#### СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

| Агрегат электронасосный центробеж | :ный для водыSD/                       |
|-----------------------------------|----------------------------------------|
| заводской номер                   | с электродвигателем кВт                |
| соответствует ТУ и признан годным | к эксплуатации.                        |
| Сопротивление изоляции в практиче | ски холодном состоянии не менее 10 МОм |
|                                   |                                        |
| Штамп ОТК                         |                                        |
|                                   |                                        |
|                                   |                                        |
| Подпись                           | Дата                                   |
|                                   |                                        |

16

#### ВНИМАНИЕ!

Перед началом работ по вводу электронасосного агрегата в эксплуатацию внимательно ознакомьтесь с его руководством по эксплуатации, паспортом скважины и документацией на другие устройства объекта водоснабжения согласно проекту.

Подготовка скважины к эксплуатации, монтаж электронасосного агрегата и техническое обслуживание должны производить специализированные организации.

Не допускается совместная работа двух и более электронасосных агрегатов на единый напорный трубопровод без наличия расчетных данных и проекта, предусматривающих установку приборов контроля и регулировочных задвижек, обеспечивающих работу электронасосных агрегатов в рабочих интервалах.

При транспортировании и монтаже (подъем в вертикальное положение) крупногабаритных агрегатов (большая длина насоса) применяйте поддержку для предотвращения деформации насоса, которая может быть вызвана напряжением при изгибе.

При хранении оберегайте электронасосный агрегат от воздействия солнечных лучей и других источников тепла. Нагрев поверхности двигателя свыше  $60\,^{\circ}$ С приводит к снижению сопротивления изоляции обмотки статора.

Запрещается включение (даже кратковременное) электронасосного агрегата незаполненного и не погруженного в воду.

#### СВЕДЕНИЯ ОБ ИЗДЕЛИИ

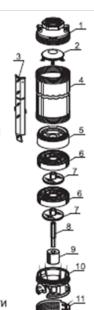
Агрегат электронасосный центробежный скважинный для воды (далее по тексту - "агрегат") предназначен для подъема воды с общей минерализацией (сухой остаток) не более  $1500 \,\mathrm{mr/n}$ , с водородным показателем (pH) от 6,5 до 8 ,5, температурой до  $25 \,^{\circ}\mathrm{C}$ , с массовой долей твердых механических примесей не более  $0.01 \,^{\circ}\mathrm{M}$  ( $100 \,\mathrm{r/m}^3$ ), с содержанием хлоридов не более  $350 \,\mathrm{mr/n}$ , сульфатов не более  $500 \,\mathrm{mr/n}$ , сероводорода не более  $1.5 \,\mathrm{mr/n}$ .

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ (КОДА) АГРЕГАТА **5 SD 10/21** – 5 (диаметр скважины в дюймах), подача - **10** м3/ч, **21** – количество рабочих ступеней.

| Корпус насосной части                       | нержавеющая сталь                                      |
|---------------------------------------------|--------------------------------------------------------|
| Выходной фланец                             | латунь                                                 |
| Вал насосной части, муфта вала              | нержавеющая сталь                                      |
| Рабочее колесо, диффузор                    | технополимер                                           |
| Тип двигателя                               | маслонаполненный, со встроенной в обмотку термозащитой |
| Корпус электродвигателя, вал двигате-<br>ля | нержавеющая сталь                                      |
| Механическое уплотнение                     | керамика/графит                                        |
| Напряжение, частота                         | 380 В, 50 Гц                                           |
| Класс изоляции, класс защиты                | F, IP68                                                |



# Электродвигатель


- Верхний фланец электродвигателя
- 2. Уплотнительное кольцо «О»—профиля
- Ротор с подшипниками
- Статор электродвигателя
- Конденсатор пусковой (только для электродвигателей ~220B)
- Компенсатор резиновый
- Нижняя крышка электродвигателя
- 8. Стопорная скоба

### Насосная часть

- 1. Выходной фланец насосной части
- 2. Обратный клапан
- 3. Защитная планка кабеля электропитания
- 4. Корпус насосной части
- 5. Гнездо клапана
- 6. Диффузор (в сборе)
- 7. Рабочее колесо
- 8. Вал насосной части
- 9. Шлицевая муфта
- 10. Опора насосной части
- 11. Сетчатый фильтр

2

 Верхняя часть электродвигателя (указана для пояснения)



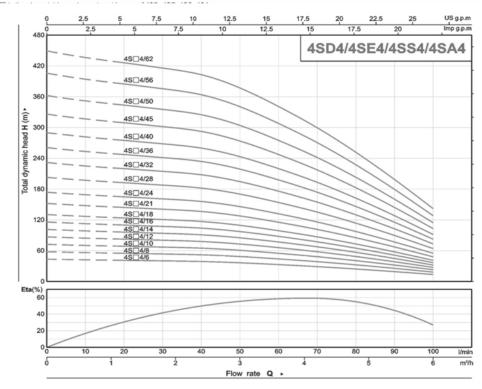
#### ЗНАЧЕНИЯ ТОКОВ

| Model          | P, kW | I nom, A |
|----------------|-------|----------|
| 4SD 6/20       | 2.2   | 6.0      |
| 4SD 6/30       | 3.7   | 9.5      |
| 4SD 6/34       | 4     | 9.9      |
| 4SD 4/40       | 4.0   | 10.7     |
| 4SD 6/42       | 5.5   | 12.1     |
| 5SD 10/13      | 4.0   | 9.7      |
| 5SD 10/17      | 5.5   | 12       |
| 4SD 6/42       | 5.5   | 13.5     |
| 5SD 10/21      | 7.5   | 14.8     |
| 5SD 10/28 (29) | 11.0  | 21.0     |
| 6SD 25/12      | 11.0  | 25.0     |
| 6SD 25/16      | 15.0  | 33.0     |

Таблица подбора сечения токоподводящего кабеля (провод ВПП или ВПВ ТУ 16

|          |                           |     |         | С        | ечение п | итающего  | провода, | MM <sup>2</sup> |           |     |
|----------|---------------------------|-----|---------|----------|----------|-----------|----------|-----------------|-----------|-----|
| Рн,      | Наибольший<br>номинальный | 1,5 | 2,5     | 4        | 6        | 10        | 16       | 25              | 32        | 50  |
| кВт      | ток, А                    | Mai | ксималь | ная длин | а кабеля | при услов | ии паден | ия напряж       | ения на 2 | %   |
| 3        | 11                        | 45  | 75      | 120      | 179      | 293       | 457      |                 |           |     |
| 4        | 12                        | 38  | 64      | 102      | 153      | 251       | 391      |                 |           |     |
| 5,5      | 16                        | 24  | 41      | 66       | 98       | 162       | 252      | 931             |           |     |
| 7,5      | 20                        |     | 32      | 52       | 78       | 128       | 200      | 310             | 423       |     |
| 9        | 25                        |     |         | 41       | 61       | 101       | 158      | 245             | 336       |     |
| 11       | 30                        |     |         | 34       | 51       | 84        | 131      | 204             | 280       | 386 |
| 13       | 35                        |     |         |          | 44       | 72        | 113      | 175             | 240       | 331 |
| 15       | 37                        |     |         |          | 41       | 68        | 105      | 164             | 225       | 311 |
| 18.<br>5 | 45                        |     |         |          |          | 56        | 87       | 136             | 186       | 257 |
| 22       | 55                        |     |         |          |          |           | 71       | 110             | 151       | 209 |
| 25       | 60                        |     |         |          |          |           | 65       | 101             | 138       | 191 |
| 30       | 67                        |     |         |          |          |           | 58       | 90              | 124       | 171 |

# Сведения об условиях эксплуатации агрегата


| Внутренний диаметр эксплуатационной колонны (скважины), мм                                  |
|---------------------------------------------------------------------------------------------|
| Глубина скважины, м                                                                         |
| Интервал (интервалы) установки фильтров, м                                                  |
| Статический уровень воды в скважине, $H_{\text{cr.}}$ ,                                     |
| Дебит скважины, м <sup>3</sup> /ч                                                           |
| Динамический уровень воды в скважине, соответствующий дебиту, $\mathbf{H}_{\text{дн.}}$ , м |
| Глубина установки агрегата в скважине, м                                                    |
| Содержание механических примесей в воде, %, по массе                                        |
| Марка, сечение и длина токоподводящего кабеля                                               |
| Сопротивление изоляции токоподводящий кабель-двигатель, МОм                                 |
| Наименование и марка станции управления и защиты                                            |
| Дата начала эксплуатации                                                                    |
| Показания манометра в рабочем режиме, МПа                                                   |
| Показания амперметра в рабочем режиме, I <sub>H</sub> , A                                   |
| Условия работы (башня, ВУ, магистральный трубопровод)                                       |
|                                                                                             |
| Наработка агрегата до отказа, ч                                                             |
| Внешние проявления отказа                                                                   |
|                                                                                             |
|                                                                                             |
|                                                                                             |
| Должность, фамилия, подпись лица, ответственного за эксплуатацию                            |
|                                                                                             |

Примечание: учет работы агрегата, выполняемых работ по техобслуживанию и ремонту обеспечивает потребитель с записью в специальном журнале

# ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ

4SD4/-

| MOI              | DEL              | P    | 2    |                 |     |     |     | DE  | LIVE | RY        |           | n         | n≈2850 1/min |           |            |
|------------------|------------------|------|------|-----------------|-----|-----|-----|-----|------|-----------|-----------|-----------|--------------|-----------|------------|
| 1~<br>220 - 240V | 3~<br>380 - 415V | kW   | HP   | Q m³/h<br>l/min | 0   | 0.6 | 1.2 | 1.8 | 2.4  | 3.0<br>50 | 3.6<br>60 | 4.2<br>70 | 4.8<br>80    | 5.4<br>90 | 6.0<br>100 |
| 4S□M4/6          | 4S□4/6           | 0.37 | 0.5  |                 | 44  | 42  | 41  | 40  | 39   | 36        | 33        | 29        | 24           | 19        | 14         |
| 4S□M4/8          | 4S□4/8           | 0.55 | 0.75 |                 | 58  | 56  | 55  | 54  | 52   | 49        | 44        | 39        | 33           | 26        | 18         |
| 4S M4/10         | 4S□4/10          | 0.75 | 1    |                 | 73  | 70  | 69  | 67  | 65   | 61        | 55        | 48        | 41           | 32        | 23         |
| 4S□M4/12         | 4S□4/12          | 0.92 | 1.25 | 1               | 87  | 84  | 82  | 81  | 78   | 73        | 66        | 58        | 49           | 39        | 27         |
| 4S□M4/14         | 4S□4/14          | 1.1  | 1.5  | ]               | 102 | 98  | 96  | 94  | 91   | 85        | 77        | 68        | 57           | 45        | 32         |
| 4S□M4/16         | 4S□4/16          | 1.3  | 1.75 | ]               | 116 | 113 | 110 | 107 | 104  | 97        | 88        | 77        | 65           | 51        | 37         |
| 4S□M4/18         | 4S□4/18          | 1.5  | 2    | ]               | 131 | 127 | 124 | 121 | 117  | 109       | 99        | 87        | 73           | 58        | 41         |
| 4S□M4/21         | 4S□4/21          | 1.8  | 2.5  | 1               | 152 | 148 | 144 | 141 | 136  | 128       | 115       | 102       | 85           | 67        | 48         |
| 4S□M4/24         | 4S□4/24          | 2.2  | 3    | H(m)            | 174 | 169 | 165 | 161 | 156  | 146       | 132       | 116       | 98           | 77        | 55         |
| 4S□M4/28         | 4S□4/28          | 2.6  | 3.5  |                 | 203 | 197 | 192 | 188 | 182  | 170       | 154       | 135       | 114          | 90        | 64         |
| -                | 4S□4/32          | 3    | 4    |                 | 232 | 225 | 220 | 215 | 208  | 195       | 176       | 155       | 130          | 103       | 73         |
| -                | 4S□4/36          | 3.7  | 5    | ]               | 261 | 253 | 247 | 242 | 234  | 219       | 198       | 174       | 146          | 116       | 82         |
| -                | 4S□4/40          | 4    | 5.5  | ]               | 290 | 281 | 275 | 268 | 260  | 243       | 220       | 194       | 163          | 128       | 92         |
| -                | 4S□4/45          | 5    | 7    | ]               | 327 | 316 | 309 | 302 | 293  | 274       | 248       | 218       | 183          | 144       | 103        |
| -                | 4S□4/50          | 5.5  | 7.5  | İ               | 363 | 352 | 344 | 335 | 325  | 304       | 275       | 242       | 203          | 160       | 115        |
| -                | 4S□4/56          | 7    | 10   |                 | 406 | 394 | 385 | 376 | 364  | 341       | 308       | 271       | 228          | 180       | 128        |
| -                | 4S□4/62          | 7.5  | 10   |                 | 450 | 436 | 426 | 416 | 403  | 377       | 341       | 300       | 252          | 199       | 142        |

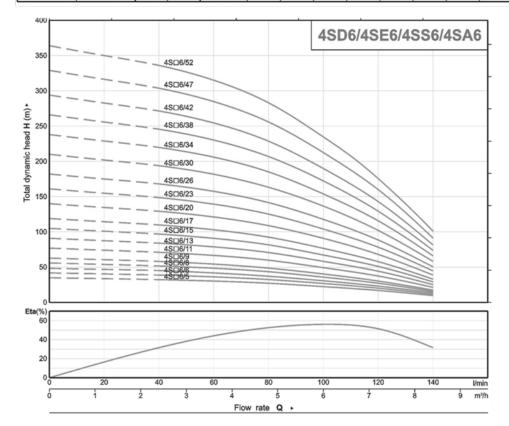


4S G/52

7.5

10

#### ТРАНСПОРТИРОВАНИЕ, ХРАНЕНИЕ И УТИЛИЗАЦИЯ


| МО         | DEL        | P    | <b>)</b> 2 |        |     |     | DE  | LIVERY | ,   | n≈  | 2850 1/ | min |
|------------|------------|------|------------|--------|-----|-----|-----|--------|-----|-----|---------|-----|
| 1~         | 3~         | kW   | НР         | Q m³/h | 0   | 1.2 | 2.4 | 3.6    | 4.8 | 6.0 | 7.2     | 8.4 |
| 220 - 240V | 380 - 415V | KVV  | THE .      | 1/min  | 0   | 20  | 40  | 60     | 80  | 100 | 120     | 140 |
| 4S□M6/5    | 4S□6/5     | 0.37 | 0.5        |        | 35  | 34  | 32  | 30     | 27  | 22  | 17      | 10  |
| 4S□M6/6    | 4S□6/6     | 0.55 | 0.75       |        | 42  | 40  | 39  | 36     | 33  | 27  | 20      | 12  |
| 4S□M6/7    | 4S□6/7     | 0.75 | 1          | 1      | 49  | 47  | 45  | 42     | 38  | 31  | 24      | 14  |
| 4S□M6/8    | 4S□6/8     | 0.75 | 1          | 1      | 56  | 54  | 52  | 48     | 44  | 36  | 27      | 16  |
| 4S□M6/9    | 4S□6/9     | 0.92 | 1.25       | 1      | 63  | 61  | 58  | 55     | 49  | 40  | 31      | 17  |
| 4S□M6/11   | 4S□6/11    | 1.1  | 1.5        |        | 77  | 74  | 71  | 67     | 60  | 49  | 37      | 21  |
| 4S□M6/13   | 4S□6/13    | 1.3  | 1.75       | 1      | 91  | 88  | 84  | 79     | 71  | 58  | 44      | 25  |
| 4S□M6/15   | 4S□6/15    | 1.5  | 2          | 1      | 105 | 101 | 97  | 91     | 82  | 67  | 51      | 29  |
| 4S□M6/17   | 4S□6/17    | 1.8  | 2.5        | H(m)   | 119 | 114 | 110 | 103    | 93  | 76  | 58      | 33  |
| 4S□M6/20   | 4S□6/20    | 2.2  | 3          | 1      | 140 | 135 | 129 | 121    | 109 | 90  | 68      | 39  |
| 4S□M6/23   | 4S□6/23    | 2.6  | 3.5        | 1      | 161 | 155 | 149 | 139    | 125 | 103 | 78      | 45  |
| -          | 4S□6/26    | 3    | 4          | 1      | 182 | 175 | 168 | 158    | 142 | 117 | 88      | 51  |
| -          | 4S□6/30    | 3.7  | 5          | 1      | 210 | 202 | 194 | 182    | 163 | 134 | 102     | 58  |
| -          | 4S□6/34    | 4    | 5.5        | 1      | 238 | 229 | 220 | 206    | 185 | 152 | 116     | 66  |
| -          | 4S□6/38    | 5    | 7          |        | 266 | 256 | 246 | 230    | 207 | 170 | 129     | 74  |
| -          | 4S□6/42    | 5.5  | 7.5        |        | 294 | 283 | 271 | 254    | 229 | 188 | 143     | 82  |
|            | 4S□6/47    | 7    | 10         | 1      | 329 | 316 | 304 | 285    | 256 | 211 | 160     | 91  |
|            |            |      |            |        |     |     |     |        |     |     |         |     |

350

315

283

233 177



#### Транспортирование

Агрегаты могут транспортироваться всеми видами транспорта в крытых транспортных средствах в соответствии с правилами перевозки грузов, действующими для данного вида транспорта.

Агрегаты могут транспортироваться при температуре от минус 15 °C до плюс 45 °C.

#### Хранение

Агрегат должен храниться в закрытом помещении с естественной вентиляцией притемпературе от 0 °C до плюс 45 °C.

Агрегат должен быть предохранен от воздействия солнечных и тепловых лучей и находиться не ближе одного метра от отопительных приборов.

Агрегат с герметичным двигателем должен храниться вертикально.

#### Утилизация

Срок службы агрегата до списания 5 лет. Утилизация агрегата предусматривает разборку его на сборочные единицы и детали, содержащие сталь, цветные металлы, пластмассу и последующую сдачу их на вторичную переработку в установленном порядке. Агрегат не содержит драгоценные металлы.

#### ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует надежную и безаварийную работу агрегата при условии правильного хранения, монтажа, обслуживания и эксплуатации его в соответствии с требованиями, изложенными в настоящем руководстве.

Потребитель обязан вести учет наработки и условий эксплуатации агрегата, с обязательным заполнением сведений (приложение).

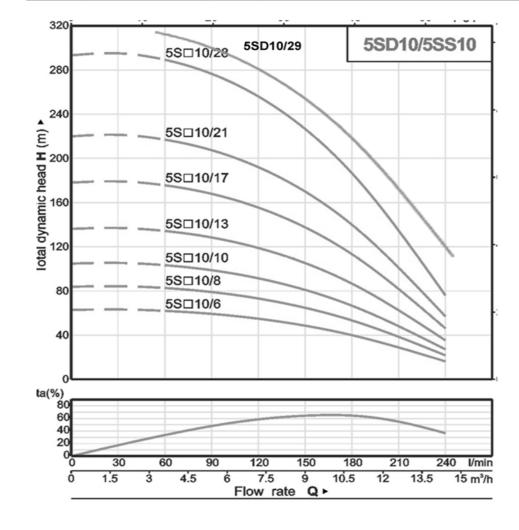
Изготовитель НЕ ПРИНИМАЕТ претензий по качеству агрегатов без предъявления сведений об условиях его эксплуатации и предоставления следующих документов:

- Паспорт артезианской скважины (оригинал)
- Сведения об условиях эксплуатации агрегата (Приложение)
- Рекламационный акт (оригинал)

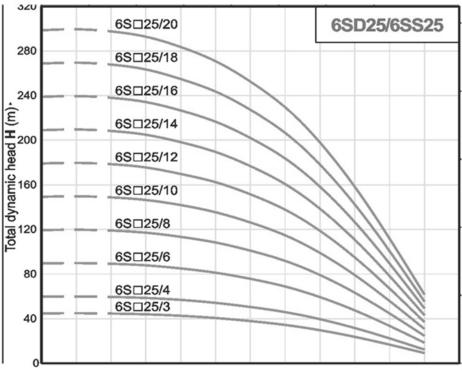
Сведения по приобретению агрегата и вводу его в эксплуатацию должны быть отраженыв гарантийном талоне.

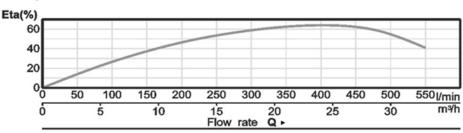
#### Гарантии изготовителя прекращаются в случае:

разборки агрегата потребителем; изменения конструкции агрегата; включения агрегата незаполненного водой; эксплуатации агрегата без обратного клапана; эксплуатации агрегата не в рабочем интервале; наличия в агрегате твердых механических примесей; механических повреждений корпуса агрегата; работы агрегата без станции управления и защиты; отсутствия оригинала руководства по эксплуатации;


Агрегаты электронасосные со сгоревшими обмотками или обмотками, сопротивление которых относительно корпуса статора электродвигателя менее 0,5 Мом, на гарантийный ремонт или замену не принимаются.

# Возможные неисправности и методы их устранения


| Наименование неисправности, внешние проявления                                                                   | Вероятная причина                                                                                                    | Метод устранения                                                                                                          |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Агрегат не запускается                                                                                           | Отсутствие напряжения в одной из фаз или в цепи управления  Срабатывание автоматическо-                              | Восстановить подачу напряжения Найти причину, устранитьнеисправность                                                      |
|                                                                                                                  | го выключателя  Низкое напряжение в сети, или большое падение напряжения при пуске                                   | Проверить напряжение, напряжение должно быть неменее 360 В Проверить сечение токоподводящего кабеля                       |
| Сопротивление изоля-<br>ции токоподводящего<br>кабеля двигателя менее<br>0.5 МОм                                 | Повреждение изоляции токоподво-<br>дящего кабеля                                                                     | Устранить повреждение путем изолирования поливинилхлоридной электроизоляционной лентой                                    |
| 0,5 1410.11                                                                                                      | Повреждение изоляции обмот-<br>кистатора электродвигателя                                                            | Ремонт обмотки статора на<br>специализированном пред-<br>приятии                                                          |
| Агрегат не дает требуе-<br>мой подачи (напора)                                                                   | Ротор агрегата вращается в обратную сторону                                                                          | Проверить направление вращения ротора                                                                                     |
| Пониженное потребление тока                                                                                      | Паспортные данные скважины не соответствуют технической характеристике агрегата                                      | Проверить подбор агрегата Устранить утечку воды                                                                           |
|                                                                                                                  | Утечка воды из водоподъем-<br>ныхтруб (слышен шум от<br>падения воды в скважине)                                     | Устранить неисправность, заменить изношенные детали наспециализированном предприятии                                      |
|                                                                                                                  | Износ или разрушение рабочих органов насоса и уплотнений, повышенное содержание твердых механических примесей в воде | Демонтировать агрегат<br>Очистить сетку                                                                                   |
|                                                                                                                  | Засорение защитной сетки                                                                                             |                                                                                                                           |
| Агрегат работает сповы-<br>шенным потреблением<br>мощности (тока)                                                | Агрегат работает с большой подачей (за пределом рабочего интервала)                                                  | Установить подачу агрегата в рабочем интервале задвижкой                                                                  |
| После кратковре-менной работы агрегата срабатыва-ет защита электродвигателя, подача агрегата в рабочем интервале | Станция управления и защиты несоответствует потребляемой мощности (току) электродвигателя агрегата                   | Заменить станция управления и защиты электродвигателя агрегата или выполнить настройку ее по потребляемой мощности (току) |
| Вибрация водоподъем-<br>ной колонны                                                                              | Износ подшипников электродвигателя и насоса Износ или разрушение рабочихорганов насоса                               | Ремонт на специализированном предприятии                                                                                  |
|                                                                                                                  | Дисбаланс ротора электродви-<br>гателя, насоса                                                                       |                                                                                                                           |


# 5SD10/

| МО               | DEL              | P <sub>2</sub> |     |                 |     |     |           | DELIVE    | RY         | n≈2850 1/min |             |             |             |  |
|------------------|------------------|----------------|-----|-----------------|-----|-----|-----------|-----------|------------|--------------|-------------|-------------|-------------|--|
| 1~<br>220 - 240V | 3~<br>380 - 415V | kW             | HP  | Q m³/h<br>I/min | 0   | 1.8 | 3.6<br>60 | 5.4<br>90 | 7.2<br>120 | 9.0<br>150   | 10.8<br>180 | 12.6<br>210 | 14.4<br>240 |  |
| 5S□M10/6         | 58□10/6          | 1.5            | 2   |                 | 63  | 63  | 62        | 59        | 55         | 49           | 40          | 29          | 16          |  |
| 5S□M10/8         | 5S□10/8          | 2.2            | 3   | ]               | 84  | 84  | 83        | 79        | 73         | 65           | 53          | 39          | 22          |  |
| 5S□M10/10        | 5S□10/10         | 3              | 4   | ]               | 105 | 105 | 103       | 99        | 91         | 81           | 67          | 48          | 27          |  |
|                  | 5S□10/13         | 4              | 5.5 | H(m)            | 136 | 137 | 134       | 128       | 119        | 105          | 87          | 63          | 35          |  |
| -                | 5S□10/17         | 5.5            | 7.5 | 1               | 178 | 179 | 175       | 168       | 155        | 138          | 114         | 82          | 46          |  |
| -                | 5S□10/21         | 7.5            | 10  | ]               | 220 | 221 | 217       | 207       | 192        | 170          | 140         | 101         | 57          |  |
| -                | 58□10/28         | 11             | 15  | ]               | 293 | 295 | 289       | 276       | 256        | 227          | 187         | 135         | 76          |  |
|                  | 58□10/29         | 11             | 15  |                 | 308 | 306 | 300       | 284       | 265        | 234          | 194         | 144         | 85          |  |



| MOI               | DEL               | P    | 2    |                  |     |         |          |          | DELI\     | /ERY      | ,         |           | n≈        | 2850      | 1/mi      | in        |
|-------------------|-------------------|------|------|------------------|-----|---------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 1 ~<br>220 - 240V | 3 ~<br>380 - 415V | kW   | HP   | Q m³/h<br>l/min  | 0   | 3<br>50 | 6<br>100 | 9<br>150 | 12<br>200 | 15<br>250 | 18<br>300 | 21<br>350 | 24<br>400 | 27<br>450 | 30<br>500 | 33<br>550 |
| 6S□M25/3          | 6S□25/3           | 3    | 4    |                  | 45  | 45      | 45       | 44       | 42        | 40        | 38        | 33        | 28        | 22        | 16        | 9         |
| 6S□M25/4          | 6S□25/4           | 4    | 5.5  | 1                | 60  | 60      | 60       | 58       | 56        | 54        | 50        | 45        | 39        | 30        | 21        | 12        |
| 6S□M25/6          | 6S□25/6           | 5.5  | 7.5  | 1                | 90  | 90      | 89       | 88       | 85        | 81        | 76        | 66        | 58        | 45        | 32        | 18        |
| -                 | 6S□25/8           | 7.5  | 10   | 1                | 120 | 120     | 119      | 117      | 113       | 108       | 101       | 89        | 78        | 60        | 43        | 24        |
| -                 | 6S□25/10          | 9.2  | 12.5 | H <sub>(m)</sub> | 150 | 150     | 149      | 146      | 141       | 135       | 126       | 111       | 97        | 75        | 55        | 30        |
| -                 | 6S□25/12          | 11   | 15   | □(m)             | 179 | 180     | 179      | 175      | 169       | 162       | 151       | 134       | 117       | 90        | 65        | 36        |
| -                 | 6S□25/14          | 13   | 17.5 | 1                | 209 | 210     | 209      | 204      | 197       | 189       | 176       | 156       | 136       | 105       | 76        | 42        |
| -                 | 6S□25/16          | 15   | 20   | 1                | 239 | 240     | 238      | 234      | 226       | 216       | 202       | 178       | 156       | 120       | 87        | 48        |
| -                 | 6S□25/18          | 18.5 | 25   |                  | 269 | 270     | 268      | 263      | 254       | 243       | 227       | 201       | 176       | 135       | 98        | 54        |
| -                 | 6S□25/20          | 18.5 | 25   |                  | 299 | 300     | 298      | 292      | 282       | 270       | 252       | 223       | 195       | 150       | 109       | 60        |





Правильному направлению вращения ротора агрегата соответствует больший напор определяемый по показаниям манометра. В течение первых 30 минут эксплуатируйте агрегат с подачей 30 % - 50 % от номинальной, при этом пять минут агрегат должен работать на слив для проведения расконсервании насоса.

Регулируя задвижкой напор, установите номинальный режим работы агрегата в пределах рабочего интервала. Измерьте величину тока в каждой фазе. При появлении в пробах откачиваемой воды механических примесей уменьшите подачу задвижкой 6 до величины, находящейся в зоне нижнего предела рабочего интервала подачи агрегата. Если, при этом, количество механических примесей не уменьшается, агрегат необходимо отключить, найти причину их появления в скважине и устранить.

Постоянно контролируйте динамический уровень воды в скважине.

Убедившись, что при работе агрегата отсутствует вибрация водоподъемной колонны, нет колебаний показаний приборов, не срабатывают защитные устройства, переведите агрегат в автоматический режим работы согласно руководству по эксплуатации применяемого устройства автоматики и защиты.

# ВНИМАНИЕ - Эффективное использование агрегата возможно только при номинальном режиме. При малых напорах производительность агрегата возрастает, одновременно увеличиваются потребляемая мощность (ток) и нагрузка на рабочие органы насоса, а при больших напорах производительность падает и ухудшает охлаждение двигателя. В обоих случаях снижается срок службы агрегата.

Эксплуатация агрегата с преобразователем частоты (ПЧ).

Эксплуатация агрегата допускается в диапазоне частот 40–55 Гц. Не допускаетсяпревышение номинального значения тока двигателя.

Время разгона от 0 до 40 Гц, не должно превышать одной секунды. Для защиты от высокочастотных импульсов необходимо устанавливать выходной фильтр du/dt или синусоидальный фильтр. Убедитесь, что в режиме эксплуатации с ПЧ на минимальной частоте соблюдается требуемая скорость охлаждения двигателя агрегата.

ПЧ должен обеспечивать прекращение подачи напряжения на агрегат при его простое.

#### ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ

# ВНИМАНИЕ – Агрегаты не требуют технического обслуживания. Однако регулярный осмотр и проверка обеспечивают длительный срок их службы и надежную эксплуатацию

Технический осмотр агрегата состоит из контрольных работ, выполняемых с целью поддержания агрегата в работоспособном состоянии, предупреждения отказов и устранения неисправностей.

Следует регулярно контролировать:

величину или индикацию потребляемого тока, напряжение сети по показаниям индикаторов устройства управления и защиты;

показания манометра;

отсутствие вибрации.

Если в процессе эксплуатации агрегата появилась вибрация, меняются показания приборов, срабатывают защитные устройства, работу агрегата необходимо остановить и устранить неисправности. Перечень возможных неисправностей в процессе эксплуатации агрегата и способыих устранения приведены для агрегатов с трехфазным двигателем в таблице (см. далее).

ВНИМАНИЕ – Максимальное количество включений двигателя агрегата мощностью до 11 кВт не должно превышать десяти включений в час, свыше 11 кВт – шесть включений в час, приэтом временной промежуток между выключениями и включениями должен быть не менее 10 мин.

При длительной остановке находящегося в скважине агрегата рекомендуется производить его профилактическое кратковременное включение (один раз в месяц) в режимепробного пуска . Капитальному ремонту подлежат агрегаты, не достигшие предельного состояния. Критерием предельного состояния агрегата является механическое, коррозионное повреждение обойм или корпуса насоса и корпуса статора двигателя, неустранимые при капитальном ремонте.

Проверьте соответствие токоподводящего кабеля проекту. При необходимости произведите подбор сечения токоподводящего кабеля в зависимости от тока двигателя и длины кабеля от двигателя до устройства управления или пускозащитного устройства. Сечение питающего кабеля в мм2 рекомендуется выбирать по таблице В.1 приложения В. Для кабеля следует использовать провод ВПП или ВПВ ТУ 16-705.077.

П р и м е р - Для двигателя мощностью 11 кВт при наибольшем номинальном токе 30 А и длине кабеля 97 м (глубина установки агрегата в скважине плюс расстояние до устройства управления) выбирают кабель сечением 16 мм2 (ближайшее большее значение).

Ответственность за правильный подбор кабеля возлагается на потребителя.

Подготовка агрегата к монтажу и монтаж

Проверьте внешнее состояние агрегата и комплектующих изделий. При обнаружении механических повреждений корпусных деталей, вследствие нарушений требований транспортирования, агрегат подлежит ремонту с заменой поврежденных деталей.

При монтаже в зимних условиях (при отрицательных температурах) агрегат необходимо включать не менее, чем через час после установки в скважину.

При визуальном обнаружении следов утечки охлаждающей жидкости у герметичного двигателя или при вводе в эксплуатацию агрегата после длительного хранения произведите проверку заполнения электродвигателя охлаждающей жидкостью следующим образом:

установите агрегат под углом примерно 45° таким образом, чтобы пробки 2.8 в верхнем щите двигателя находились в наивысшей позиции;

выверните шестигранным ключом пробки;

проверьте визуально и при необходимости долейте питьевую воду до нижнего края отверстия; установите пробки на место.

Соедините токоподводящий кабель с выводами двигателя соединительными гильзами путем опрессовки, пайки или скруткой с последующей пайкой или сваркой скрутки;

Места соединения кабелей необходимо защитить от проникновения воды (термоусадочными трубками, заливочной массой, готовой кабельной арматурой или поливинилхлоридной электроизоляционной лентой).

Токоподводящий кабель, сигнальные кабели (при их наличии) при опускании собранной колонны в скважину крепить к водоподъемной трубе. Провисание кабеля не допускается.

Смонтируйте водоподъемную колонну, расположите агрегат выше фильтра скважины и ниже динамического уровня воды в скважине.

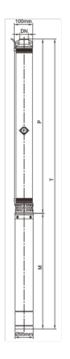
Понижение динамического уровня воды в скважине контролируется датчиком "сухого хода" 3.

Проверьте сопротивление изоляции системы токоподводящий кабель – двигатель после окончания монтажа. Сопротивление изоляции должно быть более 0,5 МОм.

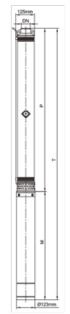
ВНИМАНИЕ - Измерения сопротивлений изоляции обмоток двигателя и токоподводящего кабеля следует производить при отключенном напряжении

- Все измерения сопротивления изоляции производить мегомметром на 500 В постоянного тока

Подключите агрегат с трехфазным двигателем к сети через станцию управления и защиты.


П р и м е ч а н и е - Устройство скважины, расположение агрегата в ней и состав оборудования для конкретного объекта определяются проектом объекта, который разрабатывается специализированной организацией, имеющей сертификат соответствия на строительные работы.

#### Пробный пуск агрегата и выход на рабочий режим.

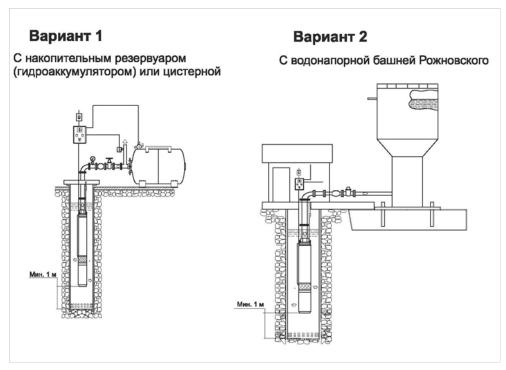

Перед пуском и во время работы агрегата проверьте подаваемое напряжение сети. Номинальное напряжение трехфазной сети 400 B, допустимое отклонение  $\pm 10 \text{ %}$ ;

При пуске агрегата задвижка должна быть закрыта.

Включите агрегат в работу. Откройте задвижку на 1/3 рабочего положения. Определите правильное направление вращения ротора агрегата изменением направления вращения ротора **трехфазного двигателя переключением двух фаз.** 



| МО                | DEL               | DN             |      | DIME | NSIC | N(mı | m)   | WEIGHT(kg) |      |      |      |      |  |
|-------------------|-------------------|----------------|------|------|------|------|------|------------|------|------|------|------|--|
| 1 ~<br>220 - 240V | 3 ~<br>380 - 415V |                | Р    | M(S) | М(т) | T(S) | T(T) | Р          | M(S) | M(T) | T(S) | T(T) |  |
| 4S□M6/20          | 4S□6/20           | 11/4"/11/2"/2" | 949  | 542  | 514  | 1491 | 1463 | 7.3        | 17.7 | 15.7 | 25.0 | 23.0 |  |
| 4S□M6/23          | 4S□6/23           | 11/4"/11/2"/2" | 1053 | 594  | 554  | 1647 | 1607 | 8.1        | 19.8 | 17.7 | 27.9 | 25.8 |  |
| -                 | 4S□6/26           | 11/4"/11/2"/2" | 1156 | -    | 594  | -    | 1750 | 9.0        | -    | 19.8 | -    | 28.8 |  |
| -                 | 4S□6/30           | 11/4"/11/2"/2" | 1326 | -    | 658  | -    | 1984 | 10.1       | -    | 21.4 | -    | 31.5 |  |
| -                 | 4S□6/34           | 11/4"/11/2"/2" | 1464 | -    | 698  | -    | 2162 | 11.3       | -    | 23.7 | -    | 35.0 |  |
| -                 | 4S□6/38           | 11/4"/11/2"/2" | 1602 | -    | 738  | -    | 2340 | 12.4       | -    | 25.5 | -    | 37.9 |  |
| -                 | 4S□6/42           | 11/4"/11/2"/2" | 1740 | -    | 788  | -    | 2528 | 13.6       | -    | 28.0 | -    | 41.6 |  |




| MOI              | DEL              | - DN | D    | IMEN | ISIO | N(mn | n)   | WEIGHT(kg) |      |      |      |      |  |
|------------------|------------------|------|------|------|------|------|------|------------|------|------|------|------|--|
| 1~<br>220 - 240V | 3~<br>380 - 415V | DN   | Р    | M(S) | M(T) | T(S) | T(T) | Р          | M(S) | М(т) | T(S) | T(T) |  |
| 5S□M10/6         | 5S□10/6          | 2"   | 500  | 391  | 386  | 891  | 886  | 4.6        | 17.5 | 16.4 | 22.1 | 21.0 |  |
| 5S□M10/8         | 5S□10/8          | 2"   | 567  | 451  | 421  | 1018 | 988  | 5.1        | 20.7 | 19.6 | 25.8 | 24.7 |  |
| 5S□M10/10        | 5S□10/10         | 2"   | 635  | 501  | 461  | 1136 | 1096 | 5.5        | 23.4 | 22.3 | 28.9 | 27.8 |  |
| -                | 5S□10/13         | 2"   | 737  | -    | 521  | -    | 1258 | 6.2        | -    | 27.1 | -    | 33.3 |  |
| -                | 58□10/17         | 2"   | 872  | -    | 591  | -    | 1463 | 7.6        | -    | 32.5 | -    | 40.1 |  |
| -                | 58□10/21         | 2"   | 1008 | -    | 681  | -    | 1689 | 9.0        | -    | 38.5 | -    | 47.5 |  |
| -                | 5S□10/28         | 2"   | 1245 | -    | 811  | -    | 2056 | 11.5       | -    | 45.6 | -    | 57.1 |  |



| MODEL            |                  |       | DIMENSION(mm) |      |      |      |      | WEIGHT(kg) |      |      |      |       |
|------------------|------------------|-------|---------------|------|------|------|------|------------|------|------|------|-------|
| 1~<br>220 - 240V | 3~<br>380 - 415V | DN    | Р             | M(S) | M(T) | T(S) | T(T) | Р          | M(S) | М(т) | T(S) | Т(т)  |
| 6S□M25/3         | 6S□25/3          | 3"/4" | 495           | 488  | 488  | 983  | 983  | 6.8        | 22.5 | 22.5 | 29.3 | 29.3  |
| 6S□M25/4         | 6S□25/4          | 3"/4" | 543           | 528  | 528  | 1071 | 1071 | 7.5        | 25.1 | 25.1 | 32.6 | 32.6  |
| 6S□M25/6         | 6S□25/6          | 3"/4" | 638           | 578  | 578  | 1216 | 1216 | 9.1        | 28.9 | 28.9 | 38.0 | 38.0  |
| -                | 6S□25/8          | 3"/4" | 734           | -    | 638  | -    | 1372 | 10.6       | -    | 33.9 | -    | 44.5  |
| -                | 6S□25/10         | 3"/4" | 827           | -    | 698  | -    | 1525 | 12.1       | -    | 40.2 | -    | 52.3  |
| -                | 6S□25/12         | 3"/4" | 922           | -    | 763  | -    | 1685 | 13.6       | -    | 46.5 | -    | 60.1  |
| -                | 6S□25/14         | 3"/4" | 1016          | -    | 823  | -    | 1839 | 15.1       | -    | 53.5 | -    | 68.6  |
| -                | 6S□25/16         | 3"/4" | 1111          | -    | 888  | -    | 1999 | 16.6       | -    | 60.5 | -    | 77.1  |
| -                | 6S□25/18         | 3"/4" | 1206          | -    | 939  | -    | 2145 | 18.1       | -    | 80.9 | -    | 99.0  |
| -                | 6S□25/20         | 3"/4" | 1300          | -    | 939  | -    | 2239 | 19.6       | -    | 80.9 | -    | 100.5 |

#### Типовые схемы водоснабжения



#### МЕРЫ БЕЗОПАСНОСТИ

При подготовке, обслуживании и эксплуатации агрегата необходимо соблюдать меры безопасности, руководствуясь положениями, изложенными в ТКП 181-2009 «Правила технической эксплуатации электроустановок потребителей», ТКП 427-2012 «Правила техники безопасности при эксплуатации электроустановок», «Правилах устройства и безопасной эксплуатации грузоподъемных механизмов», в специальных инструкциях на проведение монтажных (демонтажных) работ.

Работы по монтажу агрегата должен выполнять персонал специализированных организаций, имеющий соответствующую квалификацию и прошедший инструктаж по охране труда.

К месту проведения монтажных работ посторонние лица не допускаются.

При монтаже следует:

погрузку, разгрузку и перемещение агрегата осуществлять за проушины головки или за отверстия во фланце;

при подъеме колонны водоподъемных труб токоподводящий кабель должен быть уложен запределами рабочей зоны для исключения повреждения изоляции;

наращивать и разбирать водоподъемную колонну только с использованием специальных монтажных хомутов и инструмента;

при подъеме и спуске колонны водоподъемных труб в скважину удерживать и направлять колонну руками запрещается;

спуск (подъем) колонны водоподъемных труб должен выполняться медленно;

при заклинивании колонны труб в обсадной колонне скважины подъем (опускание) агрегата должен быть остановлен. Устранение заклинивания производить путем медленного вращения колонны труб по часовой стрелке.

Монтаж токопроводящего кабеля на участке от обсадной колонны скважины до СУЗ выполнить в защитной трубе. Запрещается сворачивать токоподводящий кабель в бухту.

При подготовке агрегата к работе следует:

заземлить электрооборудование в соответствии с требованиями ГОСТ 12.1.030;

#### КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ:

эксплуатировать агрегат при поврежденной изоляции кабеля;

пуск в работу не заполненного водой агрегата;

эксплуатировать агрегат во взрывоопасной среде, а также в среде, содержащей едкие парыи газы в концентрациях, разрушающих металлы и изоляцию;

эксплуатировать агрегат без обратного клапана;

перемещать агрегат, подключенный к сети;

эксплуатировать агрегат для перекачивания других жидкостей, кроме воды

ВНИМАНИЕ - Перед подключением агрегата к сети убедитесь, что все оборудование не находится под напряжением и что во время выполнения работ никто не сможет случайно, по ошибке, включить напряжение. Запрещается выполнять работы на электрических установках, если существует риск разряда атмосферного электричества или во время прохождения грозового фронта.

При подключении агрегата к устройству управления 7 необходимо соблюдать требования безопасности, изложенные в эксплуатационной документации на это устройство.

При работе агрегата должны быть приняты меры, исключающие прорыв воды под высоким давлением из напорного трубопровода или арматуры, в результате которого возможно поражение обслуживающего персонала.

#### ПОЛГОТОВКА К РАБОТЕ И ПУСК В ЭКСПЛУАТАЦИЮ

Перед подготовкой агрегата к монтажу

Проверьте соответствие технической характеристики агрегата по напору и подаче условиям его работы в данной скважине. Дебит скважины должен быть больше номинальной подачи агрегата не менее чем на 25 %. При этом номинальный напор выбранного агрегата должен превышать примерно на 5 % сумму динамического уровня воды в скважине и высоты подъема воды над уровнем земли (или давления в сети);