

VINC R700

Datasheet V1.40.14

Contents

1. System Overview	I
1.1 Architecture	
1.2 Applications	2
1.3 Imaging features	2
1.4 Standard features	4
1.5 Language support	6
2. Ergonomics	6
2.1 Keyboard	6
2.2 Image display screen	6
2.3 Wheels	7
	7
2.5 System boot-up	7
2.6 Comments	
2.7 Bodymark	
2.8 Peripherals	7
2.9 Dimensions and Weight	8
2.10 Electrical Power	8
2.11 Operating Environment	8
2.12 Storage & Transportation Environment	8
3. Transducers	
3.1 Transducer Technology	8
3.2 Transducer types	8
3.3 Transducer selection	8
4. Advanced Imaging controls	12
4.4.1/5	4.3
4.2 VSpeckle	
4.3 VTissue	13
4.4 3D/4D	13
4.4.1 3D/4D HQ	13
4.4.2 Inversion mode	13
4.4.3 Magic Cut	13
4.4.4 Niche view	13
4.4.5 Free View(optional)	13
4.4.6 3D Smart Face	13
4.4.7 VNavIn(optional)	14
4.4.8 Light Lab(optional)	14
4.5 Next generation RF-based image processing	ng14
4.6 Tissue Doppler (TD)	14
4.7 Tissue Velocity Imaging (TVI)	14
4.8 Stress Echo	15
4.9 Strain Imaging(optional)	15
4.10 VAid(optional)	

4.11 Tissue Velocity Mmode (TVM)	15
4.12 Multi-angle M mode	15
4.13 Curved M mode	
4.14 VShear(Shear Wave Elastography)(optional)	16
5. Imaging modes	16
5.1 2D Imaging	
5.2 Harmonic Imaging	17
5.3 M mode	17
5.4 Color Doppler mode	17
5.5 Power Doppler mode	18
5.6 Pulsed Wave (PW) Doppler	18
5.7 Continuous Wave Doppler (CW)	
5.8 Elastography imaging	19
5.9 3D/4D	19
5.10 PView	
5.11 TView	
5.12 Auto	
5.13 Tissue Doppler Imaging (TD)	
5.14 Tissue Velocity Imaging (TVI)	21
5.15 Tissue Velocity Mmode(TVM)	22
6. Touch Panel Interface	22
6.1 2D mode	22
6.2 M Mode	
6.3 CF mode	
6.4 PW/CW mode	
6.5 3D mode	
6.6 4D mode	
7. System Feature	
7.1 Display modes	25
7.2 Display annotation	25
7.3 Simple User Operation Interface	
7.4 Cineloop	
7.5 Quick save feature	
7.6 Physio(optional)	
7.7 Archive	
7.8 Report	27
7.9 Connectivity	
7.10 Probes/application	
7.11 Safety Conformance	
8. Measurement and Analysis	
8.1 Measurement in different modes	
8.1.1 Generic Measurement in 2D mode	29
8.1.2 Generic Measurement in CFM mode	
8.1.3 Generic Measurement in M mode	
8.1.4 Generic Measurement in PW mode	30

8.2	Measurement in different applications	30
	8.2.1 Abdominal Measurement	30
	8.2.2 Small Part Measurement	30
	8.2.3 Vessel Measurement	31
	8.2.4 Gynecology Measurement	31
	8.2.5 Urology Measurement	31
	8.2.6 Pediatric Measurement	31
	8.2.7 Obstetrics Measurement	31
	8.2.8 Cardiac Measurement	31
	8.2.9 Auto NT (Nuchal Translucency) measurement	31
	8.2.10 Auto IMT (Intima-Media Thickness) measurement	31
	8.2.11 Live IMT (Intima-Media Thickness) measurement	
	8.2.12 Auto IT (Intracranial translucency) measurement	32
	8.2.13 Auto Follicle(2D/3D)(optional)	32
	8.2.14 Smart 3D Volume Measurement(optional)	32
	8.2.15 VAim OB measurement	
	8.2.16 VAim Hip measurement	
	8.2.17 VAim Follicle(2D) measurement	
	8.2.18 VAid Breast(optional)	32
	8.2.19 VAid Liver(optional)	33
	8.2.20 VAid Thyroid(optional)	33
	8.2.21 VMind OB(optional)	33
	9.2.22 Auto FE	22

Ultrasound System Specifications

Dedicated premium ultrasound system VINNO R700 supports you in clinical decision-making and elevates trust in diagnostic confidence by:

- Unmatched image quality
- All ranges of features, functions, and probes
- Flexible and customized simple workflow
- Powered by Artificial intelligent technologies
- Extremely flexible and compact design with 23.8 inch monitor

1. System Overview

1.1 Architecture

- VINNO R700 brings a confident diagnostic experience with the extraordinary processing power of our breakthrough VLucid⁺ Platform, to deliver superior image quality, thanks to its exceptional intelligent architecture
- The new generation VLucid⁺ platform with sophisticated image processing technologies makes R700 an

extraordinary visualization unit, which provides excellent penetration and structure visualization.

- This unique platform is capable of processing multiple data streams simultaneously
- Up to 25MHz next generation digital broadband and high resolution acoustic beamforming
- VShear is a non-invasive method that detects the velocity of shear waves propagating through the target area and provides quantitative tissue characteristic information
- The new 12 bit, low noise, digital circuitry, with up to 350 dB dynamic range has improved 2D performance and increased Doppler sensitivity
- Directional-enhanced information compiling for more tissue detail and reduction of angle-generated artifacts
- Next generation adaptive image processing for noise and artifact reduction that improves tissue presentation and edge definition

- Zone Imaging technology can obtain high resolution and good penetration in the whole image zone through the adaptive dynamic beam control from the near field to the far field
- Fully independent, triplex multiple mode operation for easy in Dopplerprocedures
- Multi-processors allow simultaneous mode changes and support for advanced system functionality
- VLuminous Flow provides the color Doppler flow innovatively in a 3D view with excellent sensitivity, which can help understand the structure of blood flow and small vessels intuitively
- Sync ROI enables the width of 2D scan area is synchronized with the CF ROI, which effectively improves the frame rate
- Diverse customized tools make R700
 a truly elite unit, which enhances
 efficiency dramatically
- Zscore analysis, provide a new way for fetal heart evaluation
- Support to export 3D data for 3D printer(optional)
- Support multiple DICOM server configuration
- foot switch(optional)
- Background transfer, supports background export without interrupting the actual scan
- VReport, a customer-centric tool for report templates design, makes the

- whole report procedure more smooth and individual
- Customized user interface, allows user to change the position of buttons on the touch screen, also the size of 'probe&app' UI window is adjustable
- VWork, an intelligent feature, which enables users to configure workflows for every application scenario. This leads to easy and effective adherence to a department protocol and saves operation time to a great extent

1.2 Applications

- Abdomen
- Obstetric
- Gynecology
- Cardiology
- Urology
- Vascular
- TCD
- Small Parts
- Pediatrics

1.3 Imaging features

- 2D grayscale imaging
- Harmonic imaging both in tissue harmonic and pulse inversion harmonic technologies
- VFusion, RF-based directional-enhanced information compounding

- VSpeckle, specialized and adaptive imaging processing to remove speckle noise artifacts and enhance tissue edge for clarity and accuracy
- VTissue, the advanced adaptive image processing to compensate for sound and speed variation in different tissue
- Auto imaging optimization
- Easy Comparative Function to compare previous images
- Color M-mode
- Color Doppler imaging
- Power Doppler imaging
- Pulse wave Doppler imaging
- Multi Doppler
- Simultaneous 2D and M mode
- Duplex 2D/PW Doppler
- Triplex 2D/Color/PW Doppler
- High PRF pulsed wave Doppler
- Continuous wave Doppler
- HD Zoom
- FULL screen imaging to enlarge imaging size
- Dual real time imaging without compromising imaging size
- PView for panoramic imaging
- TView for trapezoidal imaging
- Needle Enhancement
- SGC (Scanline gain compensation)
- Cardiac Quantification(optional) (*)
- 2D auto follicle
- Elastography imaging
- Free 3D(optional) (*)
- 3D/4D imaging

- HQ 3D/4D
- HQ Silhouette(optional)^(*)
- PWV+(optional) a real-time, multipoint, RF tracking at single imaging site of the carotid artery intima media complex with high precision and generates arterial distension/tracking waveform. Calculates PWV to assess the arterial stiffness and risk stratification of arteriosclerosis
- AMAS(optional)^(*) a two-imaging site protocol, time delay between ECG R to foot (inflection point) of the Common Carotid artery and Femoral artery PW Doppler is auto calculated. Key-in the distance between Carotid and Femoral artery, system calculates the PWV+
- Tomographic display (MCUT)
- Inversion mode
- Magic Cut
- Niche view
- Light Lab(optional) (*)
- Color 3D(optional)(*)
- Three leads ECG function(optional)(*)
- Tissue Doppler (TD) mode
- Tissue Velocity Imaging (TVI) mode
- Tissue Velocity M (TVM) mode
- Stress echo
- Strain imaging(optional) (*)
- VFlow, adaptive color flow filter to increase the sensitivity of blood flow
- VAid Breast(optional) (*)
- VAid Liver(optional) (*)
- VAid Thyroid(optional)
- Shear wave Elastography imaging(Vshear)(optional)
- Auto NT(Nuchal translucency)

- VLuminous flow, a feature which shows the blood flow in a
 3-D view with excellent sensitivity
- Curved M mode, user can draw anycurved sample line freely and get corresponding results
- Sync B/C width, the width of B modeinterest area is always be the same with the CF mode
- Multi-line Angular M-Mode, Up to 4sample line
- Live IMT, display intima-media thickness in real time
- VAim for OB, Follicle, Hip, Pelvic, LEVA(optional)
- 3D Smart Face, an intelligent tool for fetal face optimization
- VNavIn, a tool that navigates inside the 3D volume data and projects an inside-out perspective image that displays the inner most structures like virtual endoscopy(optional)
- Auto IT, automatic measurement of Intracranial translucency
- Q-Flow directional PDI

1.4 Standard features

- Up to 25MHz high frequency in system platform
- Up to 12 000 000 system processing channels
- Up to 40 cm scanning depth
- Up to 1500 seconds standard cine storage
- SSD-500G
- HDD-1T/2T/4T(optional)
- USB Flash Drive(optional)
- Integrated DVDRW
- Integrated black/white thermal video printer slot
- 3D Mesh(optional)
- Quick store to USB memory stick
- Network storage and printing
- Full measurement and analysis package
- Real time auto wave Doppler track and calculations
- Vascular calculations
- Cardiac calculations
- OB calculations and tables
- Gynecological calculations
- Urological calculations
- Renal calculations
- Volume calculations
- 3D Volume calculations(optional)
- Wireless networking for easy data sharing, storage and printing
- Bluetooth for image data transfer
- Gel Warmer
- Image data transfer directly by E-Mail

with network access

- Up-to-date connectivity and data management solutions, wireless, LAN, Bluetooth, E-Mail, integrated database
- DICOM 3.0 compatibility
- 5 probe ports with CW probe compatible
- 7 USB ports
- 8 TGC slides
- Average 4 multiple adjustable frequency in every probe and mode
- Up to 512 line density
- 1 DVI-D interface(with
- **HDMIconverter)**
- 1 Audio in interface; 1 Audio outinterface
- 1 Speaker interface
- 1 RJ45 interface

1.5 Language support

- Software: Chinese, English, German, Greek, Malay, Portuguese, Romanian, Spanish, Swedish, French, Polish, Russian, Uyghur, Ukraine, Italian, Czech, Hungarian
- Keyboard input: Chinese, English, German, Greek, Malay, Portuguese, Romanian, Spanish, Swedish, Polish, Norwegian, Danish, Finnish, French, Russian, Italian, Czech, Cambodia, Polski, Ukraine
- Control panel overlay: English
- User manual: Chinese, English,
 German, Russian, Portuguese, Spanish,
 Italian, French

2. Ergonomics

- Unique human oriented design for comfort and convenience
- Fully articulating 23.8-inch high resolution flat panel display with nearly infinite positioning adjustments operation panel
- USB double button foot switch(optional)
- Integrated foot switch for configurable function, such as Freeze, store etc
- Easy access DVD media drive
- 5 easy access transducer ports

- 5 transducer holders (include one endocavity holder)
- Integrated touchable alphabetic keyboard
- Simple, easy and effective cable management structure

2.1 Keyboard

- Highly sensitive 15.6 inch LED technology touch panel
- Resolution: 1920*1080 pixels
- Touch screen angle adjustable range :45-90 degrees
- Intuitive, configurable and touchable interactive operation interface
- Ergonomic hard keys for general ultrasound operations
- 8 TGC slides, functionality at any depth
- Backlight keys
- Independent up/down andleft/right adjustment
- Down/up range: 130 mm

2.2 Image display screen

- 23.8 inch high resolution LED technology, pixel resolution: 1920x1080
- Brightness, contrast and color temperature adjustment
- View angle : -180°~ 180°
- Number of color: 16.7M

- Adjustable Gamma curve optimization for dedicated applications
- Multifunctional support arm design
- Independent tilt and swivel adjustment

Swivel range: ±180 degrees

• Tilt range: -20-90 degrees

• Up/down: 70mm

2.3 Wheels

• Diameter: 125mm

Front castor (2 ea): Total lock
 Rear castor (2 ea): Total lock

2.4 Touch gestures

- Swipe down/up: display/remove projected image on touch screen
- Swipe horizontally: page up/down or review images/cine loops one by one
- Swipe from left edge to right: display hidden menu on projected image.
- Image parameter adjustment
- Measurement on projected image on touch screen
- •Zoom in/out the projected Image on touch screen
- Rotate or erase on projected
 3D/4D image on touch screen

2.5 System boot-up

Boot-up from shut-down: about 65sec

• Shut-down: about 9sec

2.6 Comments

- Supports text input and arrow
- Support freehand marking on touch screen
- Adjustable text size and arrow size
- Supports home position
- Covers various application
- User customizable

2.7 Bodymark

- More than 215 bodymarks for versatile application
- User customizable

2.8 Peripherals

- B&W thermal video printer: Sony UP-D898MD(optional)
- Color thermal video printer:
 Sony UP-D25MD(optional)

2.9 Dimensions and Weight

Height: 1420±20mm
Width: 570±10mm
Depth: 960±20mm
Net Weight: ≤63kg

2.10 Electrical Power

Voltage: 100-240VFrequency: 50/60Hz

Power: < 700VA for console only
 Support built in battery(optional)
 Scan time in B Mode: about 1h

• Charging time: about 2.5h

2.11 Operating Environment

• Ambient temperature: 10-40°C

• Relative humidity: 30-75%

Atmospheric pressure: 700hPa-1060hPa

2.12 Storage & Transportation

Environment

Ambient temperature: -5-50°CRelative humidity: 10%-80%

(no condensation)

Atmospheric pressure: 700hPa-1060hPa

3. Transducers

3.1 Transducer Technology

- Xcen technology for wideband frequency
- Pure wave technology for high resolution imaging
- Unique and high technical Xcen probe connector to adapt all different type of VINNO product models

3.2 Transducer types

- Convex array
- Linear array
- Phase array
- 4D probe
- Endocavity probe
- CW probe
- Matrix Probe

3.3 Transducer selection

- Electronic switching of transducers
- User customizable imaging presets for each transducer and application
- Automatic dynamic receiving focus in all transducers
- Multiple adjustable transmit focal zone, up to 4 focal zone

S1-8CM Single Crystal Curved Array

- Single Crystal Technology
- Field of view: 75 degree
- Convex radius: 60mm
- Application: abdomen, ob/gyn, urology
- Frequency range: 1-8MHz
- Physical Footprint: 78mm*27.2mm
- Center frequency: 4.0 MHz
- Transducer elements: 192
- Pulsed wave Doppler, color
 Doppler, power Doppler, harmonic
- Multi-imaging frequency setting in 2D,
 Harmonic, color Doppler and Wave
 Doppler modes
- Reusable biopsy guide available

X2-6C Single Crystal Curved Array

- Single Crystal Technology
- Field of view: 75 degree
- Convex radius: 60 mm
- Application: abdomen, Ob/Gyn, urology
- Frequency range: 1.0-8 MHz
- Physical Footprint: 78mm*28mm
- Center frequency: 3.5 MHz
- Transducer elements: 192
- Pulsed wave Doppler, color
 Doppler, power Doppler, harmonic
- Multi-imaging frequency setting in 2D, Harmonic, color Doppler and Wave
 Doppler modes
- Reusable biopsy guide available

X4-9E Single Crystal micro convex endocavity array(crank and straight handle)

- Single Crystal Technology
- Field of view: 180 degree
- Convex radius: 8.8 mm
- Application: Ob/Gyn, urology
- Frequency range: 3-10 MHz
- Physical Footprint:
- 19.15mm*17.8mm
- Center frequency: 6.5 MHz
- Transducer elements: 192
- Pulsed wave Doppler, color
 Doppler, power Doppler, harmonic
- Multi-imaging frequency setting in 2D, Harmonic, color Doppler and Wave
 Doppler modes
- Reusable biopsy guide available

X4-12L Linear Array

- Fine pitch, high resolution
- Applications: vascular, small parts
- Aperture size: 38.4mm
- Frequency range: 3.0-17.0 MHz
- Physical Footprint: 50.5mm*17mm
- Center frequency: 7.8MHz
- Transducer elements: 192
- Pulsed wave Doppler, color
 Doppler, power Doppler, harmonic
- Multi-imaging frequency setting in 2D, Harmonic, color Doppler and Wave
 Doppler modes
- Reusable biopsy guide available

S1-6P Phased Array

- Single Crystal technology
- Applications: cardiac, abdomen
- Aperture size: 15.36mm
- Field of view: 90 degree
- Frequency range: 1-8Mhz
- Physical Footprint: 34.2mm*28.7mm
- Center frequency: 3.2MHz
- Transducer elements: 96
- Pulsed wave Doppler, continuous wave Doppler, color Doppler, power Doppler, harmonic
- Multi-imaging frequency setting in 2D, Harmonic, color Doppler and Wave
 Doppler modes
- Reusable biopsy guide available

D2-6C Curved Array Volume

- Field of view: 75 degree
- Convex radius: 40 mm
- Application: abdomen, Ob/Gyn, urology
- Frequency range: 2-6MHz
- Physical Footprint: 75mm*50mm
- Center frequency: 4.2MHz
- Transducer elements: 128
- Pulsed wave Doppler, color

Doppler, power Doppler, harmonic

 Multi-imaging frequency setting in 2D, Harmonic, color Doppler and Wave Doppler modes

U5-15LE^(*) Linear array

- Fine pitch, high resolution
- Applications: small parts, specially for breast, vascular
- Aperture size: 51.2mm
- Frequency range: 3-16.5 Mhz
- Physical Footprint: 65.5mm*25.5mm
- Center frequency: 7.3MHz
- Transducer elements: 256
- Pulsed wave Doppler, color
 Doppler, power Doppler, harmonic
- Multi-imaging frequency setting in 2D, Harmonic, color Doppler and Wave
 Doppler modes

G4-12P Phased array

- Application: pediatric cardiology, abdomen
- Aperture size: 9.7 mm
- Field of view: 90 degree
- Frequency range: 4-15Mhz
- Physical Footprint:22mm x 20mm
- Center frequency: 7.3MHz
- Transducer elements: 96
- Pulsed wave Doppler, continuous wave Doppler, color Doppler, power Doppler, harmonic
- Multi-imaging frequency setting in 2D, Harmonic, color Doppler and Wave Doppler modes

G3-10PX Phased array

- Application: pediatric cardiology, abdomen
- Aperture size: 15.36 mm
- Field of view: 90 degree
- Frequency range: 3-10Mhz
- Physical Footprint: 33mm x 33mm
- Center frequency: 5MHz
- Transducer elements: 96
- Pulsed wave Doppler, color
 Doppler, power Doppler, harmonic
- Multi-imaging frequency setting in 2D, Harmonic, color Doppler and Wave Doppler modes

G4-9E Endocavity Array

- Field of view: 138 degree
- Convex radius: 11.5mm
- Application: Ob/Gyn, urology
- Frequency range: 3.0-10MHz
- Physical Footprint: 24.0mm*18.8mm
- Center frequency: 6.9MHz
- Transducer elements: 128
- Pulsed wave Doppler, color
 Doppler, power Doppler, harmonic
- Multi-imaging frequency setting in 2D, Harmonic, color Doppler and Wave
 Doppler modes
- Reusable biopsy guide available

G1-4P Phased Array

- Applications: cardiac, abdomen
- Field of view 90 degree
- Aperture size: 17.92mm
- Frequency range: 1-6Mhz
- Physical Footprint: 34.5mm*28.5mm
- Center frequency: 2.5MHz
- Transducer elements: 64
- Pulsed wave Doppler, continuous wave Doppler, color Doppler, power Doppler, harmonic
- Multi-imaging frequency setting in 2D, Harmonic, color Doppler and Wave
 Doppler modes
- Reusable biopsy guide available

X6-16L Linear Array

- Fine pitch, high resolution
- Applications: vascular, small parts
- Aperture size: 38.4mm
- Frequency range: 3.0 -19MHz
- Physical Footprint: 50.5mm*20mm
- Center frequency: 10.5MHz
- Transducer elements: 192
- Pulsed wave Doppler, color
 Doppler, power Doppler, harmonic
- Multi-imaging frequency setting in 2D, Harmonic, color Doppler and Wave
 Doppler modes
- Reusable biopsy guide available

X3-10L Linear Array

Applications: Musculoskeletal,
 Peripheral Vascular

• Aperture size: 44.16mm

• Frequency range: 3-15MHz

Physical Footprint: 60.18mm*25.2mm

• Center frequency: 5.5MHz

• Transducer elements: 192

Pulsed wave Doppler, color
 Doppler, power Doppler, harmonic

 Multi-imaging frequency setting in 2D, Harmonic, color Doppler and Wave
 Doppler modes

F4-9E Endocavity array

• Field of view: 150degree

Convex radius: 10mm

Application: Ob/Gyn, urology

Frequency range: 4-10MHz

• Center frequency: 3.2MHz

Physical footprint:21.0mm (lens)*19.0mm(lens)

Transducer element: 128

 Pulsed wave Doppler, color Doppler, power Doppler, harmonic

 Multi-imaging frequency setting in 2D, Harmonic, color Doppler and Wave
 Doppler modes

• Reusable biopsy guide available

I7-18L Broadband linear array (Hock stick)

• Fine pitch, high resolution

Applications: vascular, abdomen,

Musculoskeletal

• Aperture size: 25.6mm

• Frequency range: 6-20MHz

Transducer elements: 128

• Pulsed waveDoppler, color Doppler, power Doppler, harmonic

 Multi-imaging frequency setting in 2D, Harmonic, color Doppler and Wave
 Doppler modes

G1-3R Pencil probe

Application: cardiac, brain

• Frequency: 2MHz

Physical Footprint:

34mm × 29mm

• Center frequency: 2MHz

Transducer elements:2

Continuous Wave Doppler

4. Advanced Imaging controls

4.1 VFusion

- Available on all transducers and for 2D, 3D/4D (except phase array probe)
- Operate in conjunction with VSpeckle, harmonic imaging

4.2 VSpeckle

- Available on all transducers and for 2D, 3D/4D
- Virtually eliminate speckle noise

artifact and dynamically enhances tissue margins

- Selectable multiple levels of speckle noise reduction and smoothing
- Operates in conjunction with
 VFusion and harmonic imaging

4.3 VTissue

- Advanced imaging processing to adapt to the speed of the ultrasound variation in different tissue
- Improved detail resolution and conspicuity of lesions
- Presentable sound and speed in different applications
- One touch operation to ease diagnosis
- Better detection in diffuse lesions of organs

4.4 3D/4D

4.4.1 3D/4D HQ

- Amazing high image quality
- Extreme realistic rendering images
- Similar operation as normal rendering

4.4.2 Inversion mode

• This render mode is used to display anechoic structures such as

vessels

• It invert the gray values of the rendered image, such as black image information become white and vice versa

4.4.3 Magic Cut

- Ability to edit images, make possible to cut away structure obstructing the view in the ROI
- Several cutting methods available
- Have quality index to indicate if there is proper external force

4.4.4 Niche view

- Display 3 orthogonal planes centered on ROI
- Use Depth to translate the selected plane
- Each imaging plane or Niche image can be selected using image reference

4.4.5 Free View(optional)(*)

- Provide any plane view to visualize the internal tissue information
- Improve the contrast resolution to facilitate the detection of diffuse lesions in organs

4.4.6 3D Smart Face

An intelligent tool for fetal face optimization. This tool detects the

fluid/tissue interface and smartly removes noise in front of the baby inside the ROI, to obtain an optimal baby face.

- Only works on 3D Render
- Can not use this feature together with MagicCut

4.4.7 VNavIn(optional)(*)

A tool that navigates inside the 3D volume data and projects an inside-out perspective image that displays the inner most structures like virtual endoscopy

- This feature is useful in body structures which are surrounded by fluid, like gynecology, obstetrics, abdomen, vascular, or any other fluid-filled areas.
- Two ways to perform VNavIn
 Auto and Manual
- Depth mapping to enhance the depth perception

4.4.8 Light Lab(optional)(*)

- Allowing user to customise the position and direction of the virtual light sources, which displays the internal structure details more clearly and enhances the three-dimensional perception
- 3 types light available, there are Parallel light, Point light, Spotlight separately

• 8 presets available

• Fluid effect: ≥ 11 steps

• Brightness: ≥ 21 steps

 Move Light: Light1, Light2, Light3, Light All

• Light Color: ≥ 50 steps

• Distance: ≥ 21 steps

4.5 Next generation RF-based image processing

- Available on all imaging transducers in 2D grayscale modes
- Virtually eliminates speckle noise artifact and dynamically enhance tissue edge
- Operates with other real-time processing algorithms

4.6 Tissue Doppler (TD)

- Present wall motion spectrum by using Doppler principle
- Provide wall motion direction and velocity information

4.7 Tissue Velocity Imaging (TVI)

- Color codes the velocities in tissue
- Present tissue color imaging by using Doppler principle
- This color image is overlaid onto the 2D image
- Captures low flow but high

amplitude signals associated with wall motion

4.8 Stress Echo

- Stress echo is a non-invasice, dynamic evaluation of myocardial structure and its function under an external stress(exercise or pharmocology)
- 12 Ready to use templates (max 8 stages * 6 views) Editable
- User definable template
- Re-arrange & Select default template
- 8 View names available
- 9 Stage names are available (can add user defined stage name)
- One Touch Shuffle (Stage / View)
- Touch & Compare any view of stage
- Systole only review

4.9 Strain Imaging(optional)(*)

- Auto-ROI (after selecting Mitral Valve Plane)
- Adjust Segment-wise (Longitudinal strain)
- Adjust Segment-wise and Rotate whole ROI (Radial & Circumf. Strain)
- ECG to select heart cycle
- View based Bulls Eye view
- Result type (Peak Strain or Peak Time)Parameter type (L Strain, R Strain& C Strain)

4.10 VAid (optional) (*)

- An artificial intelligent detection tool for breast/Thyroid/Liver imaging
- Works in real-time detection, as well as on the stored (single or cine) images

4.11 Tissue Velocity Mmode (TVM)

- •Color codes the velocities in tissue
- Present wall motion spectrum based on tissue moving
- This color image is overlaid onto the
 2D image
- Captures low flow but high amplitude signals associated with wall motion

4.12 Multi-angle M mode

- Sample on moving tissue from multi-angle
- Present wall motion spectrum based on tissue moving

4.13 Curved M mode

Draw the route of the sample line freely and obtain the corresponding anatomical M-mode. This might be helpful to obtain myocardial wall motion.

- Color curved M mode is available
- TVI &M mode is available

4.14 VShear(Shear Wave

Elastography)(*)(optiona)

• A non-invasive method which can detect tissue hardness by calculating the shear wave propagation velocity and elastic modulus

5. Imaging modes

5.1 2D Imaging

- Pre-defined ATGC (adaptive temporal gain compensation) curves optimized for consistently excellent imaging
- Display format: Single, Dual, Quad
- B/M acoustic output: 10-100%
- Reverse function: on/off
- 2D optimization: on/off
- Centerline: on/off
- L/R flip and U/D flip: on/off
- VFusion : ≥ 7 steps
- VSpeckle : ≥ 10 steps
- Harmonic imaging both tissue harmonic and phase inversion

- Cineloop image review
- Selectable 2D line density
- Dual imaging with independent cineloop
- 256(8 bit) gray level
- Up to 6 focus zone adjustable
- Multiple color maps with chroma imaging
- FULL screen imaging to larger image size
- •Multi frequency: ≥ 5 levels, probe
 dependent
- Gray filter: ≥ 7 steps
- Persistence: ≥ 8 steps
- Selectable image angles, probe
 Dependent
- Gain: 0-100%
- Selectable Dynamic range: 30-350 dB
- VSharpen(enhance edge contrast) : ≥ 8 steps
- Smooth(improve spatial resolution): ≥ 11 steps
- EdgeEnhance (improve detail information and contrast): ≥ 6 steps
- Gray Map: ≥ 32 types
- Tint Map: ≥ 24 types
- TGC: 8 slides on control pannel
- SGC: 8 ponds on touch pannel
- TI heat index: TIB, TIS, TIC
- Rotation: 0°, 90°, 180°, 270°
- PAN/Zoom ≥ 24 steps in Real/Freez mode

5.2 Harmonic Imaging

- Supports both tissue harmonic and phase inversion imaging (transducer and frequency dependence)
- Second harmonic processing to reduce artifacts and improve image clarity
- Maximize detail resolution and enhance contrast
- Available on all imaging transducers
- Extends high performance imaging capabilities to all patient body types

5.3 M mode

- Selectable sweeping rates,10 steps
- •Time marks: 0.025 0.5 second
- Selectable display format prospective or retrospective (V2/3, V1/3, V1/2, H1/2, H3/4, full screen)
- Chroma colorization with multiple color maps
- Cineloop review for retrospective analysis of M-mode data
- 256 gray levels
- Acoustic output: 10%-100%
- Gray filter: ≥ 7 steps
- Dynamic range: 108db-128db,1/2db/step

- Vsharpen: ≥ 6 steps
- Gray Map: ≥ 32 types
- Tint Map: ≥ 24 types
- Gain: 0-100%
- Color M mode: available
- MultiAngle: available

5.4 Color Doppler mode

- Available on all imaging transducers
- Automatically adapts transmit and receive bandwidth processing based on the color box position
- Cineloop review with full playback control
- Color flow M mode display for tissue motion and flow velocity
- Reverse function: on/off
- Selectable baseline, line density, flash reduction, persistence, maps, frequency, PRF, wall filter, packet size, color level, sensitivity, focus position, acoustic power, and smooth
- FULL screen imaging to larger image size
- L/R flip and U/D flip: on/off
- Frequency:
 ≥ 4 steps, depend on probes
- Baseline: 0-100%
- Acoustic power: 5% -100%
- Line density: ≥ 5 steps
- Flash reduction: ≥ 6 steps
- Persistence: ≥ 21 steps

Color Map:
 ≥ 33 types

• Smooth: ≥ 7 steps

• Sensitivity: ≥ 5 steps

• Transparency: ≥ 6 steps

• Color level: ≥ 16 steps

Packet size: ≥ 7 steps

Reverse function: on/off

• Color gain: 0-100%

• Adjustable region of interest

• Baseline invert

Simultaneous mode during PW mode

• Zoom

5.5 Power Doppler mode

- High sensitive mode for small vessel visualization
- Available on all transducers
- Cineloop review
- Display format: Single, Dual,Quad
- Selectable line density, flash reduction, persistence, maps, frequency, PRF, wall filter, packet size, color level, sensitivity, focus position, acoustic power, and smooth

• Color maps: ≥ 24 types

• Color levels: ≥ 16 steps

Sensitivity: ≥ 5 steps

• Smooth: ≥ 7 steps

Persistence: ≥ 21 steps

• Individual controls for gain

Adjustable region of interest

5.6 Pulsed Wave (PW) Doppler

- Ultra high resolution spectral
 FFT rate
- Angle correction with automatic velocity scale adjustment
- Normal, invert display around horizontal zero line
- Auto optimization: on/off
- Invert: on/off
- Selectable display format prospective or retrospective (V2/3, V1/3, V1/2, H1/2, H3/4, full screen)
- Selectable gray filter, dynamic range, frequency, PRF, wall filter, baseline, angel correct, sample volume

Gray filter:
 ≥ 6 steps

• Dynamic range: 108db-128db

• Baseline: 5%-95%

• Sample volume: 0.5mm-28mm

Angle correct: -80°~80°

ullet Trace Sensitivity: \geqq 21 steps

Audio Volume: ≥ 27 steps

Spectrum Optimize: ≥ 28 steps

Gray map:
 ≥ 13 types

Tint map: ≥ 11 types

• Selectable sweep speeds:

≥ 10 steps

Maximum velocity range:

12m/s

PW acoustic output: 5%-100%

 Trace direction: above, below, above and below

• Trace type: Max, Mean, Max and

Mean

- Cardiac cycle: 1-5
- Selectable low frequency signal filtering with adjustable wall filter settings
- Selectable grayscale curve for optimal display
- Selectable chroma colorization maps
- Auto function to optimize spectral Doppler display
- Digitally enhanced stereo output
- 256 gray levels
- Post-processing in frozen mode includes map, baseline, invert, angle and chroma, etc.
- Simultaneous or duplex mode of operation
- Simultaneous 2D, color Doppler, pulsed Doppler
- High PRF capability in all modes including duplex and triplex

5.7 Continuous Wave Doppler (CW)

- User can measure distance and area
- Cineloop review
- Selectable gray filter, dynamic range, PRF, wall filter, baseline, angel correct, sample volume, acoustic power, etc.

Gray filter: ≥ 6 steps

• Dynamic range: 108db-128db

• Angle correct: -80°~80°

• Trace Sensitivity: ≥ 21 steps

• Audio Volume: ≥ 27 steps

• Spectrum Optimize: ≥ 28 steps

Gray map: ≥ 13 types

• Tint map: ≥ 11 types

• PW acoustic output: 5%-100%

5.8 Elastography imaging

- Shows the spatial distribution
 of tissue elasticity properties in a
 region of interest to estimate the strain
 before and after tissue distortion
 caused by external force
- The strain estimation is scaled by color to have smooth distribution display
- Have quality index to indicate if there is proper external force

• Precision: 0, 1, 2, 3, 4

• Resolution: 0, 1, 2, 3, 4

• Sensitivity: 0-10

• Transparency: 13 steps

• Smooth: ≥ 7 steps

• Line density: \geq 5 steps

• Map: EI 0

Display format: Single, Dual,Quad

5.9 3D/4D

- 3D/4D rotation
- Grayscale imaging controls
- Selectable rendering

Approaches: HQ Surface, HQ Grad, HQ Silhouette(optional), Surf Texture, Surf Smooth, Grad Light, Surf HDR, Trans Max, X-ray, Transp Min, Light

- Unique high quality rendering algorithm
- Review volume
- Volume Angle: 15%-85%
- Quality: low,mid,good,high,best
- Threshold: 256
- Transparency:0.1-2, 0.1/step
- Category:Face,Spine,Brain, Heart,Hi speed,Lip&plate,Limbs, etc.
- Display format: single,dual,triple,Quad
- Image Reference: A,B,C,3D
- Flip: 0°, 90°, 180°, 270°
- View: Front/Back, Back/Front;
 Left/Right, Right/Left; Up/Down,
 Down/Up
- Rotation Direction: X, Y, Z
- 3D Map: ≥ 10 types
- Tint maps: ≥ 24 types
- Gray maps: ≥ 32 types
- 2D VSpeckle: ≥ 4 types
- 3D VSpeckle: ≥ 4 types
- Render Type: Gray, GrayInv
- Inverse Avaliable

• MCUT

- Slice Number: 2×2, 3×3, 4×4, 5×5
- Max Slice Number: 25
- Tint Map: ≥ 24 types

- Cut plane: A,B,C
- Rotation Direction: X, Y, Z
- Volume Angle: 15°-85°
- Interval: 1mm-20mm,0.5/step
- Quality: low,mid,good,high,best

• Free view(optional)

- Direction: X, Y, Z
- Route: curve, straight line
- Reference image: A,B,C
- Slice thickness: 0mm-20mm,1/step
- Active line: 1,2,3
- Mix: 10-90, 5/step
- Tint Map: ≥ 24 types
- Threshold: 256 steps
- Transparency: 0.1-2.0, 0.1/step

Magic cut

- Erase mode: inside casso, outside casso, big circle, small circle
- Erase type: trace, rectangle, ellipse
- Rotation direction: X, Y, Z

VOCAL

- Vocal layers: 8, 12,16,20,24,28,32
- Display format: single, dual, Quad
- Image reference: A, B, C

Niche view

- Model type: upper, lower
- Display format: single, quad
- Rotation direction: X, Y, Z
- Image reference: A, B, C, N

5.10 PView

- Real time extended field of view composite imaging
- Ability to back up and realign the image during acquisition
- Full zoom, cineloop review and image rotation capabilities

5.11 TView

Expand view of scanning

5.12 Auto

- Intelligent one button automatic optimization in 2D and Doppler modes
- Automatically adjust PRF and baseline in Doppler

5.13 Tissue Doppler Imaging (TD)

- Present wall motion spectrum by using Doppler principle
- Provide wall motion direction and velocity information
- Available on all sector transducer

for cardiac imaging

- Selectable frequency, PRF, wall filter, etc.
- Gain

• Sweep speed: ≥ 10 steps

Baseline: 5%-95%Angle correct: ±80°

Sample volume: 0.5mm-10mm
Spectrum optimize: ≥ 20 steps

• Acoustic power: 5%-100%

• Dynamic range: 108db-128db

• Trace sensitive: ≥ 21 steps

Gray filter:
 ≥ 6 steps

• Audio volume: ≥ 27 steps

• Mode: max, mean

 Direction: above, below, Above and Below

• Heart cycle: 1-5

Gray map:

≥ 13 types

5.14 Tissue Velocity Imaging (TVI)

- Color codes the velocities in tissue
- Present tissue color imaging by using Doppler principle
- This color image is overlaid onto the 2D image
- Captures low flow but high amplitude signals associated with wall motion
- Available on all sector transducer for cardiac imaging
- Tissue velocity M mode display for wall motion(optional)
- Gain
- Velocity

• Color level: ≥ 16 steps

• Transparency: ≥ 13 steps

• Smooth: ≥ 7 steps

• Line density: ≥ 3 steps

• Persistence: ≥ 7 steps

Color map: ≥ 10 types

5.15 Tissue Velocity Mmode(TVM)

- Color codes the velocities in tissue
- Present wall motion spectrum based on tissue moving
- This color image is overlaid onto the
 2D image
- Captures low flow but high amplitude signals associated with wall motion
- Selectable frequency, PRF

• Baseline: 5%-95%

Color level:

≥ 16 steps

ullet Transparency: \geqq 13 steps

• Packet size: 3,4,5,6

Acoustic power: 5%-100%

Display format: Single, Dual,

Quad

6. Touch Panel Interface

6.1 2D mode

- New patient
- BodyPattern
- Archive
- Comments
- End exam
- Report
- Sys setting
- Probe&App
- Pview
- Tview
- Fullscreen
- L/R
- U/D
- Center line
- VTissue
- VSpeckle
- VFusion
- Gray Filter
- Persistence
- Display Format
- Image reference
- Maps
- Frequency
- Focus position
- Focus#
- Dynamic Range
- Line density
- VSharpen
- Biopsy
- Image angle
- Focus width
- Smooth
- Acoustic power
- Elastosonography
- EdgeEnhance

- VShear
- NeedleEnhance
- SGC
- Strain
- Stress Echo
- Zone Image
- Multi Doppler
- ECG

6.2 M Mode

- New patient
- BodyPattern
- Archive
- Comments
- End exam
- Report
- Sys setting
- Probe&App
- Maps
- Dynamic range
- Acoustic power
- Sweep speed
- Gray filter
- VSharpen
- ECG
- Display Format
- Curved MAM

6.3 CF mode

- New patient
- BodyPattern
- Archive

- Comments
- End exam
- Report
- Sys setting
- Probe&App
- Invert
- Full Screen
- L/R
- U/D
- Baseline
- Flash Reduction
- Line density
- Persistence
- Display format
- Sync display
- Transparency
- Image reference
- Maps
- Frequency
- PRF
- Wall filter
- Packet size
- Colorlevel
- Sensitivity
- Focus position
- Acoustic power
- Smooth
- VLuminious Flow

6.4 PW/CW mode

- New patient
- BodyPattern
- Archive

- Comments
- End exam
- Report
- Sys setting
- Probe&App
- Invert
- Triplex
- Display format
- Sweep speed
- Gray filter
- Dynamic range
- Trace sensitive
- Mode/direction
- Maps
- Frequency
- PRF
- Wall filter
- Baseline
- Steer
- Audio Volume
- Spectrum optimize
- Acoustic power
- ECG
- AMAS
- Heart Cycle

6.5 3D mode

- Comments
- BodyPattern
- Probe&App
- Back to 2D
- Start3D
- Render

- Display format
- Image reference
- View
- Map
- VSpeckle
- Quality
- Threshold
- Transparency
- Volume angle
- Auto rotate (after data acquisition)
- Movement step (after data acquisition)
- Slice number (after data acquisition)
- Speed(after data acquisition)
- Rotation angle (after data acquisition)
- Rotation direction
- 3D Mcut(after data acquisition)
- Magic Cut (after data acquisition)
- Free View(after data acquisition)
- Smart Touch 3D/4D
 operation(after data acquisition)
- Fix ROI
- Flip
- Render
- MagicCut
- Vocal
- Follicle
- Free View
- Niche View
- VNavln

- 3D Mesh
- Light Lab

6.6 4D mode

- Comments
- Body Pattern
- Probe&App
- Back to 2D
- Start 4D
- Rotation direction
- Render
- Display format
- Image reference
- View
- Map
- VSpeckle
- Quality
- Threshold
- Transparency
- Volume angle
- Slice position(after data acquisition)
- 3DMcut(after data acquisition)
- Smart touch 3D/4D
 operation(after data acquisition)
- Fix ROI
- Flip
- Render

7. System Feature

7.1 Display modes

- Simultaneous capability
 - 2D/PW/CW
 - 2D/PW/CF or PDI
 - 2D/CF or PDI
 - 2D/M
 - Dual, 2D/2D
 - Dual, 2D/2D+CF or PDI
 - Dual, duplex and triplex
 - Duplex and Triplex mode
 - Quad display in 3D/4D

application

- Time line display
 - Independent dual 2D/PW or

CW

Timed based sweep update

mode

7.2 Display annotation

- Institution/hospital name
- Date: 3 types selectable,

Year-Month-Day, Day-Month-Year,

Month-Day-Year

- Time: 2 types selectable,
- 24hours and 12 hours
- Operator identification
- Patient name

First Name, Middle Name, Family Name

• Patient identification: 20

characters

- Gestational age from LMP/BBT/DOC/IVF/GA/Avg.US
- VINNO image symbol: Ginkgo leaf
- Power output index
 - MI: mechanical index
 - TIS: thermal index soft tissue
 - TIC: thermal index

cranial (Bone)

• TIB: thermal index

bone

- Probe orientation marker:
 coincide with a probe orientation
 marking on the probe
- Gray/color bar
- Measurement result window
- Probe type
- Application name
- Image depth
- Imaging parameters by mode
- 2D/M mode: acoustic power output, gain, frequency, frame rate, dynamic range
- Color mode: color acoustic power output, color gain, color flow frequency, PRF, wall filter
- PW/CW mode: Doppler acoustic power output, Doppler gain, Doppler frequency, PRF, wall filter, sample depth
- Scanline Gain
 Compensation(SGC) with 8 slides
 adjustment
- Focus zone marker

- Body pattern
- PW and CW scale markers: time/speed
- M scale markers: time/depth, time
- System measurement display
- System message display
- Biopsy guide line
- Heart rate

7.3 Simple User Operation Interface

• Simple user interface and easy workflow, allows one step on probe & application switch, and intuitive user parameter control

7.4 Cineloop

- Acquisition, storage in memory and display of up to 30000 frames, 1500 seconds long of 2D, color and PW/CW images for review
- Avaliable to decide StartFrame and EndFrame
- Frame by frame manual cine loop review or auto playback with variable speed:
 400%, 200%, 100%, 60%, 50%,40%, 20%
- Frame compare: displays one cine in dual format and allows frame by frame compare side by side
- Acquisition, storage, measurements and replay

7.5 Quick save feature

- The system provides quick save function through USB stick, internal/external HDD, DVD during or after exam
- Configurable saving file format, VRD (VINNO Raw Data), DICOM, PNG,BMP, JPG, MP4 and AVI

7.6 Physio(optional)

- One 3-lead ECG input
- Gain, sweep rate and display position controls
- Automatic heart rate calculation and display
- Fault condition display

7.7 Archive

- Patient data input which include patient ID, name, birth date, sex, exam physician, quality check, exam operator
- Physical data such as weight, height
- Patient exam management
- Patient exam images storage and management
- Import VRD format data into

the system from outside media, such as USB stick, external HDD, DVD

Export patient data into outside medias

7.8 Report

- Automatically pull patient data into the report
- Automatically load measurement worksheet into the report
- Pull related exams' images into the report
- Write comments in the report
- Print report through network or local printer

7.9 Connectivity

- Standard connectivity features
- Local print to on-board or off-board video printers through USB port
 - Page report print
- Image export to removable media (DVD, external HDD, USB stick)
- Ethernet Network Connection
 - Cable connection
 - Wireless connection: need

wireless routing adaptor

- Network linkage
 - Image export to

network storage servers

- DICOM export and retrieve
- Mobile data transfer solution by
 - Blue tooth(optional)
 - email(optional)
 - Hot point connection
- VCloud
- Integrated DVDRW
- Support standard DVD media
- Data storage formats include VRD, DICOM, JPEG,BMP,PNG, AVI
- JPEG,BMP,PNG,VRD and DICOM images stored in disc can be recalled on the VINNO system
- PNG and AVI images can be played on normal computers
- On-board patient exam storage
- Direct digital storage of static image or cineloop images to internal hard disk drives
- Fully integrated user interface

7.10 Probes/application

- Selectable multiple applications
- Edit exist application preset
- Edit user defined preset
- Rename preset
- Return to factory preset
- Quick save user defined parameters in related application

7.11 Safety Conformance

• Regulatory Notice:

This device is tested to meet all applicable requirements in relevant.

According to Regulation (EU) 2017/745 concerning medical devices.

- Conformity to Standards:
 - IEC

IEC

60601-1:2005/A1:2012+A2:2020 Medical electrical equipment - Part 1: General requirements for basic safety and essential performance

•IEC 60601-1-2:2014/A1:2020 Medical electrical equipment - Part 1-2: General requirements for basic safety and essential performance - Collateral Standard: Electromagnetic disturbances - Requirements and tests

60601-1-6:2010/A1:2013+A2:2020 Medical electrical equipment - Part 1-6: General requirements for basic safety and essential performance - Collateral standard: Usability

- IEC 60601-2-37:2007/A1:2015

 Medical electrical equipment Part
 2-37: Particular requirements for the
 basic safety and essential performance
 o f ultrasonic medical diagnostic and
 monitoring equipment
- IEC 61157:2007/A1:2013 Standard means for the reporting of the acoustic output of medical diagnostic ultrasonic

equipment

- ISO 10993-1:2018 Biological evaluation of medical devices Part 1: Evaluation and testing within a risk management process
- IEC 62304:2006/A1:2015 Medical device software Software life-cycle processes
- IEC 62366-1:2015/A1:2020 Medical devices - Application of usability engineering to medical devices
 - WEEE according to 2012/19/EU
 - RoHS according to 2011/65/EU

8. Measurement and Analysis

8.1 Measurement in different modes

8.1.1 Generic Measurement in 2D mode

- Depth
- Distance
- Perimeter
 - Length and width method
 - Ellipse method
 - Polygon method
 - Spline method
 - Tracing method
- Area

(*)Optional features

• Length and width

method

- Ellipse method
- Polygon method
- Spline method
- Tracing method
- Volume
 - Single line method
 - Dual line method
 - Triple line method
 - Single ellipse method
 - Single ellipse and single line

method

- Trace&H
- Angle
- PolyLine
- TwoLine
- Stenosis
 - Diam
 - Area
- A and B ratio
 - Diam
 - Area

8.1.2 Generic Measurement in CFM

mode

- CFVP
- point
- profile

8.1.3 Generic Measurement in M

mode

- Depth
- Distance
- Time
- Slope(Velocity)
- Heart rate
- Stenosis
- A and B ratio
 - Diameter ratio
 - Time ratio
 - Speed ratio

8.1.4 Generic Measurement in PW mode

- Methods: Manual, Semi-Automatic, Automatic, Real-Time Automatic
- Velocity
- Peak Velocity
- Time
- Acceleration
- PS (Peak Speed in systole period)
- ED (The speed in the end of diastole period)
- MD (Minimum speed in diastole period)
- Mean Vel(Max Mode) (maximum speed in time average)
- PI (Pulsatility Index)
- RI (Resistance Index)
- PS and ED ratio
- ED and PS ratio
- A and B ratio (A/B ratio)

- Speed ratio
- Time ratio
- FLOWVOL (Flow Volume)
- MaxPG (maximum pressure gradient)
- MeanPG (Mean pressure gradient)
- SV (Stroke Volume)
 - Each volume diameter

cardiac

• Time mean speed in each

stroke volume

- Cardiac output
- Heart rate
- SV(LVOT)/SV(RVOT)

8.2 Measurement in different

applications

8.2.1 Abdominal Measurement

- General abdomen
- Difficult abdomen
- Kidney
- Renal vessel
- Abdominal trauma

8.2.2 Small Part Measurement

- Thyroid
- Breast
- Testis
- Musculoskeletal
- Upper and lower extremity joint

Nerve block

8.2.3 Vessel Measurement

- Carotid artery
- Upper artery
- Upper vein
- Lower artery
- Lower vein
- Vessel puncture
- Transcranial Doppler

8.2.4 Gynecology Measurement

- Uterus and Plevic
- Follicle

8.2.5 Urology Measurement

- Bladder
- Prostate
- Renal
- Kidney and ureter
- Pelvic Floor dysfunction

8.2.6 Pediatric Measurement

- Neonatal Head
- Neonatal Abdomen
- Pediatric Abdomen
- Pediatric Hip

8.2.7 Obstetrics Measurement

- OB Early
- OB Mid
- OB Late

• Fetal Heart

8.2.8 Cardiac Measurement

- General
- LV
- MV
- Ao
- LA
- RV
- TV
- PA
- RA

8.2.9 Auto NT (Nuchal Translucency)

measurement

- Automatically detect Nuchal Translucency in interest box
- Automatically report thickness result of NT

8.2.10 Auto IMT (Intima-Media

Thickness) measurement

- Automatically detect intima media thickness in interest box
- Automatically report the result of IMT
- Available in linear probe

8.2.11 Live IMT (Intima-Media

Thickness) measurement

 Real-time automatically display IMT items with the different ROI positions

- The IMT items include: max, min, average, SD, points (how many points are used for the result), size of ROI.
- Available in carotid application

8.2.12 Auto IT (Intracranial translucency) measurement

- Support Auto IT(Intracranial translucency) measurement
- Draw the ROI and the system analyses and displays the result

8.2.13 Auto Follicle(2D/3D)(optional)

- Just click on the area of follicle in B mode, the area of this follicle will be reported automatically
- Report the area of different follicle in the volume data automatically

8.2.14 Smart 3D Volume

Measurement(*)

(optional)

- Trace the margin of the irregular circle in different slices of volume data in irregular shape
- Automatically report the volume of the irregular object

8.2.15 VAim OB measurement

• VAim OB is an intelligent tool for fetal growth calculation, just one touch to activate the measurement items (BPD, OFD, HC, AC, FL, HL) and get the results,

helps to make clinical decisions quickly and confidently, improving the speed and ease of exams

• The intelligent results will be add into the worksheet and report automatically

8.2.16 VAim Hip measurement

VAim Hip is an intelligent solution in the assessment of DDH(Developmental Dysplasia of Hip) with one simple touch.

Based on 'Ped HIP'application

8.2.17 VAim Follicle(2D) measurement

An intelligent tool for follicle calculation, one touch to get the follicle status,

dedicated for women's reproductive health.

- · Choose left or right follicle
- Automatically identity all the follicles with different colors and calculate follicle volume and diameter

8.2.18 VAid Breast(*) (optional)

VAid Breast is an automatic tool for breast lesion detection in real-time or on stored images (static & cine)

- For static image: Depicts boundaries of the Breast lesions and displays the size
- For cine(real time scan or stored cine):The number and position of the Breast lesion can be indicated in real

32

time.

8.2.19 VAid Liver(optional)

VAid_Liver is a tool for Liver lesion detection in real-time or on stored images (static & cine)

- For static image: Depicts boundaries of the liver lesions and displays the size
- For cine(real time scan or stored cine): The number and position of the Liver lesion can be indicated in real time.

8.2.20 VAid Thyroid(optional)

VAid Thyroid is a tool for Thyroid lesion detection in real-time or on stored images (static & cine)

- For static image: Depicts boundaries of the thyroid lesions and displays the size
- For cine(real time scan or stored cine): The number and position of the Thyroid lesion can be indicated in real time.

8.2.21 VMind OB(optional)

A breakthrough obstetric screening method

- It detects and saves standard images in real-time based on ISUOG practice guideline
- The recognition accuracy can be displayed, green indicates high recognition accuracy

- Available on First, Second trimester and fetal heart applications
- Standard version: totally 12 standard planes, including 4 planes in First trimester

8.2.22 Auto EF(*)

Auto EF is a tool for calculating the ejection farction.

- Tracing the endocardium in apical four-chamber view and apical two-chamber view.
- The volume is calculated using Simpson's Method
- The biplane ejection fraction can be calculated

VINNO Technology (Suzhou) Co., Ltd

VINNO is focusing on producing premium diagnostic ultrasound development to provide customer clinical value through Continuous Innovation, Excellent Performance and Accessible Solutions.

Thanks you for your interest in VINNO.

You can contact us by phone and email (below) or contact our local representatives.

₱ 5F, A Building, NO.27 Xinfa Rd, Suzhou Industrial Park, 215123, China(215.6123)

C Tel: +86 512 62873806

♠ Fax: +86 512 62873801

email address: vinno@vinno.com

website: www.vinno.com