: Изд-во АСВ, 2014. -728 с.

|      |      |        |       |      |             | Лист |
|------|------|--------|-------|------|-------------|------|
|      |      |        |       |      | 154-GI/2020 | 14   |
| Изм. | Лист | № док. | Подп. | Дата |             | 14   |

# PACYETHЫЕ И НОРМАТИВНЫЕ ХАРАКТЕРИСТИКИ ГРУНТОВ PARAMETRII DE CALCUL SI NORMATIVI A PAMANTURILOR

Приложение 1.1.

|                                          |                                                                               | енерно-геологи<br>nentele geologic               | ческие элементы<br>o-inginereşti                    | игэ-і                                 | ИГЭ-ІІ                                    | ИГЭ-ІІІ                                       | ИГЭ-ІV                              |  |
|------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|---------------------------------------|-------------------------------------------|-----------------------------------------------|-------------------------------------|--|
|                                          | Uau                                                                           |                                                  |                                                     | (слой 3)                              | (слой 4)                                  | (слой 4)                                      | (слой 5)                            |  |
|                                          |                                                                               |                                                  | тов и номера слоев<br>lui și numărul stratului      | глины<br>полутвердые,<br>ненабухающие | суглинки<br>полутвердые,<br>непросадочные | суглинки<br>мягкопластичные,<br>непросадочные | глины<br>полутвердые<br>ненабухающи |  |
|                                          | tă)                                                                           | Угол внутреннего<br>трения                       | Уплотненный, водонасыщенный*<br>Saturat, compactat* | -                                     | -                                         | ı                                             | -                                   |  |
|                                          | ,95<br>ortani                                                                 | (Unghiul de frecare interioară)                  | Водонасыщенный*<br>Saturat*                         | 14                                    | 17                                        | -                                             | -                                   |  |
|                                          | и α=(<br>tea po                                                               | mtenoara)<br><b>ф</b> <sub>i</sub> , град        | Природный*<br>Natural*                              | 16                                    | 21                                        | 16                                            | 17                                  |  |
|                                          | бност<br>расіtа                                                               | Удельное                                         | Уплотненный, водонасыщенный*<br>Saturat, compactat* | -                                     | -                                         | -                                             | -                                   |  |
|                                          | Jocof<br>ă cap                                                                | <b>сцепление</b><br>(Coeziunea)                  | Водонасыщенный*<br>Saturat*                         | 30                                    | 17                                        | -                                             | -                                   |  |
|                                          | цей сі<br>(dup                                                                | <b>с</b> <sub>I</sub> , кПа                      | Природный*<br>Natural*                              | 33                                    | 23                                        | 13                                            | 36                                  |  |
| L                                        | По несущей способности α=0,95<br>I-a stare limită (după capacitatea portantă) | Плотность                                        | Уплотненный, водонасыщенный*<br>Saturat, compactat* | -                                     | -                                         | -                                             | -                                   |  |
| ения                                     | По н<br>stare                                                                 | (Densitatea)                                     | Водонасыщенный*<br>Saturat*                         | 1,94                                  | 2,04                                      | 1,96                                          | 1,98                                |  |
| значен<br>е calcul                       | <u>-</u> a                                                                    | <b>ρ</b> <sub>I</sub> , г/см <sup>3</sup>        | Природный*<br>Natural*                              | 1,86                                  | 1,99                                      | 1,95                                          | 1,95                                |  |
| счетные зн<br>Valorile de                |                                                                               | Угол внутреннего                                 | Уплотненный, водонасыщенный*<br>Saturat, compactat* | -                                     | -                                         | -                                             | -                                   |  |
| Расчетные значения<br>Valorile de calcul | í.                                                                            | трения<br>(Unghiul de frecare                    | Водонасыщенный*<br>Saturat*                         | 16                                    | 19                                        | -                                             | -                                   |  |
| <u>o</u>                                 | По деформации α=0,85<br>II-a stare limită (după deformații)                   | interioară)<br><b>Ф</b> ⊪, град                  | Природный*<br>Natural*                              | 18                                    | 24                                        | 18                                            | 19                                  |  |
|                                          |                                                                               | Удельное                                         | Уплотненный, водонасыщенный* Saturat, compactat*    | -                                     | -                                         | -                                             | -                                   |  |
|                                          |                                                                               | сцепление<br>(Coeziunea)                         | Водонасыщенный*<br>Saturat*                         | 45                                    | 25                                        | -                                             | -                                   |  |
|                                          | epop<br>limită                                                                | <b>с</b> <sub>II</sub> , кПа                     | Природный*<br>Natural*                              | 49                                    | 34                                        | 20                                            | 54                                  |  |
|                                          | По де<br>stare                                                                |                                                  | Уплотненный, водонасыщенный* Saturat, compactat*    | -                                     | -                                         | -                                             | -                                   |  |
|                                          | <u>=</u>                                                                      | Плотность<br>(Densitatea)                        | Водонасыщенный*<br>Saturat*                         | 1,94                                  | 2,04                                      | 1,96                                          | 1,98                                |  |
|                                          |                                                                               | <b>ρ</b> <sub>II</sub> , г/см <sup>3</sup>       | Природный*<br>Natural*                              | 1,87                                  | 1,99                                      | 1,95                                          | 1,96                                |  |
|                                          | ı                                                                             | Угол внутреннего                                 | Уплотненный, водонасыщенный* Saturat, compactat*    | -                                     | -                                         | -                                             | -                                   |  |
|                                          |                                                                               | трения<br>(Unghiul de frecare                    | Водонасыщенный*<br>Saturat*                         | 16                                    | 19                                        | -                                             | -                                   |  |
|                                          |                                                                               | interioară)<br><b>ф</b> <sub>n</sub> , град      | Природный*<br>Natural*                              | 18                                    | 24                                        | 18                                            | 19                                  |  |
|                                          |                                                                               | Удельное                                         | Уплотненный, водонасыщенный* Saturat, compactat*    | -                                     | -                                         | -                                             | -                                   |  |
|                                          |                                                                               | сцепление<br>(Coeziunea)                         | Водонасыщенный*<br>Saturat*                         | 45                                    | 25                                        | -                                             | -                                   |  |
| <u> </u>                                 |                                                                               | <b>с</b> <sub>n</sub> , кПа                      | Природный*<br>Natural*                              | 49                                    | 34                                        | 20                                            | 54                                  |  |
| 14eH                                     | ıţe                                                                           | Модуль                                           | Уплотненный, водонасыщенный* Saturat, compactat*    | -                                     | -                                         | -                                             | -                                   |  |
| e 3H8                                    | Valorile normate                                                              | <b>деформации</b><br>(Modulul de                 | Водонасыщенный*<br>Saturat*                         | 16                                    | 17                                        | -                                             | -                                   |  |
| 18HB                                     | rile                                                                          | deformaţie)<br><b>E</b> , M∏a                    | Природный*<br>Natural*                              | 19                                    | 24                                        | 12                                            | 21                                  |  |
| Нормативные значения                     | Valc                                                                          | S <sub>r</sub>                                   | Степень влажности Gradul de umiditate               | 0,87                                  | 0,87                                      | 0,95                                          | 0,96                                |  |
| 훈                                        |                                                                               | е                                                | Коэффициент пористости Coeficientul de porozitate   | 0,828                                 | 0,606                                     | 0,757                                         | 0,754                               |  |
|                                          |                                                                               | Ι <sub>L</sub>                                   | Показатель текучести Indicele de lichiditate        | 0,16                                  | 0,18                                      | 0,56                                          | 0,18                                |  |
|                                          |                                                                               | I <sub>p</sub>                                   | Число пластичности Indicele de plasticitate         | 21                                    | 9                                         | 13                                            | 20                                  |  |
|                                          |                                                                               | W <sub>e</sub>                                   | Природная влажность<br>Umiditatea naturala          | 26,0                                  | 20,0                                      | 27,0                                          | 27,0                                |  |
|                                          |                                                                               | <b>ρ</b> <sub>d</sub> , г/см <sup>3</sup>        | Плотность сухого грунта Densitatea scheletului      | 1,50                                  | 1,68                                      | 1,54                                          | 1,56                                |  |
|                                          |                                                                               | <b>ρ</b> , г/см <sup>3</sup>                     | Плотность Densitatea                                | 1,89                                  | 2,00                                      | 1,95                                          | 1,98                                |  |
|                                          |                                                                               |                                                  | Уплотненный, водонасыщенный<br>Saturat, compactat   | -                                     | -                                         | -                                             | -                                   |  |
|                                          | R                                                                             | ,**, кПа                                         | Водонасыщенный Saturat*                             | 260                                   | 240                                       | -                                             | -                                   |  |
|                                          |                                                                               |                                                  | Природный<br>Natural*                               | 280                                   | 260                                       | 200                                           | 320                                 |  |
| Кат                                      |                                                                               | грунтов по сейсмичес<br>olurilor după proprietăț | ким свойствам                                       | II                                    | II                                        | III                                           | II                                  |  |

Выполнил (а): Чебан О. Проверил (а): Полканов В.Н.

# PACYETHЫЕ И НОРМАТИВНЫЕ ХАРАКТЕРИСТИКИ ГРУНТОВ PARAMETRII DE CALCUL SI NORMATIVI A PAMANTURILOR

Приложение 1.2.

|                                          |                                                                               | енерно-геологи<br>entele geologic            | ческие элементы<br>o-inginereşti                     | ИГЭ-V                                                               | ИГЭ-VІ                                                             | ИГЭ-VІІ                                                            |
|------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
|                                          |                                                                               |                                              | тов и номера слоев<br>lui și numărul stratului       | (слой 6)<br>пески пылеватые<br>водонасыщенные,<br>средней плотности | (слой 7) пески средней крупности водонасыщенные, средней плотности | (слой 8) известняки водонасыщенные сильно выветрелые, трещиноватые |
|                                          | ă)                                                                            | Угол внутреннего                             | Уплотненный, водонасыщенный*<br>Saturat, compactat*  | -                                                                   | -                                                                  | -                                                                  |
|                                          | 95<br>rtanta                                                                  | трения<br>(Unghiul de frecare                | Водонасыщенный*<br>Saturat*                          | _                                                                   | -                                                                  | -                                                                  |
|                                          | α=0,<br>a po                                                                  | interioară)<br><b>Ф</b> ı, град              | Природный*                                           | 25                                                                  | 32                                                                 | _                                                                  |
|                                          | ости<br>citate                                                                | V                                            | Natural*<br>Уплотненный, водонасыщенный*             | -                                                                   | -                                                                  |                                                                    |
|                                          | сара                                                                          | Удельное<br>сцепление                        | Saturat, compactat* Водонасыщенный*                  |                                                                     |                                                                    | -                                                                  |
|                                          | спо                                                                           | (Coeziunea)                                  | Saturat*<br>Природный*                               | -                                                                   | -                                                                  | -                                                                  |
|                                          | 'щей<br>tă (d                                                                 | <b>с</b> <sub>і</sub> , кПа                  | Natural*                                             | 2                                                                   | 1                                                                  | -                                                                  |
| <u> </u>                                 | По несущей способности α=0,95<br>l-a stare limită (după capacitatea portantă) | Плотность                                    | Уплотненный, водонасыщенный*<br>Saturat, compactat*  | -                                                                   | -                                                                  | -                                                                  |
| ᇋ                                        | По<br>stare                                                                   | (Densitatea)                                 | Водонасыщенный*<br>Saturat*                          | 1,95                                                                | 1,96                                                               | -                                                                  |
| е значен<br>de calcul                    | l-a                                                                           | <b>ρ</b> <sub>I</sub> , г/см <sup>3</sup>    | Природный*<br>Natural*                               | 1,89                                                                | 1,94                                                               | -                                                                  |
| Расчетные значения<br>Valorile de calcul |                                                                               | Угол внутреннего                             | Уплотненный, водонасыщенный*<br>Saturat, compactat*  | -                                                                   | -                                                                  | -                                                                  |
| счет<br>Valo                             | (i                                                                            | трения<br>(Unghiul de frecare                | Водонасыщенный*                                      | _                                                                   | _                                                                  | _                                                                  |
| g.                                       | ਰੱ                                                                            | interioară)<br><b>Ф</b> <sub>II</sub> , град | Saturat*<br>Природный*                               | 27                                                                  | 35                                                                 | _                                                                  |
|                                          | По деформации α=0,85<br>stare limită (după deform                             |                                              | Natural*<br>Уплотненный, водонасыщенный*             | 21                                                                  |                                                                    | _                                                                  |
|                                          | щии<br>lupă                                                                   | Удельное<br>сцепление                        | Saturat, compactat* Водонасыщенный*                  | -                                                                   | -                                                                  | -                                                                  |
|                                          | орма<br>ită (c                                                                | (Coeziunea)                                  | Saturat*<br>Природный*                               | -                                                                   | -                                                                  | -                                                                  |
|                                          | деф<br>e lim                                                                  | <b>с</b> <sub>II</sub> , кПа                 | Natural*                                             | 3                                                                   | 1                                                                  | -                                                                  |
|                                          | ∏o<br>a star                                                                  | Плотность                                    | Уплотненный, водонасыщенный*<br>Saturat, compactat*  | -                                                                   | -                                                                  | -                                                                  |
|                                          | II-a                                                                          | (Densitatea)                                 | Водонасыщенный*<br>Saturat*                          | 1,96                                                                | 1,97                                                               | -                                                                  |
|                                          |                                                                               | <b>р</b> <sub>II</sub> , г/см <sup>3</sup>   | Природный*<br>Natural*                               | 1,90                                                                | 1,96                                                               | -                                                                  |
|                                          |                                                                               | Угол внутреннего                             | Уплотненный, водонасыщенный*<br>Saturat, compactat*  | -                                                                   | -                                                                  | -                                                                  |
|                                          |                                                                               | трения<br>(Unghiul de frecare                | Водонасыщенный*<br>Saturat*                          | -                                                                   | -                                                                  | -                                                                  |
|                                          |                                                                               | interioară)<br><b>ф</b> <sub>n</sub> , град  | Природный*                                           | 27                                                                  | 35                                                                 | _                                                                  |
|                                          |                                                                               |                                              | Natural*<br>Уплотненный, водонасыщенный*             | _                                                                   | -                                                                  | _                                                                  |
|                                          |                                                                               | Удельное<br>сцепление                        | Saturat, compactat* Водонасыщенный*                  | _                                                                   |                                                                    | _                                                                  |
|                                          |                                                                               | (Coeziunea)<br><b>с</b> <sub>n</sub> , кПа   | Saturat*<br>Природный*                               | -                                                                   | -                                                                  | -                                                                  |
| K                                        |                                                                               |                                              | Natural*<br>Уплотненный, водонасыщенный*             | 3                                                                   | 1                                                                  | -                                                                  |
| наче                                     | nate                                                                          | Модуль<br>деформации                         | Saturat, compactat*                                  | -                                                                   | -                                                                  | -                                                                  |
| <u>.</u>                                 | norr                                                                          | (Modulul de deformație)                      | Водонасыщенный*<br>Saturat*                          | -                                                                   | -                                                                  | -                                                                  |
| Нормативные значения                     | Valorile normate                                                              | E, M∏a                                       | Природный*<br>Natural*                               | 13                                                                  | 30                                                                 | 50100                                                              |
| рмат                                     | Val                                                                           | S <sub>r</sub>                               | Степень влажности<br>Gradul de umiditate             | 0,89                                                                | 0,97                                                               | -                                                                  |
| 롼                                        |                                                                               | е                                            | Коэффициент пористости<br>Coeficientul de porozitate | 0,725                                                               | 0,695                                                              | -                                                                  |
|                                          |                                                                               | Ι <sub>L</sub>                               | Показатель текучести                                 | -, -                                                                | -,                                                                 | _                                                                  |
|                                          |                                                                               | I <sub>p</sub>                               | Indicele de lichiditate<br>Число пластичности        |                                                                     |                                                                    | _                                                                  |
|                                          |                                                                               | W <sub>e</sub>                               | Indicele de plasticitate<br>Природная влажность      | 24.0                                                                | 25.0                                                               | _                                                                  |
|                                          |                                                                               | -                                            | Umiditatea naturala Плотность сухого грунта          | 24,0                                                                | 25,0                                                               | -                                                                  |
|                                          |                                                                               | <b>ρ</b> <sub>d</sub> , г/см <sup>3</sup>    | Densitatea scheletului Плотность                     | 1,54                                                                | 1,57                                                               |                                                                    |
|                                          |                                                                               | <b>ρ</b> , г/см <sup>3</sup>                 | Densitatea                                           | 1,91                                                                | 1,97                                                               | 1,82,1                                                             |
|                                          |                                                                               |                                              | Уплотненный, водонасыщенный<br>Saturat, compactat    | -                                                                   | -                                                                  | -                                                                  |
|                                          | $R_0$                                                                         | **, кПа                                      | Водонасыщенный<br>Saturat*                           | -                                                                   | -                                                                  | -                                                                  |
|                                          |                                                                               |                                              | Природный<br>Natural*                                | 100                                                                 | 400                                                                | 800                                                                |
| Кат                                      | гегория г                                                                     | рунтов по сейсмичес                          |                                                      | III                                                                 | III                                                                | II                                                                 |

Выполнил (а): Чебан О. Проверил (а): Полканов В.Н.

# PEЗУЛЬТАТЫ PACYETA ХАРАКТЕРИСТИК ФИЗИЧЕСКИХ СВОЙСТВ ГРУНТОВ REZULTATELE DETERMINARII PARAMETRILOR FIZICI A PAMANTURILOR

### Приложение 2.1.

|                 |                      | <u> </u>                                       | Ē                                                  |                                                                                                    |                                                                                                            | £ 5                                                                               | (F 7                                                       |                                     |                                                                 | ть, ρ, г/см<br>ea, ρ, g/cm                                                         |                                                           |                                   |                                                           | 3.0                                                                         | (Pr                                                                           | (Pr                                                            | Св                                                                           | Пот                                                    | Коэф<br>(Coefi                                                                           |          |                              |
|-----------------|----------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------|----------|------------------------------|
| <b>№</b><br>п/п | № скв.<br>(№ sondei) | Глубина отбора, м<br>(Adincimea prelevarii, m) | Ест. влажность We,%<br>(Umiditatea naturala, We,%) | Влажность на границе<br>текучести W <sub>L</sub> , %<br>(Umiditatea la limita<br>de curgere WL, %) | Влажность на границе<br>пластичности W <sub>P</sub> , %<br>(Umiditatea la limita de<br>plasticitate WP, %) | Число пластичности, I <sub>p</sub><br>(Indicele de plasticitate, I <sub>p</sub> ) | Показатель текучести, I<br>(Indicele de lichidiitate, I L) | Природная, р<br>(Stare naturala, р) | Сухого грунта, р <sub>d</sub><br>(Scheletului, р <sub>d</sub> ) | Водонасыщенного<br>грунта, р <sub>sat</sub><br>(Stare saturata, р <sub>sat</sub> ) | Частиц, р <sub>s</sub><br>(Particolelor, р <sub>s</sub> ) | Пористость, n<br>(Porozitatea, n) | Коэффициент<br>пористости, е<br>(Coeficientul porilor, e) | Степень влажности, S <sub>r</sub><br>(Gradul de umiditate, S <sub>r</sub> ) | Начальное просадочное<br>давление, Psl, кПа<br>(Presiunea initiala, Psl, kPa) | Давление набухания,<br>Psw, кПа<br>Presiunea de gonflare, kPa) | Свободное набухание, ε <sub>sw</sub><br>(Gonflarea libera, ε <sub>sw</sub> ) | Потери при прокаливании, %<br>(Pierderea la calire, %) | Коэффициент фильтрации, Кф,<br>м/сут.<br>(Coeficient de permeabilitate, Кф,<br>m/diurna) |          | ание грунта<br>a pamantului) |
| 1               | 1                    | 2,0                                            | 19,0                                               | 26,0                                                                                               | 18,0                                                                                                       | 8,0                                                                               | 0,13                                                       | 2,01                                | 1,69                                                            | 2,06                                                                               | 2,69                                                      | 37,2                              | 0,592                                                     | 0,86                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | суглинок | полутв.                      |
| 2               | 1                    | 4,0                                            | 23,0                                               |                                                                                                    |                                                                                                            |                                                                                   |                                                            | 1,89                                | 1,54                                                            | 1,96                                                                               | 2,66                                                      | 42,1                              | 0,727                                                     | 0,84                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | песок    | пылев.                       |
| 3               | 1                    | 5,8                                            | 25,0                                               |                                                                                                    |                                                                                                            |                                                                                   |                                                            | 1,92                                | 1,54                                                            | 1,96                                                                               | 2,66                                                      | 42,1                              | 0,727                                                     | 0,91                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | песок    | пылев.                       |
| 4               | 1                    | 7,0                                            | 24,0                                               |                                                                                                    |                                                                                                            |                                                                                   |                                                            | 1,99                                | 1,60                                                            | 2,00                                                                               | 2,66                                                      | 39,8                              | 0,663                                                     | 0,96                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | песок    | ср.крупн.                    |
| 5               | 3                    | 1,5                                            | 20,0                                               | 27,0                                                                                               | 18,0                                                                                                       | 9,0                                                                               | 0,22                                                       | 1,99                                | 1,66                                                            | 2,04                                                                               | 2,69                                                      | 38,3                              | 0,620                                                     | 0,87                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | суглинок | полутв.                      |
| 6               | 3                    | 4,0                                            | 24,0                                               |                                                                                                    |                                                                                                            |                                                                                   |                                                            | 1,91                                | 1,54                                                            | 1,96                                                                               | 2,66                                                      | 42,1                              | 0,727                                                     | 0,88                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | песок    | пылев.                       |
| 7               | 3                    | 6,5                                            | 26,0                                               | 44.0                                                                                               | 22.2                                                                                                       | 04.0                                                                              | 0.04                                                       | 1,93                                | 1,53                                                            | 1,95                                                                               | 2,66                                                      | 42,5                              | 0,739                                                     | 0,94                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | песок    | мелкий                       |
| 8               | 4                    | 1,5                                            | 28,0                                               | 44,0                                                                                               | 23,0                                                                                                       | 21,0                                                                              | 0,24                                                       | 1,89                                | 1,48                                                            | 1,94                                                                               | 2,74                                                      | 46,0                              | 0,851                                                     | 0,90                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | глина    | полутв.                      |
| 9               | 4                    | 2,5                                            | 24,0                                               | 40,0                                                                                               | 21,0                                                                                                       | 19,0                                                                              | 0,16                                                       | 1,91                                | 1,54                                                            | 1,97                                                                               | 2,72                                                      | 43,4                              | 0,766                                                     | 0,85                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | глина    | полутв.                      |
| 10              | 5                    | 2,0                                            | 26,0                                               | 46,0                                                                                               | 24,0                                                                                                       | 22,0                                                                              | 0,09                                                       | 1,93                                | 1,53                                                            | 1,97                                                                               | 2,74                                                      | 44,2                              | 0,791                                                     | 0,90                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | глина    | полутв.                      |
| 11              | 5                    | 3,5                                            | 28,0                                               | 33,0                                                                                               | 18,0                                                                                                       | 15,0                                                                              | 0,67                                                       | 1,95                                | 1,52                                                            | 1,96                                                                               | 2,71                                                      | 43,9                              | 0,783                                                     | 0,97                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | суглинок | мягкопл.                     |
| 12              | 5<br>5               | 5,5<br>7,9                                     | 30,0<br>26,0                                       | 47,0                                                                                               | 25,0                                                                                                       | 22,0                                                                              | 0,23                                                       | 2,01                                | 1,55                                                            | 1,98<br>1,95                                                                       | 2,74                                                      | 43,4<br>42,5                      | 0,768<br>0,739                                            | 1,00<br>0,94                                                                |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | глина    | полутв.                      |
| 13<br>14        | 6                    | 1,5                                            | 26,0                                               | 41,0                                                                                               | 23,0                                                                                                       | 18,0                                                                              | 0,17                                                       | 1,93<br>1,85                        | 1,53<br>1,47                                                    | 1,93                                                                               | 2,66<br>2,72                                              | 46,0                              | 0,739                                                     | 0,94                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | песок    | ср.крупн.                    |
| 15              | 6                    | 2,5                                            | 25,0                                               | 31,0                                                                                               | 20,0                                                                                                       | 11,0                                                                              | 0,17                                                       | 1,95                                | 1,56                                                            | 1,93                                                                               | 2,72                                                      | 42,2                              | 0,830                                                     | 0,83                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | суглинок | полутв.<br>тугопл.           |
| 16              | 6                    | 3,5                                            | 25,0                                               | 31,0                                                                                               | 20,0                                                                                                       | 11,0                                                                              | 0,40                                                       | 1,91                                | 1,53                                                            | 1,95                                                                               | 2,66                                                      | 42,5                              | 0,739                                                     | 0,90                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | песок    | пылев.                       |
| 17              | 6                    | 7,0                                            | 26,0                                               |                                                                                                    |                                                                                                            |                                                                                   |                                                            | 1,99                                | 1,58                                                            | 1,99                                                                               | 2,66                                                      | 40,6                              | 0,684                                                     | 1,00                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | песок    | ср.крупн.                    |
| 18              | 7                    | 1,0                                            | 28,0                                               | 44,0                                                                                               | 23,0                                                                                                       | 21,0                                                                              | 0,24                                                       | 1,91                                | 1,49                                                            | 1,95                                                                               | 2,74                                                      | 45,6                              | 0,839                                                     | 0,91                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | глина    | полутв.                      |
| 19              | 7                    | 2,5                                            | 26,0                                               | 48,0                                                                                               | 24,0                                                                                                       | 24,0                                                                              | 0,08                                                       | 1,85                                | 1,47                                                            | 1,94                                                                               | 2,75                                                      | 46,5                              | 0,871                                                     | 0,82                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | глина    | полутв.                      |
| 20              | 7                    | 4,0                                            | 25,0                                               | 43,0                                                                                               | 23,0                                                                                                       | 20,0                                                                              | 0,10                                                       | 1,93                                | 1,54                                                            | 1,98                                                                               | 2,73                                                      | 43,6                              | 0,773                                                     | 0,88                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | глина    | полутв.                      |
| 21              | 7                    | 6,0                                            | 27,0                                               | 41,0                                                                                               | 23,0                                                                                                       | 18,0                                                                              | 0,22                                                       | 2,01                                | 1,58                                                            | 2,00                                                                               | 2,72                                                      | 41,9                              | 0,722                                                     | 1,00                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | глина    | полутв.                      |
| 22              | 7                    | 7,0                                            | 26,0                                               |                                                                                                    |                                                                                                            |                                                                                   |                                                            | 1,96                                | 1,56                                                            | 1,97                                                                               | 2,66                                                      | 41,4                              | 0,705                                                     | 0,98                                                                        |                                                                               |                                                                |                                                                              |                                                        |                                                                                          | песок    | мелкий                       |

Выполнил (а): Герман Р. 3.

# РЕЗУЛЬТАТЫ ОПРЕДЕЛЕНИЯ ГРАНУЛОМЕТРИЧЕСКОГО COCTABA ГРУНТОВ REZULTATELE DETERMINARII COMPOZITIEI GRANULOMETRICE A PAMANTURILOR

Приложение 3.1.

|                 |                       |                                         | I         | Гранул               | ометр        | ически           | й сост        | ав (Сог        | npoziți        | a granı                       | ulomet         | rică), %        | 6          |                                                     |
|-----------------|-----------------------|-----------------------------------------|-----------|----------------------|--------------|------------------|---------------|----------------|----------------|-------------------------------|----------------|-----------------|------------|-----------------------------------------------------|
|                 |                       | отбора<br>prelevare), м                 |           | ка - гра<br>(pietriș |              | песок<br>(nisip) |               |                |                | пыль - глина<br>(praf-argilă) |                |                 |            |                                                     |
| <b>№</b><br>п/п | № скв.<br>(Ne sondei) | Глубина отбора<br>(Adîncimea de preleva | > 10,0 MM | 10,0 - 5,0 мм        | 5,0 - 2,0 MM | 2,0 - 1,0 мм     | 1,0 - 0,50 мм | 0,50 - 0,25 мм | 0,25 - 0,10 мм | 0,1 - 0,05 мм                 | 0,05 - 0,01 MM | 0,01 - 0,005 мм | < 0,005 MM | Наименование<br>грунта<br>(Denumirea<br>pămîntului) |
| 2               | 1                     | 4,0                                     | 0,0       | 0,0                  | 0,6          | 5,1              | 10,5          | 19,4           | 21,2           | 43,3                          |                |                 |            | песок пылев.                                        |
| 3               | 1                     | 5,8                                     | 0,0       | 0,0                  | 1,4          | 6,1              | 9,1           | 20,9           | 26,3           | 36,1                          |                |                 |            | песок пылев.                                        |
| 4               | 1                     | 7,0                                     | 0,0       | 0,0                  | 1,7          | 3,0              | 4,7           | 42,1           | 41,6           | 6,8                           |                |                 |            | песок ср.крупн.                                     |
| 6               | 3                     | 4,0                                     | 0,0       | 0,0                  | 2,3          | 5,1              | 10,1          | 18,7           | 27,5           | 36,2                          |                |                 |            | песок пылев.                                        |
| 7               | 3                     | 6,5                                     | 0,0       | 0,0                  | 0,0          | 1,5              | 1,3           | 35,2           | 56,4           | 5,6                           |                |                 |            | песок мелкий                                        |
| 13              | 5                     | 7,9                                     | 0,0       | 1,0                  | 5,5          | 9,6              | 11,0          | 23,9           | 36,0           | 12,9                          |                |                 |            | песок ср.крупн.                                     |
| 16              | 6                     | 3,5                                     | 0,0       | 0,0                  | 0,1          | 11,7             | 7,0           | 5,0            | 41,4           | 34,8                          |                |                 |            | песок пылев.                                        |
| 17              | 6                     | 7,0                                     | 0,5       | 0,6                  | 1,4          | 3,7              | 6,5           | 52,1           | 28,2           | 7,0                           |                |                 |            | песок ср.крупн.                                     |
| 22              | 7                     | 7,0                                     | 0,0       | 1,3                  | 3,9          | 6,8              | 6,4           | 25,2           | 39,4           | 17,1                          |                |                 |            | песок мелкий                                        |
|                 |                       |                                         |           |                      |              |                  |               |                |                |                               |                |                 |            |                                                     |
|                 |                       |                                         |           |                      |              |                  |               |                |                |                               |                |                 |            |                                                     |
|                 |                       |                                         |           |                      |              |                  |               |                |                |                               |                |                 |            |                                                     |
|                 |                       |                                         |           |                      |              |                  |               |                |                |                               |                |                 |            |                                                     |

# PEЗУЛЬТАТЫ ХИМИЧЕСКОГО АНАЛИЗА ВОДЫ REZULTATELE DETERMINARII COMPOZITII CHIMICE A APEI

Приложение 4.1.

Дата отбора пробы: 18.12.2020

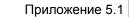
Дата поступления в лабораторию: 19.12.2020

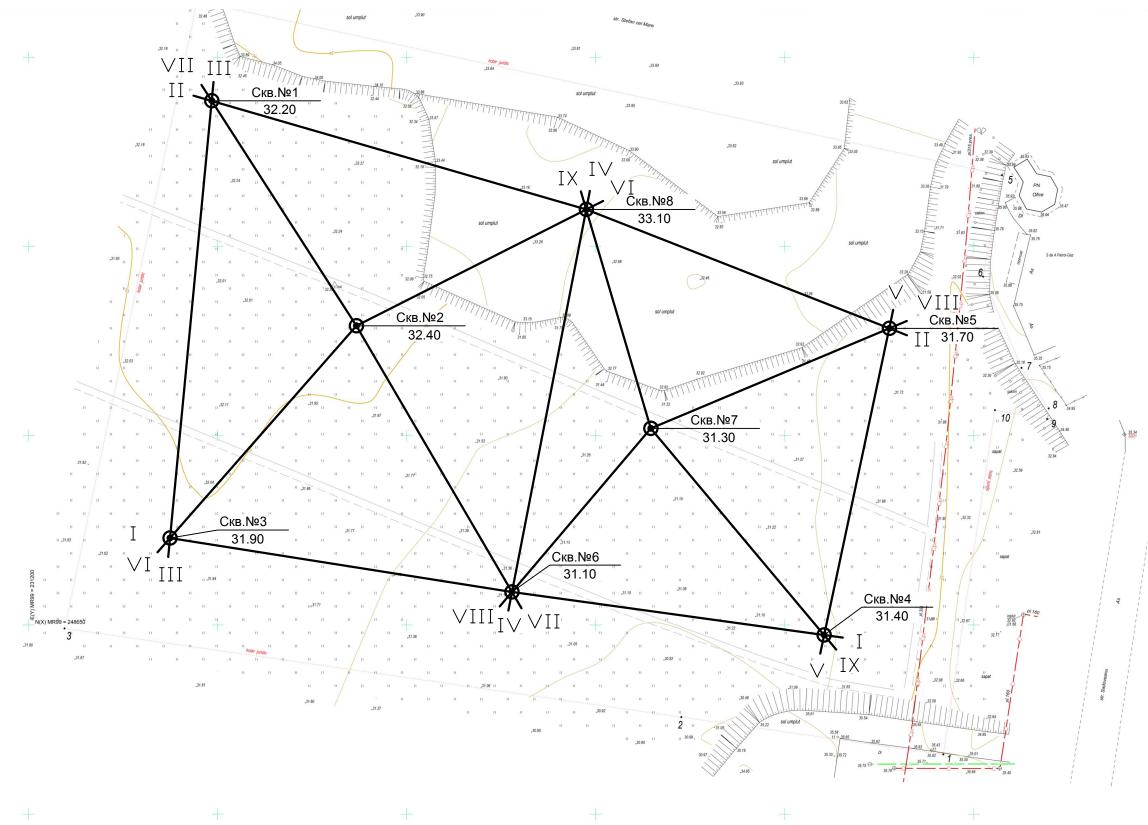
Дата начала анализа: 20.12.2020

Дата окончания анализа: 21.12.2020

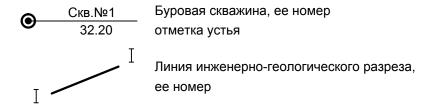
| 1. Название водопункта (скважин | а, родник, колодец) | скв. 1  |     |
|---------------------------------|---------------------|---------|-----|
| 2. Дебит, л-сек.                | 3. Глубина взятия п | робы, м | 1,5 |
| 4. Объект:                      |                     |         |     |
| 5. Фамилия отбиравшего пробу    |                     |         |     |

| Катионы                        | Соде   | ржание в | литре    |
|--------------------------------|--------|----------|----------|
| Катионы                        | МГ     | мг-экв   | мг-экв,% |
| Na <sup>+</sup> K <sup>+</sup> | 345,00 | 15,00    | 47,17    |
| NH <sub>4</sub> <sup>+</sup>   |        |          |          |
| Ca <sup>2+</sup>               | 108,20 | 5,40     | 16,98    |
| Mg <sup>2+</sup>               | 138,60 | 11,40    | 35,85    |
| Fe <sup>2+</sup>               |        |          |          |
| Fe <sup>3+</sup>               |        |          |          |
|                                |        |          |          |
|                                |        |          |          |
| Итого                          | 591,8  | 31,80    | 100      |


| Анионы           | Соде    | ржание в | литре    |
|------------------|---------|----------|----------|
| Апиопы           | МГ      | мг-экв   | мг-экв,% |
| Cl⁻              | 92,20   | 2,60     | 8,17     |
| SO <sub>4</sub>  | 823,00  | 17,14    | 53,83    |
| NO <sub>3</sub>  | 57,10   | 0,90     | 2,80     |
| NO <sub>2</sub>  |         |          |          |
| CO <sub>3</sub>  |         |          |          |
| HCO <sub>3</sub> | 683,2   | 11,20    | 35,17    |
|                  |         |          |          |
| Итого            | 1655,50 | 31,83    | 100      |


### Другие определения

| 1.   | Сухой остаток при Со            | 1952,00 |  |  |  |  |  |  |  |
|------|---------------------------------|---------|--|--|--|--|--|--|--|
| 2.   | Жесткость, мг-экв               |         |  |  |  |  |  |  |  |
| 3.   | Общая                           | 16,8    |  |  |  |  |  |  |  |
| 4.   | Карбонатная                     | 11,2    |  |  |  |  |  |  |  |
| 5.   | Щелочность                      | 11,2    |  |  |  |  |  |  |  |
| 6.   | PH                              | 7,5     |  |  |  |  |  |  |  |
| 7.   | Окисляемость мг $O_2$ , г-л     | 3,2     |  |  |  |  |  |  |  |
| 8.   | CO <sub>2</sub> свободная, мг-л | 5,3     |  |  |  |  |  |  |  |
| 9.   | Сумма А+К, мг-л                 |         |  |  |  |  |  |  |  |
| Фори | Формула солевого состава воды   |         |  |  |  |  |  |  |  |
| М    |                                 |         |  |  |  |  |  |  |  |


#### Физические свойства

| 1.   | Прозрачность                          |
|------|---------------------------------------|
| 2.   | Вкус                                  |
| 3.   | Цвет                                  |
| 4.   | Запах                                 |
| 5.   | Осадок                                |
| 6.   | Температура на момент<br>взятия пробы |
| 7.   | Изменение при состоянии               |
| Прим |                                       |





### Условные обозначения :



Приложение 6.1

СКВАЖИНА № 1

| Местоположение:    | Оргеевский ра | йон, г. Оргеев | <br>Дата бу    | рения: 18.12.2020 |
|--------------------|---------------|----------------|----------------|-------------------|
| Абсолютная отметка | устья, м:     | 32,20          | Способ бурения | : ударно-канатный |

Диаметр скважины, мм: 127 Глубина бурения, м: 9,0

|         |              |       | THDI, IVII                 |            |                         | і лубина бурения, м.                                                                                                                                  |                     |      |
|---------|--------------|-------|----------------------------|------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|
|         | ⟨C           | залег | Глубина<br>залегания,<br>м |            | Отм. подошвы слоя,<br>м | _                                                                                                                                                     | Уроі<br>подзе       |      |
| _       | нде          | r     | νI                         | сть, м     | порс                    | Литологическое описание пород                                                                                                                         | Дата з              |      |
| Ne слоя | Геол. индекс |       |                            | Отм. пс    |                         | Появив-<br>шийся                                                                                                                                      | Устано-<br>вившийся |      |
| 2       | nQ<br>adQ    | 0,0   | 0,8<br>2,8                 | 0,8<br>2,0 | 31,40<br>29,40          | Почвенно-растительный слой;<br>Суглинки желто-бурые, от полутвердых до тугопластичных,<br>макропористые, с включениями карбонатов (окатыши);          |                     | 1,2  |
| 6       | aQ           | 2,8   | 6,0                        | 3,2        | 26,20                   | 2,5м - тугопластичные, присыпки песка мелкого, капли воды; Пески пылеватые желто-серые, водонасыщенные, средней плотности, с прослоями песка мелкого; | 2,5                 | - 1, |
| 7       | aQ           | 6,0   | 8,0                        | 2,0        | 24,20                   | Пески среднезернистые желто-серые, серые, водонасыщенные,<br>средней плотности, с прослоями песка мелкого;                                            |                     |      |
| 8       | N            | 8,0   | 9,0                        | 1,0        | 23,20                   | Известняки светло-серые, водонасыщенные, выветрелые,<br>трещиноватые;                                                                                 |                     |      |
|         |              |       |                            |            |                         |                                                                                                                                                       |                     |      |
|         |              |       |                            |            |                         |                                                                                                                                                       |                     |      |
|         |              |       |                            |            |                         |                                                                                                                                                       |                     |      |
|         |              |       |                            |            |                         |                                                                                                                                                       |                     |      |
|         |              |       |                            |            |                         |                                                                                                                                                       |                     |      |
|         |              |       |                            |            |                         |                                                                                                                                                       |                     |      |
|         |              |       |                            |            |                         |                                                                                                                                                       |                     |      |
|         |              |       |                            |            |                         |                                                                                                                                                       |                     |      |
|         |              |       |                            |            |                         |                                                                                                                                                       |                     |      |
|         |              |       |                            |            |                         |                                                                                                                                                       |                     |      |
|         |              |       |                            |            |                         |                                                                                                                                                       |                     |      |
|         |              |       |                            |            |                         |                                                                                                                                                       |                     |      |
|         |              |       |                            |            |                         |                                                                                                                                                       |                     |      |
|         |              |       |                            |            |                         |                                                                                                                                                       |                     |      |

Приложение 6.2

СКВАЖИНА № 2

| Местоположение:    | Оргеевский ра | йон, г. Оргеев |     | Дата бурен    | ия: 18.12.2020  |
|--------------------|---------------|----------------|-----|---------------|-----------------|
| Абсолютная отметка | устья, м:     | 32,40          | Спе | особ бурения: | ударно-канатный |

Диаметр скважины, мм: 127 Глубина бурения, м: 8,5

| Ди     | аметр        | Скважи                                      | ины, мі      | VI.                           | 127                     | Глубина бурения, м:                                                                                                                                 | 8,5              | i                   |
|--------|--------------|---------------------------------------------|--------------|-------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
|        | текс         | Глубина<br>залегания,<br>м 4 010<br>м 4 010 | залегания, Б | Литологическое описание пород | Уроі<br>подзе<br>Дата з | м. вод                                                                                                                                              |                  |                     |
| № слоя | Геол. индекс | ОТ                                          | до           | Мощность, м                   | Отм. под<br>М           |                                                                                                                                                     | Появив-<br>шийся | Устано-<br>вившийся |
| 2<br>4 | nQ<br>adQ    | 0,0<br>0,8                                  | 0,8<br>2,1   | 0,8<br>1,3                    | 31,60<br>30,30          | Почвенно-растительный слой;<br>Суглинки желто-бурые, от полутвердых до тугопластичных,<br>макропористые, с включениями карбонатов (окатыши);        |                  | 1,0                 |
| 6      | aQ           | 2,1                                         | 6,0          | 3,9                           | 26,40                   | 2м - тугопластичные, присыпки песка мелкого, капли воды; Пески пылеватые желто-серые, водонасыщенные, средней плотности, с прослоями песка мелкого; | 2,0              |                     |
| 7      | aQ           | 6,0                                         | 7,9          | 1,9                           | 24,50                   | Пески среднезернистые желто-серые, серые, водонасыщенные, средней плотности, с прослоями песка мелкого;                                             |                  |                     |
| 8      | N            | 7,9                                         | 8,5          | 0,6                           | 23,90                   | Известняки светло-серые, водонасыщенные, выветрелые, трещиноватые;                                                                                  |                  |                     |
|        |              |                                             |              |                               |                         |                                                                                                                                                     |                  |                     |
|        |              |                                             |              |                               |                         |                                                                                                                                                     |                  |                     |
|        |              |                                             |              |                               |                         |                                                                                                                                                     |                  |                     |
|        |              |                                             |              |                               |                         |                                                                                                                                                     |                  |                     |
|        |              |                                             |              |                               |                         |                                                                                                                                                     |                  |                     |
|        |              |                                             |              |                               |                         |                                                                                                                                                     |                  |                     |
|        |              |                                             |              |                               |                         |                                                                                                                                                     |                  |                     |
|        |              |                                             |              |                               |                         |                                                                                                                                                     |                  |                     |
|        |              |                                             |              |                               |                         |                                                                                                                                                     |                  |                     |
|        |              |                                             |              |                               |                         |                                                                                                                                                     |                  |                     |
|        |              |                                             |              |                               |                         |                                                                                                                                                     |                  |                     |
|        |              |                                             |              |                               |                         |                                                                                                                                                     |                  |                     |
|        |              |                                             |              |                               |                         |                                                                                                                                                     |                  |                     |

Приложение 6.3

СКВАЖИНА № 3

| Местоположение:    | Оргеевский ра | йон, г. Оргеев |                 | рения: 18.12.2020 |
|--------------------|---------------|----------------|-----------------|-------------------|
| Абсолютная отметка | устья, м:     | 31,90          | Способ бурения: | ударно-канатный   |

Диаметр скважины, мм: 127 Глубина бурения, м: 10,0

| ди     | аметр        | Скважи                         | ины, мг                       | VI.         | 121            | . пуоина оурения, м:                                                                                                                                  | 10,0               |                       |
|--------|--------------|--------------------------------|-------------------------------|-------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|
|        | экс          | от до от до Отм. подошвы слоя, | Митологическое описание пород |             |                |                                                                                                                                                       |                    |                       |
| № слоя | Геол. индекс | ОТ                             | до                            | Мощность, м | Отм. подо<br>м | уни ологи теское описание пород                                                                                                                       | Дата з<br>пийся вы | Устано-<br>вившийся о |
| 2 4    | nQ<br>adQ    | 0,0<br>0,9                     | 0,9<br>2,6                    | 0,9<br>1,7  | 31,00<br>29,30 | Почвенно-растительный слой;<br>Суглинки желто-бурые, от полутвердых до тугопластичных,<br>макропористые, с включениями карбонатов (окатыши);          |                    | 1,2                   |
| 6      | aQ           | 2,6                            | 6,0                           | 3,4         | 25,90          | 2,4м - тугопластичные, присыпки песка мелкого, капли воды; Пески пылеватые желто-серые, водонасыщенные, средней плотности, с прослоями песка мелкого; | 2,4                |                       |
| 7      | aQ           | 6,0                            | 8,5                           | 2,5         | 23,40          | Пески среднезернистые желто-серые, серые, водонасыщенные,<br>средней плотности, с прослоями песка мелкого;                                            |                    |                       |
| 8      | N            | 8,5                            | 10,0                          | 1,5         | 21,90          | Известняки светло-серые, водонасыщенные, выветрелые, трещиноватые;                                                                                    |                    |                       |
|        |              |                                |                               |             |                |                                                                                                                                                       |                    |                       |
|        |              |                                |                               |             |                |                                                                                                                                                       |                    |                       |
|        |              |                                |                               |             |                |                                                                                                                                                       |                    |                       |
|        |              |                                |                               |             |                |                                                                                                                                                       |                    |                       |
|        |              |                                |                               |             |                |                                                                                                                                                       |                    |                       |
|        |              |                                |                               |             |                |                                                                                                                                                       |                    |                       |
|        |              |                                |                               |             |                |                                                                                                                                                       |                    |                       |
|        |              |                                |                               |             |                |                                                                                                                                                       |                    |                       |
|        |              |                                |                               |             |                |                                                                                                                                                       |                    |                       |
|        |              |                                |                               |             |                |                                                                                                                                                       |                    |                       |
|        |              |                                |                               |             |                |                                                                                                                                                       |                    |                       |
|        |              |                                |                               |             |                |                                                                                                                                                       |                    |                       |
|        |              |                                |                               |             |                |                                                                                                                                                       |                    |                       |
|        |              |                                |                               |             |                |                                                                                                                                                       |                    |                       |

Приложение 6.4

СКВАЖИНА № \_\_4\_\_

 Местоположение:
 Оргеевский район, г. Оргеев
 Дата бурения:
 18.12.2020

 Абсолютная отметка устья, м:
 31,40
 Способ бурения:
 ударно-канатный

Диаметр скважины, мм: 127 Глубина бурения, м: 10,0

|             | laweip       |                                                         | ,          |             |                |                                                                                                                 |                  |                     |
|-------------|--------------|---------------------------------------------------------|------------|-------------|----------------|-----------------------------------------------------------------------------------------------------------------|------------------|---------------------|
|             | CC           | Стигодошвы слоя, м<br>Мощность, м<br>Отм. подошвы слоя, |            | ІВЫ СЛОЯ,   | _              | Уровень<br>подзем. вод                                                                                          |                  |                     |
| <b>В</b> ОІ | Геол. индекс | , P                                                     | И          | Мощность, м | подоп          | Литологическое описание пород                                                                                   |                  | амера               |
| Ne слоя     | Геол         | ОТ                                                      | до         | Мощ         | Отм.           |                                                                                                                 | Появив-<br>шийся | Устано-<br>вившийся |
| 3           | nQ<br>aQ     | 0,0                                                     | 0,8<br>3,0 | 0,8<br>2,2  | 30,60<br>28,40 | Почвенно-растительный слой;<br>Глины черные, темно-бурые, полутвердые, иловатые, жирные, с<br>прослоями супеси; |                  | 0,4                 |
| 4           | adQ          | 3,0                                                     | 7,2        | 4,2         | 24,20          | 2,2м - капли воды;<br>Суглинки желто-бурые, мягкопластичные, песчанистые, с прослоями<br>супеси и глины;        | 2,2              |                     |
| 6           | aQ           | 7,2                                                     | 7,8        | 0,6         | 23,60          | Пески пылеватые желто-серые, водонасыщенные, средней плотности, с прослоями песка мелкого;                      |                  |                     |
| 8           | N            | 7,8                                                     | 10,0       | 2,2         | 21,40          | Известняки светло-серые, водонасыщенные, выветрелые, трещиноватые;                                              |                  |                     |
|             |              |                                                         |            |             |                |                                                                                                                 |                  |                     |
|             |              |                                                         |            |             |                |                                                                                                                 |                  |                     |
|             |              |                                                         |            |             |                |                                                                                                                 |                  |                     |
|             |              |                                                         |            |             |                |                                                                                                                 |                  |                     |
|             |              |                                                         |            |             |                |                                                                                                                 |                  |                     |
|             |              |                                                         |            |             |                |                                                                                                                 |                  |                     |
|             |              |                                                         |            |             |                |                                                                                                                 |                  |                     |
|             |              |                                                         |            |             |                |                                                                                                                 |                  |                     |
|             |              |                                                         |            |             |                |                                                                                                                 |                  |                     |
|             |              |                                                         |            |             |                |                                                                                                                 |                  |                     |
|             |              |                                                         |            |             |                |                                                                                                                 |                  |                     |
|             |              |                                                         |            |             |                |                                                                                                                 |                  |                     |
|             |              |                                                         |            |             |                |                                                                                                                 |                  |                     |
|             |              |                                                         |            |             |                |                                                                                                                 |                  |                     |
|             |              |                                                         |            |             |                |                                                                                                                 |                  |                     |

Приложение 6.5

СКВАЖИНА № 5

| Местоположение:      | Оргеевский район, г. Оргеев | Дата бурения:   | 18.12.2020      |
|----------------------|-----------------------------|-----------------|-----------------|
| Абсолютная отметка у | устья, м: 31,70             | Способ бурения: | ударно-канатный |

Диаметр скважины, мм: 127 Глубина бурения, м: 10,0

| ζC       | Глубина<br>залегания,<br>м ∑ |            | ІВЫ СЛОЯ,                                                                                                                                                | _                                                          | Уровень<br>подзем. вод                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| инде     | ľ                            | Л          | эсть,                                                                                                                                                    | подоп                                                      | Литологическое описание пород                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Геол.    | ОТ                           | до         | Мощн                                                                                                                                                     | Отм. п<br>М                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Появив-<br>шийся                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Устано-<br>вившийся                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| nQ<br>aQ | 0,0                          | 0,8<br>3,0 | 0,8<br>2,2                                                                                                                                               | 30,90<br>28,70                                             | Почвенно-растительный слой;<br>Глины черные, темно-бурые, полутвердые, иловатые, жирные, с<br>прослоями супеси;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| adQ      | 3,0                          | 4,7        | 1,7                                                                                                                                                      | 27,00                                                      | 2,7м - капли воды;<br>Суглинки желто-бурые, желто-серые, мягкопластичные, песчанистые,<br>с прослоями супеси и глины;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Q-N      | 4,7                          | 7,7        | 3,0                                                                                                                                                      | 24,00                                                      | Глины зеленовато-серые, желто-серые, полутвердые, песчанистые, с прослоями супеси;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| aQ       | 7,7                          | 8,0        | 0,3                                                                                                                                                      | 23,70                                                      | Пески среднезернистые желто-серые, серые, водонасыщенные,<br>средней плотности, с прослоями песка мелкого;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N        | 8,0                          | 10,0       | 2,0                                                                                                                                                      | 21,70                                                      | Известняки светло-серые, водонасыщенные, выветрелые,<br>трещиноватые;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                              |            |                                                                                                                                                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                              |            |                                                                                                                                                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                              |            |                                                                                                                                                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                              |            |                                                                                                                                                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                              |            |                                                                                                                                                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                              |            |                                                                                                                                                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                              |            |                                                                                                                                                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                              |            |                                                                                                                                                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                              |            |                                                                                                                                                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                              |            |                                                                                                                                                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                              |            |                                                                                                                                                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                              |            |                                                                                                                                                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                              |            |                                                                                                                                                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                              |            |                                                                                                                                                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | aQ<br>adQ<br>Q-N<br>aQ       | залег      | Залетния, м         волитист       от до         nQ 0,0 0,8 3,0       3,0         adQ 3,0 4,7       4,7         Q-N 4,7 7,7       7,7         aQ 7,7 8,0 | Залегания, м ф доон по | Залегания, м       м       гания, гания, м       м       гания, гания | nQ       0,0       0,8       0,8       30,90       Почвенно-растительный слой;         aQ       0,8       3,0       2,2       28,70       Почвенно-растительный слой;         глины черные, темно-бурые, полутвердые, иловатые, жирные, с прослоями супеси;       2,7м - капли воды;         Q-N       4,7       1,7       27,00       Суглинки желто-бурые, желто-серые, мягкопластичные, песчанистые, с прослоями супеси и глины;         Q-N       4,7       7,7       3,0       24,00       Глины зеленовато-серые, желто-серые, полутвердые, песчанистые, с прослоями супеси;         aQ       7,7       8,0       0,3       23,70       Пески среднезернистые желто-серые, серые, водонасыщенные, средней плотности, с прослоями песка мелкого;         N       8,0       10,0       2,0       21,70       Известняки светло-серые, водонасыщенные, выветрелые, | nQ       0,0       0,8       30,90       Почвенно-растительный слой;         aQ       0,8       3,0       2,2       28,70       Почвенно-растительный слой;       2,7         adQ       3,0       4,7       1,7       27,00       Суглинки желто-бурые, желто-серые, мягкопластичные, песчанистые, с прослоями супеси и глины;         Q-N       4,7       7,7       3,0       24,00       Глины зеленовато-серые, желто-серые, полутвердые, песчанистые, с прослоями супеси;         aQ       7,7       8,0       0,3       23,70       Пески среднезернистые желто-серые, серые, водонасыщенные, средней плотности, с прослоями песка мелкого;         N       8,0       10,0       2,0       21,70       Известняки светло-серые, водонасыщенные, выветрелые, |

Приложение 6.6

СКВАЖИНА № 6

 Местоположение:
 Оргеевский район, г. Оргеев
 Дата бурения:
 24.12.2020

 Абсолютная отметка устья, м:
 31,10
 Способ бурения:
 ударно-канатный

Диаметр скважины, мм: 127 Глубина бурения, м: 9,0

|        |              |       |                             |             |                         |                                                                                                                      |                  | _                   |
|--------|--------------|-------|-----------------------------|-------------|-------------------------|----------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
|        | ę.           | залег | Глубина<br>алегания,<br>м ≥ | Σ           | Отм. подошвы слоя,<br>м |                                                                                                                      | -                | вень<br>м. вод      |
|        | НДЕК         | ľ     | М                           | сть,        | ДОП                     | Литологическое описание пород                                                                                        | Дата з           | замера              |
| № слоя | Геол. индекс | ОТ    | до                          | Мощность, м | Отм. пс<br>м            |                                                                                                                      | Появив-<br>шийся | Устано-<br>вившийся |
| 3      | nQ<br>aQ     | 0,0   | 0,8<br>2,1                  | 0,8<br>1,3  | 30,30<br>29,00          | Почвенно-растительный слой;<br>Глины черные, темно-бурые, полутвердые, иловатые, жирные, с<br>прослоями супеси;      |                  | 0,8                 |
| 4      | adQ          | 2,1   | 2,7                         | 0,6         | 28,40                   | 1,9м - капли воды;<br>Суглинки желто-бурые, желто-серые, тугопластичные, песчанистые, с<br>прослоями супеси и глины; | 1,9              |                     |
| 6      | aQ           | 2,7   | 6,5                         | 3,8         | 24,60                   | Пески пылеватые желто-серые, водонасыщенные, средней плотности, с прослоями песка мелкого;                           |                  |                     |
| 7      | aQ           | 6,5   | 8,0                         | 1,5         | 23,10                   | Пески среднезернистые желто-серые, серые, водонасыщенные,<br>средней плотности, с прослоями песка мелкого;           |                  |                     |
| 8      | N            | 8,0   | 9,0                         | 1,0         | 22,10                   | Известняки светло-серые, водонасыщенные, выветрелые, трещиноватые;                                                   |                  |                     |
|        |              |       |                             |             |                         |                                                                                                                      |                  |                     |
|        |              |       |                             |             |                         |                                                                                                                      |                  |                     |
|        |              |       |                             |             |                         |                                                                                                                      |                  |                     |
|        |              |       |                             |             |                         |                                                                                                                      |                  |                     |
|        |              |       |                             |             |                         |                                                                                                                      |                  |                     |
|        |              |       |                             |             |                         |                                                                                                                      |                  |                     |
|        |              |       |                             |             |                         |                                                                                                                      |                  |                     |
|        |              |       |                             |             |                         |                                                                                                                      |                  |                     |
|        |              |       |                             |             |                         |                                                                                                                      |                  |                     |
|        |              |       |                             |             |                         |                                                                                                                      |                  |                     |
|        |              |       |                             |             |                         |                                                                                                                      |                  |                     |
|        |              |       |                             |             |                         |                                                                                                                      |                  |                     |
|        |              |       |                             |             |                         |                                                                                                                      |                  |                     |

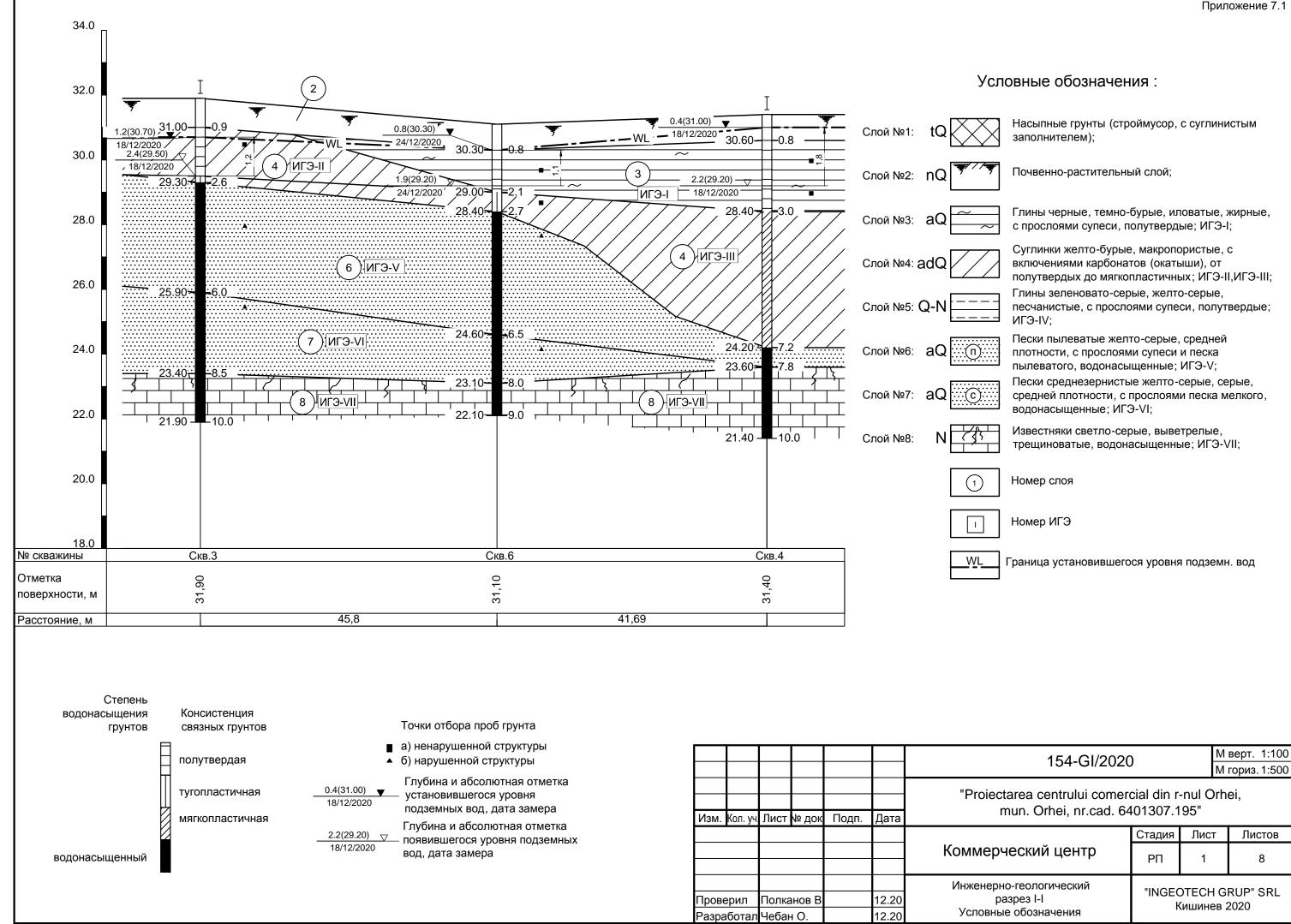
Приложение 6.7

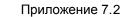
СКВАЖИНА № 7

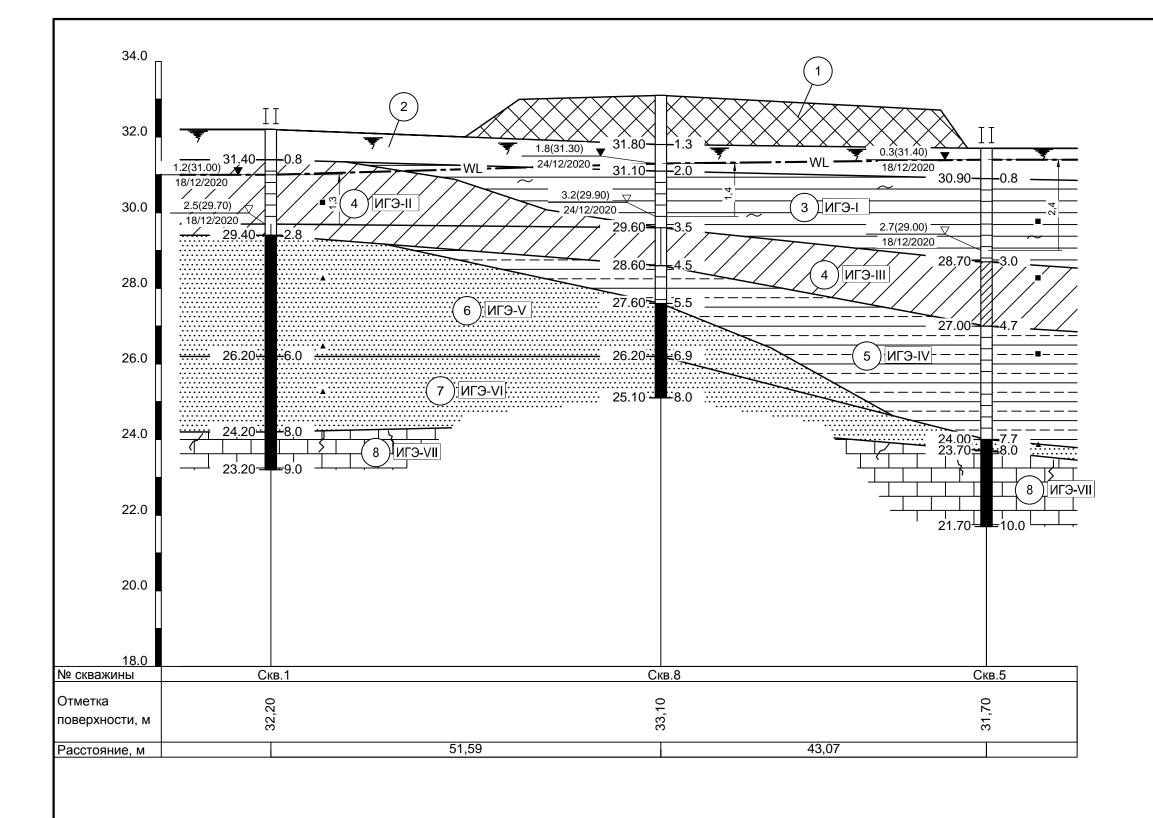
| Местоположение:    | Оргеевский | район, г. Оргеев | Дата бурения:   | 24.12.2020      |
|--------------------|------------|------------------|-----------------|-----------------|
| Абсолютная отметка | устья, м:  | 31,30            | Способ бурения: | ударно-канатный |

Диаметр скважины, мм: 127 Глубина бурения, м: 8,0

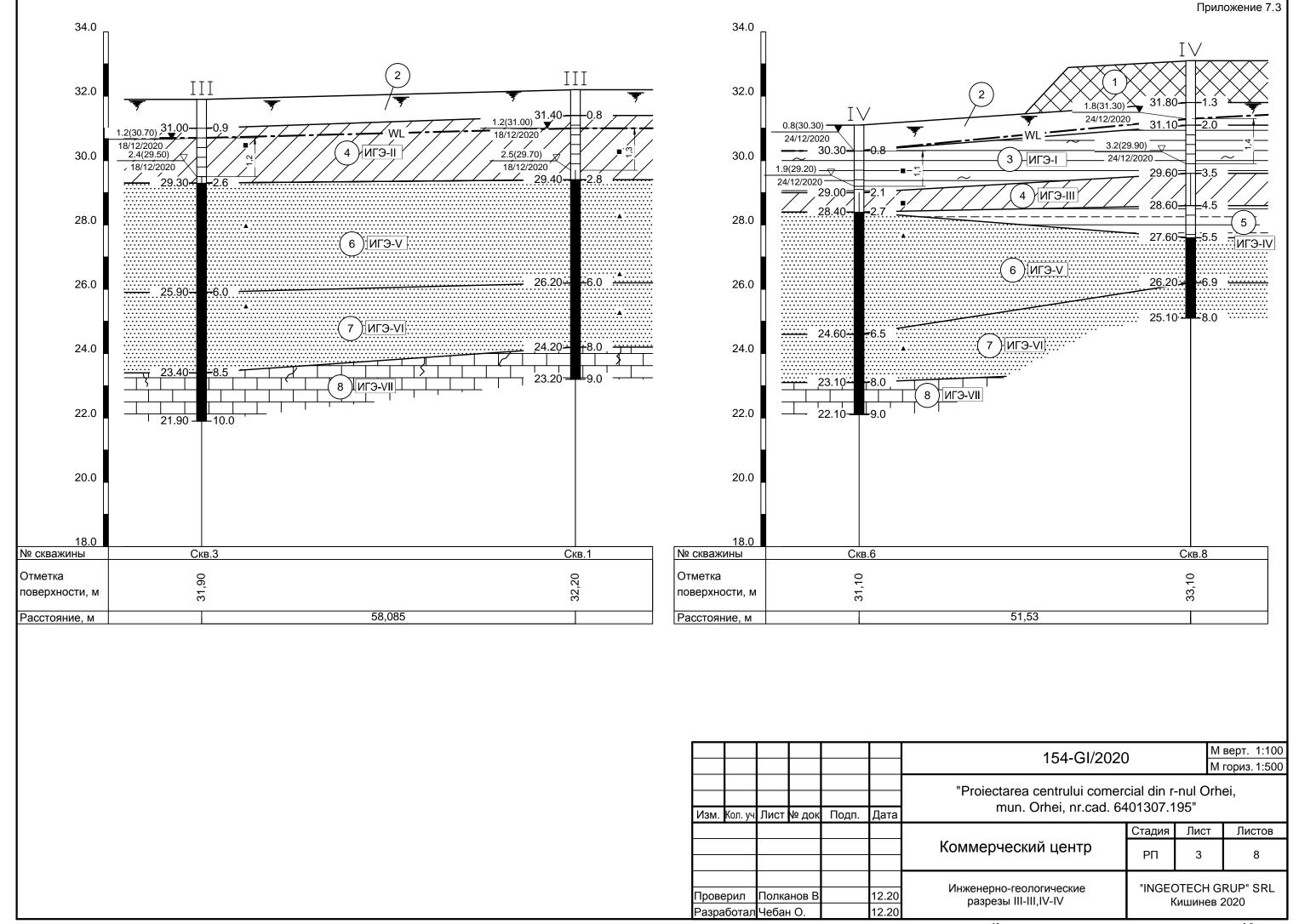
| Дν      | аметр        | скважи                                            | ины, мі                       | М:                              | 127                       | Глубина бурения, м:                                                                                             | 8,0              |                     |
|---------|--------------|---------------------------------------------------|-------------------------------|---------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|---------------------|
|         | декс         | Сеол. индекс м м мощность, м ОТм. подошвы слоя, м | Литологическое описание пород | Уровень подзем. вод Дата замера |                           |                                                                                                                 |                  |                     |
| Копо ⊌И | Геол. индекс | ОТ                                                | до                            | Мощность, м                     | Отм. по <sub>с</sub><br>М |                                                                                                                 | Появив-<br>шийся | Устано-<br>вившийся |
| 3       | nQ<br>aQ     | 0,0<br>0,9                                        | 0,9<br>2,0                    | 0,9<br>1,1                      | 30,40<br>29,30            | Почвенно-растительный слой;<br>Глины черные, темно-бурые, полутвердые, иловатые, жирные, с<br>прослоями супеси; |                  | 0,6                 |
| 5       | Q-N          | 2,0                                               | 6,5                           | 4,5                             | 24,80                     | 2м - капли воды;<br>Глины зеленовато-серые, желто-серые, полутвердые, песчанистые, с<br>прослоями супеси;       | 2,0              |                     |
| 6       | aQ           | 6,5                                               | 8,0                           | 1,5                             | 23,30                     | Пески пылеватые желто-серые, водонасыщенные, средней плотности, с прослоями песка мелкого;                      |                  |                     |
|         |              |                                                   |                               |                                 |                           |                                                                                                                 |                  |                     |
|         |              |                                                   |                               |                                 |                           |                                                                                                                 |                  |                     |
|         |              |                                                   |                               |                                 |                           |                                                                                                                 |                  |                     |
|         |              |                                                   |                               |                                 |                           |                                                                                                                 |                  |                     |
|         |              |                                                   |                               |                                 |                           |                                                                                                                 |                  |                     |
|         |              |                                                   |                               |                                 |                           |                                                                                                                 |                  |                     |
|         |              |                                                   |                               |                                 |                           |                                                                                                                 |                  |                     |
|         |              |                                                   |                               |                                 |                           |                                                                                                                 |                  |                     |
|         |              |                                                   |                               |                                 |                           |                                                                                                                 |                  |                     |
|         |              |                                                   |                               |                                 |                           |                                                                                                                 |                  |                     |
|         |              |                                                   |                               |                                 |                           |                                                                                                                 |                  |                     |
|         |              |                                                   |                               |                                 |                           |                                                                                                                 |                  |                     |
|         |              |                                                   |                               |                                 |                           |                                                                                                                 |                  |                     |

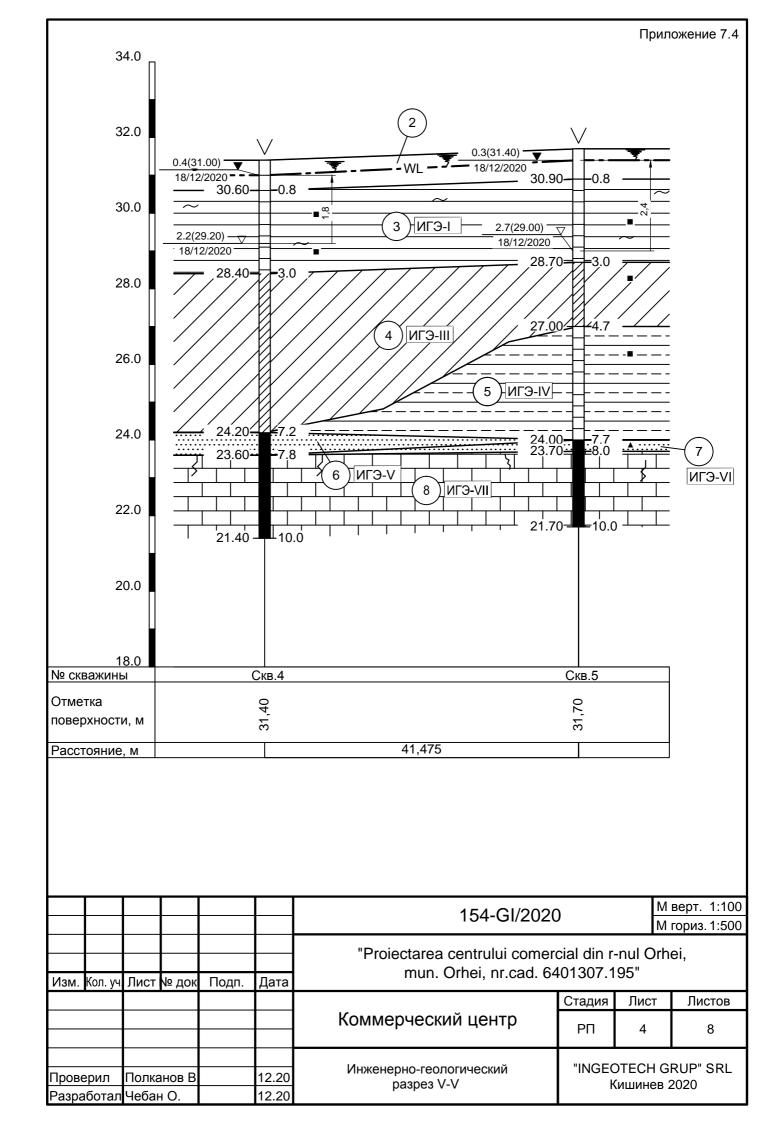

Приложение 6.8

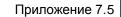

СКВАЖИНА № 8

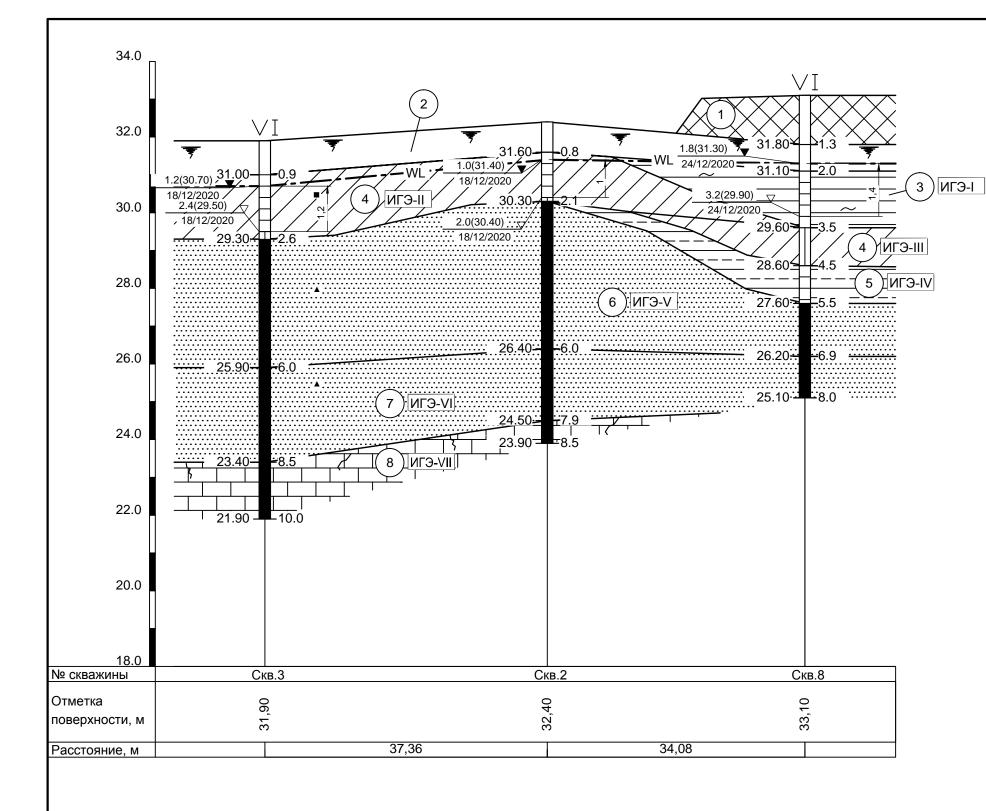

| Местоположение:      | Оргеевский рай | юн, г. Оргеев | <br>Дата бурен  | ия: 24.12.2020  |
|----------------------|----------------|---------------|-----------------|-----------------|
| Абсолютная отметка у | /СТЬЯ, М:      | 33,10         | Способ бурения: | ударно-канатный |

Диаметр скважины, мм: 127 Глубина бурения, м: 8,0


|         |              |                              |            |             |                         | •                                                                                                               |                        |                     |
|---------|--------------|------------------------------|------------|-------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|---------------------|
|         | (C           | Глубина<br>залегания,<br>м ≥ |            | егания.     |                         | _                                                                                                               | Уровень<br>подзем. вод |                     |
| _       | нде          | ľ                            | VI         | сть,        | пора                    | Литологическое описание пород                                                                                   | Дата                   |                     |
| Ne слоя | Геол. индекс | ОТ                           | до         | Мощность, м | Отм. подошвы слоя,<br>м |                                                                                                                 | Появив-<br>шийся       | Устано-<br>вившийся |
| 1       | tQ           | 0,0                          | 1,3        | 1,3         | 31,80                   | Насыпные грунты;                                                                                                |                        |                     |
|         | 0            | 4.0                          | 0.0        | 0.7         | 24.40                   | 0,0-1,3м - строймусор, с суглинистым заполнителем;                                                              |                        |                     |
| 3       | nQ<br>aQ     | 1,3<br>2,0                   | 2,0<br>3,5 | 0,7<br>1,5  | 31,10<br>29,60          | Почвенно-растительный слой;<br>Глины черные, темно-бурые, полутвердые, иловатые, жирные, с<br>прослоями супеси; |                        | 1,8                 |
|         |              |                              |            |             |                         | 3,2м - капли воды;                                                                                              | 3,2                    |                     |
| 4       | adQ          | 3,5                          | 4,5        | 1,0         | 28,60                   | Суглинки желто-бурые, тугопластичные, песчанистые, с прослоями супеси и глины;                                  | <u> </u>               |                     |
| 5       | Q-N          | 4,5                          | 5,5        | 1,0         | 27,60                   | Глины зеленовато-серые, желто-серые, полутвердые, песчанистые, с прослоями супеси;                              |                        |                     |
| 6       | aQ           | 5,5                          | 6,9        | 1,4         | 26,20                   | Пески пылеватые желто-серые, водонасыщенные, средней плотности, с прослоями песка мелкого;                      |                        |                     |
| 7       | aQ           | 6,9                          | 8,0        | 1,1         | 25,10                   | Пески среднезернистые желто-серые, серые, водонасыщенные, средней плотности, с прослоями песка мелкого;         |                        |                     |
|         |              |                              |            |             |                         |                                                                                                                 |                        |                     |
|         |              |                              |            |             |                         |                                                                                                                 |                        |                     |
|         |              |                              |            |             |                         |                                                                                                                 |                        |                     |
|         |              |                              |            |             |                         |                                                                                                                 |                        |                     |
|         |              |                              |            |             |                         |                                                                                                                 |                        |                     |
|         |              |                              |            |             |                         |                                                                                                                 |                        |                     |
|         |              |                              |            |             |                         |                                                                                                                 |                        |                     |
|         |              |                              |            |             |                         |                                                                                                                 |                        |                     |
|         |              |                              |            |             |                         |                                                                                                                 |                        |                     |
|         |              |                              |            |             |                         |                                                                                                                 |                        |                     |
|         |              |                              |            |             |                         |                                                                                                                 |                        |                     |
|         |              |                              |            |             |                         |                                                                                                                 |                        |                     |
|         |              |                              |            |             |                         |                                                                                                                 |                        |                     |
|         |              |                              |            |             |                         |                                                                                                                 |                        |                     |

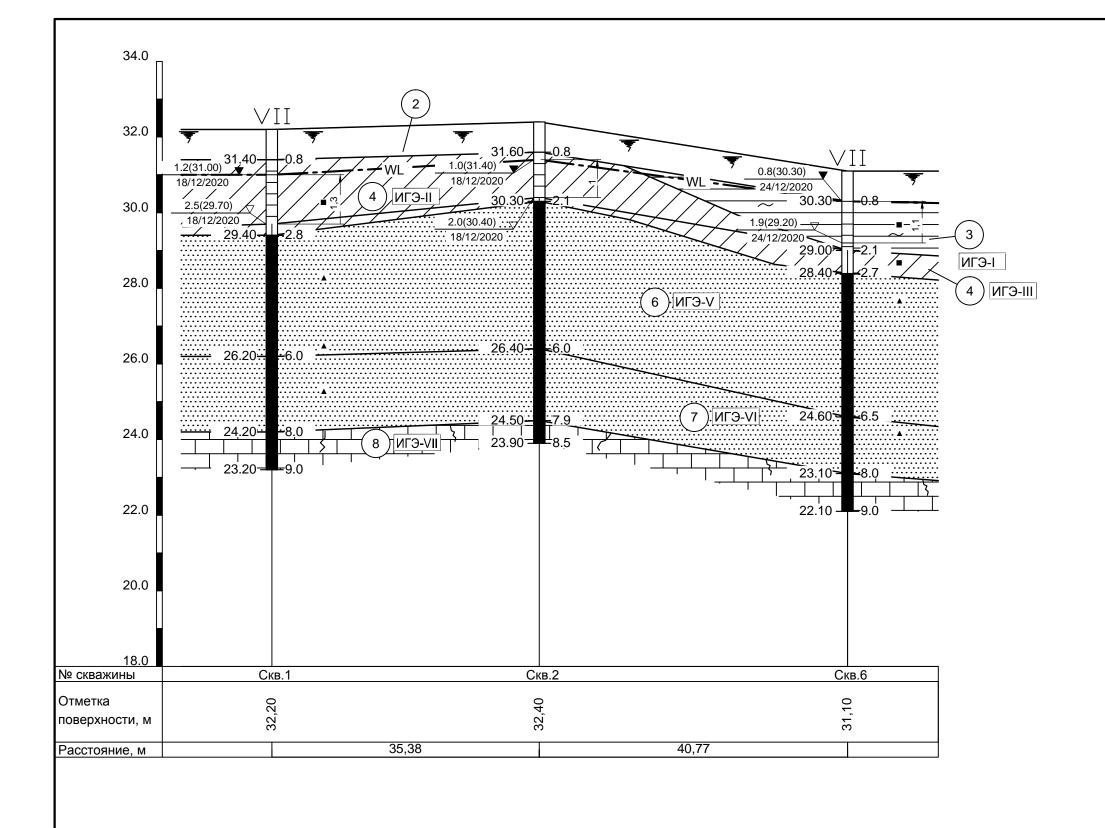


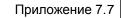




|                |                |      |        |       |                | 154-GI/2020                                                                           | верт. 1:100<br>гориз. 1:500          |      |        |  |
|----------------|----------------|------|--------|-------|----------------|---------------------------------------------------------------------------------------|--------------------------------------|------|--------|--|
| Изм.           | Кол. уч        | Лист | № док  | Подп. | Дата           | "Proiectarea centrului comercial din r-nul Orhei,<br>mun. Orhei, nr.cad. 6401307.195" |                                      |      |        |  |
|                |                |      |        |       |                |                                                                                       | Стадия                               | Лист | Листов |  |
|                |                |      |        |       |                | Коммерческий центр                                                                    | РΠ                                   | 2    | 8      |  |
| Прове<br>Разра | ерил<br>аботал |      | анов В |       | 12.20<br>12.20 | Инженерно-геологический разрез II-II                                                  | "INGEOTECH GRUP" SRL<br>Кишинев 2020 |      |        |  |
|                |                |      |        |       |                | Копировал                                                                             | Δ3                                   |      | Δ3     |  |



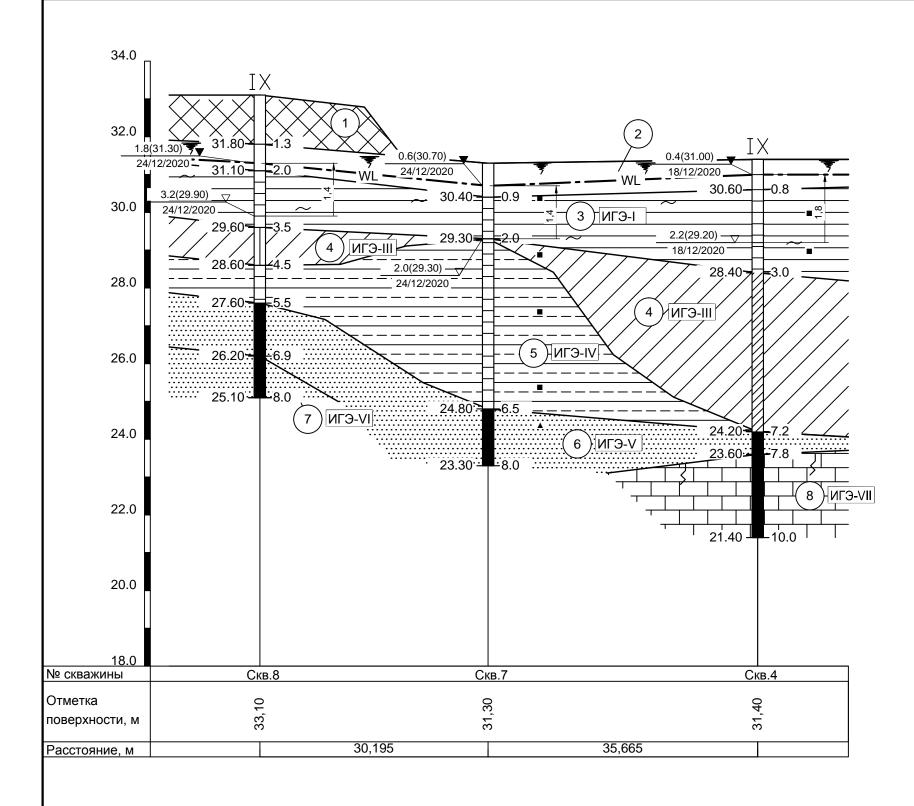





|          |         |            |       |         |       | 154-GI/2020                                                                           |                                     |           | М верт. 1:100<br>М гориз. 1:500 |          |   |       |                                         |  |                     |  |
|----------|---------|------------|-------|---------|-------|---------------------------------------------------------------------------------------|-------------------------------------|-----------|---------------------------------|----------|---|-------|-----------------------------------------|--|---------------------|--|
| Изм.     | Кол. уч | Лист       | № док | Подп.   | Дата  | "Proiectarea centrului comercial din r-nul Orhei,<br>mun. Orhei, nr.cad. 6401307.195" |                                     |           |                                 |          |   |       |                                         |  |                     |  |
|          |         |            |       |         |       |                                                                                       | рческий центр Стадия Лист Л<br>РП 5 |           |                                 |          |   |       |                                         |  |                     |  |
|          |         |            |       |         |       | Коммерческий центр                                                                    |                                     |           |                                 |          |   |       |                                         |  |                     |  |
|          |         |            |       |         |       | 14                                                                                    | "INGEOTECH GRUP" SRL                |           |                                 |          |   |       |                                         |  |                     |  |
| Проверил |         | Полканов В |       | Полкано | Полка | Полка                                                                                 | олканов В                           | олканов В | Полканов В                      | лканов В | 3 | 12.20 | Инженерно-геологический<br>разрез VI-VI |  | ЛЕСН G<br>(ишинев : |  |
| Разра    | аботал  | Чебан      | н О.  |         | 12.20 | paopoo VI VI                                                                          | Плишинев 2020                       |           |                                 |          |   |       |                                         |  |                     |  |
|          |         |            |       |         |       | Vопирово в                                                                            | ٨٥                                  |           | 4.0                             |          |   |       |                                         |  |                     |  |






|       |           |       |        |       |       | 154-GI/2020                                                                           | М                                  | верт. 1:100 |        |  |  |
|-------|-----------|-------|--------|-------|-------|---------------------------------------------------------------------------------------|------------------------------------|-------------|--------|--|--|
|       |           |       |        |       |       | Т54-G1/2020<br>М гориз. 1:5                                                           |                                    |             |        |  |  |
| 14014 | Vos. viii | Пиот  | No sor | Полл  | Пото  | "Proiectarea centrului comercial din r-nul Orhei,<br>mun. Orhei, nr.cad. 6401307.195" |                                    |             |        |  |  |
| ИЗМ.  | кол. уч   | TINCT | № док  | Подп. | Дата  |                                                                                       |                                    |             |        |  |  |
|       |           |       |        |       |       |                                                                                       | Стадия                             | Лист        | Листов |  |  |
|       |           |       |        |       |       | Коммерческий центр                                                                    | РΠ                                 | 6           | 8      |  |  |
|       |           |       |        |       |       |                                                                                       |                                    |             |        |  |  |
| Пров  | Проверил  |       | анов В |       | 12.20 | Инженерно-геологический<br>разрез VII-VII                                             | "INGEOTECH GRUP" S<br>Кишинев 2020 |             |        |  |  |
| Разра | аботал    | Чебан | ι О.   |       | 12.20 | P40P00 VII VII                                                                        | кишинев 2020                       |             |        |  |  |
|       |           |       |        |       |       | <b>Гопирован</b>                                                                      | ٨2                                 |             | ۸.2    |  |  |



| 20.0<br>18.0<br>№ скважины<br>Отметка<br>поверхности, м | Скв.6 Скв.7 Скв.5  Отаки и польти в мгэ- | <u>-VII</u>   |
|---------------------------------------------------------|------------------------------------------|---------------|
| 18.0                                                    | 22.10 9.0 - 21.70 - 10.0                 | <u>-VII</u>   |
| 18.0                                                    | 22.10 9.0 - 21.70 - 10.0                 | <u>-VII</u>   |
| 20.0                                                    | 22.10 9.0                                | <u>-VII</u>   |
|                                                         | 22.10 9.0                                | -VII          |
| 22.0                                                    | 23.10 23.10 23.00 23.00                  |               |
| 24.0                                                    | 24.60 \$ -6.5<br>(7) [ΜΓЭ-V]             | <u>7 ИГЭ-</u> |
| 26.0                                                    | 6   ИГЭ-V                                |               |
| 28.0                                                    | 28.40                                    | ГЭ-Ш          |
| 30.0                                                    | 30.30                                    |               |
| 32.0                                                    | 0.8(30.30)                               |               |
| 34.0                                                    |                                          |               |

|       |         |       |       |       |       | 154-GI/2020                                                                           | верт. 1:100                         |      |        |  |
|-------|---------|-------|-------|-------|-------|---------------------------------------------------------------------------------------|-------------------------------------|------|--------|--|
|       |         |       |       |       |       | Т54-G1/2U2U М гориз. <sup>2</sup>                                                     |                                     |      |        |  |
|       |         |       |       |       |       | "Proiectarea centrului comercial din r-nul Orhei,<br>mun. Orhei, nr.cad. 6401307.195" |                                     |      |        |  |
| Изм.  | Кол. уч | Лист  | № док | Подп. | Дата  |                                                                                       |                                     |      |        |  |
|       |         |       |       | ·     |       |                                                                                       | Стадия                              | Лист | Листов |  |
|       |         |       |       |       |       | Коммерческий центр                                                                    | РΠ                                  | 7    | 8      |  |
| Прове | пиае    | Полка | нов В |       | 12.20 | Инженерно-геологический                                                               | "INGEOTECH GRUP" SR<br>Кишинев 2020 |      |        |  |
|       | ботал   |       |       |       | 12.20 | разрез VIII-VIII                                                                      |                                     |      |        |  |



|       |         |       |       |       |       | 154-GI/2020                                                                           | верт. 1:100                        |      |        |  |
|-------|---------|-------|-------|-------|-------|---------------------------------------------------------------------------------------|------------------------------------|------|--------|--|
|       |         |       |       |       |       | 154-G1/2020                                                                           | гориз. 1:500                       |      |        |  |
|       |         |       |       |       |       | "Proiectarea centrului comercial din r-nul Orhei,<br>mun. Orhei, nr.cad. 6401307.195" |                                    |      |        |  |
| Изм.  | Кол. уч | Лист  | № док | Подп. | Дата  |                                                                                       |                                    |      |        |  |
|       |         |       |       |       |       |                                                                                       | Стадия                             | Лист | Листов |  |
|       |         |       |       |       |       | Коммерческий центр                                                                    | РΠ                                 | 8    | 8      |  |
| Прове | ерил    | Полка | нов В |       | 12.20 | Инженерно-геологический разрез IX-IX                                                  | "INGEOTECH GRUP" :<br>Кишинев 2020 |      |        |  |
| Разра | аботал  | Чебан | ı O.  |       | 12.20 | hashes 17-17 Kumuher 2020                                                             |                                    |      |        |  |