
Version:

14

Date:

18/04/2025

Page:

1

Chip Encoding Interface Personalisation Systems
Software

Confidential information

Exported on

23/April/2025

CONFID
ENTIAL

Confidential information

Version: 14 Date: 18/04/2025 Page: 2

Table of Contents

TCP/IP message structure .. 4

IAI server protocol ... 5
Passing the result back to the client ... 6

Supported commands .. 8
Error Codes... 9

Configuration file .. 11
Location.. 11

Extended behavior ... 11

Hardware mapping ... 12

CONFID
ENTIAL

Confidential information

Version: 14 Date:18/04/2025 Page: 3

This document describes the Chip Encoding Interfacing for IAI's BookMaster and CardMaster personalisation
systems.

CONFID
ENTIAL

Confidential information

Version: 14 Date:18/04/2025 Page: 4

TCP/IP message structure
The System Control Software and the Chip Programming Software interact via TCP/IP. The Chip Programming
Software programs will act as server and the System Control Software as client.
For each encoding station the System Control software creates 1 general connection and 1 reader connection for
each reader during start-up of the system. The first connection is used for general commands, the reader
connections are used for reader specific commands. The order and total amount of connections is always:
Connection 1 (general), Connection 2 (Reader 1), Connection 3 (Reader 2), etc. The System Control Software triggers
the Programming Software by sending commands over one of the established connections.

CONFID
ENTIAL

Confidential information

Version: 14 Date:18/04/2025 Page: 5

IAI server protocol
The protocol used between client (SystemControl) and server (your Chip Server) is a rather simple TCP/IP message
protocol. The protocol follows the basics of the "don't speak unless spoken to" philosophy. So the server will never
communicate by itself, it will only respond on commands received from the client.

For example, a command that would fit in the above schematic could be WRITEANDVERIFY. Then we would get:

SC -> Server WRITEANDVERIFY 1 A1234567 Parameter 1: indicates the reader board the
message is send too
Parameter A1234567: indicates the product
number of the product currently in the reader

Server -> SC WRITEANDVERIFY 1 The acknowledge message which in the case has to
include the readerboard index (backwards
compatibility reasons, it's strictly not necessary)

Server Executes the WRITEANDVERIFY
command

Server Optionally writes the result file It up to the customer whether to use result files to
communicate the result of the command to the
client, or, to incorporate the result data in the TCP/
IP message

Server -> SC WRITEANDVERIFY 1_READY The ready message, again, depending on the
customers choice it can contain the result of the
command. If result files are used, the ready
message does not need more information. More on
this topic later on in the document.

Every TCP message ends with a <LF> character (ASCII 0010). The client will always end each message with a <LF>
character, and will expect a <LF> character at the end of every message from the server. If a <LF> is not present, the
client will report a protocol error on the GUI.

CONFID
ENTIAL

Confidential information

Version: 14 Date:18/04/2025 Page: 6

Passing the result back to the client
The result of each command must be communicated back to the system control. This can be done either by writing
a result file (an INI file) or by incorporating the result information in the ready response message. Both are
explained in this document.

Result files
Result files are written by the server to a location which is accessible by the system control. The result file has the
following structure:

[COMMAND]
ErrorCode=0
ErrorString=”Any string”

COMMAND: the command which is executed, e.g. “WRITEANDVERIFY 1”
ErrorCode: an integer which represents the error of the command
ErrorString: a human readable representation of the error

For example, a WRITEANDVERIFY result would look as follows:

[WRITEANDVERIFY 1]
ErrorCode=0
ErrorString=”no error”

Result over TCP
It's also possible to incorporate the result in the TCP ready message, which saves the trouble of dealing with files for
inter process communication.
The command result information is added at the end of the ready message, separated by a colon. The result data
itself is a list of key-value pairs, separated by <CR> characters (ASCII 0013).
An example of the ready message over TCP would look as follows:

WRITEANDVERIFY 1_READY:ErrorCode=0\rErrorMessage=no error\n

NOTE: The colon character is a reserved character, and cannot be used in the values of the key/value pairs. For
example, the following message will fail to parse due to the colon in the ErrorMessage value:

WRITEANDVERIFY 4_READY:ErrorCode=1ErrorMessage=|CL:invalid response from server 500|

CONFID
ENTIAL

Confidential information

Version: 14 Date:18/04/2025 Page: 7

CONFID
ENTIAL

Confidential information

Version: 14 Date:18/04/2025 Page: 8

Supported commands

<command> <argument(s)> Description

INIT <configuration file> General Connection
A trigger from the system control to initialize the
server. If needed we can send a configuration file so
that the server can receive configuration if needed. If
there is no need for such configuration it can be
ignored.

WRITEANDVERIFY <#readerboard>
<#product>
<read number>
<job name>

Readerboard Connection
Start programming for specific reader board.

#readerboard: The index of the reader
#product: The product number which is used as
reference to find product data files
read number: [Optional]: the read number which is
required by the chip server
job name: [Optional]: the name of the job, which is
required to create the relative path to the host data
files

Example:
WRITEANDVERIFY 2 XA00001 12345678 AB1234

CONFID
ENTIAL

Confidential information

Version: 14 Date:18/04/2025 Page: 9

<command> <argument(s)> Description

READNUMBER <#readerboard>
<#product>
<job name>

Readerboard Connection
Read number in the chip. The read number has
should be returned as part of the result of the
command.

#readerboard: The index of the reader
#product: [Optional,BMPro only]: The product
number which is used as reference to find product
data files. This cannot be combined with the job
name argument.
job name: [Optional]: the name of the job, which is
required to create the relative path to the host data
files

INI result file example:

[READNUMBER 1]
ErrorCode=0
ErrorString=”no error”
ReadNumber=”XA000001”

TCP result example

READNUMBER
1_READY:ErrorCode=0\rReadNumber=XA00001
\r\n

Table 1 – Commands

Error Codes
The System Control enforces the following error code convention:

Value Meaning

0 Chip successfully programmed.

< 0 Chip not programmed but chip is still programmable (product will receive rework
status).

CONFID
ENTIAL

Confidential information

Version: 14 Date:18/04/2025 Page: 10

> 0 Chip programing failed. Chip can't be programmed again (product will receive
reject status).

CONFID
ENTIAL

Confidential information

Version: 14 Date:18/04/2025 Page: 11

1.

2.
3.
4.

Configuration file

Location
The location of the configuration file can be defined in either the unit configuration or in the recipe. The value
defined in the recipe takes precedence over the value defined in the unit configuration. The unit configuration value
can be adjusted through the settings UI of the main application. To define the value in a recipe see the following
examples:

CMO encode recipe

<Encode Contact="true" Contactless="true" ApplicationFile="S:
\IAI\Data\Recipes\Recipe\Encoding\EncodeApplication.ini" />

Note: For the CMO both the recipe value and the unit configuration value can me omitted. The INIT command is not
sent to the server in such a case.

BMO encode recipe

<UnitRecipeConfigurations xsi:type="EncodeUnitRecipeConfiguration">
 <NoProcessing>false</NoProcessing>
 <ChipServerTimeOut>5000</ChipServerTimeOut>
 <ApplicationFile>S:\IAI\Data\Recipes\Recipe\Encoding\EncodeApplication.ini</
ApplicationFile>
</UnitRecipeConfigurations>

Extended behavior
The IAI machine can write which encoder positions are enabled in the configuration file send by the INIT command.

It will update the application file which is copied per server and configured before the INIT command is
send.
It will add any reader known to the machine, starting with 01
0 is not enabled, 1 is enabled
Any other content is not affected

[ChipApplication]
enabled01=1
enabled02=1
enabled03=0
enabled04=1

CONFID
ENTIAL

Confidential information

Version: 14 Date:18/04/2025 Page: 12

Hardware mapping

CONFID
ENTIAL

	TCP/IP message structure
	IAI server protocol
	Passing the result back to the client
	Result files
	Result over TCP

	Supported commands
	Error Codes

	Configuration file
	Location
	Extended behavior

	Hardware mapping

