DNV-GL

KEMA REPORT OF PERFORMANCE

1087-16

Object Heat shrinkable outdoor termination

Type MZDWK-3-15-C

8,7/15 (17,5) kV - 3 x 185 mm² - Cu - XLPE

Client Jiangsu Jiameng Electrical Equipment Co., Ltd. (MELEC),

Qidong, China

Manufacturer Jiangsu Jiameng Electrical Equipment Co., Ltd. (MELEC),

Qidong, China *)

Tested by KEMA Nederland B.V.,

Arnhem, The Netherlands

Date of tests 16 November 2015 to 25 May 2016

Test specification The tests have been carried out in accordance with IEC 60502-4 (2010),

subclause Table 6 (test sequence 1.1. and 1.2).

Summary and conclusion

The object has complied with the relevant requirements of the standard.

This report applies only to the object tested. The responsibility for conformity of any object having the same type references as that tested rests with the Manufacturer.

*) as declared by the manufacturer

This report consists of 72 pages in total.

KEMA Nederland B.V.

J.P. Fonteijne

Executive Vice President

KEMA Laboratories

Laboratories

Arnhem, 22 June 2016

INFORMATION SHEET

1 KEMA Type Test Certificate

A KEMA Type Test Certificate contains a record of a series of (type) tests carried out in accordance with a recognized standard. The object tested has fulfilled the requirements of this standard and the relevant ratings assigned by the manufacturer are endorsed by DNV GL. In addition, the object's technical drawings have been verified and the condition of the object after the tests is assessed and recorded. The Certificate contains the essential drawings and a description of the object tested. A KEMA Type Test Certificate signifies that the object meets all the requirements of the named subclauses of the standard. It can be identified by gold-embossed lettering on the cover and a gold seal on its front sheet.

The Certificate is applicable to the object tested only. DNV GL is responsible for the validity and the contents of the Certificate. The responsibility for conformity of any object having the same type references as the one tested rests with the manufacturer.

Detailed rules on types of certification are given in DNV GL's Certification procedure applicable to KEMA Laboratories.

2 KEMA Report of Performance

A KEMA Report of Performance is issued when an object has successfully completed and passed a subset (but not all) of test programmes in accordance with a recognized standard. In addition, the object's technical drawings have been verified and the condition of the object after the tests is assessed and recorded. The report is applicable to the object tested only. A KEMA Report of Performance signifies that the object meets the requirements of the named subclauses of the standard. It can be identified by silver-embossed lettering on the cover and a silver seal on its front sheet.

The sentence on the front sheet of a KEMA Report of Performance will state that the tests have been carried out in accordance with The object has complied with the relevant requirements.

3 KEMA Test Report

A KEMA Test Report is issued in all other cases. Reasons for issuing a KEMA Test Report could be:

- Tests were performed according to the client's instructions.
- Tests were performed only partially according to the standard.
- No technical drawings were submitted for verification and/or no assessment of the condition of the object after the tests was performed.
- The object failed one or more of the performed tests.

The KEMA Test Report can be identified by the grey-embossed lettering on the cover and grey seal on its front sheet.

In case the number of tests, the test procedure and the test parameters are based on a recognized standard and related to the ratings assigned by the manufacturer, the following sentence will appear on the front sheet. The tests have been carried out in accordance with the client's instructions. Test procedure and test parameters were based on If the object does not pass the tests such behaviour will be mentioned on the front sheet. Verification of the drawings (if submitted) and assessment of the condition after the tests is only done on client's request.

When the tests, test procedure and/or test parameters are not in accordance with a recognized standard, the front sheet will state the tests have been carried out in accordance with client's instructions.

4 Official and uncontrolled test documents

The official test documents of DNV GL are issued in bound form. Uncontrolled copies may be provided as a digital file for convenience of reproduction by the client. The copyright has to be respected at all times.

TABLE OF CONTENTS

1	Identification of the object tested	5
1.1	Description of the outdoor termination	5
1.2	Description of the MV cable	6
1.3	List of documents	8
2	General information	9
2.1	The tests were witnessed by	9
2.2	The tests were carried out by	9
2.3	Reference to other reports	9
2.4	Purpose of test	9
2.5	Measurement uncertainty	9
2.6	Instruments used	9
3	Test sequence table 5 column 1.1 (two outdoor terminations)	10
3.1	Test arrangement	10
3.1.1	Determination of the cable conductor temperature	10
3.2	Photograph of test set-up	11
3.3	DC voltage dry test	13
3.4	AC voltage dry test	14
3.5	AC voltage wet test	15
3.6	Partial discharge test at ambient temperature	16
3.7	Impulse voltage test at elevated temperature	17
3.8	Heating cycle voltage tests in air	20
3.9	Immersion	21
3.10	Partial discharge test at elevated temperature	22
3.11	Partial discharge test at ambient temperature	23
3.12	Impulse voltage at ambient temperature	24
3.13	AC voltage dry test	38
3.14	Examination	39
4	Test sequence table 5 column 1.2 (one outdoor termination)	42
4.1	Test arrangement	42
4.1.1	Determination of the cable conductor temperature	42
4.2	DC voltage dry test	43
4.3	AC voltage dry test	44
4.4	Thermal short-circuit test (screen)	45
4.4.1	Test circuit	46
4.4.2	Test results and oscillograms	47
4.5	Thermal short-circuit test (conductor)	49
4.5.1	Test circuit	50
4.5.2	Test results and oscillograms	52

KEMA I	_aboratories	-4-	1087-16
4.6	Impulse voltage test at ambient temper	ature	55
4.7	AC voltage dry test		62
4.8	Examination		63
5	Parts list and installation instruction		65
6	Measurement uncertainty		72

IDENTIFICATION OF THE OBJECT TESTED 1

Description of the outdoor termination 1.1

Manufacturer (as stated by the client) Jiangsu Jiameng Electrical Equipment Co., Ltd. (MELEC),

Qidong, China

MZDWK-3-15-C Type

Manufacturing year 2015

Rated voltage, U₀/U (U_m) 8,7/15 (17,5) kV

XLPE Cable type three-core power cable Dynamic short circuit claimed no No. of cores 3

185 mm² Cross section conductor Outer diameter of the insulation cable tested 25,8 mm

Construction see List of documents

Electric field stress-control (core-XLPE) type

Stress control insulation

Earth screen

one earth screen cable connected with three force

yellow semi-conducting tape

one heat-shrink tube per phase

springs

earth screen cable for armouring connected with force Armour screen

spring (insulated from earth screen)

Insulation break out heat shrink three phases breakout

Outersheath each phase heat-shrink tube track resistrant tube

Connector type crimped cable lug Colour markers red, yellow, green

Sheds total 3 shed per phase distance 100 mm

Solid cable lug DDT185-16

Hydraulic crimping tool JM-240B, DT25 (crimping die)

1.2 **Description of the MV cable**

Standard IEC 60502-2, Clause 5-14

Manufacturer Jiangsu Far East Cable Co., Ltd.,

Yixing, China

Type YJV22-8.7/15-3x185

Manufacturing year 2015

Rated voltage, U_0/U (U_m) 8,7/15 (17,5) kV

No. of cores

Core identification core 1 = red

core 2 = yellow core 3 = green

Overall diameter 70,4 mm

Marking on the oversheath YJVZZ 8,7/15 kV 3x 185 YK06-00038-No 414120303

Construction see List of documents

Conductor

material copper cross-section 185 mm² nominal diameter 16,1 mm type stranded maximum conductor temperature in 90 °C

normal operation

presence and nature of measures to no

achieve longitudinal watertightness

Conductor screen

material semi-conducting shielding material

nominal thickness 0,6 mm

material designation peroxide crosslinking type semi conductive inner

shielding material

• manufacturer of the material Jiangsu Dongfang Cable Material Co., Ltd.,

Yangzhou, China

Insulation

material XLPE
 nominal thickness 4,5 mm
 nominal inner diameter of the insulation 16,8 mm
 nominal outer diameter of the insulation 25,8 mm

material designation cross-linked polyethylene

manufacturer of the material
 Zhejiang Wanma Macromolecule Material Co., Ltd.,

Lin'an, China

KEMA Laboratories -7- 1087-16

Insulation (core) screen

material semi-conducting shielding material

strippable yesnominal thickness 0,6 mm

material designation
 peroxide crosslinking type semi conductive inner

shielding material

manufacturer of the material
 Jiangsu Dongfang Cable Material Co., Ltd.,

Yangzhou, China

Inner coverings and fillers

material yes, extruded sheath

Longitudinally watertightness

 presence and nature of measures to achieve longitudinal watertightness along insulation screen no

Metal screen

material copper tape

nominal thickness and width of tape $0.1 \times 35 \text{ mm}$ (overlap 15%)

cross-sectional area approx. 8,5 mm²

Longitudinally watertightness

 presence and nature of measures to achieve longitudinal watertightness along insulation screen no

Inner coverings and fillers

material yes, extruded sheath

Separation sheath

materialPVC, (type: ST2)

nominal thickness
 1,8 mm

• manufacturer of the material Changshu Zhonglian Photoelectric New Material Co.,

Ltd.,

Changshu, China

Metal armour

material two steel tapes

nominal thickness and width of tape 0,5 x 45 mm (overlap: 50%)

manufacturer of the material
 Yixing Tongsheng Metal Strip Co., Ltd.,

Yixing, China

Oversheath

material
 PVC, (type: ST2)

nominal thickness 3,3 mm
 nominal overall diameter of the cable 70,4 mm

(D)

material designation

PVC

manufacturer of the material
 Changshu Zhonglian Photoelectric New Material Co.,

Ltd.,

Changshu, China

colour blackgraphite coating applied no

Fire retardant (according to IEC 60332-1) no

Manufacturing details insulation system

location of manufacturing
 Yixing, China

type of extrusion line CCV

type of extrusion triple common extrusion
 manufacturer of the extrusion line Troester GmbH & Co. KG.,

Hannover, Germany

curing means Chemical cross linking cooling means nitrogen cooling

manufacturing length (where cable 2000 m

sample for testing has been taken from)

length markings on cable sample sent begin: 0 m, end: 800 m

to KEMA

1.3 List of documents

The manufacturer has guaranteed that the object submitted for tests has been manufactured in accordance with the following drawings and/or documents. KEMA Laboratories has verified that these drawings and/or documents adequately represent the object tested. The manufacturer is responsible for the correctness of these drawings and/or documents and the technical data presented.

The following drawings and/or documents have been included in this report:

Drawing no./document no. Revision
T8MZDWK-3-15-C (outdoor termination parts list) 2 pages 2015-06-25

Installation instruction for 15 kV terminations (5 pages) -

2 GENERAL INFORMATION

2.1 The tests were witnessed by

Name

Kevin Dai (16, 17 November 2015) Zhangjie Tang (25 May 2016) Xuexiang Jiang (25 May 2016) Ivy Cao (25 May 2016)

Company

Jiangsu Jiameng Electrical Equipment Co., Ltd. (MELEC), Qidong, China

2.2 The tests were carried out by

Name

John Mooren Edwin Pultrum Rutger Hensbroek Julian Aditya

Company

KEMA Nederland B.V., Arnhem, The Netherlands

2.3 **Reference to other reports**

Report No

1267-16

Tests performed

KEMA report of performance

Heat shrinkable outdoor termination

2.4 **Purpose of test**

Purpose of the test was to verify whether the material complies with the specified requirements.

2.5 Measurement uncertainty

A table with measurement uncertainties is enclosed in this report. Unless otherwise stated, the measurement uncertainties of the results presented in this report are as indicated in that table.

2.6 Instruments used

A detailed list with instruments used is enclosed in this report.

3 TEST SEQUENCE TABLE 5 COLUMN 1.1 (TWO OUTDOOR TERMINATIONS)

3.1 **Test arrangement**

3.1.1 Determination of the cable conductor temperature

Standard

Standard IEC 61442, Subclause 8

For the tests at elevated temperature, a reference loop for temperature control of the conductor was installed and conductor current was used for heating. The reference cable was cut from the total cable length intended for the type test. This reference loop was installed close to the test loop in order to create the same environmental conditions as for the test loop.


The heating currents in the reference loop and the test loop were kept equal at all times, thus the conductor temperature of the reference loop is representative for the conductor temperature of the test loop. Annex A was used as a guide and Annex A, Subclause A.3.3, method 3 was applied.

The tests at elevated temperature are carried out after the conductor temperature has been within the stated limit for at least 2 hours.

3.2 **Photograph of test set-up**

Test set up main loop first 30 cycles.

Test set up main loop joint in water 30 cycles

Cable oversheath removed according clause 9.3 of IEC 61442.

Test set up outdoor termination in immersion test 10 cycles

3.3 DC voltage dry test

Standard and date

Standard IEC 60502-4, table 5, test 1

Test date(s) 16 November 2015

Environmental conditions

Ambient temperature 22 °C Temperature of test object 22 °C

Testing arrangement	DC voltage applied		Duration	
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1, 2 and 3 of test loop 1	Metal screens	4	35	15
Conductor 1, 2 and 3 of test loop 2	Metal screens	4	35	15

Requirement

No breakdown of the insulation shall occur.

Result

3.4 AC voltage dry test

Standard and date

Standard IEC 60502-4, table 5, test 1

Test date(s) 16 November 2015

Environmental conditions

Ambient temperature 22 °C Temperature of test object 22 °C

Testing arrangement	Voltage applied, 50 Hz		Duration	
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1, 2 and 3 of test loop 1	Metal screens	4,5	39	5
Conductor 1, 2 and 3 of test loop 2	Metal screens	4,5	39	5

Requirement

No breakdown of the insulation shall occur.

Result

3.5 AC voltage wet test

Standard and date

Standard IEC 60502-4, table 5, test 1

Test date(s) 16 November 2015

Environmental conditions

Ambient temperature 22 °C

Characteristic test data

Testing arrangement		Voltage applie	ed, 50 Hz	Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1, 2 and 3 of test loop 1	Metal screens	4	35	1
Conductor 1, 2 and 3 of test loop 2	Metal screens	4	35	1

Requirement

No breakdown or flashover shall occur.

Result

3.6 Partial discharge test at ambient temperature

Standard and date

Standard IEC 60502-4, table 5, test 2

Test date(s) 17 November 2015

Environmental conditions

Ambient temperature 21 °C

Characteristic test data

Temperature of test object	21 °C
Circuit	direct
Calibration	5 pC
Noise level at 1,73 U ₀	1 pC
Sensitivity	2 pC
Required sensitivity	≤ 5 pC
Centre frequency	300 kHz
Bandwidth	150-450 kHz
Test frequency	50 Hz
Coupling capacitor	2600 pF

Conductor	Voltage app	lied, 50 Hz	Duration	Partial discharge level
	x U ₀	(kV)	(s)	(pC)
1 of	2,5	22	10	-
test loop 1	1,73	15	-	not detectable
2 of	2,5	22	10	-
Test loop 1	1,73	15	-	not detectable
3 of	2,5	22	10	-
test loop 1	1,73	15	-	not detectable
1 of	2,5	22	10	-
test loop 2	1,73	15	-	not detectable
2 of	2,5	22	10	-
test loop 2	1,73	15	-	not detectable
3 of	2,5	22	10	-
test loop 2	1,73	15	-	not detectable

Requirement

The maximum partial discharge level from the test object at 1,73 U_0 shall not exceed 10 pC.

Result

3.7 Impulse voltage test at elevated temperature

Standard and date

Standard IEC 60502-4, table 5, test 3

Test date(s) 15 December 2015

Environmental conditions

Ambient temperature 20 °C

Characteristic test data

Temperature of test object 97 °C Specified test voltage 95 kV

Testing arrangement		Polarity	Voltage applied	No. of impulses	See figure on next pages
Voltage applied to	Earthed		(% of test voltage)		
Conductor 1, 2 and 3	Metal screens	Positive	50	1	1 (waveshape)
of test loop 1 and 2			65	1	2
			80	1	2
			100	10	3 and 4
Conductor 1, 2 and 3	Metal screens	Negative	50	1	5 (waveshape)
of test loop 1 and 2			65	1	6
			80	1	6
			100	10	7 and 8

Requirement

Each core of the cable and accessory shall withstand without failure 10 positive and 10 negative voltage impulses.

Result

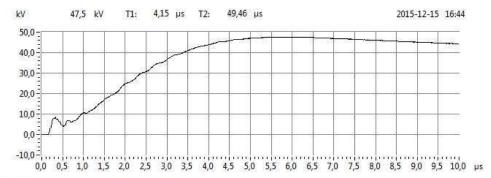


Fig. 1: Waveshape 72124900 Main loop 50% of test voltage

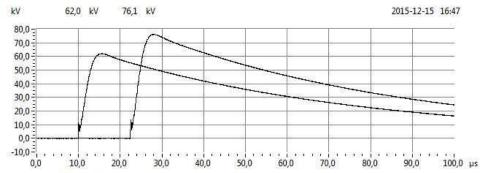


Fig. 2: 72124900 Main loop 65% and 80% of test voltage

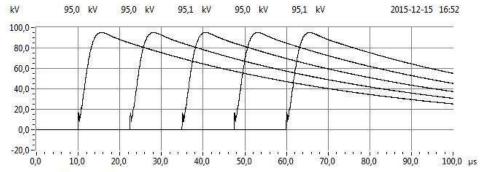


Fig. 3: 72124900 Main loop 100% of test voltage

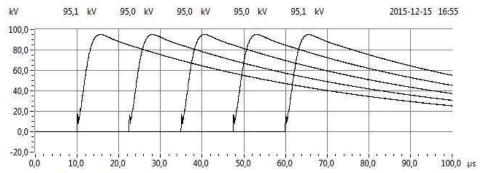


Fig. 4: 72124900 Main loop 100% of test voltage

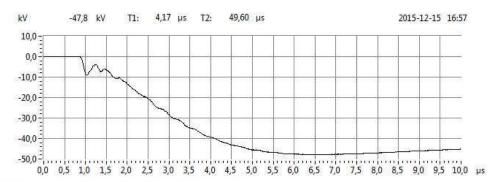


Fig. 5: Waveshape 72124900 Main loop -50% of test voltage

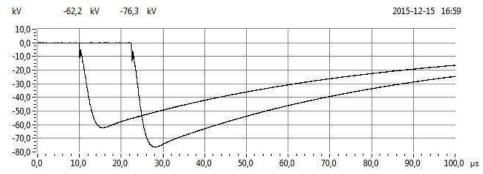


Fig. 6: 72124900 Main loop -65% and -80% of test voltage

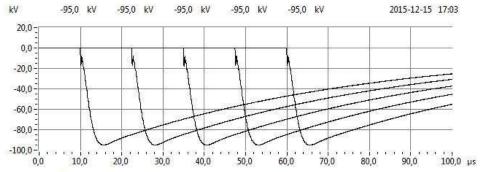


Fig. 7: 72124900 Main loop -100% of test voltage

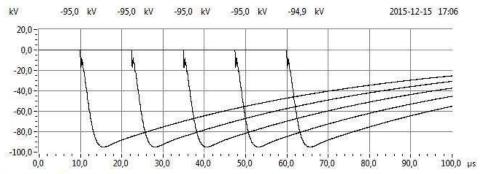


Fig. 8: 72124900 Main loop -100% of test voltage

3.8 Heating cycle voltage tests in air

Standard and date

Standard IEC 60502-4, table 5, test 4

Test date(s) 16 to 27 December 2015 and 11 to 22 January 2016

Environmental conditions

Ambient temperature 20-22 °C

Characteristic test data

Heating method conductor current
Stabilized temperature 97 °C

No. of heating- cycles	Required steady conductor temperature	Heating current at stable condition	Heating per cycle		Cooling per cycle	Voltage pe	er cycle
			Total duration	Duration of conductor at steady temperature	Total duration	Total voltage duration	Applied voltage 2,5 U ₀
	(°C)	(A)	(hours)	(hours)	(hours)	(hours)	(kV)
60	95-100	approx. 490	5	2	4	9	22

Requirement

No breakdown shall occur.

Result

3.9 Immersion

Standard and date

Standard IEC 60502-4, table 5, test 5

Test date(s) 3 to 7 February 2016

Environmental conditions

Ambient temperature 20-22 °C

Characteristic test data

Heating method conductor current
Stabilized temperature 97 °C
Height above water < 3 cm

No. of	Required	Heating current	Heating cycle		
heating	steady water	during steady	Heating		Cooling
cycles	temperature	condition	Total duration	Duration of water steady temperature	Total duration
	(°C)	(A)	(h)	(h)	(h)
10	95 - 100	approx. 490	5	2	4

Result

3.10 Partial discharge test at elevated temperature

Standard and date

Standard IEC 60502-4, table 5, test 6

Test date(s) 10 February 2016

Environmental conditions

Ambient temperature 20 °C

Characteristic test data

Temperature of test object	97 °C
Circuit	direct
Calibration	20 pC
Noise level at 1,73 U ₀	6 pC
Sensitivity	6 pC
Required sensitivity	≤ 5 pC
Centre frequency	172 kHz
Bandwidth	40 kHz
Test frequency	50 Hz
Coupling capacitor	2600 pF

Conductor	Voltage applied, 50 Hz		Duration	Partial discharge level
	x U ₀	(kV)	(s)	(pC)
Conductor 1, 2 and 3 of test loop 1 and 2	1,73	15	>10	not detectable

Requirement

The maximum partial discharge level from the test object at 1,73 U_0 shall not exceed 10 pC.

Result

3.11 Partial discharge test at ambient temperature

Standard and date

Standard IEC 60502-4, table 5, test 6

Test date(s) 17 February 2016

Environmental conditions

Ambient temperature 20 °C

Characteristic test data

20 °C Temperature of test object Circuit direct Calibration 20 pC Noise level at 1,73 U₀ 2 pC Sensitivity 4 pC Required sensitivity ≤ 5 pC Centre frequency 140 kHz Bandwidth 90-190 kHz Test frequency 50 Hz 2600 pF Coupling capacitor

Conductor	Voltage applied, 50 Hz		Duration	Partial discharge level
	x U ₀	(kV)	(s)	(pC)
1 of	2,5	22	10	-
test loop 1	1,73	15	-	not detectable
2 of	2,5	22	10	-
Test loop 1	1,73	15	-	not detectable
3 of	2,5	22	10	-
test loop 1	1,73	15	-	not detectable
1 of	2,5	22	10	-
test loop 2	1,73	15	-	not detectable
2 of	2,5	22	10	-
test loop 2	1,73	15	-	not detectable
3 of	2,5	22	10	-
test loop 2	1,73	15	-	not detectable

Requirement

The maximum partial discharge level from the test object at 1,73 U_0 shall not exceed 10 pC.

Result

3.12 Impulse voltage at ambient temperature

Standard and date

Standard IEC 60502-4, table 5, test 10

Test date(s) 19 February 2016

Environmental conditions

Ambient temperature 20 °C

Characteristic test data

Temperature of test object 20 °C Specified test voltage 95 kV

Testing arrangement		Polarity	Voltage applied	No. of	See figure on
Voltage applied to	Earthed		(% of test voltage)	impulses	next pages
Conductor 1	Metallic screens	Positive	50	1	1 (waveshape)
test loop 1	and conductors		65	1	2
	2 and 3		80	1	2
			100	10	3 and 4
Conductor 1	Metallic screens	Negative	50	1	5 (waveshape)
test loop 1	and conductors		65	1	6
	2 and 3		80	1	6
			100	10	7 and 8
Conductor 2	Metallic screens	Positive	50	1	9 (waveshape)
test loop 1	and conductors		65	1	10
	1 and 3		80	1	10
			100	10	11 and 12
Conductor 2	Metallic screens	Negative	50	1	13 (waveshape)
test loop 1	and conductors		65	1	14
	1 and 3		80	1	14
			100	10	15 and 16
Conductor 3	Metallic screens	Positive	50	1	17 (waveshape)
test loop 1	and conductors		65	1	18
	1 and 2		80	1	18
			100	10	19 and 20
Conductor 3	Metallic screens	Negative	50	1	21 (waveshape)
test loop 1	and conductors		65	1	22
	1 and 2		80	1	22
			100	10	23 and 24

KEMA Laboratories -25- 1087-16

Testing arrangement		Polarity	Voltage applied	No. of	See figure on
Voltage applied to	Earthed		(% of test voltage)	impulses	next pages
Conductor 1	Metallic screens	Positive	50	1	25 (waveshape)
test loop 2	and conductors		65	1	26
	2 and 3		80	1	26
			100	10	27 and 28
Conductor 1	Metallic screens	Negative	50	1	29 (waveshape)
test loop 2	and conductors		65	1	30
	2 and 3		80	1	30
			100	10	31 and 32
Conductor 2	Metallic screens	Positive	50	1	33 (waveshape)
test loop 2	and conductors		65	1	34
	1 and 3		80	1	34
			100	10	35 and 36
Conductor 2	Metallic screens	Negative	50	1	37 (waveshape)
test loop 2	and conductors		65	1	38
	1 and 3		80	1	38
			100	10	39 and 40
Conductor 3	Metallic screens	Positive	50	1	41 (waveshape)
test loop 2	and conductors		65	1	42
	1 and 2		80	1	42
			100	10	43 and 44
Conductor 3	Metallic screens	Negative	50	1	45 (waveshape)
test loop 2	and conductors		65	1	46
	1 and 2		80	1	46
			100	10	47 and 48

Requirement

Each core of the cable shall withstand without failure 10 positive and 10 negative voltage impulses.

Result

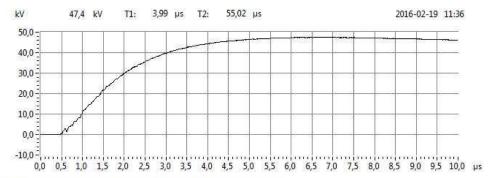


Fig. 1: Waveshape 72124900 Main loop A, phase R, 50% of test voltage

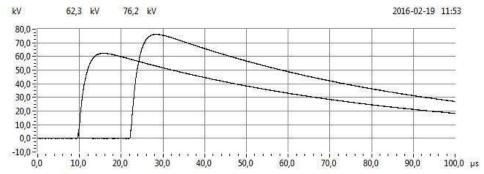


Fig. 2: 72124900 Main loop A, phase R, 65% and 80% of test voltage

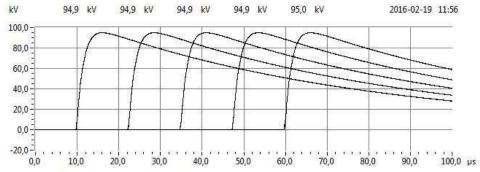


Fig. 3: 72124900 Main loop A, phase R, 100% of test voltage

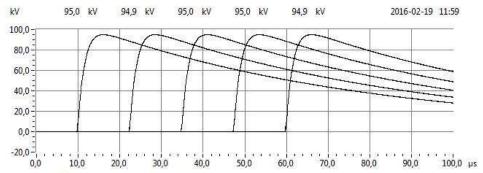


Fig. 4: 72124900 Main loop A, phase R, 100% of test voltage

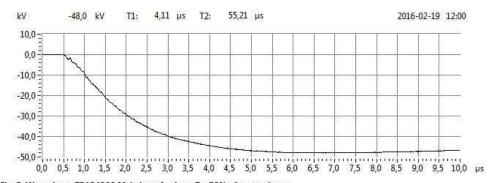


Fig. 5: Waveshape 72124900 Main loop A, phase R, -50% of test voltage

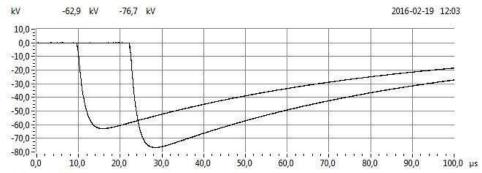


Fig. 6: 72124900 Main loop A, phase R, -65% and -80% of test voltage

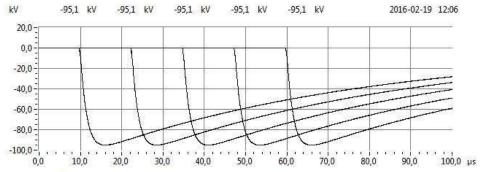


Fig. 7: 72124900 Main loop A, phase R, -100% of test voltage



Fig. 8: 72124900 Main loop A, phase R, -100% of test voltage

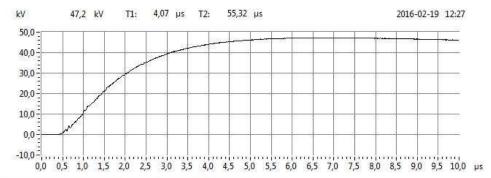


Fig. 9: Waveshape 72124900 Main loop A, phase Y, 50% of test voltage

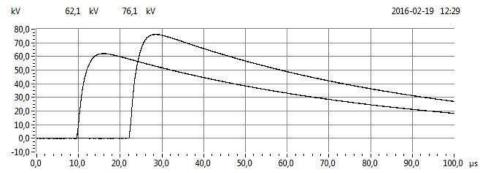


Fig. 10: 72124900 Main loop A, phase Y, 65% and 80% of test voltage

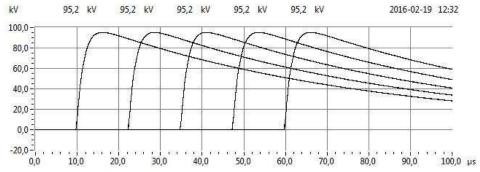


Fig. 11: 72124900 Main loop A, phase Y, 100% of test voltage

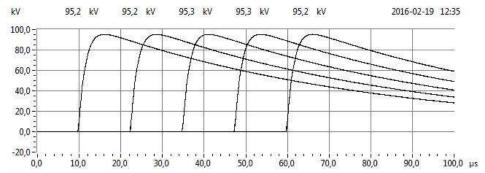


Fig. 12: 72124900 Main loop A, phase Y, 100% of test voltage

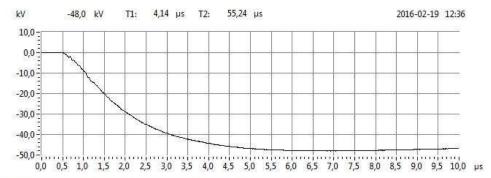


Fig. 13: Waveshape 72124900 Main loop A, phase Y, -50% of test voltage

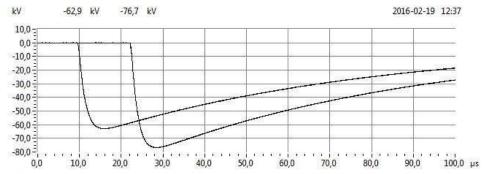


Fig. 14: 72124900 Main loop A, phase Y, -65% and -80% of test voltage

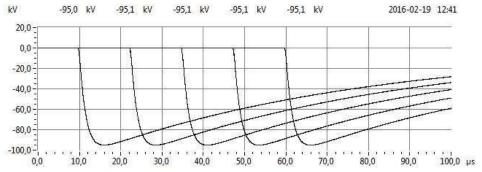


Fig. 15: 72124900 Main loop A, phase Y, -100% of test voltage

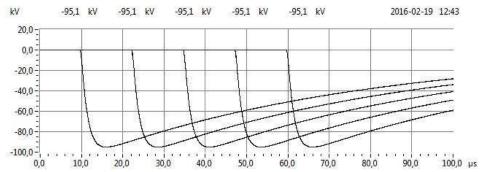


Fig. 16: 72124900 Main loop A, phase Y, -100% of test voltage

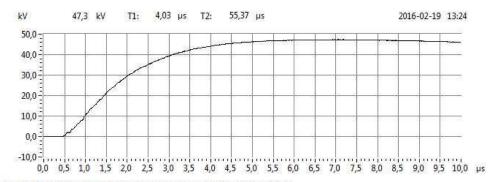


Fig. 17: Waveshape 72124900 Main loop A, phase G, 50% of test voltage

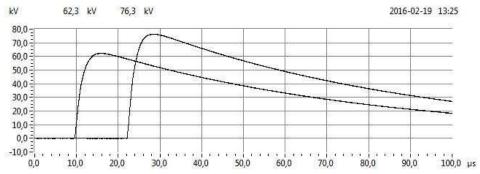


Fig. 18: 72124900 Main loop A, phase G, 65% and 80% of test voltage

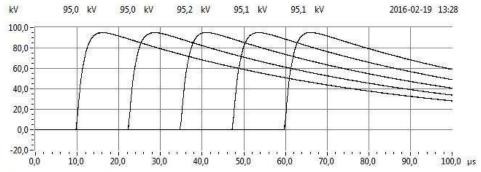


Fig. 19: 72124900 Main loop A, phase G, 100% of test voltage

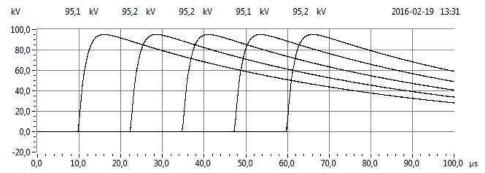


Fig. 20: 72124900 Main loop A, phase G, 100% of test voltage

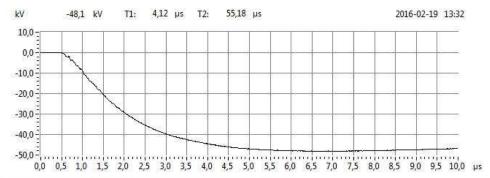


Fig. 21: Waveshape 72124900 Main loop A, phase G, -50% of test voltage

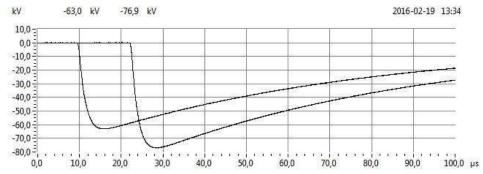


Fig. 22: 72124900 Main loop A, phase G, -65% and -80% of test voltage

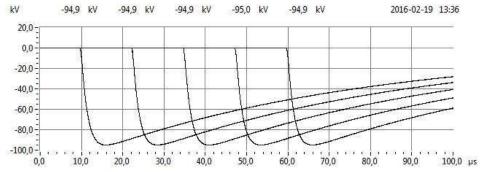


Fig. 23: 72124900 Main loop A, phase G, -100% of test voltage

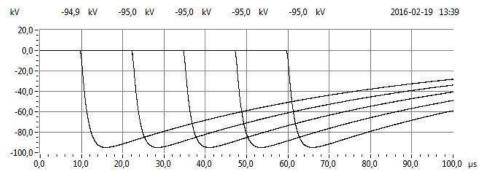


Fig. 24: 72124900 Main loop A, phase G, -100% of test voltage

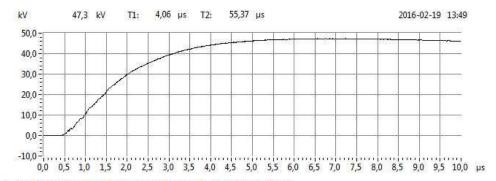


Fig. 25: Waveshape 72124900 Main loop B, phase R, 50% of test voltage

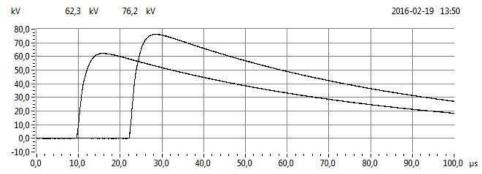


Fig. 26: 72124900 Main loop B, phase R, 65% and 80% of test voltage

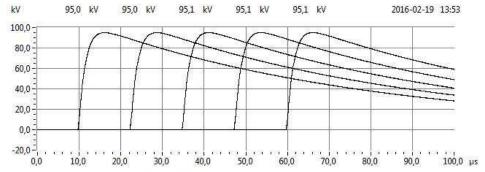


Fig. 27: 72124900 Main loop B, phase R, 100% of test voltage

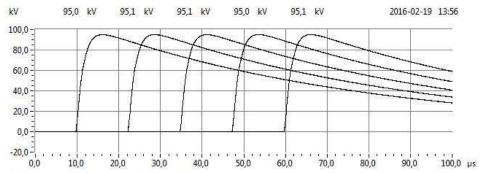


Fig. 28: 72124900 Main loop B, phase R, 100% of test voltage

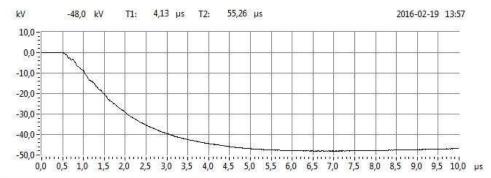


Fig. 29: Waveshape 72124900 Main loop B, phase R, -50% of test voltage

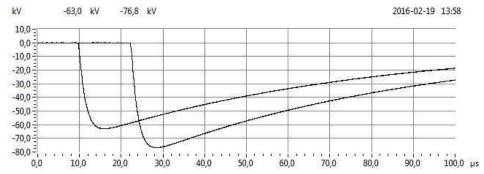


Fig. 30: 72124900 Main loop B, phase R, -65% and -80% of test voltage

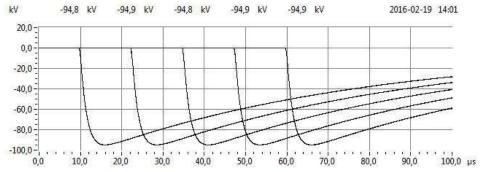


Fig. 31: 72124900 Main loop B, phase R, -100% of test voltage

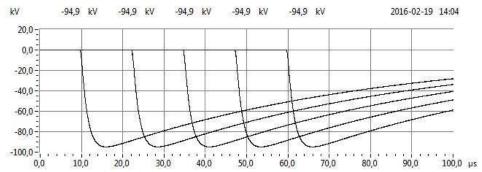


Fig. 32: 72124900 Main loop B, phase R, -100% of test voltage

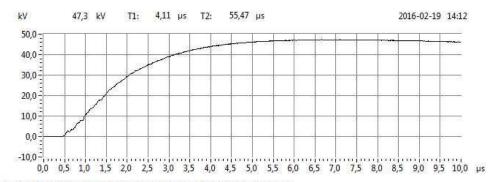


Fig. 33: Waveshape 72124900 Main loop B, phase Y, 50% of test voltage

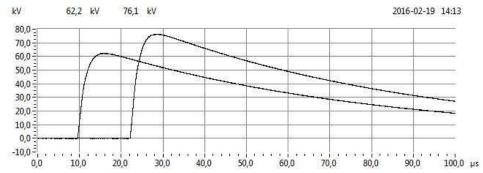


Fig. 34: 72124900 Main loop B, phase Y, 65% and 80% of test voltage

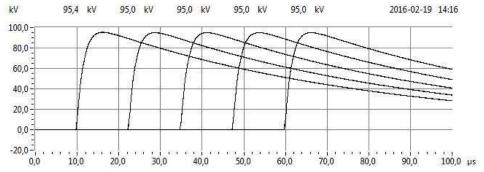


Fig. 35: 72124900 Main loop B, phase Y, 100% of test voltage

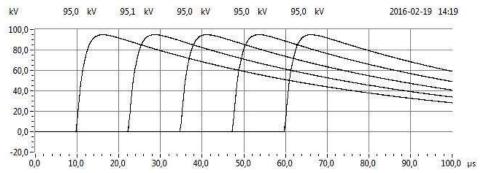


Fig. 36: 72124900 Main loop B, phase Y, 100% of test voltage

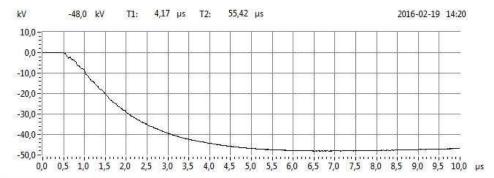


Fig. 37: Waveshape 72124900 Main loop B, phase Y, -50% of test voltage

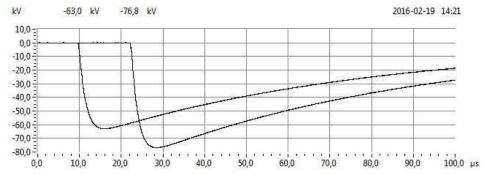


Fig. 38: 72124900 Main loop B, phase Y, -65% and -80% of test voltage

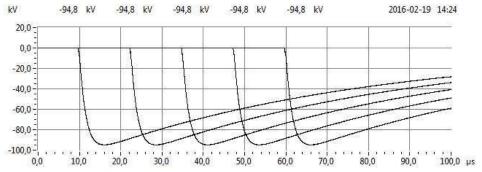


Fig. 39: 72124900 Main loop B, phase Y, -100% of test voltage

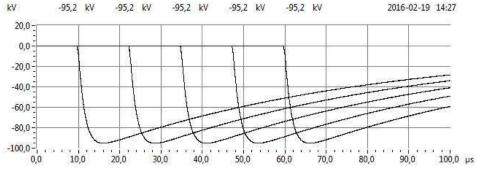


Fig. 40: 72124900 Main loop B, phase Y, -100% of test voltage

Fig. 41: Waveshape 72124900 Main loop B, phase G, 50% of test voltage

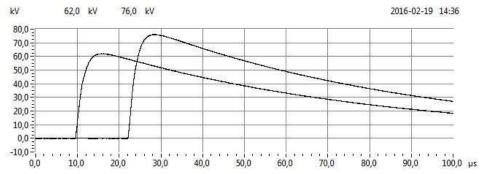


Fig. 42: 72124900 Main loop B, phase G, 65% and 80% of test voltage

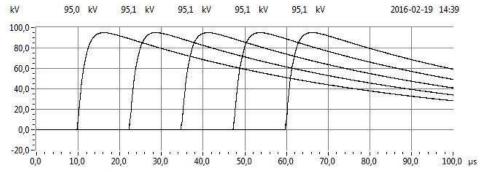


Fig. 43: 72124900 Main loop B, phase G, 100% of test voltage

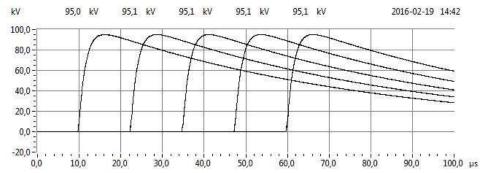


Fig. 44: 72124900 Main loop B, phase G, 100% of test voltage

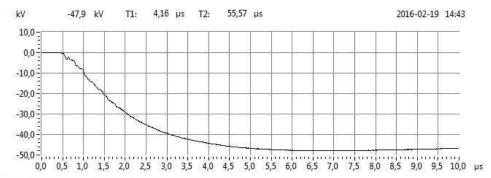


Fig. 45: Waveshape 72124900 Main loop B, phase G, -50% of test voltage

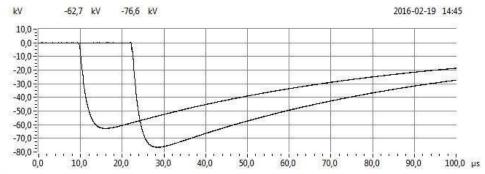


Fig. 46: 72124900 Main loop B, phase G, -65% and -80% of test voltage

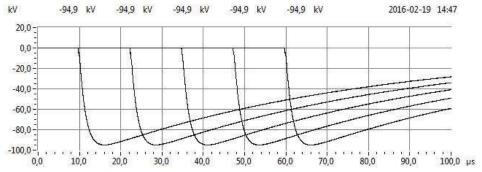


Fig. 47: 72124900 Main loop B, phase G, -100% of test voltage

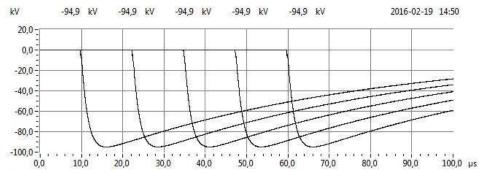


Fig. 48: 72124900 Main loop B, phase G, -100% of test voltage

3.13 AC voltage dry test

Standard and date

Standard IEC 60502-4, table 5, test 11

Test date(s) 19 February 2016

Environmental conditions

Ambient temperature 20 °C

Characteristic test data

Temperature of test object 20 °C

Testing arrangement		Voltage applied, 50 Hz		Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1, 2 and 3 of test loop 1	Metal screens	2,5	22	5
Conductor 1, 2 and 3 of test loop 2	Metal screens	2,5	22	5

Requirement

No breakdown of the insulation shall occur.

Result

3.14 Examination

Standard and date

Standard IEC 60502-4, table 5, test 14

Test date(s) 25 May 2016

Environmental conditions

Ambient temperature 20 °C Temperature of test object 20 °C

Object	Observations
Sample 1	 None of the following has been detected: cracking in the filling material and/or tape or tubing components a moisture path bridging a primary seal corrosion and/or tracking and/or erosion which would, in time, lead to a failure of the accessory leakage of any insulating material
Sample 2	None of the following has been detected: cracking in the filling material and/or tape or tubing components a moisture path bridging a primary seal corrosion and/or tracking and/or erosion which would, in time, lead to a failure of the accessory leakage of any insulating material

Note

The results are for information only.

Photographs

Outdoor termination

Removal tube

Detail stress control

Two outdoor terminations

4 TEST SEQUENCE TABLE 5 COLUMN 1.2 (ONE OUTDOOR TERMINATION)

4.1 **Test arrangement**

4.1.1 Determination of the cable conductor temperature

Standard

Standard IEC 61442, Subclause 8

For the tests at elevated temperature, a reference loop for temperature control of the conductor was installed and conductor current was used for heating. The reference cable was cut from the total cable length intended for the type test. This reference loop was installed close to the test loop in order to create the same environmental conditions as for the test loop.

The heating currents in the reference loop and the test loop were kept equal at all times, thus the conductor temperature of the reference loop is representative for the conductor temperature of the test loop. Annex A was used as a guide and Annex A, Subclause A.3.3, method 3 was applied.

The tests at elevated temperature are carried out after the conductor temperature has been within the stated limit for at least 2 hours.

4.2 **DC voltage dry test**

Standard and date

Standard IEC 60502-4, table 5, test 1

Test date(s) 16 November 2015

Environmental conditions

Ambient temperature 22 °C Temperature of test object 22 °C

Testing arrangement		DC voltage applied		Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1, 2 and 3	Metal screens	4	35	15
of test loop 3				

Requirement

No breakdown of the insulation shall occur.

Result

4.3 AC voltage dry test

Standard and date

Standard IEC 60502-4, table 5, test 1

Test date(s) 16 November 2015

Environmental conditions

Ambient temperature 22 °C Temperature of test object 22 °C

Testing arrangement		Voltage applied, 50 Hz		Duration
Voltage applied to Earth connected to		x U ₀	(kV)	(min)
Conductor 1, 2 and 3	Metal screens	4,5	39	5
of test loop 3				

Requirement

No breakdown of the insulation shall occur.

Result

4.4 Thermal short-circuit test (screen)

Standard and date

Standard IEC 60502-4, table 5, test 7

Test date(s) 25 November 2015

Environmental conditions

Ambient temperature 21 °C

Characteristic test data

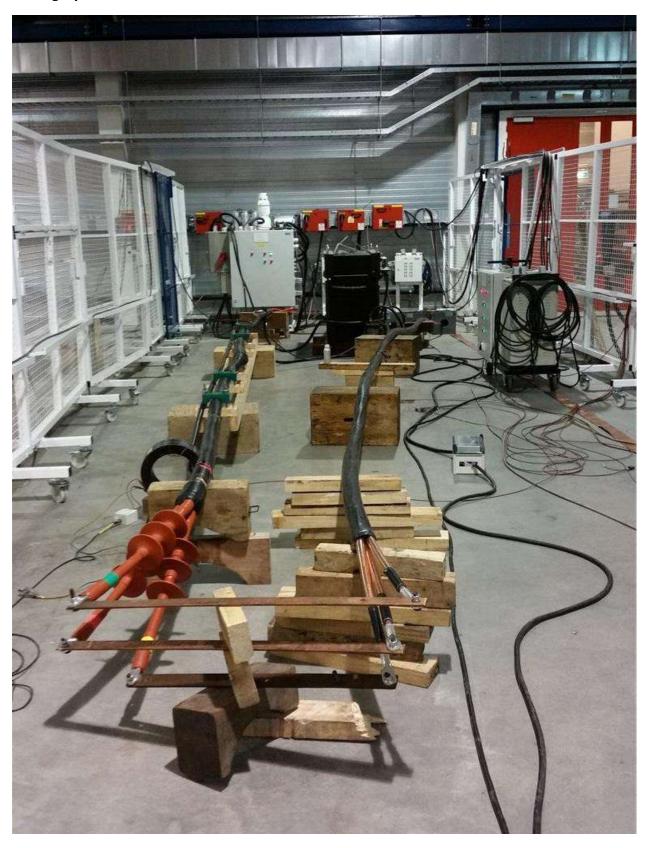
Stabilized conductor temperature 97 °C

Conductor heating		
Required conductor temperature θ (°C)	Applied 3-phase heating current (A)	Conductor stable at 97 °C before short-circuit application (h)
$95 \le \theta \le 100$	495	2

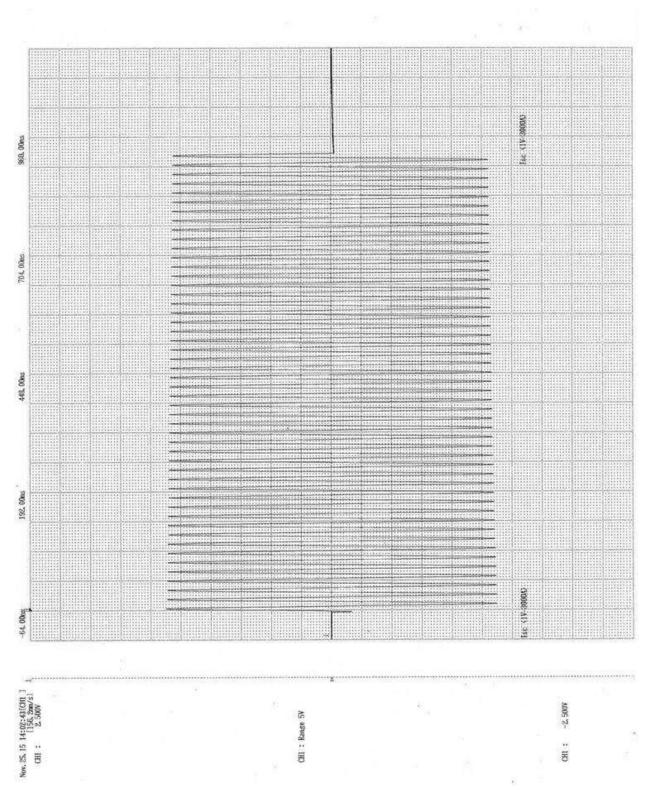
Short-circuit application on screen (see figures on the next pages)				
Specified short-circuit current Prequency Duration Number of short-circuit applications				
(kA)	(Hz)	(s)		
2,5	50	1	2	

Procedure

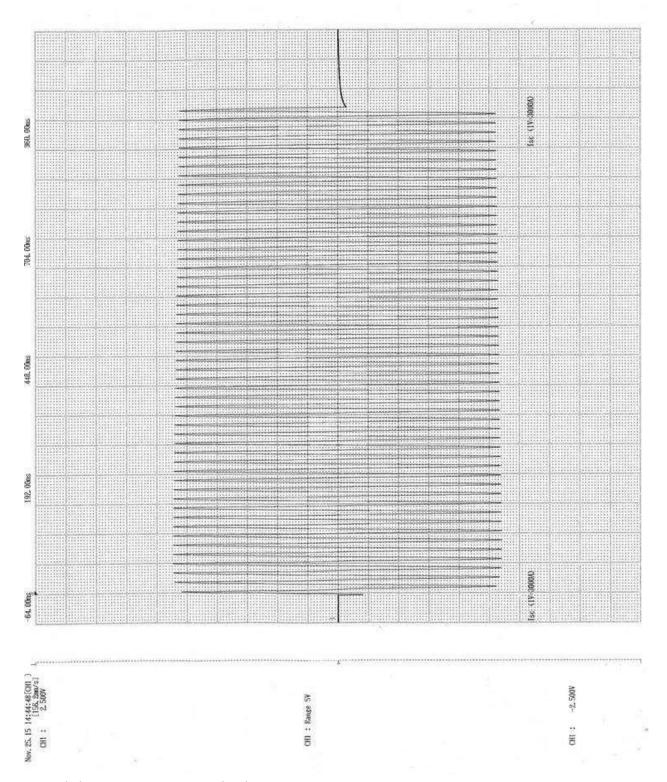
The conductor temperature shall be maintained within the stated temperature limits for at least 2 hours before carrying out the short-circuit test. Between the two short-circuit applications, the cable screen shall be allowed to cool down to a temperature less than 10 K above its temperature prior to the first short-circuit application.


Requirement

No visible deterioration may occur.


Result

4.4.1 Test circuit


Photograph test circuit

4.4.2 Test results and oscillograms

First short-circuit current 2,8 kA during 1,06 s.

Second short-circuit current 2,8 kA during 1,06 s.

4.5 Thermal short-circuit test (conductor)

Standard and date

Standard IEC 60502-4, table 5, test 8

Test date(s) 3 December 2015

Environmental conditions

Ambient temperature 10 °C

Characteristic test data

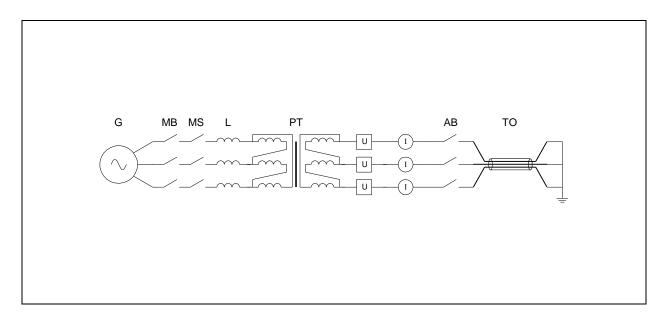
Conductor material	copper	
Cross section conductor	185	mm²
Maximum short circuit conductor temperature	250	°C

First short circuit application

Start temperature of test object (measured value)	18	°C
Selected duration of short circuit current	1	S
Calculated short circuit current	33,8	kA
Thermal current, three phase	34,5	kA
Duration	1,05	S

Second short circuit application

Start temperature of test object (measured value)	27	°C
Selected duration of short circuit current	1	s
Calculated short circuit current	32,9	kA
Thermal current, three phase	33,0	kA
Duration	1,05	s


Procedure

Two short-circuits shall be applied to raise the conductor temperature to the maximum permissible short-circuit temperature of the cable within 5 s. Between the two short-circuits, the test loop shall be allowed to cool to a temperature less than 10 K above its temperature prior to the first short-circuit.

Result

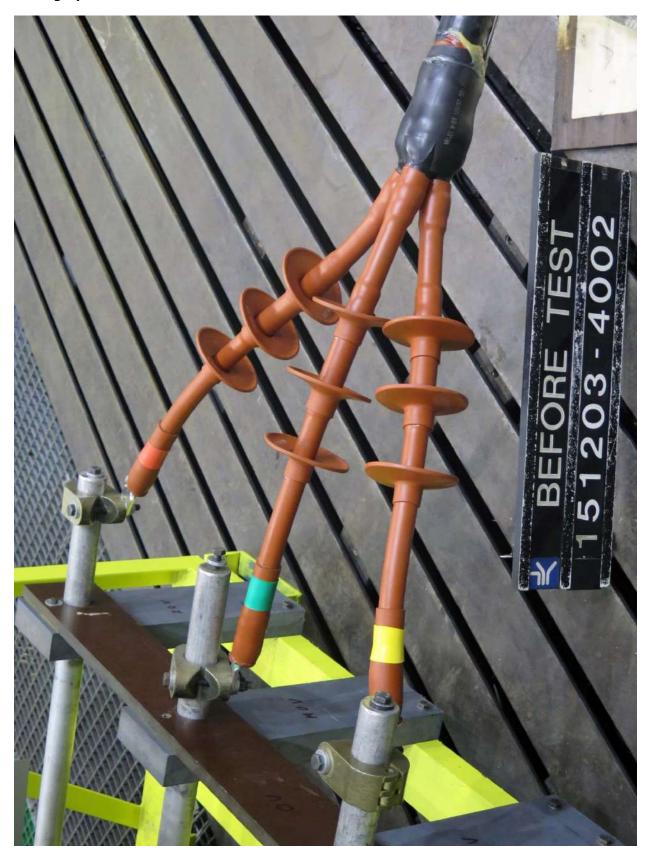
KEMA Laboratories

4.5.1 Test circuit

G = Generator TO = Test Object U = Voltage Measurement to earth

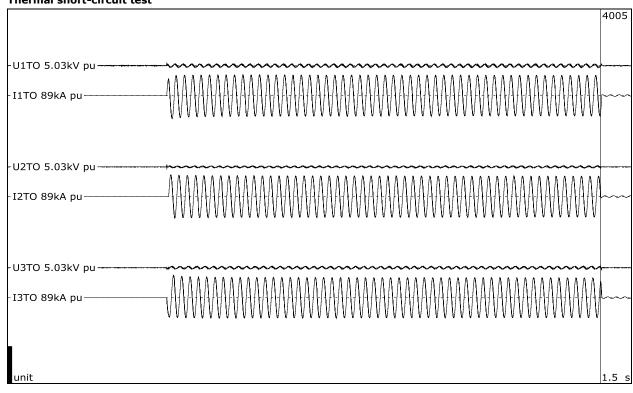
MB = Master Breaker L = Reactor I = Current Measurement

MS = Make Switch AB = Auxiliary Breaker

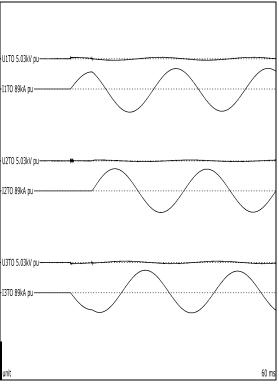

PT = Power Transformer

Supply		
Power	MVA	173
Frequency	Hz	50
Phase(s)		3
Voltage	kV	2.9
Current	kA	34.5
Impedance	Ω	0.049
Power factor		< 0,1
Neutral	·	not earthed

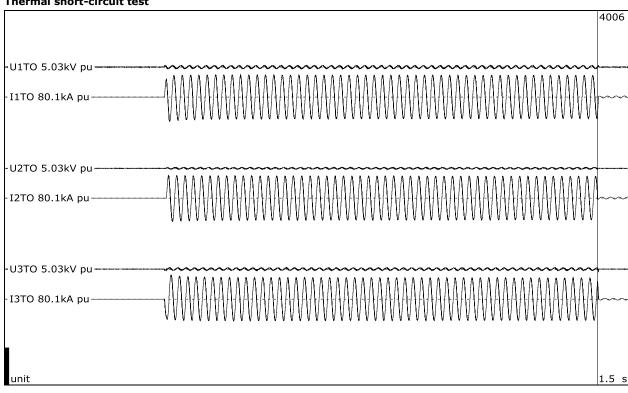
Load	
Short-circuit point	earthed


Remarks: -

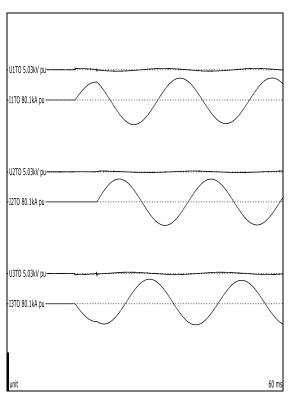
Photograph before test


4.5.2 Test results and oscillograms

Thermal short-circuit test


Phase		R	G	Υ
Peak value of current	kA	-54,9	51,9	52,9
Symmetrical current, beginning	kA	35,4	35,6	35,2
Symmetrical current, middle	kA	34,5	34,8	34,1
Symmetrical current, end	kA	34,2	34,5	33,9
Symmetrical current, average	kA	34,6	35,1	34,5
Average current, three phase kA 34,		34,7		
Current duration	S	1,04	1,04	1,04
Thermal equivalent 34,5 kA during		1,05 s		

Gas pressure at 20 °C	- MPa	Ambient temperature	11,3 °C


Remarks:	-				

Thermal short-circuit test

Test number: 151203-4006

Phase		R	G	Y
Peak value of current	-52,5	-50,3	51,9	
Symmetrical current, beginning	kA	33,9	34,2	33,3
Symmetrical current, middle	kA	33,1	33,4	32,5
Symmetrical current, end	kA	32,8	33,1	32,2
Symmetrical current, average	kA	33,2	33,7	32,8
Average current, three phase	kA		33,2	
Current duration	S	1,04	1,04	1,04
Thermal equivalent		33 kA	during	1,05 s

Gas pressure at 20 °C	- MPa	Ambient temperature	11,3 °C

Remarks:	-					

Photograph after test

4.6 Impulse voltage test at ambient temperature

Standard and date

Standard IEC 60502-4, table 5, test 10

Test date(s) 4 December 2015

Environmental conditions

Ambient temperature 20 °C

Characteristic test data

Temperature of test object 20 °C Specified test voltage 95 kV

Testing arrangemen	nt	Polarity	Voltage applied	No. of	See figure on
Voltage applied to	Earthed		(% of test voltage)	impulses	next pages
Conductor 1	Metallic screens	Positive	50	1	1 (waveshape)
test loop 3	and conductors		65	1	2
	2 and 3		80	1	2
			100	10	3 and 4
Conductor 1	Metallic screens	Negative	50	1	5 (waveshape)
test loop 3	and conductors		65	1	6
	2 and 3		80	1	6
			100	10	7 and 8
Conductor 2	Metallic screens	Positive	50	1	9 (waveshape)
test loop 3	and conductors		65	1	10
	1 and 3		80	1	10
			100	10	11 and 12
Conductor 2	Metallic screens	Negative	50	1	13 (waveshape)
test loop 3	and conductors		65	1	14
	1 and 3		80	1	14
			100	10	15 and 16
Conductor 3	Metallic screens	Positive	50	1	17 (waveshape)
test loop 3	and conductors		65	1	18
	1 and 2		80	1	18
			100	10	19 and 20
Conductor 3	Metallic screens	Negative	50	1	21 (waveshape)
test loop 3	and conductors		65	1	22
	1 and 2		80	1	22
			100	10	23 and 24

Requirement

Each core of the cable shall withstand without failure 10 positive and 10 negative voltage impulses.

Result

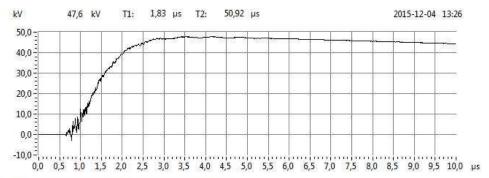


Fig. 1: Waveshape 72124900 SC loop Red 50% test voltage

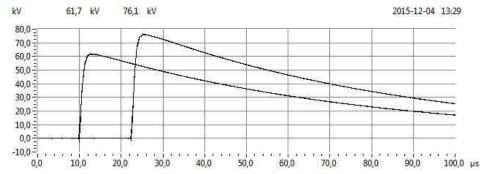


Fig. 2: 72124900 SC loop Red 65% and 80% test voltage

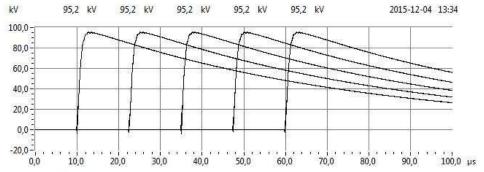


Fig. 3: 72124900 SC loop Red 100% test voltage

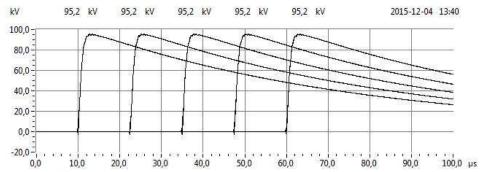


Fig. 4: 72124900 SC loop Red 100% test voltage

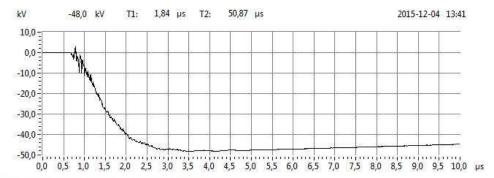


Fig. 5: Waveshape 72124900 SC loop Red -50% test voltage

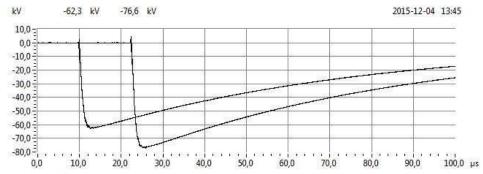


Fig. 6: 72124900 SC loop Red -65% and -80% test voltage

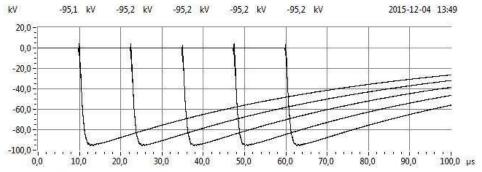


Fig. 7: 72124900 SC loop Red -100% test voltage

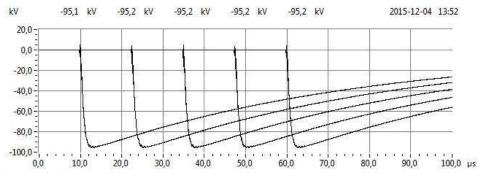


Fig. 8: 72124900 SC loop Red -100% test voltage

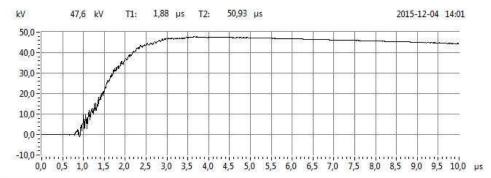


Fig. 9: Waveshape 72124900 SC loop Yellow 50% test voltage

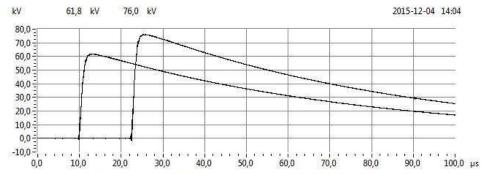


Fig. 10: 72124900 SC loop Yellow 65% and 80% test voltage

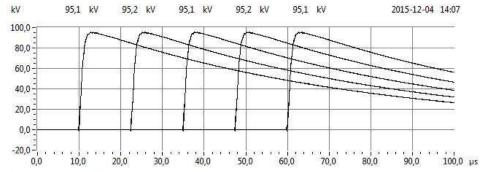


Fig. 11: 72124900 SC loop Yellow 100% test voltage

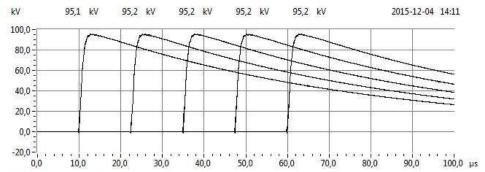


Fig. 12: 72124900 SC loop Yellow 100% test voltage

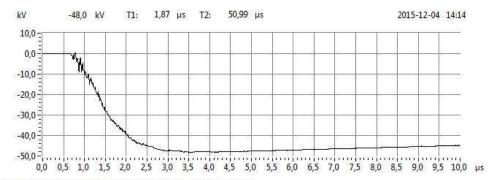


Fig. 13: Waveshape 72124900 SC loop Yellow -50% test voltage

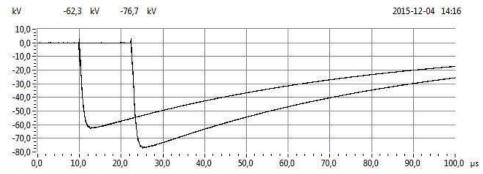


Fig. 14: 72124900 SC loop Yellow -65% and -80% test voltage

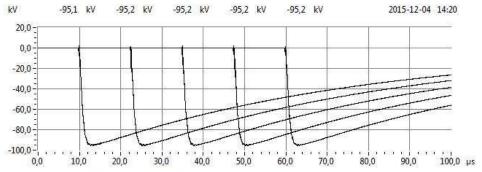


Fig. 15: 72124900 SC loop Yellow -100% test voltage

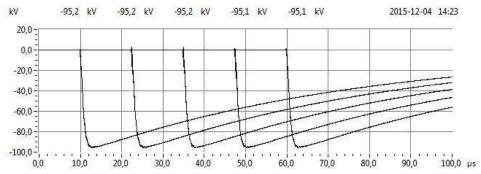


Fig. 16: 72124900 SC loop Yellow -100% test voltage

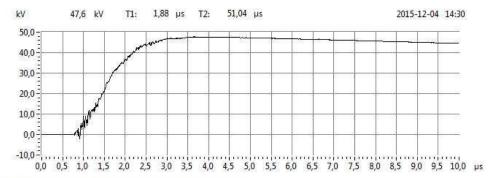


Fig. 17: Waveshape 72124900 SC loop Green 50% test voltage

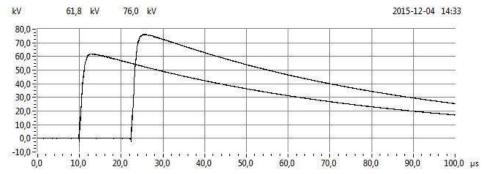


Fig. 18: 72124900 SC loop Green 65% and 80% test voltage

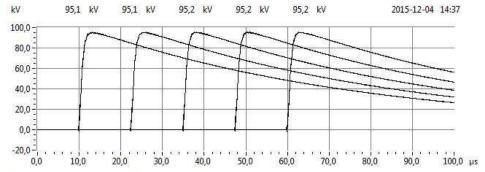


Fig. 19: 72124900 SC loop Green 100% test voltage

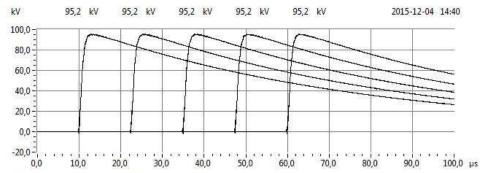


Fig. 20: 72124900 SC loop Green 100% test voltage

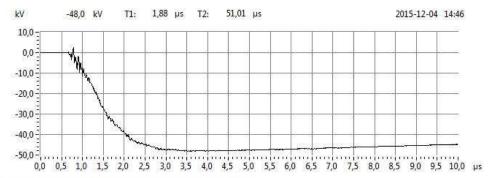


Fig. 21: Waveshape 72124900 SC loop Green -50% test voltage

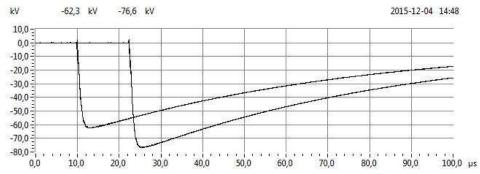


Fig. 22: 72124900 SC loop Green -65% and -80% test voltage

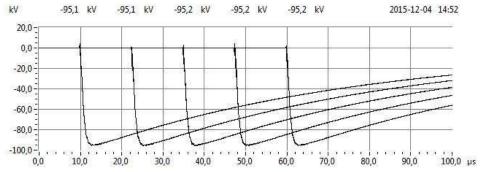


Fig. 23: 72124900 SC loop Green -100% test voltage

Fig. 24: 72124900 SC loop Green -100% test voltage

4.7 AC voltage dry test

Standard and date

Standard IEC 60502-4, table 5, test 11

Test date(s) 4 December 2015

Environmental conditions

Ambient temperature 20 °C

Characteristic test data

Temperature of test object 20 °C

Testing arrangement		Voltage applie	Duration	
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1, 2 and 3 of test loop 3	Metal screens	2,5	22	15

Requirement

No breakdown of the insulation shall occur.

Result

4.8 **Examination**

Standard and date

Standard IEC 60502-4, table 5, test 14

Test date(s) 25 May 2016

Environmental conditions

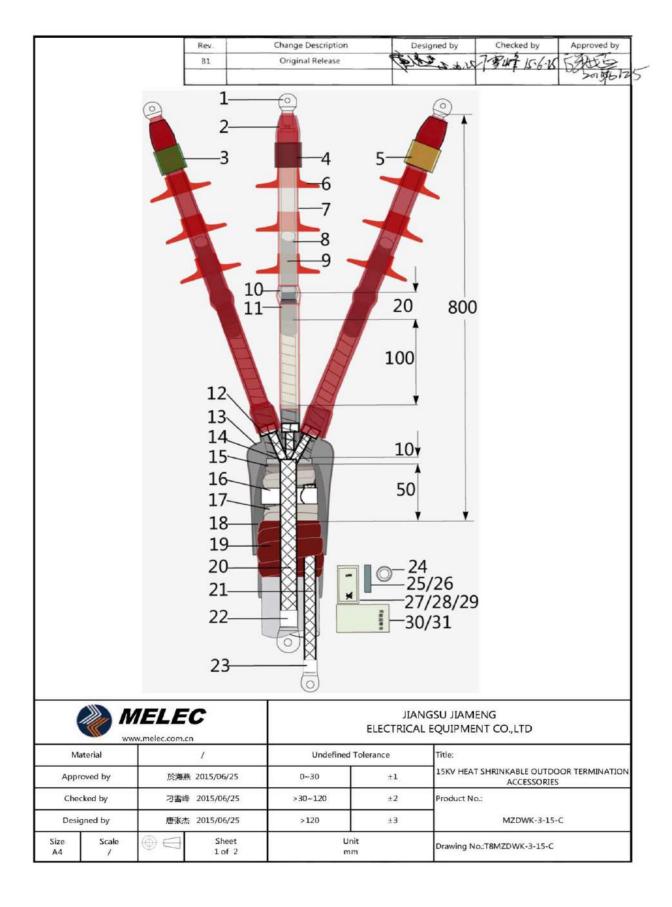
Ambient temperature 20 °C Temperature of test object 20 °C

Object	Observations
Sample 1	None of the following has been detected:
	cracking in the filling material and/or tape or tubing components
	a moisture path bridging a primary seal
	 corrosion and/or tracking and/or erosion which would, in time, lead to a
	failure of the accessory
	leakage of any insulating material

Note

The results are for information only.

Photographs



Outdoor termination loop3

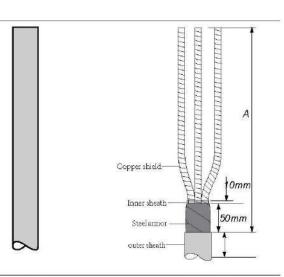
Outdoor termination loop3

5 PARTS LIST AND INSTALLATION INSTRUCTION

			Rev.		Change Description		Designed by	Checked by	Approved by	
			B1		Original Release	13	1 to a stall	7347 15.6.V	159th	
									2019612	
No.	Quantity	Ur	nit		Item			Product No	į.	
1	3	po	s		Cable lug			AUS185-12/	L8	
2	3	po	s	Н	eat shrinkable track-resi	stant tubing		MWNT-60/21/RD	/0.15M	
3	1	po	s		Colorimetric tul	oe .		M1-50/25/GN/0	.05M	
4	1	po	s		Colorimetric tul	be		M1-50/25/RD/0	.05M	
5	1	po	s		Colorimetric tul	be		M1-50/25/YE/0	05M	
6	9	po	.s		Heat shrinkable s	kirt		MCES-52/21/	RD	
7	3	ре	:s	Н	eat shrinkable track-resi	stant tubing		MWNT-60/21/RE)/0.7M	
8	3	po	s	н	eat shrinkable stress co	ntrol tubing		MSCT-47/18/BK	/0.2M	
9	3	po	is .		Silicone greas	e		MGZ-295-3		
10	3	рс	s		Stress control tape()	rellow)		MYU-1.2X25X1	00YL	
11	1.	po	s		Semi conducting	tape	1	MBDD-25X6	00	
12	3	po	:s		Constant force sp	ring		MTH-D24X0.3X	15X7	
13	1	рс	:s	+	leat shrinkable insulatio	n breakout		MIB3-125/57-55/	20/BK	
14	1	po	S		Triangular wedge			MSJX		
15	1	po	:s		Copper binding-wire			MTZX-1.4X1000		
16	1	po	:s		Constant force spring			MTH-D45X0.5X20X7		
17	2	pcs			Void filling tape(black)			MTCJ-3X50X500BK		
18	1	рс	:5	Heat shrini	at shrinkable medium wall tubing (adhesive sealing)) MRA2-115/35/8K/0.2M		
19	9	рс	s		Sealing tape(red)			MMFJ-2X30X360RD		
20	1	po			Ground wire			MDX-25X800		
21	1	po			Ground wire			MDX-16X800		
22	1	po	s		Cable lug			JGB35-10/L		
23	1	po	:5		Cable lug			JGB25-10/L		
24	1	po	s		PVC tape			MPJD-20X5000BK		
25	4	po	5		Sandcloth paper			MSZ-P180X20X500		
26	5	po	:s		Sandcloth paper			MSZ-P400X15X500		
27	6	рс	:s		Cleaner			MQJB		
28	1	po	:s		Cleaning cloth			MMB-300X300mm		
29	1	рс	s	1	Glove		MST			
30	1.	e	a		Installation instruc	tions		GSM-MZDW/MZDV	VK-15KV	
31	1	e	a		Contents			1	:	
	// M	ELE	:C				JIANGSU JIAN			
		v.melec.com				ELECTR	ICAL EQUIPM	ENT CO.,LTD		
Ma	aterial		1		Undefined Tolerance		Title:			
Appr	oved by	於海	燕 2015/0	6/25			15KV HE	15KV HEAT SHRINKABLE OUTDOOR TERMINATION ACCESSORIES		
Che	cked by	刁雪	峰 2015/0	6/25	>30-120	±2	Product N	lo.:		
Desig	gned by	唐张	杰 2015/0	6/25	>120	±3		MZDWK-3-15-C		
Size	Scale /	$\oplus \Box$		neet of 2	Uni		Drawing I	No.:T8MZDWK-3-15-C		

Installation Instruction For 15KV Terminations

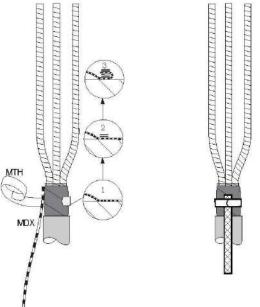
Step 1


Preparation

- 1. Check the consistency of contents and packing list.
- 2. Check tools are complete.

Step 2

Strip cable sheath and steel armor


- 1. Straighten the cable
- Even cable port
 Measure dimensions as shown in the right picture , Strip cable outside sheathing, steel armor and inside sheathing A=800mm
- Cleanup cable filler and wrap tape
 Use PVC tape to fixate copper shielding in the top end of each core.
- 6. Use copper binding wire to fixate end of steel armor
- 7. Sand the outer sheath at 100mm of each end of the cable.
- 8. Use cleaner to Clean the steel armor and outer sheath

Step 3

Install ground wire MDX

1. As shown on the right, use constant force ring MTH to fixate a ground wire MDX in the middle of steel armor

Step 4

Install ground wire MDX

- 1. Wind sealing tape MMFJ 2-3 layer on 50mm down the port of outer sherth of cable, Lift the ground when wind the first layer. Wind sealing tape MMFJ on the outer sheath completely, Wrapp The armored ground in them in the following wound.
- 2. Strech the void filling tape MTCJ by 1/2 width, wind ground wire ,constant force spring, armor layer completely 2-3 laps.

 3. As shown on the right, wind heat shrinkable medium wall tubing MRA2 in order of 1,2,3.
- Shrink description:

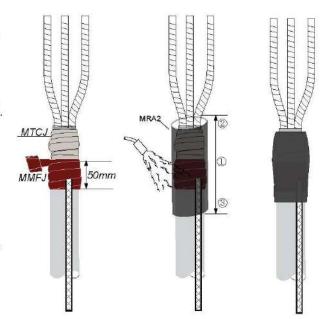
 1. Use yellow outer flame of about

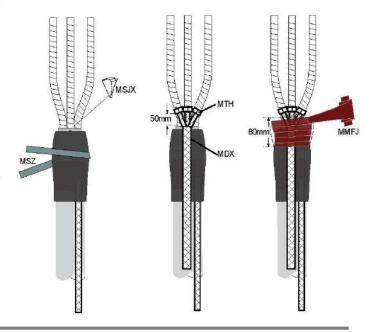
 100~300mm to heat the heat shrinkable
- products.

 2. Unless otherwise stated, use flame to heat outer heat shrinkable products
- heat outer heat shifting by course uniformly.

 3. When heating, keep the flame moving and the local stop time shall not exceed 3 seconds, so as to avoid burning caused by hot parts.

Instructions for combustor:

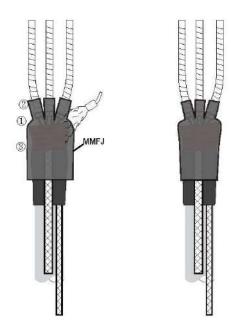

Adjust voltage stabilizer and combustor. When heating, yellow outer flame is suggested. Select a working environment with sound ventilation, so as to avoid the influence on installation caused by smog

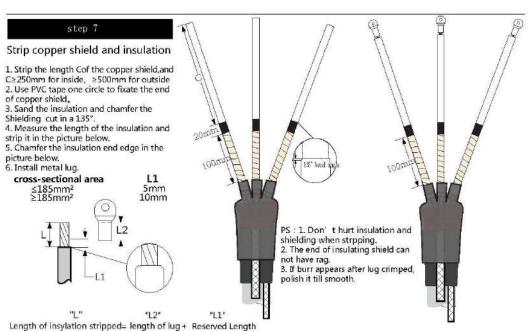

Warning: Use gas burner strictly in accordance with instructions provided by suppliers. Check if there is any connection leakage before turned on. Failure to observe the instructions could cause fire or explosion, even critical damage.

Step 5

Install copper shield ground MDX

- As shown right , hit the triangular wedge MSJX to the cable core and even it with the inner sheath.
- 2. Sand heat shrinkable medium wall tubing MRA2
- MRA2
 3. Use cleaner to clean MRA2 and cable wire.
 4.Use constant force ring MTH to fix MDX,
 specific operation see Step 3.
 5.Wind sealing tape MMFJ on the cable core,
 inner cover of cable, MRA2 should be winded.



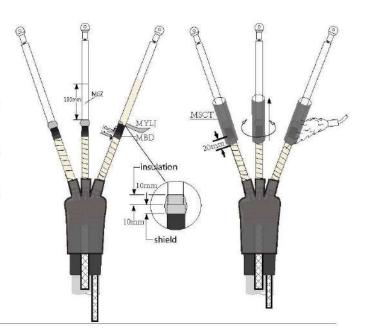


Step 6

Shrink heat shrinkable insulation breakout MIB

 Put heat shrinkable insulation breakout MIB well down into the cable crutch.
 Shrink it in the order of 1,2,3.

5

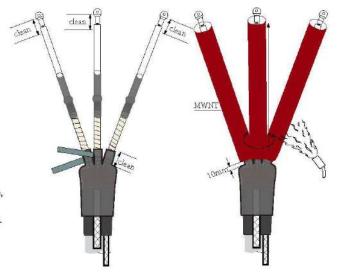

step 8

Wind stress control tape MYLJ Wind semi-conduct tape MBD Shrink heat shrinkable stress control tubing MSCT

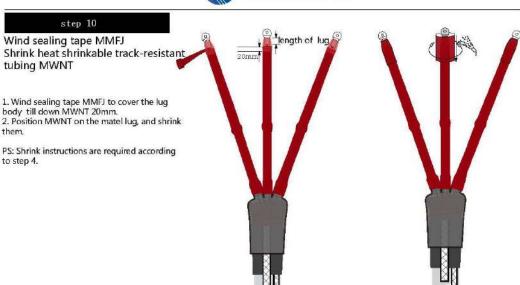
- 1. Strech stress control tape MYLJ to5-10mm width, and wind the insulation and shield, the mastic should overlap 10mm onto the insulation and shield.
- 2. Strech the semi-conductive tape MBD to 1/2 width, wind cooper shield, overlap shield and cooper shield 5-10mm each.
- Apply insulation silicon grease MGZ evenly on the length 100mm from the end of the mastic. 4. Place heat shrinkable stress control tubing MSCT to the position of 20mm under section of cooper shield, then shrink surround uniformly according to the direction of the arrow marked.
- **PS:** 1. When winding stress tape, the gap between the insulation and the shield should be filled entirely.

 2. Apply unifomly when applying grease paste,
- ensure non-omission.

 3. Shrink instructions are required according to
- step 4.


step 9

Shrink heat shrinkable track-resistant tubing MWNT


- 1. Polish the tip of heat shrinkable insulation
- 1. Point the tip of heat strinkable insulation breakout MIB.
 2. Clean tip of MIB and end of lug.
 3. wrap sealing mastic on breakout end
 4. Place MWNT to the position of 10mm beyond the breakout body. Then shrink MWNT from the bottom up surroundly.
- PS: 1. Heat the whole part almost one minute after shrinking finished.

 2. Check if the tube shrinked entirely after the
- shrink finished.check if the surface of tube smooth, no bump, cool wall, unentirely shrinking.

Shrink instructions are required according to step 4.

step 11

Shrink heat-shrink skirt MCES

- 1. Position the heat-shrink skirt MCES to every wire according to the length marked, and shrink them.

 2. When it's cold, installation is finished

- PS:
 1. When installing, phase/phase distance, phase/ground≥20mm Air gap≥30mm.
 2. Minimum longth between skirt≥15mm.
 3. When installing, the minimum bend radius=outer diameter of the cable core X 15

6 MEASUREMENT UNCERTAINTY

The measurement uncertainties in the results presented are as specified below unless otherwise indicated.

Measurement	Measurement uncertainty				
Dielectric tests and impulse current tests:					
– peak value	≤ 3%				
 time parameters 	≤ 10%				
Capacitance measurement	0,3%				
Tan δ measurement	$\pm 0.5\% \pm 5 \times 10^{-5}$				
Partial discharge measurement:					
- < 10 pC	2 pC				
– 10 to 100 pC	5 pC				
- > 100 pC	20%				
Measurement of impedance AC-resistance measurement	≤ 1%				
Measurement of losses	≤ 1%				
Measurement of insulation resistance	≤ 10%				
Measurement of DC resistance:					
– 1 to 5 μΩ	1%				
– 5 to 10 μΩ	0,5%				
– 10 to 200 μΩ	0,2%				
Radio interference test	2 dB				
Calibration of current transformers	$2.2 \times 10^{-4} \; I_i/I_u$ and 290 µrad				
Calibration of voltage transformers	1,6 x 10^{-4} U _i /U _u and 510 μ rad				
Measurement of conductivity	5%				
Measurement of temperature:					
– -50 to -40 °C	3 K				
− -40 to125 °C	2 K				
– 125 to 150 °C	3 K				
Tensile test	1%				
Sound level measurement	type 1 meter as per IEC 60651 and				
	ANSI S1,4,1971				
Measurement of voltage ratio	0,1%				