

Kiwa GmbH, Polymer Institut, Quellenstraße 3, 65439 Flörsheim

Bitarel GmbH Steubenstraße 8 34121 Kassel Kiwa GmbH Polymer Institut Quellenstraße 3 65439 Flörsheim

T: +49 (0) 6145 597 - 10 F: +49 (0) 6145 597 - 19 E: polymer-institut@kiwa.de

www.kiwa.de

The accreditation is valid for tests listed in annex of certificate D-PI -11217-01-01

Test report

project: P 11577-E

order: Tests on Bitarel Typ N2 according to DIN EN 14188-1

sample description: hot applied joint sealant

order date: 2018-07-13

sampling or sample

receipt date:

2019-02-09

test period: 2019-09-16 – 2019-10-10

This test report

comprises:

7 pages

Flörsheim, 2019-12-05

i. V. Dipl.-Ing. (FH) N. Machill

head of institute

i. A. K. Hippler person in charge

CONTENTS

1	SUBJECT	3
2	RECEIPT OF SAMPLES	3
3	TESTS	3
3.1	Preparation of samples for testing	4
3.2	Ring and ball method	4
3.3	Density	4
3.4	Cone penetration	4
3.5	Resilience	4
3.6	Flow resistance	4
3.7	Compatibility with asphalt pavements	4
3.8	Preparation of the test specimens	4
3.9	Determination of discontinuous extension	5
3.10	Determination of adhesion and cohesion following continuous extension and compression	5
4	RESULTS	6
5	SHIMMERY	7

1 SUBJECT

Polymer Institute was charged by Bitarel GmbH, Minsk (BY), to carry out tests of the hot applied joint sealant

Bitarel Typ N2

in accordance with **DIN EN 14188-1:2004-04** "Joint fillers and sealants – Part 1: Specification for hot applied sealants".

2 RECEIPT OF SAMPLES

The following samples were delivered to Polymer Institute on 09-02-2019:

Overview 1: receipt of samples

no. 11577	material	description	batch	quantity	
1	Bitarel Typ N2	hot applied joint sealant	3	ca.5 kg	

3 TESTS

The test program is summarized in the following overview.

Overview 2: test program

test	test method	standards
Preparation of samples for testing	DIN EN 13880-6	04-2004
Bitumen and bituminous binders - Determination of the softening point - Ring and Ball method	DIN EN 1427	09-2015
Test method for the determination of density at 25 °C	DIN EN 13880-1	11-2003
Test method for the determination of cone penetration at 25 °C	DIN EN 13880-2	11-2003
Test method for the determination of penetration and recovery (resilience)	DIN EN 13880-3	09-2003
Test method for the determination of heat resistance - cone penetration - resilience	DIN EN 13880-4	09-2003
Test method for the determination of flow resistance	DIN EN 13880-5	08-2004
Test method for the determination of compatibility with asphalt pavements	DIN EN 13880-9	08-2013
Determination of discontinuous extension, with water immersion	DIN EN 13880-13	08-2018
Determination of adhesion and cohesion following continuous extension and compression	DIN EN 13880-10	07-2018

3.1 Preparation of samples for testing

The preparation of samples was determined in accordance with DIN EN 13880-6 - "Hot applied joint sealants - Part 6: Method for the preparation of samples for testing".

3.2 Ring and ball method

The softening point was determined in accordance with DIN EN 1427 "Bitumen and bituminous binders - Determination of the softening point - Ring and Ball method".

3.3 Density

The density was determined in accordance with DIN EN 13880-1 – "Hot applied joint sealants - Part 1: Test method for the determination of density at 25 °C".

3.4 Cone penetration

The cone penetration was determined in accordance with DIN EN 13880-2 – "Hot applied joint sealants - Part 2: Test method for the determination of cone penetration at 25 °C".

Heat resistance: The specimens was stored at 70°C for 7d.

3.5 Resilience

The penetration and recovery were determined in accordance with DIN EN 13880-3 – "Hot applied joint sealants - Part 3: Test method for the determination of penetration and recovery (resilience)".

Heat resistance: The specimens was stored at 70°C for 7d.

3.6 Flow resistance

The flow resistance was determined in accordance with DIN EN 13880-5 – "Hot applied joint sealants - Part 5: Test method for the determination of flow resistance".

Heat resistance: The specimens was stored at 70°C for 7d.

3.7 Compatibility with asphalt pavements

The compatibility with asphalt pavements was determined in accordance with DIN EN 13880-5 - "Hot applied joint sealants - Part 9: Test method for the determination of compatibility with asphalt pavements".

3.8 Preparation of the test specimens

processing temperature: 160 °C - 170 °C

substrates: mortar prisms (250 x 60 x 30) mm³ with sealant dimension

(200 x 30 x 15) mm³ for EN 13880-13

mortar prisms (75 x 50 x 50) mm³ with sealant dimension

(24 x 50 x 50) mm³ for EN 13880-10

3.9 Determination of discontinuous extension

The discontinuous extension was determined in accordance with DIN EN 13880-13 "Hot applied joint sealants – Part 13: Test method for the determination of the discontinuous extension, with water immersion (adherence test)" at -20 °C.

3.9.1 Test parameters

test apparatus: universal test machine 1445, Zwick, according ISO 5893

storage: 2 specimens for 14d in H₂O and 6 h at -20 °C

total extension: 5 mm (33 %)

test temperature: -20 °C

test procedure: discontinuous test according to EN 13880-13

3.10 Determination of adhesion and cohesion following continuous extension and compression

The adhesion and cohesion following continuous extension and compression was determined in accordance with DIN EN 13880-10 "Hot applied joint sealants – Part 10: Test method of the determination of adhesion and cohesion following continuous extension and compression" at 0 °C.

3.10.1 Test parameters

test apparatus: universal test machine 1445, Zwick, according ISO 5893

storage: 3 specimens for 6 h at 0 °C

total extension: 18 mm (75 %)

test temperature: 0 °C

test procedure: continuous test according to EN 13880-10

4 RESULTS

The summary of the results in chapter 3 can be found in the following table:

Table 1: test results

	unit	other parameters	require- ment*	result	
test				single value	mean value
homogenity	ı	-	homo- genous	homogenous	
softening point - Ring and Ball method	°C	-	≥ 85 °C	89,0; 89,5	89,5
density at 25 °C	g•cm ⁻³	-	Ü.H. ⁶	1,145; 1,155; 1,155	1,152
cone penetration at 25 °C	1/10 mm	-	40 – 100	84; 84; 83	84
penetration and recovery (resilience)	mm mm %	P ¹ F ² res ³	≤ 60 %,	1,3; 0,8; 1,0 5,8; 5,1; 5,5 55; 58; 55	1,0 5,5 56
heat resistance - cone penetration	1/10 mm	-	40 – 100	98; 94; 98	97
flow resistance					
before and	mm	-		0; 0	0
after 7d 70°C				1; 1	1
heat resistance - resilience	mm mm %	P ¹ F ² res ³	≤ 60 %,	1,4; 1,4; 1,4 6,5; 6,2; 6,3 50; 52; 51	1,4 6,3 51
compatibility with asphalt pavements	-	-after 24 h -after 48 h -after 72 h	no adhesion failure no exudetion	no alteration	no alter- ation

sequel table 1: test results

	unit other		require- ment*	result	
test		other parameters		single value	mean value
	N/mm ²	maximum tension	≤ 0.75	0.40; 0.39	0.40
bonding		adhesion failure			
strength (discontinuous	mm²	-separation block face	none	none	none
method) after	mm	-depth of separation	none	none	none
water immersion		cohesion failure			
at -20 °C	mm²	-totally superficial area of cracks	none	none	none
	mm	-depth of cracks	none	none	none
	N/mm ²	maximum tension	≤ 0.48	0.07; 0.07; 0.09	0.08
		adhesion failure			
cohesion	mm²	-separation block face	< 50	none	none
(continuous	mm	-depth of separation	< 3	none	none
test) at 0 °C		cohesion failure			
	mm²	-totally superficial area of cracks	< 20	none	none
	mm	-depth of cracks	<3	none	none

5 **SUMMERY**

Polymer Institute was carried out tests of the hot applied joint sealant

Bitarel Typ N2

according to DIN EN 14188-1.

The test results are in conformity with DIN EN 14188-1.

^{*}according to EN 14188-1

¹ penetration at the beginning

² penetration at the end

³ resilience