

EC DECLARATION OF CONFORMITY

MANUFACTURER	DIA.PRO DIAGNOSTIC BIOPROBES S.R.L.
	VIA G. CARDUCCI N° 27 – 20099 SESTO SAN
	GIOVANNI (MILANO) – ITALY
PRODUCT	HEV IgM
	CODE: EVM.CE (96 tests)
CLASSIFICATION	GENERAL IVD
CONFORMITY ASSESSMENT ROUTE	SELF CERTIFICATION

WE HEREBY DECLARE THAT THE ABOVE MENTIONED PRODUCT MEETS THE PROVISIONS OF THE COUNCIL DIRECTIVE 98/79/EC FOR IN VITRO DIAGNOSTIC DEVICES.

ISO CERTIFICATE	UNE EN ISO 13485 N° 2013 11 0039 EN,
	RELEASED BY AEMPS (AGENCIA ESPAÑOLA
	DE MEDICAMENTOS Y PRODUCTOS
	SANITARIOS)

PLACE & DATE OF FIRST ISSUE	MILANO – MARCH 2004
PLACE & DATE OF CURRENT	SESTO SAN GIOVANNI (MI) – MARCH 2019
ISSUE	
SIGNATURE	
Legal Representative	DIA_PRO1
Dr.ssa Fiorenza Scozzesi	DIAGNOSTIC BIORROBUS ST
	forter

Rev: 05/2018

EC DECLARATION OF CONFORMITY

MANUFACTURER	DIA.PRO DIAGNOSTIC BIOPROBES S.R.L.
	VIA G. CARDUCCI N° 27 – 20099 SESTO SAN
	GIOVANNI (MILANO) – ITALY
PRODUCT	HEV IgG
	CODE: EVG.CE (96 tests)
CLASSIFICATION	GENERAL IVD
CONFORMITY ASSESSMENT ROUTE	SELF CERTIFICATION

WE HEREBY DECLARE THAT THE ABOVE MENTIONED PRODUCT MEETS THE PROVISIONS OF THE COUNCIL DIRECTIVE 98/79/EC FOR IN VITRO DIAGNOSTIC DEVICES.

ISO CERTIFICATE	UNE EN ISO 13485 N° 2013 11 0039 EN,
	RELEASED BY AEMPS (AGENCIA ESPAÑOLA
	DE MEDICAMENTOS Y PRODUCTOS
	SANITARIOS)

PLACE & DATE OF FIRST ISSUE	MILANO – JULY 2004
PLACE & DATE OF CURRENT	SESTO SAN GIOVANNI (MI) – MARCH 2019
ISSUE	
SIGNATURE	
Legal Representative	DIA_PRO1
Dr.ssa Fiorenza Scozzesi	DIAGNOSTIC BIORROBUS STI
	forter

Rev: 05/2018

EL CENTRO NACIONAL DE CERTIFICACION DE PRODUCTOS SANITARIOS

THE CENTRO NACIONAL DE CERTIFICACION DE PRODUCTOS SANITARIOS

otorga el certificado número grants the certificate no.

2013 11 0039 EN

según la norma

in accordance with the standard

UNE-EN ISO 13485: 2018

(EN ISO 13485: 2016 & ISO 13485: 2016)

Productos Sanitarios: Sistemas de Gestión de Calidad - Requisitos para fines reglamentarios

Medical devices – Quality management systems - Requirements for regulatory purposes

a la empresa to the company

Dia.Pro Diagnostic Bioprobes S.r.l.

Via G. Carducci, 27. 20099 Sesto San Giovanni, Milano (Italy)

Para las siguientes actividades / For the following activities:

Diseño, desarrollo y producción de reactivos y productos reactivos, calibradores y materiales de control para inmunoquímica, microbiología, inmunología infecciosa y técnicas de biología molecular.

Diseño, desarrollo, producción de instrumentos y software para diagnóstico in vitro.

Design, development and manufacturing of reagents, reagent products, calibrators and control materials for immunochemistry, microbiology, infectious immunology and molecular biology techniques.

Design and development and manufacturing of instruments and software for "in vitro" diagnostic.

Fecha de validez / Date of validity: Desde/ From: 18-11-2023 Hasta/ To: 17-11-2026

Renovación / Renewal of certification date: 18-11-2023

Madrid, 17 de noviembre de 2023 Jefa del Centro Nacional de Certificación de Productos Sanitarios

Gilenandoz

Fdo. Gloria Hernández Hernández

Agencia Española de Medicamentos y Productos Sanitarios (AEMPS) Fecha de la firma: 17/11/2023 Puede comprobar la autenticidad del documento en la sede de la AEMPS:https://localizador.aemps.es

CORREO ELECTRÓNICO secretariaCNCps@certificaps.gob.es Página 1 de 1

C/ CAMPEZO, 1 - EDIFICIO 7 28022 MADRID Tel.: (+34) 91 822 5130

Quality Management System REGULATION (EU) 2017/746 on In Vitro Diagnostic Medical Devices. Annex IX Chapter I, Section 2 and 3 and Chapter III Registration No.:

Manufacturer:

HX 1483000-1

EUROIMMUN Medizinische Labordiagnostika AG Seekamp 31 23560 Lübeck Germany DE-MF-000005296

EUDAMED Single **Registration No.:**

Products:

Products of class B:

IMMUNOCHEMISTRY (IMMUNOLOGY)

IVR 0602: Devices intended to be used for screening, determination or monitoring of physiological markers for a specific disease W01021090 - VARIOUS AUTO-IMMUNE DISEASE

IVR 0603: Devices intended to be used for screening, confirmation/determination, or monitoring of allergies and intolerances W01020299 - ALLERGY TESTS - OTHER W01020201 - IMMUNOGLOBULIN E - TOTAL

IVR 0608: Devices intended to be used for screening, determination or monitoring of physiological markers W01020702 - VITAMINES

The Notified Body hereby declares that the requirements of Annex IX, Chapter I, Section 2 and 3 of the REGULATION (EU) 2017/746 have been met for the listed products. The above named manufacturer has established and applies a quality management system, which is subject to periodic surveillance, defined by Annex IX, Chapter I, Section 3 of the aforementioned regulation. If class B, C or D devices for self-testing or near-patient testing are covered by this certificate an EU technical documentation assessment certificate according to Chapter II, Section 5.1 is required before placing them on the market. If companion diagnostics are covered by this certificate an EU technical documentation assessment certificate according to Chapter II, Section 5.2 is required before placing them on the market. If class D devices are covered by this certificate an EU technical documentation assessment certificate according to Chapter II, Section 4.10 is required before placing them on the market.

1090492-40
2023-05-10
2028-05-09
2023-05-10

Benannt durch/Designated by Zentraistelle der Länder für Gesundheitsschutz bei Arzneimitteln und Medizinprodukten BS-IVDR-097

0/020 h 04.08 (8) TÜV, TUEV and TUV are registered trademarks. Utilisation and application requires prior approv

ÚVRheinlai iorung

Katja Mierisch TÜV Rheinland LGA Products GmbH Tillystraße 2 · 90431 Nürnberg · Germany

TÜV Rheinland LGA Products GmbH is a Notified Body according to REGULATION (EU) 2017/746 concerning in vitro diagnostic medical devices with the identification number 0197.

Quality Management System REGULATION (EU) 2017/746 on In Vitro Diagnostic Medical Devices, Annex IX Chapter I, Section 2 and 3 and Chapter III **Registration No.:**

Manufacturer:

HX 1483000-1

EUROIMMUN Medizinische Labordiagnostika AG Seekamp 31 23560 Lübeck Germany

INFECTIOUS DISEASES

IVR 0503: Devices intended to be used to detect the presence of, or exposure to an infectious agent including sexually transmitted agents W01050808 - CONTROLS - INFECT. IMMUNOLOGY W01050404 - EPSTEIN BARR VIRUS W01050502 - MISCELLANEOUS PARASITOLOGY W01050117 - OTHER BACTERIOLOGY IMMUNOASSAYS W01050406 - OTHER VIROLOGY ANTIGEN/ANTIBODY DETECTION

IVR 0504: Devices intended to be used to determine the infectious load, to determine infective disease status or immune status and devices used for infectious disease staging W01050117 - OTHER BACTERIOLOGY IMMUNOASSAYS

CHEMISTRY / IMMUNOCHEMISTRY INSTRUMENTS

IVR 0503: Devices intended to be used to detect the presence of, or exposure to an infectious agent including sexually transmitted agents W0201020192 - AUTOMATED IMMUNOCHEMISTRY ANALYSERS - IVD MEDICAL DEVICE SOFTWARE

Products of class C

IMMUNOCHEMISTRY (IMMUNOLOGY)

IVR 0602: Devices intended to be used for screening, determination or monitoring of physiological markers for a specific disease W01021090 - VARIOUS AUTO-IMMUNE DISEASE

1090492-40
2023-05-10
2028-05-09
2023-05-10

Benannt durch/Designated b Zentralstelle der Länder für Gesundheitsschutz bei Arzneimitteln und Medizinprodukten BS-IVDR-097

10/020 h 04.08 @ TÜV, TUEV and TUV are registered trademarks. Utilisation and application requires prior approva

Katia Mierisch **TÜV Rheinland LGA Products GmbH** Tillystraße 2 · 90431 Nürnberg · Germany

TÜV Rheinland LGA Products GmbH is a Notified Body according to REGULATION (EU) 2017/746 concerning in vitro diagnostic medical devices with the identification number 0197.

 Quality Management System

 REGULATION (EU) 2017/746 on In Vitro Diagnostic Medical Devices,

 Annex IX Chapter I, Section 2 and 3 and Chapter III

 Registration No.:
 HX 1483000-1

Manufacturer:

EUROIMMUN Medizinische Labordiagnostika AG Seekamp 31 23560 Lübeck Germany

INFECTIOUS DISEASES

IVR 0501: Devices intended to be used for pre-natal screening of women in order to determine their immune status towards transmissible agents W01050501 - TOXOPLASMA

IVR 0503: Devices intended to be used to detect the presence of, or exposure to an infectious agent including sexually transmitted agents W01050403 - HERPES SIMPLEX VIRUS W01050405 - OTHER VIROLOGY - NA REAGENTS W01050705 - MULTIPLE PANELS FOR INFECTIONS - VARIOUS W01050107 - MYCOBACTERIA GENUS + SPECIES

GENETIC TESTING

IVR 0402: Devices intended to be used to predict genetic disease/disorder risk and prognosis W01060101 - MONOGENETIC DISORDERS

NUCLEIC ACID TESTING INSTRUMENTS

IVR 0402: Devices intended to be used to predict genetic disease/disorder risk and prognosis W02050292 - MICRO-ARRAY INSTRUMENTS – IVD MEDICAL DEVICE SOFTWARE

CHEMISTRY / IMMUNOCHEMISTRY INSTRUMENTS

IVR 0501: Devices intended to be used for pre-natal screening of women in order to determine their immune status towards transmissible agents W0201020192 - AUTOMATED IMMUNOCHEMISTRY ANALYSERS – IVD MEDICAL DEVICE SOFTWARE

Report No.:	1090492-40
Effective date:	2023-05-10
Expiry date:	2028-05-09
Issue date:	2023-05-10

Benannt durch/Designated by Zentralstelle der Länder für Gesundheltsschutz bei Arzneimitteln und Medizinprodukten BS-IVDR-097

TÜV, TUEV and TUV are registered trademarks. Utilisation and application requires prior approva

Katja Mierisch TÜV Rheinland LGA Products GmbH Tillystraße 2 · 90431 Nürnberg · Germany

TÜV Rheinland LGA Products GmbH is a Notified Body according to REGULATION (EU) 2017/746 concerning in vitro diagnostic medical devices with the identification number 0197.

Quality Management System REGULATION (EU) 2017/746 on In Vitro Diagnostic Medical Devices, Annex IX Chapter I, Section 2 and 3 and Chapter III

Registration No.:

Manufacturer:

HX 1483000-1

EUROIMMUN Medizinische Labordiagnostika AG Seekamp 31 23560 Lübeck Germany

Authorised representative(s):

N/A

Revision:	Description:	Issue date:
0	Initial issuing	2023-05-10

Report No.:	1090492-40
Effective date:	2023-05-10
Expiry date:	2028-05-09
Issue date:	2023-05-10

ks Utilisation and application

Katja Mierisch TÜV Rheinland LGA Products GmbH Tillystraße 2 · 90431 Nürnberg · Germany

TÜV Rheinland LGA Products GmbH is a Notified Body according to REGULATION (EU) 2017/746 concerning in vitro diagnostic medical devices with the identification number 0197.

CERTIFICATE OF REGISTRATION

Lorne Laboratories Ltd

Unit 1 Cutbush Park Industrial Estate Danehill Lower Earley Berkshire RG6 4UT UNITED KINGDOM

Facility ID: F001410

UL Medical Regulatory Services of UL LLC® (UL Solutions) issues this certificate to the Firm named above, after auditing the Firm's quality management system and finding it in conformance per the defined scope with respect to:

ISO 13485:2016 EN ISO 13485:2016

with additional regulatory requirements listed on final page of this certificate.

The design and manufacture of in vitro diagnostic reagents for the detection of the blood groups.

Authorized by

Paul Hilgeman Senior Business Manager - Medical CMIT – Medical Regulatory

Cay Roman 🧶

Check Certificate Status: <u>here</u>

File Number Certificate Number Initial Issue Date A12241 1459.230523 June 26, 2018 Cycle Start Date Effective Date Expiry Date May 23, 2023 May 23, 2023 May 22, 2026

This quality system registration is included in UL's Directory of Registered Firms and applies to the provision of goods and/or services as specified in the scope of registration from the address(es) shown above. By issuance of this certificate the firm represents that it will maintain its registration in accordance with the applicable requirements. This certificate is not transferable and remains the property of UL Medical and Regulatory Services of UL LLC® (UL Solutions). Certificates may be verified by visiting the Online Certifications Directory on UL.com.

MDSAP Form-ULID-000725 Issue 5.0 Page 1 of 2

UL Medical and Regulatory Services UL, LLC is an MDSAP Recognized Auditing Organization

UL Solutions 333 Pfingsten Road Northbrook, IL 60062-2096 USA

UL and the UL logo are trademarks of UL LLC $\ensuremath{\mathbb{C}}$ 2023

CERTIFICATE OF REGISTRATION

Lorne Laboratories Ltd

Unit 1 Cutbush Park Industrial Estate Danehill Lower Earley Berkshire RG6 4UT UNITED KINGDOM

Additional Regulatory Requirements

Brazil:

- RDC ANVISA n. 665/2022
- RDC ANVISA n. 551/2021
- RDC ANVISA n. 67/2009

Canada:

- Medical Devices Regulations - Part 1- SOR 98/282

File Number Certificate Number Initial Issue Date A12241 1459.230523 June 26, 2018 Cycle Start Date Effective Date Expiry Date May 23, 2023 May 23, 2023 May 22, 2026

This quality system registration is included in UL's Directory of Registered Firms and applies to the provision of goods and/or services as specified in the scope of registration from the address(es) shown above. By issuance of this certificate the firm represents that it will maintain its registration in accordance with the applicable requirements. This certificate is not transferable and remains the property of UL Medical and Regulatory Services of UL LLC® (UL Solutions). Certificates may be verified by visiting the Online Certifications Directory on UL.com.

MDSAP Form-ULID-000725 Issue 5.0 Page 2 of 2

UL Medical and Regulatory Services UL, LLC is an MDSAP Recognized Auditing Organization

UL Solutions 333 Pfingsten Road Northbrook, IL 60062-2096 USA

Facility ID: F001410

UL and the UL logo are trademarks of UL LLC © 2023

CERTIFICATE

EC Certificate No. 1434-IVDD-075/2022

Full Quality Assurance System Directive 98/79/EC concerning *in vitro* diagnostic medical devices

Polish Centre for Testing and Certification certifies that the quality assurance system in the organization:

Lorne Laboratories Ltd

Unit 1 Cutbush Park Industrial Estate Danehill Lower Earley Berkshire RG6 4UT, UNITED KINGDOM

for the design, manufacture and final inspection of *in vitro* diagnostic medical device List A

The list of medical devices covered by this certificate is provided in the Annex 1 to EC Design-examination Certificate No. 1434-IVDD-074/2022

> complies with requirements of Annex IV (excluding Section 4, 6) to Directive 98/79/EC (as amended) implemented into Polish law, as evidenced by the audit conducted by the PCBC

Validity of the Certificate: from 28.04.2022 to 27.05.2025

The date of issue of the Certificate: 28.04.2022

The date of the first issue of the Certificate: 10.04.2019

Issued under the Contract No. MD-004/2022 Application No: 505/2022 Certificate bears the qualified signature. Warsaw, 28/04/2022 Module H7

President

CERTIFICATE OF REGISTRATION

Lorne Laboratories Ltd

Unit 1 Cutbush Park Industrial Estate Danehill Lower Earley Berkshire RG6 4UT UNITED KINGDOM

Facility ID: F001410

UL Medical Regulatory Services of UL LLC® (UL Solutions) issues this certificate to the Firm named above, after auditing the Firm's quality management system and finding it in conformance per the defined scope with respect to:

ISO 13485:2016 EN ISO 13485:2016

with additional regulatory requirements listed on final page of this certificate.

The design and manufacture of in vitro diagnostic reagents for the detection of the blood groups.

Authorized by

Paul Hilgeman Senior Business Manager - Medical CMIT – Medical Regulatory

Cay Roman 🧶

Check Certificate Status: <u>here</u>

File Number Certificate Number Initial Issue Date A12241 1459.230523 June 26, 2018 Cycle Start Date Effective Date Expiry Date May 23, 2023 May 23, 2023 May 22, 2026

This quality system registration is included in UL's Directory of Registered Firms and applies to the provision of goods and/or services as specified in the scope of registration from the address(es) shown above. By issuance of this certificate the firm represents that it will maintain its registration in accordance with the applicable requirements. This certificate is not transferable and remains the property of UL Medical and Regulatory Services of UL LLC® (UL Solutions). Certificates may be verified by visiting the Online Certifications Directory on UL.com.

MDSAP Form-ULID-000725 Issue 5.0 Page 1 of 2

UL Medical and Regulatory Services UL, LLC is an MDSAP Recognized Auditing Organization

UL Solutions 333 Pfingsten Road Northbrook, IL 60062-2096 USA

UL and the UL logo are trademarks of UL LLC $\ensuremath{\mathbb{C}}$ 2023

CERTIFICATE OF REGISTRATION

Lorne Laboratories Ltd

Unit 1 Cutbush Park Industrial Estate Danehill Lower Earley Berkshire RG6 4UT UNITED KINGDOM

Additional Regulatory Requirements

Brazil:

- RDC ANVISA n. 665/2022
- RDC ANVISA n. 551/2021
- RDC ANVISA n. 67/2009

Canada:

- Medical Devices Regulations - Part 1- SOR 98/282

File Number Certificate Number Initial Issue Date A12241 1459.230523 June 26, 2018 Cycle Start Date Effective Date Expiry Date May 23, 2023 May 23, 2023 May 22, 2026

This quality system registration is included in UL's Directory of Registered Firms and applies to the provision of goods and/or services as specified in the scope of registration from the address(es) shown above. By issuance of this certificate the firm represents that it will maintain its registration in accordance with the applicable requirements. This certificate is not transferable and remains the property of UL Medical and Regulatory Services of UL LLC® (UL Solutions). Certificates may be verified by visiting the Online Certifications Directory on UL.com.

MDSAP Form-ULID-000725 Issue 5.0 Page 2 of 2

UL Medical and Regulatory Services UL, LLC is an MDSAP Recognized Auditing Organization

UL Solutions 333 Pfingsten Road Northbrook, IL 60062-2096 USA

Facility ID: F001410

UL and the UL logo are trademarks of UL LLC © 2023

Lorne Laboratories Ltd

Unit 1 Cutbush Park Industrial Estate Danehill Lower Earley Berkshire RG6 4UT UNITED KINGDOM

REPs Facility ID: F001410

UL Medical Regulatory Services of UL LLC[®](UL) issues this certificate to the Firm named above, after auditing the Firm's quality management system and finding it in conformance per the defined scope with respect to:

ISO 13485:2016

with additional regulatory requirements listed on final page of this certificate.

The design and manufacture of in vitro diagnostic reagents for the detection of the blood groups.

Authorized by

Michael J. Windler, P.E. Manager of Global Regulatory Service Distinguished Member of the Technical Staff UL Life and Health Sciences UL LLC

2	
C	7.84 mine 🥘

Check Certificate Status: <u>here</u>

File Number
Certificate Number
Initial Issue Date

A12241 1459.200523 June 26, 2018 Cycle Start Date Effective Date Expiry Date May 23, 2020 May 23, 2020 May 22, 2023

This quality system registration is included in UL's Directory of Registered Firms and applies to the provision of goods and/or services as specified in the scope of registration from the address(es) shown above. By issuance of this certificate the firm represents that it will maintain its registration in accordance with the applicable requirements. This certificate is not transferable and remains the property of UL Medical and Regulatory Services of UL LLC. Certificates may be verified by visiting the Online Certifications Directory on UL.com.

00-MB-F0867 Issue 1.0 Page 1 of 2 UL Medical and Regulatory Services UL, LLC is an MDSAP Recognized Auditing Organization

UL LLC 333 Pfingsten Road Northbrook, IL 60062-2096 USA

UL and the UL logo are trademarks of Underwriters Laboratories Inc. $\ensuremath{\mathbb{C}}$ 2011.

CERTIFICATE OF REGISTRATION

Lorne Laboratories Ltd

Unit 1 Cutbush Park Industrial Estate Danehill Lower Earley Berkshire RG6 4UT UNITED KINGDOM

Additional Regulatory Requirements

Brazil:

- RDC ANVISA n. 16/2013
- RDC ANVISA n. 23/2012
- RDC ANVISA n. 67/2009

Canada:

- Medical Devices Regulations – Part 1- SOR 98/282

REPs Facility ID: F001410

File Number Certificate Number Initial Issue Date A12241 1459.200523 June 26, 2018 Cycle Start Date Effective Date Expiry Date May 23, 2020 May 23, 2020 May 22, 2023

This quality system registration is included in UL's Directory of Registered Firms and applies to the provision of goods and/or services as specified in the scope of registration from the address(es) shown above. By issuance of this certificate the firm represents that it will maintain its registration in accordance with the applicable requirements. This certificate is not transferable and remains the property of UL Medical and Regulatory Services of UL LLC. Certificates may be verified by visiting the Online Certifications Directory on UL.com.

00-MB-F0867 Issue 1.0 Page 2 of 2 UL Medical and Regulatory Services UL, LLC is an MDSAP Recognized Auditing Organization

UL LLC 333 Pfingsten Road Northbrook, IL 60062-2096 USA

UL and the UL logo are trademarks of Underwriters Laboratories Inc. $\ensuremath{\mathbb{C}}$ 2011.

CE

Declaration of Conformity

EUROIMMUN Medizinische Labordiagnostika AG

Seekamp 31, D-23560 Lübeck, Germany

declare under our sole responsibility that the ELISA products

Anti-West Nile Virus ELISA (IgG) Anti-West Nile Virus ELISA (IgM) Avidity: Anti-West Nile Virus ELISA (IgG) El 2662-9601 G El 2662-9601 M El 2662-9601-1 G

(product name, order no)

meet the demands of

Directive 98/79/EC on in vitro diagnostic medical devices of 27 October 1998 and its transpositions in national laws which apply to it.

Conformity assessment procedure: Annex III

Lübeck, 13.10.2016 (Place and date of issue)

Susanne Aleksandrowicz - Member of the Board -

N. Sikh lu

Dr. Wolfgang Schlumberger - Member of the Board -

Anti-West Nile Virus ELISA (IgG) Test instruction

ORDER NO.	ANTIBODIES AGAINST	IG CLASS	SUBSTRATE	FORMAT
El 2662-9601 G	West Nile virus	lgG	Ag-coated microplate wells	96 x 01 (96)

Principle of the test: The ELISA test kit provides a semiquantitative or quantitative in vitro assay for human antibodies of the IgG class against West Nile virus in serum or plasma. The test kit contains microtiter strips each with 8 break-off reagent wells coated with West Nile virus antigens. In the first reaction step, diluted patient samples are incubated in the wells. In the case of positive samples, specific IgG (also IgA and IgM) antibodies will bind to the antigens. To detect the bound antibodies, a second incubation is carried out using an enzyme-labelled anti-human IgG (enzyme conjugate) catalysing a colour reaction.

Contents of the test kit:

Cor	nponent	Colour	Format	Symbol
1.	Microplate wells coated with antigens: 12 microplate strips each containing 8 individual break-off wells in a frame, ready for use		12 x 8	STRIPS
2.	Calibrator 1 200 RU/ml (IgG, human), ready for use	dark red	1 x 2.0 ml	CAL1
3.	Calibrator 2 20 RU/ml (IgG, human), ready for use	red	1 x 2.0 ml	CAL2
4.	Calibrator 3 2 RU/ml, (IgG, human), ready for use	light red	1 x 2.0 ml	CAL3
5.	Positive control (IgG, human), ready for use	blue	1 x 2.0 ml	POS CONTROL
6.	Negative control (IgG, human), ready for use	green	1 x 2.0 ml	NEG CONTROL
7.	Enzyme conjugate peroxidase-labelled anti-human IgG (rabbit), ready for use	green	1 x 12 ml	CONJUGATE
8.	Sample buffer ready for use	light blue	1 x 100 ml	SAMPLE BUFFER
9.	Wash buffer 10x concentrate	colourless	1 x 100 ml	WASH BUFFER 10x
10.	Chromogen/substrate solution TMB/H ₂ O ₂ , ready for use	colourless	1 x 12 ml	SUBSTRATE
11.	Stop solution 0.5 M sulphuric acid, ready for use	colourless	1 x 12 ml	STOP SOLUTION
-	Test instruction		1 booklet	
	Quality control certificate		1 protocol	
-	Protective foil		2 pieces	
LO ⁻ IVD		-	• •	emperature d usable until

Storage and stability: The test kit has to be stored at a temperature between +2°C to +8°C. Do not freeze. Unopened, all test kit components are stable until the indicated expiry date.

Waste disposal: Patient samples, calibrators, controls and incubated microplate strips should be handled as infectious waste. All reagents must be disposed of in accordance with local disposal regulations.

EUROIMMUN

Preparation and stability of the reagents

Note: All reagents must be brought to room temperature ($+18^{\circ}C$ to $+25^{\circ}C$) approx. 30 minutes before use. After first use, the reagents are stable until the indicated expiry date if stored at $+2^{\circ}C$ to $+8^{\circ}C$ and protected from contamination, unless stated otherwise below.

The thermostat adjusted ELISA incubator must be set at 37°C +/- 1°C.

Coated wells: Ready for use. Tear open the resealable protective wrapping of the microplate at the
recesses above the grip seam. Do not open until the microplate has reached room temperature to
prevent the individual strips from moistening. Immediately replace the remaining wells of a partly used
microplate in the protective wrapping and tightly seal with the integrated grip seam (Do not remove
the desiccant bag).

Once the protective wrapping has been opened for the first time, the wells coated with antigens can be stored in a dry place and at a temperature between +2°C and +8°C for 4 months.

- **Calibrators and controls:** Ready for use. The reagents must be mixed thoroughly before use.
- **Enzyme conjugate:** Ready for use. The enzyme conjugate must be mixed thoroughly before use.
- Sample buffer: Ready for use.
- **Wash buffer:** The wash buffer is a 10x concentrate. If crystallisation occurs in the concentrated buffer, warm it to 37°C and mix well before diluting. The quantity required should be removed from the bottle using a clean pipette and diluted with deionized or distilled water (1 part reagent plus 9 parts distilled water).

For example: For 1 microplate strip, 5 ml concentrate plus 45 ml water.

The working strength diluted wash buffer is stable for 4 weeks when stored at +2°C to +8°C and handled properly.

- **Chromogen/substrate solution:** Ready for use. Close the bottle immediately after use, as the contents are sensitive to light. The chromogen/substrate solution must be clear on use. Do not use the solution if it is blue coloured.
- Stop solution: Ready for use.

Warning: The controls used have been tested negative for HBsAg, anti-HCV, anti-HIV-1 and anti-HIV-2 using enzyme immunoassays and indirect immunofluorescence methods. Nonetheless, all materials should be treated as being a potential infection hazard and should be handled with care. Some of the reagents contain the toxic agent sodium azide. Avoid skin contact.

Preparation and stability of the patient samples

Samples: Human serum or EDTA, heparin or citrate plasma.

Stability: Patient samples to be investigated can generally be stored at +2°C to +8°C for up to 14 days. Diluted samples should be incubated within one working day.

Sample dilution: Patient samples are diluted **1:101** in sample buffer. For example: dilute 10 µl serum in 1.0 ml sample buffer and mix well by vortexing (sample pipettes are not suitable for mixing).

NOTE: Calibrators and controls are prediluted and ready for use, do not dilute them.

Incubation

For **semiquantative analysis** incubate **calibrator 2** along with the positive and negative controls and patient samples. For **quantitative analysis** incubate **calibrators 1, 2 and 3** along with the positive and negative controls and patient samples.

(Partly) manual test performance

Transfer 100 µl of the calibrator, positive and negative controls or diluted Sample incubation: patient samples into the individual microplate wells according to the pipetting (1st step) protocol. For manual processing of microplate wells, cover the finished test plate with the protective foil. When using an automated microplate processor for incubation, follow the instrument manufacturer's recommendations with regard to microwell plate sealing. Incubate 60 minutes at 37°C ± 1°C. Washing: Manual: Remove the protective foil and empty the wells and subsequently wash 3 times using 300 μ l of working strength wash buffer for each wash. Automatic: Remove the protective foil and empty the wells and subsequently wash 3 times with 450 µl of working strength wash buffer (program setting: e.g. TECAN Columbus Washer "Overflow Modus"). Leave the wash buffer in each well for 30 to 60 seconds per washing cycle, then empty the wells. After washing (manual and automated tests), thoroughly dispose of all liquid from the microplate by tapping it on absorbent paper with the openings facing downwards to remove all residual wash buffer. Note: Residual liquid (> 10 μ l) in the reagent wells after washing can interfere with the substrate and lead to false low extinction values. Insufficient washing (e.g., less than 3 wash cycles, too small wash buffer volumes, or too short reaction times) can lead to false high extinction values. Free positions on the microplate strip should be filled with blank wells of the same plate format as that of the parameter to be investigated. **Conjugate incubation:** Pipette 100 µl of enzyme conjugate (peroxidase-labelled anti-human IgG) into (2nd step) each of the microplate wells. When using an automated microplate processor for incubation, follow the instrument manufacturer's recommendations with regard to microwell plate sealing. Incubate 30 minutes at room temperature (+18°C to +25°C) Washing: Empty the wells. Wash as described above. Pipette 100 µl of chromogen/substrate solution into each of the microplate Substrate incubation: wells. Incubate for 15 minutes at room temperature (+18°C to +25°C) (3^{ra} step) (protect from direct sunlight). Stopping the reaction: Pipette 100 µl of stop solution into each of the microplate wells in the same order and at the same speed as the chromogen/substrate solution was introduced. Photometric measurement of the colour intensity should be made at a Measurement: wavelength of 450 nm and a reference wavelength between 620 nm and 650 nm within 30 minutes of adding the stop solution. Prior to measuring, slightly shake the microplate to ensure a homogeneous distribution of the

solution.

Sample dilution and test performance are carried out fully automatically using the analysis device. The incubation conditions programmed in the respective software authorised by EUROIMMUN may deviate slightly from the specifications given in the ELISA test instruction. However, these conditions were validated in respect of the combination of the EUROIMMUN Analyzer I, Analyzer I-2P or the DSX from Dynex and this EUROIMMUN ELISA. Validation documents are available on inquiry. Automated test performance using other fully automated, open system analysis devices is possible, however, the combination should be validated by the user.

	1	2	3	4	5	6	7	8	9	10	11	12
А	C 2	P 6	P 14	P 22			C 1	P 4	P 12	P 20		
в	pos.	Ρ7	P 15	P 23			C 2	P 5	P 13	P 21		
С	neg.	P 8	P 16	P 24			C 3	P 6	P 14	P 22		
D	P 1	P 9	P 17				pos.	Ρ7	P 15	P 23		
Е	P 2	P 10	P 18				neg.	P 8	P 16	P 24		
F	P 3	P 11	P 19				P 1	P 9	P 17			
G	P 4	P 12	P 20				P 2	P 10	P 18			
Н	P 5	P 13	P 21				P 3	P 11	P 19			

Pipetting protocol

The pipetting protocol for microtiter strips 1-4 is an example for the **<u>semiguantitative analysis</u>** of 24 patient samples (P 1 to P 24).

The pipetting protocol for microtiter strips 7-10 is an example for the **<u>quantitative analysis</u>** of 24 patient samples (P 1 to P 24).

The calibrators (C 1 to C 3), the positive (pos.) and negative (neg.) controls, and the patient samples have each been incubated in one well. The reliability of the ELISA test can be improved by duplicate determinations for each sample.

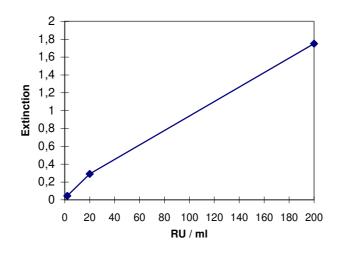
The wells can be broken off individually from the strips. This makes it possible to adjust the number of test substrates used to the number of samples to be examined and minimizes reagent wastage.

Both positive and negative controls serve as internal controls for the reliability of the test procedure. They should be assayed with each test run.

Calculation of results

Semiquantitative: Results can be evaluated semiquantitatively by calculating a ratio of the extinction value of the control or patient sample over the extinction value of the calibrator 2. Calculate the ratio according the following formula:

Extinction of the control or patient sample Extinction of calibrator 2 = Ratio


EUROIMMUN recommends interpreting results as follows:

Ratio <0.8:	negative
Ratio ≥0.8 to <1.1:	borderline
Ratio ≥1.1:	positive

Medizinische Labordiagnostika AG

In cases of borderline test results, an additional patient sample should be taken 7 days later and re-tested in parallel with the first patient sample. The results of both samples allow proper evaluation of titer changes.

Quantitative: The standard curve from which the concentration of antibodies in the patient samples can be taken is obtained by point-to-point plotting of the extinction values measured for the 3 calibration sera against the corresponding units (linear/linear). Use "point-to-point" plotting for calculation of the standard curve by computer. The following plot is an example of a typical calibration curve. Please do not use this curve for the determination of antibody concentrations in patient samples.

If the extinction of a serum sample lies above the value of calibrator 1 (200 RU/ml). The result should be given as ">200 RU/ml". It is recommended that the sample be re-tested at a dilution of 1:400. The result in RU/ml read from the calibration curve for this sample must then be multiplied by a factor of 4.

The upper limit of the normal range of non-infected persons (**cut-off value**) recommended by EUROIMMUN is **20 relative units (RU)/mI**. EUROIMMUN recommends interpreting results as follows:

<16 RU/mI:	negative
≥16 to <22 RU/mI:	borderline
≥22 RU/mI:	positive

Evaluation information: For duplicate determinations the mean of the two values should be taken. If the two values deviate substantially from one another the sample should be retested.

For the interpretation of borderline results an investigation using further tests (e.g. avidity determination of antibody class IgG) can be helpful. Diagnosis can be secured by the determination of the titer change in two serum samples taken at an interval of at least 7 days and analysed in parallel.

For diagnosis, the clinical symptoms of the patient should always be taken into account along with the serological results.

Test characteristics

Calibration: As no quantificated international reference serum exists for antibodies against West Nile virus, the calibration is performed in relative units (RU).

For every group of tests performed, the extinction values of the calibrators and the relative units and/or ratios determined for the positive and negative controls must lie within the limits stated for the relevant test kit lot. A quality control certificate containing these reference values is included. If the values specified for the controls are not achieved, the test results may be inaccurate and the test should be repeated.

The activity of the enzyme used is temperature-dependent and the extinction values may vary if a thermostat is not used. The higher the room temperature during substrate incubation, the greater will be the extinction values. Corresponding variations apply also to the incubation times. However, the calibration sera are subject to the same influences, with the result that such variations will be largely compensated in the calculation of the result.

Antigen: The antigen source is a recombinant, detergent-extracted glycoprotein E of WNV from the membrane fraction of human cells.

Linearity: The linearity of the Anti-West Nile Virus ELISA (IgG) was determined by assaying 4 serial dilutions of different patient samples. The coefficient of determination R^2 for all sera was > 0.95. The Anti-West Nile Virus ELISA (IgG) is linear at least in the tested concentration range (10 RU/ml to 160 RU/ml).

Detection limit: The lower detection limit is defined as the mean value of an analyte-free samples plus three times the standard deviation and is the smallest detectable antibody titer. The lower detection limit of the Anti-West Nile Virus ELISA (IgG) is 0.4 RU/ml.

Cross reactivity: Cross reactivities to other flaviviruses cannot be excluded. They were recognized with anti-TBE positive and anti-Dengue virus positive samples.

Antibodies against	n	Anti-West Nile Virus ELISA (IgG)
Adenovirus	12	0%
Chlamydia pneumoniae	12	0%
CMV	12	0%
EBV-CA	12	0%
Helicobacter pylori	12	0%
HSV-1	12	0%
Influenza virus A	12	0%
Influenza virus B	12	0%
Measles virus	12	0%
Mumps virus	12	0%
Mycoplasma pneumoniae	12	0%
Parainfluenza virus Pool	12	0%
RSV	12	0%
Rubella virus	12	0%
Toxoplasma gondii	9	0%
VZV	12	0%

Medizinische Labordiagnostika AG

Interference: Haemolytic, lipaemic and icteric samples showed no influence on the result up to a concentration of 10 mg/ml for haemoglobin, 20 mg/ml for triglycerides and 0.4 mg/ml for bilirubin in this ELISA.

Reproducibility: The reproducibility of the test was investigated by determining the intra- and interassay coefficients of variation using 3 sera. The intra-assay CVs are based on 20 determinations and the inter-assay CVs on 4 determinations performed in 6 different test runs.

Intra-assay variation, n = 20						
Serum Mean value CV						
	(RU/ml)	(%)				
1	101	6.1				
2	104	3.3				
3	149	2.7				

Inter-assay variation, n = 4 x 6							
Serum Mean value CV							
	(RU/ml)	(%)					
1	103	5.1					
2	120	4.9					
3	171	4.2					

Sensitivity and specificity: Samples from 295 patients (origin: Europe) were investgated using the EUROIMMUN Anti-West Nile Virus ELISA and a neutralization test (NT) (performed by RKI, Berlin) as a reference method. The specificity was 96.9%, with a sensitivity of 99.5%. Values for 4 of the samples were borderline and were not included in the calculation.

Reference range: The levels of anti-West Nile virus antibodies (IgG) were analyzed with this EUROIMMUN ELISA in a panel of 500 healthy blood donors. With a cut-off of 20 RU/ml, 1.0% of the blood donors were anti-West Nile virus positive (IgG).

Clinical significance

West Nile virus (WNV) is an enveloped single-stranded RNA virus of the Flaviviridae family [1]. This family comprises around 100 virus types that are presently categorized into the three known species Flavivirus, Pestivirus and Hepacivirus [1, 2, 3, 4, 5]. West Nile virus received its name in 1937 when it was first isolated from a blood sample of an elderly woman living in the West Nile district in Uganda, who had fever of unknown cause accompanied by neurological disorders [6]. Further isolates were achieved only in 1951 from the sera of children with weak, unspecific symptoms, namely in Egypt where the virus is endemically distributed. At that time mice and embryonated hen's eggs were used for virus detection [1].

WNV is present not only in tropical areas, but also in moderate climate regions [2, 3, 4, 5]. Significant epidemics were observed in 1951/52 and 1957 in Israel and 1974 and 1983/84 in South Africa [1]. In the mid 90's the virus changed its virulence causing an epidemic accumulation of WNV encephalitis in Algeria (1994), Rumania (1996/97), the Czech Republic (1997), the Democratic Republic of Congo (1998), Russia, North America (1999) and Israel (2000) [2, 3, 7, 8, 9, 10, 11, 12].

In the USA 149 infections with 18 cases of death were recorded from 1999 to 2001. In 2002 this number rose to 4156 infections and 284 deaths, in 2003 to 9858 infections and 262 deaths [7, 8, 10]. Currently the virus has been detected in seven Canadian provinces, in 48 USA states and in Mexico, as well as in Puerto Rico, the Dominican Republic, Jamaica, Guadeloupe and El Salvador [3, 9, 11].

Since 1958, when antibodies against the WNV were first detected in the sera of two Albanians, repeated outbreaks of West Nile fever have occurred in Southern and Eastern Europe and meanwhile also in Central and West Europe [8, 9, 10, 12, 14, 15]. Its emergence and rapid spread is credited to world climate change, long-distance travel and globalization of economic trade [9, 12, 13, 15, 16, 17]. Consequent monitoring of West Nile activity by controlling sera of exposed persons is essential [15, 17, 18, 19]. Seroprevalence studies in endemic regions have shown an infection spread of up to 40% [14]. West Nile virus is therefore the Flavivirus with the largest distribution area [2, 3, 4, 5, 9].

WNV is transmitted by a number of mosquitoes. In the Mediterranean region and in Africa mosquitoes of the Culex univitatus complex species are the main arthropod hosts, while in North America WNV could be detected in 37 mosquito species, with Culex pipiens being the main vector [1, 2, 3, 4, 7, 9]. In India Culex vishnui and in France Culex modestus were identified as the main vectors [1]. In total WNV could be found in more than 40 mosquito and in several tick species [3, 4, 5].

Birds represent the vertebrate reservoir [1, 20, 21]. Alone in the USA WNV has been found in more than 162 species of birds. Many of them showed clinical symptoms and thousands of birds died after contracting a natural infection [7, 8, 10, 20, 21]. Birds that survive develop lifelong immunity. Acting as coincidental hosts mammals can also become infected when bitten by an infected mosquito [10, 13, 14]. Transmission has additionally been documented via breast milk, bone marrow transplantations, liver and heart transplants, blood transfusions, lab accidents such as open wounds during handling of infected brain tissue as well as transplacental transmission [2, 3, 4, 5, 8, 22, 23, 24, 25, 26, 27, 28]. Other than humans, mostly only horses became ill after an infection [2, 13, 21]. As well as WNV infection via a mosquito bite, a second natural infection source is possible in animals, namely via feeding on infected prey [3, 5]. An experimental infection of cats was successfully achieved by feeding them infected mice [20, 21].

70% to 80% of the humans infected with WNV showed no symptoms [8]. In the remaining 20%-30%, signs of sudden flu-like symptoms appear after an incubation period of 2-6 days with fever ranging from 38.5 to 40°C lasting for 3-5 days, nausea, shivering, head and back aches, joint and muscle pain and other unspecific symptoms such as loss of appetite, dizziness, vomiting, diarrhoea, coughing and a sore throat [1, 2, 3, 4, 5].

Typical for epidemical occurring fever are exanthema on the breast, back and upper extremities and general lymph node swelling [1, 3, 26]. Severe clinical cases of WNV infections are characterized by myocarditis, pancreatitis and hepatitis and since 1996, also neurological disorders, as WNV is now capable of crossing the blood-brain barrier [3]. The neurological symptoms begin after a short febrile prodome phase approximately 1-7 days after infection and become manifest in the form of encephalitis and meningoencephalitis accompanied by stiffness, spasms and shivering as the result of damage done to the basal ganglia [3, 8, 29, 30].

Another widespread symptom is general muscle weakness similar to the Guillain-Barré syndrome and also polio-like paralysis [29, 30]. Approximately 4%-14% of the hospitalized patient cases are fatal [29]. High risk factors are old age and a weak immune system [1, 3, 29].

An infection with WNV during pregnancy can cause miscarriages, congenital meningitis, birth defects in approx. 10% of the cases and in an additional 10% of newborns growth disturbances [3, 8, 27, 28].

The diagnosis of WNV can be performed by virus detection or by detection of specific antibodies [1, 4, 17, 18, 19]. As virus isolation from serum or cerebrospinal fluid or virus detection using Real-Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) is usually unsuccessful due to short viraemia and low virus titers, the detection of specific WNV antibodies using ELISA and IFA has gained importance [11, 17, 18, 19, 31, 32, 33, 34, 35, 36, 37, 38].

Specific IgM antibodies in serum can be determined using ELISA or IIFT [19]. Antibodies of class IgM are detectable in serum from the second day after initial symptoms of the illness occur. A four-fold increase in titer of the respective class of antibody is considered proof of a WNV infection.

If the IgM test is negative, even though the symptoms indicate a WNV infection, a second serum sample should be taken and tested for IgM antibodies a few days later. A combination of ELISA and IIFT provides close to 100% reliability [17, 18, 31, 32, 33, 34]. Anti-WNV IgM antibodies persist for 2 to 3 months, often for more than a year [4, 17, 18, 19, 22].

Antibodies of class IgG are detectable approx. 2 days after the appearance of IgM antibodies [11, 19, 32, 33, 34, 40]. Two to four weeks after a positive IgM result the infection can be confirmed and its severity and prognosis evaluated using a qualitative and quantitative test for the detection of specific WNV IgG antibodies in the patient serum [34].

Medizinische Labordiagnostika AG

For the reliable differentiation between acute and past infections the detection of low-avidity IgG antibodies gives evidence for a primary or an acute WNV infection, while high-avidity antibodies indicate a past or reactivated WNV infection [39, 40, 41]. EUROIMMUN offers additional test systems for determination of IgG avidity in both ELISA and IIFT formats. The detection of low-avidity antibodies using ELISA and IIFT in parallel is possible for WNV as it is for Toxoplasma gondii, rubella virus, EBV-EA, EBV-CA and Corona virus [39, 40, 41].

As the degree of similarity within the Flavivirus family is high antibody cross reactions can occur [19, 31, 42]. Therefore samples that are positive for specific IgM and/or IgG antibodies against WNV should be titrated and investigated on all relevant Flavivirus IIFT substrates for cross reactions. By comparing the titer strengths the initial result can be confirmed or disproved by the second detection and an infection with another Flavivirus identified as the source of illness [17, 32, 34].

To supplement and extend the current Anti-West Nile Virus ELISA and Anti-West Nile Virus IIFT (each IgG or IgM or avidity) BIOCHIP Mosaics and Profiles for the detection (IIFT) of infections with Flaviviruses and the BIOCHIP Mosaic Fever Profile 1: South-East Asia have been developed. With these tests specific antibodies (IgG and IgM) against several infectious agents can be investigated simultaneously [36, 37, 38, 43, 44, 45]. These supplementary tests allow similar or ambiguous disease symptoms and potential cross reactions to be clarified and differential diagnostic issues to be addressed [1].

A specific antiviral therapy for WNV encephalitis is not available at present [1, 2, 3, 4, 5, 14, 35]. Intensive medical care is the only possibility to positively influence the illness. Eradication of WNV is impossible due to the natural bird-mosquito cycle [1]. A vaccine with formalin inactivated WNV is only available for horses [2, 10]. Therefore public education, individual precautionary measures and protection against insect bites are essential contributions to preventing WNV infections [2, 3, 4, 5, 14, 16].

Literature references

- 1. Falke D. Flavi-Viren. In: Hahn H, Falke D, Kaufmann SHE, Ullmann U. Medizinische Mikrobiologie und Infektiologie. Springer-Verlag, 5. Auflage (2004) 523-529.
- 2. Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ. West Nile Virus. Lancet Infect Dis 2 (2002) 519-529.
- 3. Nosal B, Pellizzari R. West Nile virus. CMAJ 168 (2003)1443-1444.
- 4. Granwehr BP, Lillibridge KM, Higgs S, Mason PW, Aronson JF, Campbell GA, Barrett ADT. West Nile virus: where are we now? The Lancet Infect Dis 4 (2004) 547-551.
- 5. Stock I. West nile virus. An unusual flavivirus with increased importance. [Article in German] Med Monatsschr Pharm 27 (2004) 112-120.
- 6. Smithburn KC, Hughes TP, Burke AW et al. A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med Hyg 20 (1940) 471-472.
- 7. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Bio 4 (2006) 82.
- 8. Zeller HG, Schuffenecker I. West Nile virus: an overview of its spreads in europe and the mediterranean basin in contrast to its spread in the americas. Eur J Clin Microbiol Infects Dis 23 (2004) 147-156.
- 9. Rappole JH, Compton BW, Leimgruber P, Robertson J, King DI, Renner SC. **Modeling movement** of West Nile virus in the Western hemisphere. Vector Borne Zoonotic Dis 6 (2006) 128-139.
- 10. Hubalek Z. European experience with the West Nile virus ecology and epidemiology: could it be relevant for the New World? Viral Immunol 13 (2000) 415-426.
- 11. Tilley PA, Walle R, Chow A, Jayaraman GC, Fonseca K, Drebot MA, Preiksaitis J, Fox J. Clinical utility of commercial enzyme immunoassays during the inaugural season of West Nile virus activity, Alberta, Canada. J Clin Microbiol 43 (2005) 4691-4695.

Medizinische Labordiagnostika AG

12. Hubalek Z, Halouzka J. West Nile Fever – a re-emerging mosquito-borne viral disease in europe. Emerg Infect Dis 5 (1999) 643-650.

- 13. Pauli G. West Nile virus. Prevalence and significance as a zoonotic pathogen. [Article in German] Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 47 (2004) 653-660.
- 14. Robert-Koch-Institut. West-Nil-Fieber. Epidemiol Bull 13 (2003) 96-99.
- 15. Epstein PR. West Nile virus and the climate. J Urban Health 78 (2001) 367-371.
- 16. Gubler DJ. **The global emergence/resurgence of arboviral diseases as public health problems.** Arch Med Res 33 (2002) 330-342.
- 17. Koraka P, Zeller H, Niedrig M, Osterhaus AD, Groen J. Reactivity of serum from patients with flavivirus infection measured by immunofluorescence assay and ELISA. Microbes Infect 12 (2002) 1209-1215.
- 18. Shi PY, Wong SJ. Serologic diagnosis of West-Nile virus infection. Expert Rev Mol Diagn 6 (2003) 733-741.
- Tardei G, Ruta S, Chitu V, Rossi C, Tsai TF, Cernescu C. Evaluation of immunglobulin M (IgM) and IgG enzyme immunoassays in serologic diagnosis of West Nile virus Infection. J. Clin. Microbiol 38 (2000) 2232-2239.
- 20. Rappole JH, Hubalek Z. Migratory birds and West Nile virus. J Appl Microbiol 94 (2003) 47-58.
- 21. Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD. Host heterogeneity dominates West Nile virus transmission. Proc Biol Sci 22 (2006) 2327-2333.
- 22. Prince HE, Tobler LH, Lape-Nixon M, Foster GA, Stramer SL, Busch MP. Development and persistence of West Nile virus-specific immunoglobulin M (IgM), IgA, and IgG in viremic blood donors. J Clin Microbiol 43 (2005) 4316-4320.
- 23. Iwamoto M, Jernigan DB, Guasch A, Trepka MJ, Blackmore CG, Hellinger WC, Pham SM, Zaki S, Lanciotti RS, Lance-Parker SE, DiazGranados CA, Winquist AG, Perlino CA, Wiersma S, Hillyer KL, Goodman JL, Marfin AA, Chamberland ME, Petersen LR. West Nile Virus in Transplant Recipients Investigation Team. Transmission of West Nile virus from an organ donor to four transplant recipients. N Engl J Med 348 (2003) 2196-2203.
- Montgomery SP, Brown JA, Kuehnert M, Smith TL, Crall N, Lanciotti RS, Macedo de Oliveira A, Boo T, Marfin AA, 2003 West Nile Virus Transfusion-Associated Transmission Investigation Team. Transfusion-associated transmission of West Nile virus, United States 2003 through 2005. Transfusion 46 (2006) 2038-2046.
- 25. Cameron C, Reeves J, Antonishyn N, Tilley P, Alport T, Towns D, Lane D, Saldanha J. West Nile virus in Canadian blood donors. Transfusion 45 (2005) 487-491.
- 26. Anderson RC, Horn KB, Hoang MP, Gottlieb E, Bennin B. Punctate exanthem of West Nile Virus infection: report of 3 cases. J Am Acad Dermatol 51 (2004) 820-823.
- 27. O'Leary DR, Kuhn S, Kniss KL, Hinckley AF, Rasmussen SA, Pape WJ, Kightlinger LK, Beecham BD, Miller TK, Neitzel DF, Michaels SR, Campbell GL, Lanciotti RS, Hayes EB. **Birth outcomes following West Nile Virus infection of pregnant women in the United States: 2003-2004.** Pediatrics 117 (2006) 537-545.
- 28. Paisley JE, Hinckley AF, O'Leary DR, Kramer WC, Lanciotti RS, Campbell GL, Hayes EB. West Nile virus infection among pregnant women in a northern Colorado community, 2003 to 2004. Pediatrics 117 (2006) 814-820.
- 29. Guarner J, Shieh WJ, Hunter S, Paddock CD, Morken T, Campbell GL, Marfin AA, Zaki SR. Clinicopathologic study and laboratory diagnosis of 23 cases with West Nile virus encephalomyelitis. Hum Pathol 35 (2004) 983-990.
- 30. Bouffard JP, Riudavets MA, Holman R, Rushing EJ. **Neuropathology of the brain and spinal cord** in human West Nile virus infection. Clin Neuropathol 23 (2004) 59-61.

Medizinische Labordiagnostika AG

31. Hogrefe WR, Moore R, Lape-Nixon M, Wagner M, Prince HE. Performance of immunoglobulin G (IgG) and IgM enzyme-linked immunosorbent assays using a West Nile virus recombinant antigen (preM/E) for detection of West Nile virus- and other flavivirus-specific antibodies. J Clin Microbiol 42 (2004) 4641-4648.

- 32. Niedrig M, Sonnenberg* K, Steinhagen* K, Paweska JT (*EUROIMMUN AG). Comparison of ELISA and immunoassays for measurement of IgG and IgM antibody to West Nile virus in human sera against virus neutralisation. J Virol Meth in press (2006).
- 33. Malan AK, Martins TB, Hill HR, Litwin CM. Evaluations of commercial West Nile virus immunoglobulin G (IgG) and IgM enzyme immunoassays show the value of continuous validation. J Clin Microbiol 42 (2004) 727-733.
- 34. Malan AK, Stipanovich PJ, Martins TB, Hill HR, Litwin CM. **Detection of IgG and IgM to West Nile** virus. **Development of an immunofluorescence assay.** Am J Clin Pathol 119 (2003) 508-515.
- 35. Sanchez MD, Pierson TC, McAllister D, Hanna SL, Puffer BA, Valentine LE, Murtadha MM, Hoxie JA, Doms RW. Characterization of neutralizing antibodies to West Nile virus. Virology 25 (2005) 70-82.
- 36. EUROIMMUN AG. Stöcker W, Wessel S, Morrin M, Müller M. Konstante Lichtquelle für die Fluoreszenzmikroskopie. Deutsche Patentanmeldung (Offenlegungsschrift) DE 10 2006 027 518.7 (2006).
- 37. Stöcker* W, Fauer* H, Krause* C, Barth E, Martinez A (*EUROIMMUN AG). Verfahren zur Optimierung der automatischen Fluoreszenzerkennung in der Immundiagnostik. Deutsche Patentanmeldung (Offenlegungsschrift) DE 10 2006 027 516.0 und WO2007140952 (2006).
- 38. EUROIMMUN AG. Stöcker W. Process for analyses to be carried out on immobilized biological tissue. USA-Patent Nr. US4647543 (1983/1987).
- Levett PN, Sonnenberg* K, Sidaway F, Shead S, Niedrig M, Steinhagen* K, Horsman GB, Drebot MA (*EUROIMMUN AG). Use of Immunoglubulin G Avidity Assays for Differentiation of Primary from Previous Infections with West Nile Virus. Journal of Clinical Microbiology Vol 43 (2005) 5873-5875.
- 40. Fox JL, Hazell SL, Tobler LH, Busch MP. Immunoglobulin G avidity in differentiation between early and late antibody responses to West Nile virus. Clin Vaccine Immunol 13 (2006) 33-36.
- 41. Levett PN, Sonnenberg* K, Shead S, Sidaway F, Niedrig M, Kreher* P, Arp* B, Erdmann* S, Jahn A, Steinhagen* K, Drebot M, Horsman GB (*EUROIMMUN AG). IgG avidity determinations but not IgM tests are capable to differentiate recent from previous infections with West Nile Virus. Poster zum 21. Annual clinical virology symposium and annual meeting Pan American society for clinical virology, USA, Florida, Clearwater beach (2005).
- 42. Stiasny K, Kiermayr S, Heinz FX. Cryptic properties of a cluster of dominant flavivirus crossreactive antigenic sites. J Virol 80 (2006) 9557-9568.
- 43. Stöcker* W, Horbach E, Slenczka W, Schaper J, Böttger K, Herrmann C (*EUROIMMUN AG). Automatische Bestückung von Objektträgern mit "BIOCHIPS": Eine neue Technologie für die indirekte Immunfluoreszenz. Lab. med. (1989) 171-172.
- 44. Sonnenberg* K, Hinrichs E, Müller-Kunert* E, Schlumberger* W, Stöcker* W (*EUROIMMUN AG). Einsatz der BIOCHIP-Technologie in der Serologie von Influenza-, EBV- und Legionella-Infektionen. Poster zum 3. Deutschen Kongress für Infektions- und Tropenmedizin, 15. bis 18. März 1995 in Berlin-Hohenschönhausen. Abstrakt im Kongressband (1995).
- 45. EUROIMMUN AG. Stöcker W. Die BIOCHIP-Technologie: Ein neuer Weg der Produktion Festphase-gebundener Bioreagenzien für das medizinische und biologische Laboratorium. Dokumentation zum Vorschlag des Rektors der Medizinischen Universität Lübeck für den Schmidt-Römhild-Technologiepreis 1989. Eigenverlag der Firma EUROIMMUN (1990).

EI_2662G_A_UK_C06.doc Version: 26/02/2013

Anti-West Nile Virus ELISA (IgM) Test instruction

ORDER NO.	ANTIBODIES AGAINST	IG CLASS	SUBSTRATE	FORMAT
EI 2662-9601 M	West Nile Virus	lgM	Ag-coated microplate wells	96 x 01 (96)

Principle of the test: The ELISA test kit provides a semiquantitative in vitro assay for human antibodies of the IgM class against West Nile virus in serum or plasma. The test kit contains microtiter strips each with 8 break-off reagent wells coated with West Nile virus antigens. In the first reaction step, diluted patient samples are incubated in the wells. In the case of positive samples, specific IgM (also IgA and IgG) antibodies will bind to the antigens. To detect the bound antibodies, a second incubation is carried out using an enzyme-labelled anti-human IgM (enzyme conjugate) catalysing a colour reaction.

Contents of the test kit:

	nponent	Colour	Format	Symbol
1.	Microplate wells	Coloui	- i onnat	Gymbol
	coated with antigens: 12 microplate strips each containing 8 individual break-off wells in a frame, ready for use		12 x 8	[STRIPS]
2.	Calibrator	doule up d	1 x 2.0 ml	
	(IgM, human), ready for use	dark red	1 X 2.0 mi	CAL
3.	Positive control (IgM, human), ready for use	blue	1 x 2.0 ml	POS CONTROL
4.	Negative control (IgM, human), ready for use	green	1 x 2.0 ml	NEG CONTROL
5.	Enzyme conjugate peroxidase-labelled anti-human IgM (goat), ready for use	red	1 x 12 ml	CONJUGATE
6.	Sample buffer buffer containing IgG/RF-Absorbent (Anti-human IgG antibody preparation obtained from goat), ready for use	green	1 x 100 ml	SAMPLE BUFFER
7.	Wash buffer 10x concentrate	colourless	1 x 100 ml	WASH BUFFER 10x
8.	Chromogen/substrate solution TMB/H ₂ O ₂ , ready for use	colourless	1 x 12 ml	SUBSTRATE
9.	Stop solution 0.5 M sulphuric acid, ready for use	colourless	1 x 12 ml	STOP SOLUTION
10.	Test instruction		1 booklet	
11.	Quality control certificate		1 protocol	
12.	Protective foil		3 pieces	
LO ⁻ IVD		∕ ∑	Storage ter Unopened	mperature usable until

Storage and stability: The test kit has to be stored at a temperature between +2°C to +8°C. Do not freeze. Unopened, all test kit components are stable until the indicated expiry date.

Waste disposal: Patient samples, calibrators, controls and incubated microplate strips should be handled as infectious waste. All reagents must be disposed of in accordance with local disposal regulations.

EUROIMMUN

Preparation and stability of the reagents

Note: All reagents must be brought to room temperature ($+18^{\circ}C$ to $+25^{\circ}C$) approx. 30 minutes before use. After first use, the reagents are stable until the indicated expiry date if stored at $+2^{\circ}C$ to $+8^{\circ}C$ and protected from contamination, unless stated otherwise below.

The thermostat adjusted ELISA incubator must be set at 37°C +/- 1°C.

Coated wells: Ready for use. Tear open the resealable protective wrapping of the microplate at the
recesses above the grip seam. Do not open until the microplate has reached room temperature to
prevent the individual strips from moistening. Immediately replace the remaining wells of a partly used
microplate in the protective wrapping and tightly seal with the integrated grip seam (Do not remove
the desiccant bag).

Once the protective wrapping has been opened for the first time, the wells coated with antigens can be stored in a dry place and at a temperature between +2°C and +8°C for 4 months.

- Calibrator and controls: Ready for use. The reagents must be mixed thoroughly before use.
- **Enzyme conjugate:** Ready for use. The enzyme conjugate must be mixed thoroughly before use.
- **Sample buffer:** Ready for use. The green coloured sample buffer contains IgG/RF absorbent. Serum or plasma samples diluted with this sample buffer are only to be used for the determination of IgM antibodies.
- **Wash buffer:** The wash buffer is a 10x concentrate. If crystallization occurs in the concentrated buffer, warm it to 37°C and mix well before diluting. The quantity required should be removed from the bottle using a clean pipette and diluted with deionized or distilled water (1 part reagent plus 9 parts distilled water).

For example: For 1 microplate strip, 5 ml concentrate plus 45 ml water.

The working strength diluted wash buffer is stable for 4 weeks when stored at +2°C to +8°C and handled properly.

- **Chromogen/substrate solution:** Ready for use. Close the bottle immediately after use, as the contents are sensitive to light. The chromogen/substrate solution must be clear on use. Do not use the solution if it is blue coloured.
- Stop solution: Ready for use.

Warning: The control sera used have been tested negative for HBsAg, anti-HCV, anti-HIV-1 and anti-HIV-2 using enzyme immunoassays and indirect immunofluorescence methods. Nonetheless, all materials should be treated as being a potential infection hazard and should be handled with care. Some of the reagents contain the toxic agent sodium azide. Avoid skin contact.

Medizinische Labordiagnostika AG

Preparation and stability of the patient samples

Samples: Human serum or EDTA, heparin or citrate plasma.

Stability: Patient samples to be investigated can generally be stored at +2°C to +8°C for up to 14 days. Diluted samples should be incubated within one working day.

Introduction: Before the determination of specific antibodies of class IgM, antibodies of class IgG should be removed from the patient sample. This procedure must be carried out in order to prevent any rheumatoid factors from reacting with specifically bound IgG, which would lead to false positive IgM test results, and to prevent specific IgG displacing IgM from the antigen, which would lead to false IgM negative test results.

Functional principle: The sample buffer (green coloured!) contains an anti-human antibody preparation from goat. IgG from a serum sample is bound with high specificity by these antibodies and precipitated. If the sample also contains rheumatoid factors, these will be absorbed by the IgG/anti-human IgG complex.

Separation properties:

- All IgG subclasses are bound and precipitated by the anti-human IgG antibodies.
- Human serum IgG in concentrations of up to 15 mg per ml are removed (average serum IgG concentration in adults: 12 mg per ml).
- Rheumatoid factors are also removed.
- The recovery rate of the IgM fraction is almost 100%.

Performance: The **patient samples** for analysis are diluted **1:101** with sample buffer. For example, add 10 μ l serum to 1.0 ml sample buffer and mix well. Incubate the mixture for at least **10 minutes** at room temperature. Subsequently, it can be pipetted into the microplate wells according to the pipetting protocol.

Notes:

- Antibodies of the class IgG should not be analyzed with this mixture.
- It is possible to check the efficacy of the IgG/RF absorbent for an individual patient sample by performing an IgG test in parallel to the IgM test using the mixture. If the IgG test is negative, the IgM result can be considered as reliable.
- The calibrator and controls containing IgM antibodies are pre-diluted and ready for use, do not dilute them.

Incubation

(Partly) manual test performance

Sample incubation: (1 st step)	Transfer 100 μ l of the calibrator, positive and negative controls or diluted patient samples into the individual microplate wells according to the pipetting protocol.
	For manual processing of microplate wells, cover the finished test plate with the protective foil. When using an automated microplate processor for incubation, follow the instrument manufacturer's recommendations with regard to microwell plate sealing. Incubate 60 minutes at 37°C \pm 1°C.
<u>Washing:</u>	<u>Manual:</u> Remove the protective foil and empty the wells and subsequently wash 3 times using 300 μ l of working strength wash buffer for each wash. <u>Automatic:</u> Remove the protective foil and empty the wells and subsequently wash 3 times with 450 μ l of working strength wash buffer (program setting: e.g. TECAN Columbus Washer "Overflow Modus"). Leave the wash buffer in each well for 30 to 60 seconds per washing cycle,
	then empty the wells. After washing (manual and automated tests), thoroughly dispose of all liquid from the microplate by tapping it on absorbent paper with the openings facing downwards to remove all residual wash buffer. <u>Note:</u> Residual liquid (> 10 μ l) in the reagent wells after washing can interfere with the substrate and lead to false low extinction values. Insufficient washing (e.g., less than 3 wash cycles, too small wash buffer volumes, or too short reaction times) can lead to false high extinction values. Free positions on the microplate strip should be filled with blank wells of the same plate format as that of the parameter to be investigated.
<u>Conjugate incubation:</u> (2 nd step)	Pipette 100 μ l of enzyme conjugate (peroxidase-labelled anti-human IgM) into each of the microplate wells. When using an automated microplate processor for incubation, follow the instrument manufacturer's recommendations with regard to microwell plate sealing. Incubate 30 minutes at room temperature (+18°C to +25°C) .
Washing:	Empty the wells. Wash as described above.
Substrate incubation: (3. step)	Pipette 100 μ l of chromogen/substrate solution into each of the microplate wells. Incubate for 15 minutes at room temperature (+18°C to +25°C) (protect from direct sunlight).
Stopping the reaction: (3 rd step)	Pipette 100 μl of stop solution into each of the microplate wells in the same order and at the same speed as the chromogen/substrate solution was introduced.
<u>Measurement:</u>	Photometric measurement of the colour intensity should be made at a wavelength of 450 nm and a reference wavelength between 620 nm and 650 nm within 30 minutes of adding the stop solution. Prior to measuring, slightly shake the microplate to ensure a homogeneous distribution of the solution.

EUROIMMUN

Test performance using fully automated analysis devices

Sample dilution and test performance are carried out fully automatically using the analysis device. The incubation conditions programmed in the respective software authorised by EUROIMMUN may deviate slightly from the specifications given in the ELISA test instruction. However, these conditions were validated in respect of the combination of the Analyzer I, Analyzer I-2P and the DSX from Dynex and this EUROIMMUN ELISA. Validation documents are available on inquiry. Automated test performance using other fully automated, open system analysis devices is possible, however, the combination should be validated by the user.

	1	2	3	4	5	6	7	8	9	10	11	12
А	с	P 6	P 14	P 22								
в	pos.	Ρ7	P 15	P 23								
С	neg.	P 8	P 16	P 24								
D	P 1	P 9	P 17									
Е	P 2	P 10	P 18									
F	P 3	P 11	P 19									
G	P 4	P 12	P 20									
н	P 5	P 13	P 21									

Pipetting protocol

The above pipetting protocol is an example of the **<u>semiquantitative analysis</u>** of antibodies in 24 patient samples (P 1 to P 24).

Calibrator (C), positive (pos.) and negative (neg.) control as well as the patient samples have been incubated in one well each. The reliability of the ELISA test can be improved by duplicate determinations of each sample.

The wells can be broken off individually from the strips. This makes it possible to adjust the number of test substrates used to the number of samples to be examined and minimizes reagent wastage.

Both positive and negative controls serve as internal controls for the reliability of the test procedure. They should be assayed with each test run.

Calculation of results

The extinction value of the calibrator defines the upper limit of the reference range of non-infected persons (**cut-off**) recommended by EUROIMMUN. Values above the indicated cut-off are to be considered as positive, those below as negative.

Semiquantitative: Results can be evaluated semiquantitatively by calculating a ratio of the extinction value of the control or patient sample over the extinction value of calibrator. Use the following formula to calculate the ratio:

Extinction of the control/patient sample Extinction of calibrators = Ratio

EUROIMMUN recommends interpreting results as follows:

Ratio <0.8:	negative
Ratio ≥0.8 to <1.1:	borderline
Ratio ≥1.1:	positive

Evaluation information: For duplicate determinations the mean of the two values should be taken. If the two values deviate substantially from one another the sample should be retested.

For the interpretation of borderline results an investigation using further tests (e.g. avidity determination of antibody class IgG) can be helpful. Diagnosis can be secured by the determination of the titer change in two serum samples taken at an interval of at least 7 days and analysed in parallel.

For diagnosis, the clinical symptoms of the patient should always be taken into account along with the serological results.

Test characteristics

Calibration: As no quantificated international reference serum exists for antibodies of the IgM class against West Nile virus, results are provided in the form of ratios which are a relative measure for the concentration of antibodies.

For every group of tests performed, the extinction values of the calibrators and the ratios determined for the positive and negative controls must lie within the limits stated for the relevant test kit lot. A quality control certificate containing these reference values is included. If the values specified for the control sera are not achieved, the test results may be inaccurate and the test should be repeated.

The activity of the enzyme used is temperature-dependent and the extinction values may vary if a thermostat is not used. The higher the room temperature during substrate incubation, the greater will be the extinction values. Corresponding variations apply also to the incubation times. However, the calibrators are subject to the same influences, with the result that such variations will be largely compensated in the calculation of the result.

Antigen: The antigen source is a recombinant, detergent-extracted glycoprotein E of WNV from the membrane fraction of human cells.

Detection limit: The lower detection limit is defined as the mean value of an analyte-free sample plus three times the standard deviation and is the smallest detectable antibody titer. The lower detection limit of the Anti-West Nile ELISA (IgM) is a ratio value of 0.03.

Cross reactivity: Cross reactivities to other flaviviruses cannot be excluded. They were recognized with anti-TBE positive and anti-Dengue virus positive samples.

Antibodies against	n	Anti-West Nile ELISA (IgM)
Borrelia burgdoferi	9	0%
CMV	8	0%
EBV-CA	9	0%
HSV-1/2	2	0%
Measles virus	10	0%
Mumps virus	9	0%
Parvovirus B19	8	0%
Rubella virus	10	0%
Toxoplasma gondii	10	0%
VZV	4	0%

Interference: Haemolytic, lipaemic and icteric samples showed no influence on the result up to a concentration of 10 mg/ml for haemoglobin, 20 mg/ml for triglycerides and 0.4 mg/ml for bilirubin in this ELISA.

EUROIMMUN

Reproducibility: The reproducibility of the test was investigated by determining the intra- and interassay coefficients of variation using 3 sera. The intra-assay CVs are based on 20 determinations and the inter-assay CVs on 4 determinations performed in 6 different test runs.

Intra-assay variation, n = 20					
Serum Mean value CV					
	(Ratio)	(%)			
1	1.9	5.9			
2	2.0	2.2			
3	2.4	4.0			

<i>Inter-assay variation,</i> n = 4 x 6					
Serum Mean value CV					
	(Ratio)	(%)			
1	1.9	3.9			
2	2.1	9.4			
3	2.4	6.8			

Sensitivity and specificity: Study I: For the determination of the sensitivity 18 clinically and serologically precharacterised sera (Robert Koch Institute, Berlin, Germany) were tested with the EUROIMMUN Anti-West Nile Virus ELISA (IgM). The sensitivity amounted to 94.4%.

Study II: 99 patient sera, characterised as positive at the Saskatchewan Disease Control Laboratory (Canada) using several serological methods, were investigated with the EUROIMMUN Anti-West Nile Virus ELISA (IgM). The sensitivity was 93.7%. For the determination of the specificity 500 blood donor samples were investigated. The specificity was 99.8%.

Reference range: The levels of anti-West Nile virus antibodies (IgM) were analyzed with this EUROIMMUN ELISA in a panel of 500 healthy blood donors. With a cut-off ratio of 1.0, 0.2% of the blood donors were anti-West Nile virus positive (IgM).

Clinical significance

West Nile virus (WNV) is an enveloped single-stranded RNA virus of the Flaviviridae family [1]. This family comprises around 100 virus types that are presently categorized into the three known species Flavivirus, Pestivirus and Hepacivirus [1, 2, 3, 4, 5]. West Nile virus received its name in 1937 when it was first isolated from a blood sample of an elderly woman living in the West Nile district in Uganda, who had fever of unknown cause accompanied by neurological disorders [6]. Further isolates were achieved only in 1951 from the sera of children with weak, unspecific symptoms, namely in Egypt where the virus is endemically distributed. At that time mice and embryonated hen's eggs were used for virus detection [1].

WNV is present not only in tropical areas, but also in moderate climate regions [2, 3, 4, 5]. Significant epidemics were observed in 1951/52 and 1957 in Israel and 1974 and 1983/84 in South Africa [1]. In the mid 90's the virus changed its virulence causing an epidemic accumulation of WNV encephalitis in Algeria (1994), Rumania (1996/97), the Czech Republic (1997), the Democratic Republic of Congo (1998), Russia, North America (1999) and Israel (2000) [2, 3, 7, 8, 9, 10, 11, 12]. In the USA 149 infections with 18 cases of death were recorded from 1999 to 2001. In 2002 this number rose to 4156 infections and 284 deaths, in 2003 to 9858 infections and 262 deaths [7, 8, 10]. Currently the virus has been detected in seven Canadian provinces, in 48 USA states and in Mexico, as well as in Puerto Rico, the Dominican Republic, Jamaica, Guadeloupe and El Salvador [3, 9, 11].

Since 1958, when antibodies against the WNV were first detected in the sera of two Albanians, repeated outbreaks of West Nile fever have occurred in Southern and Eastern Europe and meanwhile also in Central and West Europe [8, 9, 10, 12, 14, 15]. Its emergence and rapid spread is credited to world climate change, long-distance travel and globalization of economic trade [9, 12, 13, 15, 16, 17]. Consequent monitoring of West Nile activity by controlling sera of exposed persons is essential [15, 17, 18, 19]. Seroprevalence studies in endemic regions have shown an infection spread of up to 40% [14]. West Nile virus is therefore the Flavivirus with the largest distribution area [2, 3, 4, 5, 9].

WNV is transmitted by a number of mosquitoes. In the Mediterranean region and in Africa mosquitoes of the Culex univitatus complex species are the main arthropod hosts, while in North America WNV could be detected in 37 mosquito species, with Culex pipiens being the main vector [1, 2, 3, 4, 7, 9]. In India Culex vishnui and in France Culex modestus were identified as the main vectors [1]. In total WNV could be found in more than 40 mosquito and in several tick species [3, 4, 5].

Birds represent the vertebrate reservoir [1, 20, 21]. Alone in the USA WNV has been found in more than 162 species of birds. Many of them showed clinical symptoms and thousands of birds died after contracting a natural infection [7, 8, 10, 20, 21]. Birds that survive develop lifelong immunity. Acting as coincidental hosts mammals can also become infected when bitten by an infected mosquito [10, 13, 14]. Transmission has additionally been documented via breast milk, bone marrow transplantations, liver and heart transplants, blood transfusions, lab accidents such as open wounds during handling of infected brain tissue as well as transplacental transmission [2, 3, 4, 5, 8, 22, 23, 24, 25, 26, 27, 28]. Other than humans, mostly only horses became ill after an infection [2, 13, 21]. As well as WNV infection via a mosquito bite, a second natural infection source is possible in animals, namely via feeding on infected prey [3, 5]. An experimental infection of cats was successfully achieved by feeding them infected mice [20, 21].

70% to 80% of the humans infected with WNV showed no symptoms [8]. In the remaining 20%-30%, signs of sudden flu-like symptoms appear after an incubation period of 2-6 days with fever ranging from 38.5 to 40°C lasting for 3-5 days, nausea, shivering, head and back aches, joint and muscle pain and other unspecific symptoms such as loss of appetite, dizziness, vomiting, diarrhoea, coughing and a sore throat [1, 2, 3, 4, 5].

Typical for epidemical occurring fever are exanthema on the breast, back and upper extremities and general lymph node swelling [1, 3, 26]. Severe clinical cases of WNV infections are characterized by myocarditis, pancreatitis and hepatitis and since 1996, also neurological disorders, as WNV is now capable of crossing the blood-brain barrier [3]. The neurological symptoms begin after a short febrile prodome phase approximately 1-7 days after infection and become manifest in the form of encephalitis and meningoencephalitis accompanied by stiffness, spasms and shivering as the result of damage done to the basal ganglia [3, 8, 29, 30].

Another widespread symptom is general muscle weakness similar to the Guillain-Barré syndrome and also polio-like paralysis [29, 30]. Approximately 4%-14% of the hospitalized patient cases are fatal [29]. High risk factors are old age and a weak immune system [1, 3, 29].

An infection with WNV during pregnancy can cause miscarriages, congenital meningitis, birth defects in approx. 10% of the cases and in an additional 10% of newborns growth disturbances [3, 8, 27, 28].

The diagnosis of WNV can be performed by virus detection or by detection of specific antibodies [1, 4, 17, 18, 19]. As virus isolation from serum or cerebrospinal fluid or virus detection using Real-Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) is usually unsuccessful due to short viraemia and low virus titers, the detection of specific WNV antibodies using ELISA and IFA has gained importance [11, 17, 18, 19, 31, 32, 33, 34, 35, 36, 37, 38].

Specific IgM antibodies in serum can be determined using ELISA or IIFT [19]. Antibodies of class IgM are detectable in serum from the second day after initial symptoms of the illness occur. A four-fold increase in titer of the respective class of antibody is considered proof of a WNV infection.

If the IgM test is negative, even though the symptoms indicate a WNV infection, a second serum sample should be taken and tested for IgM antibodies a few days later. A combination of ELISA and IIFT provides close to 100% reliability [17, 18, 31, 32, 33, 34]. Anti-WNV IgM antibodies persist for 2 to 3 months, often for more than a year [4, 17, 18, 19, 22].

Antibodies of class IgG are detectable approx. 2 days after the appearance of IgM antibodies [11, 19, 32, 33, 34, 40]. Two to four weeks after a positive IgM result the infection can be confirmed and its severity and prognosis evaluated using a qualitative and quantitative test for the detection of specific WNV IgG antibodies in the patient serum [34].

For the reliable differentiation between acute and past infections the detection of low-avidity IgG antibodies gives evidence for a primary or an acute WNV infection, while high-avidity antibodies indicate a past or reactivated WNV infection [39, 40, 41].

Medizinische Labordiagnostika AG

EUROIMMUN offers additional test systems for determination of IgG avidity in both ELISA and IIFT formats. The detection of low-avidity antibodies using ELISA and IIFT in parallel is possible for WNV as it is for Toxoplasma gondii, rubella virus, EBV-EA, EBV-CA and Corona virus [39, 40, 41].

As the degree of similarity within the Flavivirus family is high antibody cross reactions can occur [19, 31, 42]. Therefore samples that are positive for specific IgM and/or IgG antibodies against WNV should be titrated and investigated on all relevant Flavivirus IIFT substrates for cross reactions. By comparing the titer strengths the initial result can be confirmed or disproved by the second detection and an infection with another Flavivirus identified as the source of illness [17, 32, 34].

To supplement and extend the current Anti-West Nile Virus ELISA and Anti-West Nile Virus IIFT (each IgG or IgM or avidity) BIOCHIP Mosaics and Profiles for the detection (IIFT) of infections with Flaviviruses and the BIOCHIP Mosaic Fever Profile 1: South-East Asia have been developed. With these tests specific antibodies (IgG and IgM) against several infectious agents can be investigated simultaneously [36, 37, 38, 43, 44, 45]. These supplementary tests allow similar or ambiguous disease symptoms and potential cross reactions to be clarified and differential diagnostic issues to be addressed [1].

A specific antiviral therapy for WNV encephalitis is not available at present [1, 2, 3, 4, 5, 14, 35]. Intensive medical care is the only possibility to positively influence the illness. Eradication of WNV is impossible due to the natural bird-mosquito cycle [1]. A vaccine with formalin inactivated WNV is only available for horses [2, 10]. Therefore public education, individual precautionary measures and protection against insect bites are essential contributions to preventing WNV infections [2, 3, 4, 5, 14, 16].

Literature references

- 1. Falke D. Flavi-Viren. In: Hahn H, Falke D, Kaufmann SHE, Ullmann U. Medizinische Mikrobiologie und Infektiologie. Springer-Verlag, 5. Auflage (2004) 523-529.
- 2. Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ. West Nile Virus. Lancet Infect Dis 2 (2002) 519-529.
- 3. Nosal B, Pellizzari R. West Nile virus. CMAJ 168 (2003)1443-1444.
- 4. Granwehr BP, Lillibridge KM, Higgs S, Mason PW, Aronson JF, Campbell GA, Barrett ADT. West Nile virus: where are we now? The Lancet Infect Dis 4 (2004) 547-551.
- 5. Stock I. West nile virus. An unusual flavivirus with increased importance. [Article in German] Med Monatsschr Pharm 27 (2004) 112-120.
- 6. Smithburn KC, Hughes TP, Burke AW et al. A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med Hyg 20 (1940) 471-472.
- 7. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Bio 4 (2006) 82.
- 8. Zeller HG, Schuffenecker I. West Nile virus: an overview of its spreads in europe and the mediterranean basin in contrast to its spread in the americas. Eur J Clin Microbiol Infects Dis 23 (2004) 147-156.
- 9. Rappole JH, Compton BW, Leimgruber P, Robertson J, King DI, Renner SC. **Modeling movement** of West Nile virus in the Western hemisphere. Vector Borne Zoonotic Dis 6 (2006) 128-139.
- 10. Hubalek Z. European experience with the West Nile virus ecology and epidemiology: could it be relevant for the New World? Viral Immunol 13 (2000) 415-426.
- 11. Tilley PA, Walle R, Chow A, Jayaraman GC, Fonseca K, Drebot MA, Preiksaitis J, Fox J. Clinical utility of commercial enzyme immunoassays during the inaugural season of West Nile virus activity, Alberta, Canada. J Clin Microbiol 43 (2005) 4691-4695.
- 12. Hubalek Z, Halouzka J. West Nile Fever a re-emerging mosquito-borne viral disease in europe. Emerg Infect Dis 5 (1999) 643-650.

EUROIMMUN

Medizinische Labordiagnostika AG

13. Pauli G. West Nile virus. Prevalence and significance as a zoonotic pathogen. [Article in German] Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 47 (2004) 653-660.

- 14. Robert-Koch-Institut. West-Nil-Fieber. Epidemiol Bull 13 (2003) 96-99.
- 15. Epstein PR. West Nile virus and the climate. J Urban Health 78 (2001) 367-371.
- 16. Gubler DJ. The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33 (2002) 330-342.
- 17. Koraka P, Zeller H, Niedrig M, Osterhaus AD, Groen J. Reactivity of serum from patients with flavivirus infection measured by immunofluorescence assay and ELISA. Microbes Infect 12 (2002) 1209-1215.
- 18. Shi PY, Wong SJ. Serologic diagnosis of West-Nile virus infection. Expert Rev Mol Diagn 6 (2003) 733-741.
- Tardei G, Ruta S, Chitu V, Rossi C, Tsai TF, Cernescu C. Evaluation of immunglobulin M (IgM) and IgG enzyme immunoassays in serologic diagnosis of West Nile virus Infection. J. Clin. Microbiol 38 (2000) 2232-2239.
- 20. Rappole JH, Hubalek Z. Migratory birds and West Nile virus. J Appl Microbiol 94 (2003) 47-58.
- 21. Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD. Host heterogeneity dominates West Nile virus transmission. Proc Biol Sci 22 (2006) 2327-2333.
- 22. Prince HE, Tobler LH, Lape-Nixon M, Foster GA, Stramer SL, Busch MP. Development and persistence of West Nile virus-specific immunoglobulin M (IgM), IgA, and IgG in viremic blood donors. J Clin Microbiol 43 (2005) 4316-4320.
- 23. Iwamoto M, Jernigan DB, Guasch A, Trepka MJ, Blackmore CG, Hellinger WC, Pham SM, Zaki S, Lanciotti RS, Lance-Parker SE, DiazGranados CA, Winquist AG, Perlino CA, Wiersma S, Hillyer KL, Goodman JL, Marfin AA, Chamberland ME, Petersen LR. West Nile Virus in Transplant Recipients Investigation Team. Transmission of West Nile virus from an organ donor to four transplant recipients. N Engl J Med 348 (2003) 2196-2203.
- Montgomery SP, Brown JA, Kuehnert M, Smith TL, Crall N, Lanciotti RS, Macedo de Oliveira A, Boo T, Marfin AA, 2003 West Nile Virus Transfusion-Associated Transmission Investigation Team. Transfusion-associated transmission of West Nile virus, United States 2003 through 2005. Transfusion 46 (2006) 2038-2046.
- 25. Cameron C, Reeves J, Antonishyn N, Tilley P, Alport T, Towns D, Lane D, Saldanha J. West Nile virus in Canadian blood donors. Transfusion 45 (2005) 487-491.
- 26. Anderson RC, Horn KB, Hoang MP, Gottlieb E, Bennin B. Punctate exanthem of West Nile Virus infection: report of 3 cases. J Am Acad Dermatol 51 (2004) 820-823.
- 27. O'Leary DR, Kuhn S, Kniss KL, Hinckley AF, Rasmussen SA, Pape WJ, Kightlinger LK, Beecham BD, Miller TK, Neitzel DF, Michaels SR, Campbell GL, Lanciotti RS, Hayes EB. Birth outcomes following West Nile Virus infection of pregnant women in the United States: 2003-2004. Pediatrics 117 (2006) 537-545.
- 28. Paisley JE, Hinckley AF, O'Leary DR, Kramer WC, Lanciotti RS, Campbell GL, Hayes EB. West Nile virus infection among pregnant women in a northern Colorado community, 2003 to 2004. Pediatrics 117 (2006) 814-820.
- 29. Guarner J, Shieh WJ, Hunter S, Paddock CD, Morken T, Campbell GL, Marfin AA, Zaki SR. Clinicopathologic study and laboratory diagnosis of 23 cases with West Nile virus encephalomyelitis. Hum Pathol 35 (2004) 983-990.
- 30. Bouffard JP, Riudavets MA, Holman R, Rushing EJ. **Neuropathology of the brain and spinal cord in human West Nile virus infection.** Clin Neuropathol 23 (2004) 59-61.

EUROIMMUN

Medizinische Labordiagnostika AG

31. Hogrefe WR, Moore R, Lape-Nixon M, Wagner M, Prince HE. Performance of immunoglobulin G (IgG) and IgM enzyme-linked immunosorbent assays using a West Nile virus recombinant antigen (preM/E) for detection of West Nile virus- and other flavivirus-specific antibodies. J Clin Microbiol 42 (2004) 4641-4648.

- 32. Niedrig M, Sonnenberg* K, Steinhagen* K, Paweska JT (*EUROIMMUN AG). Comparison of ELISA and immunoassays for measurement of IgG and IgM antibody to West Nile virus in human sera against virus neutralisation. J Virol Meth in press (2006).
- 33. Malan AK, Martins TB, Hill HR, Litwin CM. Evaluations of commercial West Nile virus immunoglobulin G (IgG) and IgM enzyme immunoassays show the value of continuous validation. J Clin Microbiol 42 (2004) 727-733.
- 34. Malan AK, Stipanovich PJ, Martins TB, Hill HR, Litwin CM. **Detection of IgG and IgM to West Nile** virus. **Development of an immunofluorescence assay.** Am J Clin Pathol 119 (2003) 508-515.
- 35. Sanchez MD, Pierson TC, McAllister D, Hanna SL, Puffer BA, Valentine LE, Murtadha MM, Hoxie JA, Doms RW. Characterization of neutralizing antibodies to West Nile virus. Virology 25 (2005) 70-82.
- 36. EUROIMMUN AG. Stöcker W, Wessel S, Morrin M, Müller M. Konstante Lichtquelle für die Fluoreszenzmikroskopie. Deutsche Patentanmeldung (Offenlegungsschrift) DE 10 2006 027 518.7 (2006).
- 37. Stöcker* W, Fauer* H, Krause* C, Barth E, Martinez A (*EUROIMMUN AG). Verfahren zur Optimierung der automatischen Fluoreszenzerkennung in der Immundiagnostik. Deutsche Patentanmeldung (Offenlegungsschrift) DE 10 2006 027 516.0 und WO2007140952 (2006).
- 38. EUROIMMUN AG. Stöcker W. Process for analyses to be carried out on immobilized biological tissue. USA-Patent Nr. US4647543 (1983/1987).
- Levett PN, Sonnenberg* K, Sidaway F, Shead S, Niedrig M, Steinhagen* K, Horsman GB, Drebot MA (*EUROIMMUN AG). Use of Immunoglubulin G Avidity Assays for Differentiation of Primary from Previous Infections with West Nile Virus. Journal of Clinical Microbiology Vol 43 (2005) 5873-5875.
- 40. Fox JL, Hazell SL, Tobler LH, Busch MP. Immunoglobulin G avidity in differentiation between early and late antibody responses to West Nile virus. Clin Vaccine Immunol 13 (2006) 33-36.
- 41. Levett PN, Sonnenberg* K, Shead S, Sidaway F, Niedrig M, Kreher* P, Arp* B, Erdmann* S, Jahn A, Steinhagen* K, Drebot M, Horsman GB (*EUROIMMUN AG). IgG avidity determinations but not IgM tests are capable to differentiate recent from previous infections with West Nile Virus. Poster zum 21. Annual clinical virology symposium and annual meeting Pan American society for clinical virology, USA, Florida, Clearwater beach (2005).
- 42. Stiasny K, Kiermayr S, Heinz FX. Cryptic properties of a cluster of dominant flavivirus crossreactive antigenic sites. J Virol 80 (2006) 9557-9568.
- 43. Stöcker* W, Horbach E, Slenczka W, Schaper J, Böttger K, Herrmann C (*EUROIMMUN AG). Automatische Bestückung von Objektträgern mit "BIOCHIPS": Eine neue Technologie für die indirekte Immunfluoreszenz. Lab. med. (1989) 171-172.
- 44. Sonnenberg* K, Hinrichs E, Müller-Kunert* E, Schlumberger* W, Stöcker* W (*EUROIMMUN AG). Einsatz der BIOCHIP-Technologie in der Serologie von Influenza-, EBV- und Legionella-Infektionen. Poster zum 3. Deutschen Kongress für Infektions- und Tropenmedizin, 15. bis 18. März 1995 in Berlin-Hohenschönhausen. Abstrakt im Kongressband (1995).
- 45. EUROIMMUN AG. Stöcker W. Die BIOCHIP-Technologie: Ein neuer Weg der Produktion Festphase-gebundener Bioreagenzien für das medizinische und biologische Laboratorium. Dokumentation zum Vorschlag des Rektors der Medizinischen Universität Lübeck für den Schmidt-Römhild-Technologiepreis 1989. Eigenverlag der Firma EUROIMMUN (1990).

EI_2662M_A_UK_C09.doc Version: 26/02/2013

Product List – CE Marked

Certified by

ISO 13485:2016

EC – Directive 98 / 79 EC For In-Vitro-Diagnostics

2020-02-1

20022020-BZ

NovaLisa®	Virology	
Prod. No.	Name	
ADVA0010 ADVG0010 ADVM0010	Adenovirus IgA Adenovirus IgG Adenovirus IgM	
CHIG0590 CHIM0590	Chikungunya Virus IgG capture Chikungunya Virus IgM μ-capture	
CMVG0110 ACMV7110 CMVM0110	Cytomegalovirus (CMV) IgG Avidity Cytomegalovirus (CMV) IgG Cytomegalovirus (CMV) IgM	
DENG0120 DENM0120 DVM0640 NS1D4020	Dengue Virus IgG Dengue Virus IgM Dengue Virus IgM μ-capture Dengue Virus NS1 Antigen	
EBVA0150 EBVG0150 AEBV7150 EBVM0150 EBVG0580	Epstein-Barr Virus (VCA) IgA Epstein-Barr Virus (VCA) IgG Avidity Epstein-Barr Virus (VCA) IgG Epstein-Barr Virus (VCA) IgM Epstein-Barr Virus (EBNA) IgG	
HANG0670 HANM0670	Hantavirus IgG Hantavirus IgM	
HEVG0780 HEVM0780	Hepatitis E Virus (HEV) IgG Hepatitis E Virus (HEV) IgM	
HSVG0250 HSVM0250 HSV1G0500 HSV1M0500 HSV2G0540 HSV2M0540	Herpes simplex Virus 1+2 (HSV) IgG Herpes simplex Virus 1+2 (HSV) IgM Herpes simples Virus 1 (HSV 1) IgG Herpes simplex Virus 1 (HSV 1) IgM Herpes simplex Virus 2 (HSV 2) IgG Herpes simplex Virus 2 (HSV 2) IgM	
INFA0290 INFG0290 INFM0290	Influenza Virus A IgA Influenza Virus A IgG Influenza Virus A IgM	
INFA0300 INFG0300 INFM0300	Influenza Virus B IgA Influenza Virus B IgG Influenza Virus B IgM	
MEAG0330 AMEA7330 MEAM0330	Measles Virus IgG Avidity Measles Virus IgG Measles Virus IgM	
MUMG0340 MUMM0340	Mumps Virus IgG Mumps Virus IgM	
PAIA0360 PAIG0360	Parainfluenza Virus 1,2,3 IgA Parainfluenza Virus 1,2,3 IgG	
PARG0370 PARM0370	Parvovirus B 19 IgG Parvovirus B 19 IgM	
RSVA0380 RSVG0380 RSVM0380	Respiratory syncytial Virus IgA Respiratory syncytial Virus IgG Respiratory syncytial Virus IgM	
RUBG0400	Rubella Virus IgG 2	20022020-B

20022020-BZ

ARUB7400 RUBM0400	Avidity Rubella Virus IgG Rubella Virus IgM μ-capture
TICG0440	TBE / FSME IgG
TICM0440	TBE / FSME IgM
PTICG044	TBE / FSME IgG plus
VZVA0490	Varicella-Zoster Virus (VZV) IgA
VZVG0490	Varicella-Zoster Virus (VZV) IgG
VZVM0490	Varicella-Zoster Virus (VZV) IgM
ZVG0790	Zika Virus IgG capture
ZVM0790	Zika Virus IgM µ-capture

NovaLisa [®] Bacteriology

Prod. No.	Name
BAR0900	Bartonella
BOPA0030	Bordetella pertussis IgA
BOPG0030	Bordetella pertussis IgG
BOPM0030	Bordetella pertussis IgM
BPTA0610	Bordetella pertussis toxin (PT) IgA
BPTG0610	Bordetella pertussis toxin (PT) IgG
BORG0040	Borrelia burgdorferi IgG
BORM0040	Borrelia burgdorferi IgM
BRUG0050	Brucella IgG
BRUM0050	Brucella IgM
CHLA0070	Chlamydia trachomatis IgA
CHLG0070	Chlamydia trachomatis IgG
CHLM0070	Chlamydia trachomatis IgM
CHLA0510	Chlamydia pneumoniae IgA
CHLG0510	Chlamydia pneumoniae IgG
CHLM0510	Chlamydia pneumoniae IgM
CORG0090	Corynebacterium diphtheriae toxin IgG
CORG5009	Corynebacterium diphtheriae toxin 5S IgG
PCORG009	Corynebycterium diphtheriae toxin 5S IgG plus
COX1G0600	Coxiella burnetii (Q-Fever) Phase 1 IgG
COX2G0600	Coxiella burnetii (Q-Fever) Phase 2 IgG
COX2M0600	Coxiella burnetii (Q-Fever) Phase 2 IgM
HELA0220	Helicobacter pylori IgA
HELG0220	Helicobacter pylori IgG
PHELA022	Helicobacter pylori IgA plus
PHELG022	Helicobacter pylori IgG plus
LEGG0650	Legionella Pneumophila IgG
LEGM0650	Legionella Pneumophila IgM
LEPG0660	Leptospira IgG
LEPM0660	Leptospira IgM

MYCA0350	Mycoplasma pneumoniae IgA
MYCG0350	Mycoplasma pneumoniae IgG
MYCM0350	Mycoplasma pneumoniae IgM
TETG0430	Clostridium tetani toxin IgG
TETG5043	Clostridium tetani toxin 5S IgG
PTETG043	Clostridium tetani toxin 5S IgG plus

NovaLisa[®] Parasites

Prod. No.	Name
CHAG0560 TRYP0570	Chagas (Trypanosoma cruzi) IgG Chagas
ENTG0140	Entamoeba histolytica IgG
LEIG0310	Leishmania infantum IgG
MAL0620	Malaria
TOXA0460 TOXG0460 ATOX7460 TOXM0460	Toxoplasma gondii IgA Toxoplasma gondii IgG Avidity Toxoplasma gondii IgG Toxoplasma gondii IgM μ-capture

NovaLisa [®]

Worms

Prod. No.	Name	
ASCG0020	Ascaris lumbricoides IgG	
ECHG0130	Echinococcus IgG	
FIL0760	Filariasis	
SCHG0410	Schistosoma mansoni IgG	
SCHM0410	Schistosoma mansoni IgM	
STRO0690	Strongyloides	
TAEG0420	Taenia solium IgG	
TOCG0450	Toxocara canis IgG	
TRIG0480	Trichinella spiralis IgG	
NovaLisa [®]	Fungi	

Prod. No.NameASPG0680Aspergillus fumigatus IgGASPM0680Aspergillus fumigatus IgMCANA0060Candida albicans IgACANG0060Candida albicans IgGCANM0060Candida albicans IgGCANM0060Candida albicans IgM

20022020-BZ

NovaLisa[®] Hormones

THYROID HORMONES (ELISAs for the determination of thyroid bormones a

(ELISAs for the determination of thyroid hormones and antibodies)

Prod. No.	Name	
ATG1010	Anti-TG	
ATPO1020	Anti-TPO	
FT41050	Free T4	
TSH1030	TSH	

Hormones

STEROID HORMONES (ELISAs for the determination of steroid hormones in plasma and serum)

Prod. No.	Name
DNOV001	Cortisol
DNOV002	Testosterone
DNOV003	17 beta-Estradiol
DNOV004	17-OH Progesterone
DNOV005	DHEA-S
DNOV006	Progesterone
DNOV008	Androstenedione
DNOV009	Free Testosterone
DNOV011	Total Estriol
DNOV012	Aldosterone

STEROID HORMONES IN URINE (ELISAs for the determination of steroid hormones in urine)

Prod. No.	Name
DNOV010	Urinary Cortisol

STEROID HORMONES IN SALIVA (ELISAs for the determination of steroid hormones in saliva)

Prod. No.	Name
DSNOV20	Cortisol Saliva
DSNOV21	Testosterone Saliva
DSNOV24	DHEA-S Saliva
DSNOV27	Androstenedione Saliva

PROTEIN HORMONES (ELISAs for the determination of proteins in plasma and serum)

Prod. No.	Name	
DNOV030	LH	
DNOV031	FSH	
DNOV032	Prolactin	
DNOV033	AFP	
DNOV034	beta HCG	

THYROID HORMONES (ELISAs for the determination of thyroid hormones and antibodies)

Prod. No.	Name	
DNOV051	Free T3	
DNOV053	Total T3	
DNOV054	Total T4	
DNOV057	Thyroglobulin	

DIABETES MONITORING

(ELISAs for the determination of specific analytes in plasma and serum)

Prod. No.	Name
DNOV111	Insulin
DNOV112	C-Peptide

CIRCULATING IMMUNO COMPLEXES

(ELISAs for the determination of specific analytes in plasma and serum)

Prod. No.	Name
DNOV093	CIC-C1q
DNOV094	CIC-C3d
DNOV096	CH-50

TUMOR MARKERS

(ELISAs for the determination of specific analytes in plasma and serum)

Prod. No.	Name	
DNOV 060	CEA	
DNOV061	CA 125	
DNOV062	CA 15-3	
DNOV063	CA 19-9	

MISCELLANEOUS

(ELISAs for the determination of specific analytes in plasma and serum)

Prod. No.	Name
DNOV100	Ferritin
DNOV101	HGH
DNOV102	IgE

NovaLisa[®] Autoimmune

Autoimmune (ELISAs for the determination of specific autoimmune antibodies)

Prod. No.	Name	
ATG1010	Anti-TG	
ATPO1020	Anti-TPO	

Rheumatology (ELISAs for the determination of specific analytes in plasma and serum)

Prod. No.	Name	
RFM3010	Rheumatoid Factor IgM	
NovaLisa ®	Recombinant Antigens	
Prod. No.	Name	
BORG0040	Borrelia burgdorferi IgG	
BORM0040	Borrelia burgdorferi IgM	
CHAG0560	Chagas (Trypanosoma cruzi) IgG	
TRYP0570	Chagas	
HANG0670	Hantavirus IgG	
HANM0670	Hantavirus IgM	
HELA0220	Helicobacter pylori IgA	
PHELA022	Helicobacter pylori IgA plus	
HEVG0780	Hepatitis E Virus (HEV) IgG	
HEVM0780	Hepatitis E Virus (HEV) IgM	
HSV1G0500	Herpes simples Virus 1(HSV 1)IgG	
HSV1M0500	Herpes simplex Virus 1(HSV 1)IgM	
HSV2G0540	Herpes simplex Virus 2(HSV 2)IgG	
HSV2M0540	Herpes simplex Virus 2(HSV 2)IgM	
MAL0620	Malaria	
STRO0690	Strongyloides	
ZVG0790	Zika Virus IgG capture	
ZVM0790	Zika Virus IgM μ-capture	

Prod. No.	Name
BPTA0610	Bordetella pertussis toxin (PT) IgA
BPTG0610	Bordetella pertussis toxin (PT) IgG
CORG0090	Corynebacterium diphtheriae toxin IgG
CORG5009	Corynebacterium diphtheriae toxin 5S IgG
PCORG009	Corynebycterium diphtheriae toxin 5S IgG plus
RFM3010	Rheumatoid Factor IgM
RUBG0400	Rubella Virus IgG
TETG0430	Clostridium tetani toxin IgG
TETG5043	Clostridium tetani toxin 5S IgG
PTETG043	Clostridium tetani toxin 5S IgG plus
TOXG0460	Toxoplasma gondii IgG
ATOX7460	Avidity Toxoplasma gondii IgG
TSH1030	TSH

NovaLisa [®] Quantitative Assays

Prod. No.	Name
ATG1010	Anti-TG
ATPO1020	Anti-TPO
BPTA0610	Bordetella pertussis toxin (PT) IgA
BPTG0610	Bordetella pertussis toxin (PT) IgG
CORG0090	Corynebacterium diphtheriae toxin IgG
CORG5009	Corynebacterium diphtheriae toxin 5S IgG
PCORG009	Corynebacterium diphtheriae toxin 5S IgG plus
FT41050	Free T4
HELA0220	Helicobacter pylori IgA
HELG0220	Helicobacter pylori IgG
PHELA022	Helicobacter pylori IgA plus
PHELG022	Helicobacter pylori IgG plus
RFM3010	Rheumatoid Factor IgM
RUBG0400	Rubella Virus IgG
ARUB7400	Avidity Rubella Virus IgG
TETG0430	Clostridium tetani toxin IgG
TETG5043	Clostridium tetani 5S toxin IgG
PTETG043	Clostridium tetani toxin 5S IgG plus
TICG0440	TBE / FSME IgG
PTICG044	TBE / FSME IgG plus
TOXG0460	Toxoplasma gondii IgG
ATOX7460	Avidity Toxoplasma gondii IgG
TSH1030	TSH

Antigen Assays

Prod. No.	Name
NS1D4020	Dengue Virus NS1 Antigen
NovaLisa [®]	IgM μ-capture Assays

Name
Chikungunya Virus IgM µ-capture
Dengue Virus IgM µ-capture
Rubella Virus IgM µ-capture
Toxoplasma gondii IgM µ-capture
Zika Virus IgM µ-capture

NovaLisa [®] Antibody Assays

Prod. No.	Name
ASCG0020	Ascaris lumbricoides IgG
CHAG0560	Chagas (Trypanosoma cruzi) IgG
TRYP0570	Chagas
ENTG0140	Entamoeba histolytica IgG
LEIG0310	Leishmania infantum IgG
MAL0620	Malaria
STRO0690	Strongyloides
TAEG0420	Taenia solium IgG
TOCG0450	Toxocara canis IgG
TRIG0480	Trichinella spiralis IgG

NovaLisa[®] Avidity Assays

Prod. No.	Name
ACMV7110	Avidity Cytomegalovirus (CMV) IgG
AEBV7150	Avidity Epstein-Barr Virus (VCA) IgG
AMEA7330	Avidity Measles Virus IgG
ARUB7400	Avidity Rubella Virus IgG
ATOX7460	Avidity Toxoplasma gondii IgG

NovaLisa [®]	Liquor Diagnostic
Prod. No.	Name
BORG0040 BORM0040	Borrelia burgdorferi IgG Borrelia burgdorferi IgM

EC Certificate

mdc medical device certification GmbH

Notified Body 0483 herewith certifies that

NovaTec Immundiagnostica GmbH Waldstraße 23 A6 63128 Dietzenbach Germany

for the scope

immunodiagnostics for the determination of antibodies against Toxoplasma gondii, Rubella virus, Cytomegalovirus and Chlamydia (see attachment)

has introduced and applies a

Quality System

for the design, manufacture and final inspection.

The mdc audit has proven that this quality system meets all requirements according to

Annex IV – excluding Section 4 and 6 of the Council Directive 98/79/EC

of the European Parliament and of the Council of 27 October 1998 on in vitro diagnostic medical devices.

The surveillance will be held as specified in Annex IV, Section 5.

Valid from Valid until Registration no. Report no. Stuttgart 2022-05-03 2025-05-26 D1055500019 P21-01539-236808 2022-05-03

Head of Certification Body

mdc medical device certification GmbH Kriegerstraße 6 D-70191 Stuttgart, Germany Phone: +49-(0)711-253597-0 Fax: +49-(0)711-253597-10 Internet: http://www.mdc-ce.de

For electronic publication only

Сертифиқат соответствия

Настоящий сертификат удостоверяет, что организация

АО «Вектор-Бест»

Российская Федерация, 630559, Новосибирская область, р. п. Кольцово, Научно-производственная зона, корпус 36

подтвердила соответствие Системы Менеджмента Качества требованиям

ISO 13485:2016

В отношении области деятельности, представленной ниже

Проектирование, разработка и производство медицинских изделий для диагностики in vitro (ИФА)

омером 0002, или более (например: xxxx/B/0002/UK/En), выл	ается клиенту, у которого ести	цадку, которая является головным офисом или основной площадкой при 5 более одной площадки, сертифицированной в URS, соответственно, пр , зависит от действительности основного сертификата".	именяется следующее заявление - "Действительность данног
Начало сертификационного цикла	Номер версии	Дата окончания срока действия сертификата	Сертификационный цикл
05 октября 2022	1	04 октября 2025	1
Дата редакции	Номер редакции	Первоначальная дата выпуска сертификата	Номер схемы
06 октября 2022	1	05 октября 2022	Не применяется

Подробное описание данных выше см. на http://www.urs-holdings.com/logos-and-regulations

От имени менеджера по сертификации

Если есть какие-либо сомнения относительно подлинности данного сертификата, пожалуйста, обратитесь в наш Центральный офис info@urs-certification.com URS является членом United Registrar of Systems (Holdings) Ltd, United House, 4 Hinton Road, Bournemouth, BH1 2EE, UK. Регистрационный номер компании 529466

EC Declaration of conformity

Page 1 of 4

EC DECLARATION OF CONFORMITY

ZAO "Vector-Best" hereby ensures under own responsibility and declares that the products listed on pages 2-4 are in conformity with applicable provisions and fulfill the essential requirements of Annex I Directive 98/79/EC of 27 October 1998 regarding in vitro diagnostic medical devices.

Classification of products:

Other devices (all devices except Annex II and self-testing devices)

Conformity assessment procedure:

Manufacturer:

ZAO "Vector-Best" Address: AHC, Koltsovo, Novosibirsk Region, 630559, Russia, Tel. +7 (383) 363 20 60, Fax: +7 (383) 363 35 55

Annex III (not including section 6).

European authorized representative:

Bioron GmbH, Rheinhorststr. 18, D-67071 Ludwigshafen, Germany. tel.: +49 (0) 621 5720 915, fax: +49 (0) 621 5720 916

Date: 2013/04/12

Murat Khusainov General Director ZAO «Vector-Best»

ZAO "Vector-Best"

EC Declaration of conformity

Page 2 of 4

No.	Product name	Identification data	REF
1.	Vectohep A-IgM	ELISA kit for determination of IgM to hepatitis A virus	D-0352
2.	Vectohep A-IgG	ELISA kit for quantitative and qualitative determination of IgG to hepatitis A virus	D-0362
3.	Vectohep TTV-IgG	ELISA kit for determination of IgG to TT virus	D-0802
4.	Vectohep E-IgG	ELISA kit for determination of IgG to hepatitis E virus	D-1056
5.	Vectohep E-IgM	ELISA kit for determination of IgM to hepatitis E virus	D-1058
6.	Vectohep G-IgG	ELISA kit for determination of IgG to hepatitis G virus	D-1252
7.	LymeBest-IgG	ELISA kit for determination of IgG to infectious borreliosis agents	D-1452
8.	LymeBest-IgM	ELISA kit for determination of IgM to infectious borreliosis agents	D-1454
9.	RecombiBest antipallidum-IgG	ELISA kit for determination of IgG to Treponema pallidum	D-1852
10.	RecombiBest antipallidum- total antibodies	ELISA kit for determination of total antibodies to Treponema pallidum	D-1856
11.	RecombiBest antipallidum- IgM	ELISA kit for determination of IgM to Treponema pallidum	D-1858
12.	RecombiBest antipallidum- total antibodies	ELISA kit for determination of total antibodies to Treponema pallidum	D-1857
13.	VectoHSV-1,2 - IgG	ELISA kit for determination of IgG to herpes simplex virus types 1 and 2	D-2152
14.	VectoHSV - IgM	ELISA kit for determination of IgM to herpes simplex virus types 1 and 2	
15.	VectoHHV-8 - IgG	ELISA kit for determination of IgG to human herpes virus type 8	D-2160
16.	VectoHHV-6 - IgG	ELISA kit for determination of IgG to human herpes virus type 6	D-2166
17.	Ureaplasma urealyticum – IgG-EIA-BEST	ELISA kit for determination of IgG to Ureaplasma urealyticum antigens	D-2254
18.	Ureaplasma urealyticum – IgA-EIA-BEST	ELISA kit for determination of IgA to Ureaplasma urealyticum antigens	D-2258
19.	VectoParotitis-IgG	ELISA kit for determination of IgG to parotitis virus	
20.	VectoParotitis-IgM	ELISA kit for determination of IgM to parotitis virus	D-2604
21.	Toxocara-IgG-EIA-BEST	ELISA kit for determination of IgG to toxocara antigens	D-2752
22.	Opisthorchiasis – IgG-EIA- BEST	ELISA kit for determination of IgG to opisthorchiasis antigens	
23.	Echinococcus-IgG-EIA-BEST	ELISA kit for determination of IgG to Echinococcus	D-3356

ZAO "Vector-Best"

EC Declaration of conformity

Page 3 of 4

		antigens	
24.	Ascarid-IgG-EIA-BEST	ELISA kit for determination of IgG to Ascaris lumbricoides	D-3452
25.	Lamblia-antibodies-EIA-BEST	ELISA kit for determination of IgG, IgM and IgA to Lamblia antibodies	D-3552
26.	Lamblia-IgM-EIA-BEST	ELISA kit for determination of IgM to Lamblia antibodies	D-3554
27.	Lamblia-antigen-EIA-BEST	ELISA kit for determination of Lamblia antigen	D-3556
28.	Helicobacter pylori-CagA- antigen-EIA-BEST	ELISA kit for determination of total antibodies to CagA Helicobacter pylori	D-3752
29.	TSH-EIA-BEST	ELISA kit for determination of concentration of thyroid-stimulating hormone	X-3952
30.	T3 total-EIA-BEST	ELISA kit for determination of concentration of total triiodothyronine	X-3954
31.	T4 total-EIA-BEST	ELISA kit for determination of concentration of total thyroxine	X-3956
32.	Anti-TPO-EIA-BEST	ELISA kit for determination of antibody concentration to thyroperoxidase	X-3968
33.	PAPP-A-EIA-BEST	ELISA kit for determination of concentration of pregnancy-associated plasma protein A	D-4160
34.	Mycoplasma hominis-IgG- EIA-BEST	ELISA kit for determination of IgG to Mycoplasma hominis	D-4352
35.	Mycoplasma hominis-IgA-EIA- BEST	ELISA kit for determination of IgA to Mycoplasma hominis	D-4358
36.	Mycoplasma pneumoniae- IgG-EIA-BEST	ELISA kit for determination of IgG to Mycoplasma pneumoniae	D-4362
37.	Mycoplasma pneumoniae- IgM-EIA-BEST	ELISA kit for determination of IgM to Mycoplasma pneumoniae	D-4366
38.	Vectocrimean – CHF – IgG	ELISA kit for determination of IgG to Crimean- Congo hemorrhagic fever virus	D-5052
39.	Vectocrimean – CHF – IgM	ELISA kit for determination of IgM to Crimean- Congo hemorrhagic fever virus	D-5054
40.	CEA-EIA-BEST	ELISA kit for determination of concentration of carcinoembryonic antigen	
41.	AFP-EIA-BEST	ELISA kit for determination of concentration of Alpha-Fetal Protein	
42.	CA-125-EIA-BEST	ELISA kit for determination of concentration of oncomarker CA-125	T-8466
43.	CA 19-9-EIA-BEST	ELISA kit for determination of concentration of CA 19-9	T-8470
44.	CA 15-3-EIA-BEST	ELISA kit for determination of concentration of oncomarker CA 15-3	T-8472
45.	NSE-EIA-BEST	ELISA kit for determination of concentration of neuron specific enolase	T-8476

ZAO "Vector-Best"

EC Declaration of conformity

-			
46.	Ferritin-EIA-BEST	ELISA kit for determination of concentration of ferritin	T-8552
47.	IgE total-EIA-BEST	ELISA kit for determination of concentration of total IgE	A-8660
48.	IgG total-EIA-BEST	ELISA kit for determination of concentration of total IgG	A-8662
49.	IgM total-EIA-BEST	ELISA kit for determination of concentration of total IgM	A-8664
50.	IgA total-EIA-BEST	ELISA kit for determination of concentration of total IgA	A-8666
51.	Gamma-Interferon-EIA-BEST	ELISA kit for determination of concentration of gamma-interferon	A-8752
52.	Interleukine-4-EIA-BEST	ELISA kit for determination of concentration of Interleukine-4	A-8754
53.	Alpha-TNF-EIA-BEST	ELISA kit for determination of concentration of alpha-tumor necrosis factor	A-8756
54.	Alpha-Interferon-EIA-BEST	ELISA kit for determination of concentration of alpha-interferon	A-8758
55.	Interleukine-6-EIA-BEST	ELISA kit for determination of concentration of Interleukine-6	A-8768
56.	Interleukine-2-EIA-BEST	ELISA kit for determination of concentration of Interleukine-2	A-8772
57.	Procalcitonin-EIA-BEST	ELISA kit for determination of concentration of procalcitonin	A-9004
58.	NTproBNP-EIA-BEST	ELISA kit for determination of concentration of N- terminal prohormone of brain natriuretic peptide	A-9102
59	Troponin I-EIA-BEST	ELISA kit for determination of concentration of troponin I	A-9106

Certificate

mdc medical device certification GmbH

BEST

AO Vector-Best Research and Production Area Building 36,Office 211, Koltsovo 630559 Novosibirsk region Russian Federation

with the locations listed in the attachment

for the scope

Design and development, production and distribution of medical devices for in vitro diagnostics (PCR, ELISA, Biochemistry)

has introduced and applies a

Quality Management System

The mdc audit has proven that this quality management system meets all requirements of the following standard

EN ISO 13485

Medical devices – Quality management systems – Requirements for regulatory purposes

EN ISO 13485:2016 + AC:2016 - ISO 13485:2016

Valid from Valid until Registration no. Report no. Stuttgart 2020-07-04 2023-07-03 D1213100019 P20-00568-173687 2020-06-02

Head of Certification Body

mdc medical device certification GmbH Kriegerstraße 6 D-70191 Stuttgart, Germany Phone: +49-(0)711-253597-0 Fax: +49-(0)711-253597-10 Internet: http://www.mdc-ce.de

Attachment of the certificate

No. D1213100019

date 2020-06-02

Page 1 of 1

Location	Scope	
AO Vector-Best Arbuzova str. 1/1, 630117 Novosibirsk Russian Federation	design and development, production and distribution of medical devices for in vitro diagnostics	
AO Vector-Best Research and Production area, building 36, Koltsovo, 630559 Novosibirsk region Russian Federation	design and development, production of medical devices for in vitro diagnostics	
AO Vector-Best Pasechnaya str, 3, 630117 Novosibirsk Russian Federation	design and development, production of medical devices for in vitro diagnostics	

mdc medical device certification GmbH Kriegerstraße 6 D-70191 Stuttgart, Germany Phone: +49-(0)711-253597-0 Fax: +49-(0)711-253597-10 Internet: http://www.mdc-ce.de

Head of Certification Body

LORNE LABORATORIES LTD.

MAREA BRITANIE

VDRL Stabilised Reagent Kit: Pentru serodiagnosticul sifilisului.

REZUMAT

Sifilisul este o boală venerică provocată de microorganismul spirochetă *Treponema pallidum.* Întrucât acest organism nu poate fi cultivat în mediul artificial, diagnosticarea sifilisului depinde de corelarea datelor clinice cu anticorpul specific demonstrat prin teste serologice. Există două tehnici diferite de detectare a sifilisului. Testele TPHA, care detectează anticorpii la *Treponemal pallidum,* și testele serologice non-treponemice, care detectează o substanță asemănătoare anticorpului la persoanele infectate numită reagină.

SCOPUL PROPUS

Acesta este un reactiv de test pentru determinarea calitativă și semicantitativă a prezenței sau absenței reaginei (anticorpi împotriva sifilisului) în serul sau plasma pacienților în cazul testării conform tehnicilor recomandate și prezentate în aceste instrucțiuni de utilizare.

PRINCIPIUL

Atunci când este utilizat conform tehnicilor recomandate, reactivul se va agrega în prezența reaginei. Neagregarea (neaglomerarea) indică, de obicei, absența reaginei (consultați Limitări).

DESCRIEREA KITULUI

VDRL Stabilised Reagent Kit Lorne este un test non-treponemic pentru serodiagnosticul sifilisului. Kitul include un antigen VDRL stabilizat și un martor pozitiv și negativ. Antigenul VDRL stabilizat este o soluție etanolică care conține colesterol (0,9%), cardiolipină din cordul bovin (0,03%) și lecitină (0,21%). Reactivii nu conțin sau nu sunt compuși din substanțe CMR, substanțe perturbatoare pentru sistemul endocrin sau care ar putea provoca sensibilizare sau o reacție alergică în cazul utilizatorului. Pentru numărul de referință al lotului și data de expirare, consultați **Eticheta flaconului**.

DEPOZITARE

A nu se congela. Flacoanele cu reactiv trebuie depozitate la temperaturi cuprinse între 2 și 8 °C după primire. Depozitarea prelungită la temperaturi în afara acestui interval poate duce la pierderea accelerată a reactivității.

SPECIMENE

Ser proaspăt, plasmă sau lichid cefalorahidian. Stabile 7 zile la 2-8 °C sau trei luni la -20 °C.

Probele care prezintă fibrină trebuie centrifugate înainte de utilizare. Nu utilizați probe intens hemolizate sau lipemice. Specimenele trebuie prelevate cu sau fără anticoagulant folosind o tehnică de flebotomie aseptică. Dacă testarea este întârziată, specimenele pot fi depozitate la 2-8 °C timp de 7 zile sau pentru până la 3 luni la maximum –20 °C. Specimenele nu trebuie să prezinte contaminare de bacterii și hemoliză.

PRECAUŢII

- 1. Kitul este destinat exclusiv pentru diagnosticare in-vitro.
- Nu utilizați kitul după data de expirare (consultați Eticheta de pe flacon și de pe cutie).
- 3. Purtați echipament de protecție când manipulați reactivii, cum ar fi mănuși de unică folosință și un halat de laborator.
- 4. Reactivii din acest kit au fost procesaţi pentru a reduce încărcătura biologică, dar nu sunt livraţi sterili. După deschiderea flaconului, conţinutul ar trebuie să rămână viabil până la data de expirare.
- Nu se cunosc teste care să garanteze faptul că produsele derivate din surse umane sau animale nu prezintă agenţi infecţioşi. Fiţi atenţi când utilizaţi şi când eliminaţi un flacon şi conţinutul acestuia.
- Martor +: H319 Provoacă iritare gravă a ochilor. Respectaţi declaraţia de precauţie din fişa cu date de securitate.

ELIMINAREA REACTIVULUI DIN KIT ȘI CUM SE ACȚIONEAZĂ ÎN CAZ DE STROPIRE

Pentru informații privind eliminarea reactivului din kit și metodele de decontaminare a unui loc în caz de stropire, consultați **Fişele cu date de securitate ale materialului**, disponibile la cerere.

MARTORI ȘI RECOMANDĂRI

- Se recomandă testarea în paralel a martorilor pozitivi şi negativi cu fiecare lot de teste. Testele trebuie considerate nevalide dacă probele martor nu prezintă rezultatele prevăzute.
- Înainte de utilizare, trebuie să aşteptaţi ca reactivii să ajungă la 18-25 °C.
- 3. Agitați bine reactivii înainte de utilizare pentru a asigura omogenitatea.
- 4. Nu schimbați între ele componentele de la diferite kituri.
- Utilizarea kitului şi interpretarea rezultatelor trebuie efectuate de personal calificat şi instruit în mod corespunzător în conformitate cu cerințele țării în care se utilizează kitul.
- Utilizatorul trebuie să stabilească în ce măsură se poate utiliza kitul în alte tehnici.

COMPONENTELE KITULUI FURNIZATE

- Antigen stabilizat VDRL (Capac alb, 5 ml); soluţie care conţine cardiolipină 0,3 g/l, lecitină 2,1 g/l şi colesterol 9 g/l în tampon fosfat 1,5 mmol/l, pH 7,0, conservant.
- Martor + (Capac roşu, 1 ml); ser artificial cu un titru de reagină ≥ 1/8.
- 3) Martor (Capac albastru, 1 ml); ser de animal, conservant.

MATERIALE ȘI ECHIPAMENTE CARE SUNT NECESARE, DAR NU SUNT FURNIZATE

- a) Lame de sticlă.
- b) Pipetă reglabilă.
- c) Agitator mecanic rotativ cu turație reglabilă de circa 180 rot/min.
- d) Microscop cu lumină (lentile obiectiv 10 x)

TEHNICA DE EVALUARE CALITATIVĂ RECOMANDATĂ

- Puneţi în cercuri separate ale lamei de sticlă: 50 μl de ser nediluat de la pacient, 50 μl de martor pozitiv şi 50 μl de martor negativ.
- Amestecați uşor antigenul stabilizat VDRL şi adăugați 20 µl de reactiv VDRL la fiecare probă.
- 3. Amestecați reactivul și picăturile de probă cu un amestecător și întindeți pe toată suprafața fiecărui cerc de testare.
- 4. Rotiți ușor lama timp de patru (4) minute pe un agitator mecanic rotativ reglat la 180 rot/min.
- După 4 minute, examinați fiecare cerc de testare pentru aglutinare folosind un microscop cu lumină şi înregistrați rezultatele.

INTERPRETAREA REZULTATELOR CALITATIVE

- Pozitiv: Aglutinarea vizibilă folosind un microscop cu lumină constituie un rezultat pozitiv şi, în limitele acceptate ale procedurii de testare, indică prezenţa reaginei asociate cu sifilisul.
- Negativ: Neaglutinarea vizibilă folosind un microscop cu lumină constituie un rezultat negativ şi, în limitele acceptate ale procedurii de testare, indică absenţa reaginei asociate cu sifilisul.

TEHNICA DE EVALUARE SEMICANTITATIVĂ RECOMANDATĂ

 Dublaţi diluţiile specimenului în 9 g/l de soluţie salină până la 1/16 după cum urmează:

Diluție	Ser	9 g/l soluție salină
1/2	100 µl de ser nediluat	100 µl

1/4	100 µl de ser nediluat	300 µl
1/8	100 µl de ser nediluat	700 µl
1/16	100 µl de ser nediluat	1500 µl

2. Testați fiecare diluție a specimenului de ser exact la fel ca în cazul **Tehnicii de evaluare calitativă** de mai sus.

INTERPRETAREA REZULTATELOR SEMICANTITATIVE

 Titrul este exprimat ca reciprocă a celui mai înalt grad de diluare care prezintă aglutinare microscopică: de ex., dacă aceasta are loc în diluţie 1/8, titrul este 8.

INTERPRETAREA REZULTATELOR

- Reactiv: Conglomeratele medii până la mari constituie un rezultat pozitiv şi, în limitele acceptate ale procedurii de testare, indică prezenţa reaginei.
- Slab reactiv: Particulele dispersate fin cu conglomerate mici constituie un rezultat pozitiv slab şi, în limitele acceptate ale procedurii de testare, indică prezenţa reaginei.
- Negativ: Particulele dispersate fin fără conglomerate constituie un rezultat negativ şi, în limitele acceptate ale procedurii de testare, indică absenţa reaginei.

STABILITATEA REACȚIILOR

Testele cu lamă ar trebui interpretate imediat după o perioadă de rotație de 4 minute pentru a evita riscul de a interpreta incorect un rezultat negativ ca fiind pozitiv din cauza uscării reactivului.

LIMITĂRI

- 1. Testul VDRL este nespecific pentru sifilis. Toate probele reactive trebuie retestate cu metode treponemice, cum ar fi TPHA și FTA-Abs, pentru a confirma rezultatele.
- 2. Un rezultat nereactiv în sine nu exclude diagnosticul de sifilis.
- Au fost raportate rezultate fals pozitive în cazul unor afecțiuni cum ar fi mononucleoza infecţioasă, pneumonia virală, toxoplasmoza, precum şi în cazul unei sarcini şi al unei boli autoimune.
- Hemoglobina (≤ 10 g/l), bilirubina (≤ 20 mg/dl), lipemia (≤ 10 g/l) şi factorii reumatoizi (≤ 300 IU/ml) nu influenţează rezultatele. Alte substanţe pot influenţa rezultatele⁴.
- 5. Rezultatele fals pozitive sau fals negative pot fi generate și de:
- Contaminarea materialelor folosite în testare
 - Depozitarea necorespunzătoare a materialelor de testare sau omiterea reactivilor
 - Abaterea de la tehnicile recomandate

CARACTERISTICI DE PERFORMANŢĂ SPECIFICE

- 1. Kitul a fost caracterizat prin procedurile menționate în **Tehnici** recomandate.
- Înainte de a fi pus pe piaţă, fiecare lot de VDRL Kit Lorne este testat conform **Tehnicilor recomandate** pentru a se asigura reactivitatea adecvată.
- Sensibilitatea reactivului este calibrată conform Primului standard internaţional OMS pentru plasma sifilizată umană (număr de referinţă NIBSC 05/132).
- 4. Efect de prozonă: Nu a fost detectat niciun efect de prozonă la titre de 1/128.
- 5. Sensibilitate diagnostic: 100%.
- 6. Specificitate diagnostic: 100%.

DECLINAREA RESPONSABILITĂŢII

- Utilizatorul este singurul responsabil pentru performanţa kitului în cazul utilizării altor metode decât cele menţionate de producător în Tehnici recomandate.
- 2. Orice abatere trebuie validată înainte de utilizare cu ajutorul procedurilor de laborator stabilite.

BIBLIOGRAFIE

1. David S.Jacobs et al. Laboratory Test Handbook, 3rd edition, Lexi-Comp Inc, 1994.

DIMENSIUNI DE KIT DISPONIBILE

Dimensiune kit	Număr de catalog
250 de teste	046511A
	0.0001.00

Lorne Laboratories Limited

Unit 1 Cutbush Park Industrial Estate Danehill Lower Earley Berkshire, RG6 4UT Regatul Unit Tel.: +44 (0) 118 921 2264 Fax: +44 (0) 118 986 4518 E-mail: info@lornelabs.com

Advena Ltd. Tower Business Centre, 2nd Flr., Tower Street, Swatar, BKR 4013, Malta