



en

TPRO2

04U44

G93176R03

B4U440

# Total Protein2

FOR USE WITH

## ARCHITECT

Read Highlighted Changes: Revised February 2022.

REF | 04U4420

REF | 04U4430

Instructions must be carefully followed. Reliability of assay results cannot be guaranteed if there are any deviations from these instructions.

For laboratory professional use only.

### ■ NAME

Total Protein2 (also referred to as TPRO2)

### ■ INTENDED USE

The Total Protein2 assay is used for the quantitation of total protein in human serum or plasma on the ARCHITECT c Systems.

The Total Protein2 assay is to be used as an aid in the diagnosis and treatment of a variety of diseases involving the liver, kidney, or bone marrow as well as other metabolic or nutritional disorders.

### ■ SUMMARY AND EXPLANATION OF THE TEST

Total protein is divided into two fractions: albumin (A) and globulins (G). While albumin accounts for 70% of the colloid-osmotic pressure and transports small molecules in blood, globulins majorly comprise of immune defense, enzymes, specific transport proteins, hormones, and others.<sup>1</sup> The A/G ratio has commonly been used as an index of the distribution between the albumin and globulin fractions.

Measurements of total protein are used in the diagnosis and treatment of a variety of diseases involving liver, kidney, lymph nodes, spleen, or bone marrow. High protein levels may be observed in cases of severe dehydration and disease states such as multiple myeloma. Changes in the proportions of the plasma proteins may occur in one or several of the protein fractions and often without alterations in the quantity of the total protein. Low protein levels may be caused by such conditions as nephrotic syndrome, extensive bleeding, sprue (deficient protein absorption), severe burns, salt retention syndromes, and Kwashiorkor (acute protein starvation). High or low total protein may lead one to suspect pathologic variation of individual proteins and may indicate additional testing including serum protein electrophoresis, hematocrit, electrolytes, testing for specific proteins and other organ or disease specific markers.<sup>2</sup>

### ■ PRINCIPLES OF THE PROCEDURE

The Total Protein2 assay is an automated clinical chemistry assay.

Polypeptides containing at least two peptide bonds react with the biuret reagent. In an alkaline solution, the cupric ion forms a coordination complex with protein-nitrogen with very little difference between albumin and globulin on a protein-nitrogen basis.

Methodology: Biuret

For additional information on system and assay technology, refer to the ARCHITECT System Operations Manual, Section 3.

### ■ REAGENTS

#### Kit Contents

Total Protein2 Reagent Kit 04U44

NOTE: Some kit sizes may not be available. Please contact your local distributor.

Volumes (mL) listed in the following table indicate the volume per cartridge.

| REF                                                                        | 04U4420 | 04U4430 |
|----------------------------------------------------------------------------|---------|---------|
| Tests per cartridge                                                        | 200     | 800     |
| Number of cartridges per kit                                               | 4       | 4       |
| Tests per kit                                                              | 800     | 3200    |
| R1                                                                         | 19.6 mL | 69.0 mL |
| <b>R1</b> Active ingredient: copper (II) sulfate pentahydrate (6.600 g/L). |         |         |

#### Warnings and Precautions

- **IVD**
- For *In Vitro* Diagnostic Use
- **Rx ONLY**

#### Safety Precautions

**CAUTION:** This product requires the handling of human specimens. It is recommended that all human-sourced materials and all consumables contaminated with potentially infectious materials be considered potentially infectious and handled in accordance with the OSHA Standard on Bloodborne Pathogens. Biosafety Level 2 or other appropriate regional, national, and institutional biosafety practices should be used for materials that contain, are suspected of containing, or are contaminated with infectious agents.<sup>3-6</sup>

| The following warnings and precautions apply to: R1 |                                                                                                                                  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                                                     |                                                                                                                                  |
| <b>DANGER</b>                                       | Contains sodium hydroxide and copper (II) sulfate pentahydrate.                                                                  |
| H314                                                | Causes severe skin burns and eye damage.                                                                                         |
| H401*                                               | Toxic to aquatic life.                                                                                                           |
| H411                                                | Toxic to aquatic life with long lasting effects.                                                                                 |
| H290                                                | May be corrosive to metals.                                                                                                      |
| <b>Prevention</b>                                   |                                                                                                                                  |
| P260                                                | Do not breathe mist / vapors / spray.                                                                                            |
| P264                                                | Wash hands thoroughly after handling.                                                                                            |
| P280                                                | Wear protective gloves / protective clothing / eye protection.                                                                   |
| P234                                                | Keep only in original container.                                                                                                 |
| P273                                                | Avoid release to the environment.                                                                                                |
| <b>Response</b>                                     |                                                                                                                                  |
| P301+P330+P331                                      | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.                                                                               |
| P305+P351+P338                                      | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
| P303+P361+P353                                      | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water / shower.                            |

|                 |                                                                       |
|-----------------|-----------------------------------------------------------------------|
| P310            | Immediately call a POISON CENTER or doctor / physician.               |
| P390            | Absorb spillage to prevent material damage.                           |
| <b>Disposal</b> |                                                                       |
| P501            | Dispose of contents / container in accordance with local regulations. |

\* Not applicable where regulation EC 1272/2008 (CLP) has been implemented.

Follow local chemical disposal regulations based on your location along with recommendations and content in the Safety Data Sheet to determine the safe disposal of this product.

For the most current hazard information, see the product Safety Data Sheet.

Safety Data Sheets are available at [www.corelaboratory.abbott](http://www.corelaboratory.abbott) or contact your local representative.

For a detailed discussion of safety precautions during system operation, refer to the ARCHITECT System Operations Manual, Section 8.

#### Reagent Handling

- Do not pool reagents within a kit or between kits.
- Do not reuse containers, caps or plugs due to the risk of contamination and the potential to compromise reagent performance.
- Upon receipt, reagent cartridges can be used immediately or stored in an upright position.
- Reagents are susceptible to the formation of foam and bubbles. Bubbles may interfere with the detection of the reagent level in the cartridge and cause insufficient reagent aspiration that may adversely affect results.

For a detailed discussion of reagent handling precautions during system operation, refer to the ARCHITECT System Operations Manual, Section 7.

#### Reagent Storage

|          | Storage Temperature | Maximum Storage Time  | Additional Storage Instructions |
|----------|---------------------|-----------------------|---------------------------------|
| Unopened | 15 to 30°C          | Until expiration date | Store in upright position.      |
| Onboard  | System Temperature  | 30 days               |                                 |
| Opened   | 15 to 30°C          | Until expiration date | Store in upright position.      |

Reagents may be stored on or off the ARCHITECT c System. If reagents are removed from the system, store at 15 to 30°C (with replacement caps) in their original boxes.

For information on unloading reagents, refer to the ARCHITECT System Operations Manual, Section 5.

#### Indications of Reagent Deterioration

Deterioration of the reagents may be indicated when a calibration error occurs or a control value is out of the specified range.

Associated test results are invalid, and samples must be retested.

Assay recalibration may be necessary.

For troubleshooting information, refer to the ARCHITECT System Operations Manual, Section 10.

## INSTRUMENT PROCEDURE

The Total Protein2 assay file must be installed on the ARCHITECT c System prior to performing the assay.

Installation of all the required SmartWash updates on the ARCHITECT c Systems Assay Disk Version 17.00 (or higher) and the Special Chemistry Assay Disk Version 7.00 (or higher) must be completed prior to performing the assay. See below for impacted assays:

| Assay Name                      | Short Name | REF  | Assay Number | VERSION                              |                            |
|---------------------------------|------------|------|--------------|--------------------------------------|----------------------------|
|                                 |            |      |              | Conventional Units / Alternate Units | SI Units / Alternate Units |
| Copper                          | Copp       | 6K93 | 2962         | 7                                    | 7                          |
| Hemoglobin, Total (Hemolysate)  | THbH       | 4P52 | 1107         | 5                                    | 5                          |
| Hemoglobin A1c (Hemolysate)     | HbA1cH     | 4P52 | 1108         | 5                                    | 5                          |
| %A1c – NGSP (Hemolysate)        | %A1cH      | 4P52 | 3077         | 5                                    | N/A                        |
| A1c – IFCC (Hemolysate)         | A1cH       | 4P52 | 3076         | N/A                                  | 5                          |
| Hemoglobin, Total (Whole Blood) | THbWB      | 4P52 | 1105         | 4                                    | 4                          |
| Hemoglobin A1c (Whole Blood)    | HbA1cWB    | 4P52 | 1106         | 4                                    | 4                          |
| %A1c – NGSP (Whole Blood)       | %A1cWB     | 4P52 | 3075         | 4                                    | N/A                        |
| A1c – IFCC (Whole Blood)        | A1cWB      | 4P52 | 3074         | N/A                                  | 4                          |
| Urine/CSF Protein               | UPro       | 7D79 | 1044         | 12                                   | 10                         |
| Triglyceride                    | Trig       | 7D74 | 1017         | 8                                    | 7                          |

N/A = Not applicable

For detailed information on assay file installation and viewing and editing assay parameters, refer to the ARCHITECT System Operations Manual, Section 2.

For information on printing assay parameters, refer to the ARCHITECT System Operations Manual, Section 5.

For a detailed description of system procedures, refer to the ARCHITECT System Operations Manual.

#### Alternate Result Units

Conversion formula:

(Concentration in Default result unit) x (Conversion factor) = (Concentration in Alternate result unit)

| Default Result Unit | Conversion Factor | Alternate Result Unit |
|---------------------|-------------------|-----------------------|
| g/dL                | 10                | g/L                   |

## SPECIMEN COLLECTION AND PREPARATION FOR ANALYSIS

#### Specimen Types

The specimen types listed below were verified for use with this assay.

Other specimen types and collection tube types have not been verified with this assay.

| Specimen Types | Collection Tubes                                                                   |
|----------------|------------------------------------------------------------------------------------|
| Serum          | Serum<br>Serum separator                                                           |
| Plasma         | Dipotassium EDTA<br>Lithium heparin<br>Lithium heparin separator<br>Sodium heparin |

Due to the presence of fibrinogen protein, the values obtained for a plasma sample are generally higher than for serum.<sup>7</sup> Therefore, values obtained using both tube types cannot be used interchangeably. Refer to the EXPECTED VALUES section of this package insert for additional information.

Liquid anticoagulants may have a dilution effect resulting in lower concentration values for individual specimens.

The instrument does not provide the capability to verify specimen types. It is the responsibility of the operator to verify that the correct specimen types are used in the assay.

## Specimen Conditions

- Do not use:
  - heat-inactivated specimens
  - pooled specimens
  - grossly hemolyzed specimens
  - specimens with obvious microbial contamination
  - specimens with fungal growth
- For accurate results, serum and plasma specimens should be free of fibrin, red blood cells, and other particulate matter. Serum specimens from patients receiving anticoagulant or thrombolytic therapy may contain fibrin due to incomplete clot formation.
- To prevent cross contamination, use of disposable pipettes or pipette tips is recommended.

## Preparation for Analysis

- Follow the tube manufacturer's processing instructions for collection tubes. Gravity separation is not sufficient for specimen preparation.
- Specimens should be free of bubbles. Remove bubbles with an applicator stick before analysis. Use a new applicator stick for each specimen to prevent cross contamination.

To ensure consistency in results, recentrifuge specimens prior to testing if

- they contain fibrin, red blood cells, or other particulate matter.

NOTE: If fibrin, red blood cells, or other particulate matter are observed, mix by low speed vortex or by inverting 10 times prior to recentrifugation.

Prepare frozen specimens as follows:

- Frozen specimens must be completely thawed before mixing.
- Mix thawed specimens thoroughly by low speed vortex or by inverting 10 times.
- Visually inspect the specimens. If layering or stratification is observed, mix until specimens are visibly homogeneous.
- If specimens are not mixed thoroughly, inconsistent results may be obtained.
- Recentrifuge specimens.

## Re centrifugation of Specimens

- Transfer specimens to a centrifuge tube and centrifuge.
- Transfer clarified specimen to a sample cup or secondary tube for testing. For centrifuged specimens with a lipid layer, transfer only the clarified specimen and not the lipemic material.

## Specimen Storage

| Specimen Type | Temperature                      | Maximum Storage Time  |
|---------------|----------------------------------|-----------------------|
| Serum/Plasma  | Room temperature<br>(20 to 25°C) | 7 days <sup>8</sup>   |
|               | 2 to 8°C                         | 7 days <sup>8</sup>   |
|               | -20°C                            | 3 months <sup>9</sup> |

Avoid multiple freeze/thaw cycles.<sup>9</sup>

It is the responsibility of the individual laboratory to determine specific specimen stability criteria for their laboratory per their laboratory workflow.

For additional information on sample handling and processing, refer to CLSI GP44-A4.<sup>10</sup> The storage information provided here is based on references or data maintained by the manufacturer.

Each laboratory may establish a range around -20°C from either the freezer manufacturer's specifications or your laboratory standard operating procedure(s) for specimen storage.

Stored specimens must be inspected for particulates. If present, mix with a low speed vortex or by inversion and centrifuge the specimen to remove particulates prior to testing.

## Specimen Shipping

Package and label specimens in compliance with applicable state, federal, and international regulations covering the transport of clinical specimens and infectious substances.

Do not exceed the storage limitations listed above.

## PROCEDURE

### Materials Provided

04U44 Total Protein2 Reagent Kit

### Materials Required but not Provided

- Total Protein2 assay file found on [www.corelaboratory.abbott](http://www.corelaboratory.abbott)
- 04V1501 Consolidated Chemistry Calibrator
- Controls containing total protein

For information on materials required for operation of the instrument, refer to the ARCHITECT System Operations Manual, Section 1.

For information on materials required for maintenance procedures, refer to the ARCHITECT System Operations Manual, Section 9.

### Assay Procedure

For a detailed description of how to run an assay, refer to the ARCHITECT System Operations Manual, Section 5.

- If using primary or aliquot tubes, refer to the ARCHITECT System Operations Manual, Section 5 to ensure sufficient specimen is present.
- Minimum sample cup volume is calculated by the system and printed on the Order List report. To minimize the effects of evaporation, verify adequate sample cup volume is present prior to running the test.
- Minimum sample volume requirements:
  - Sample volume for single test: 3.2 µL.

NOTE: This amount does not include the dead volume plus the additional over-aspiration volume. For total sample volume requirements, refer to the ARCHITECT System Operations Manual, Section 5.
- Refer to the Consolidated Chemistry Calibrator package insert **REF** 04V1501 and/or commercially available control material package insert for preparation and usage.
- For general operating procedures, refer to the ARCHITECT System Operations Manual, Section 5.
- For optimal performance, it is important to perform routine maintenance as described in the ARCHITECT System Operations Manual, Section 9. Perform maintenance more frequently when required by laboratory procedures.

### Sample Dilution Procedures

Sample dilutions have not been evaluated for the Total Protein2 assay. Samples with a total protein value exceeding 18.3 g/dL (183 g/L) are flagged with the code "> 18.3 g/dL" ("> 183 g/L"). The standard dilution factor for the Total Protein2 assay is 1:2.57.

For details on configuring automated dilutions, refer to the ARCHITECT System Operations Manual, Section 2.

### Calibration

For instructions on performing a calibration, refer to the ARCHITECT System Operations Manual, Section 6.

Calibration is stable for approximately 30 days (720 hours), but is required with each change in reagent lot. Verify calibration with at least 2 levels of controls according to the established quality control requirements for your laboratory. If control results fall outside acceptable ranges, recalibration may be necessary.

This assay may require recalibration after maintenance to critical parts or subsystems or after service procedures have been performed.

### Quality Control Procedures

As appropriate, refer to your laboratory standard operating procedure(s) and/or quality assurance plan for additional quality control requirements and potential corrective actions.

- At least 2 levels of controls (low and high) are to be run every 24 hours.
- If more frequent control monitoring is required, follow the established quality control procedures for your laboratory.
- If quality control results do not meet the acceptance criteria defined by your laboratory, sample results may be suspect. Follow the established quality control procedures for your laboratory. Recalibration may be necessary. For troubleshooting information, refer to the ARCHITECT System Operations Manual, Section 10.
- Review quality control results and acceptance criteria following a change of reagent or calibrator lot.

Controls should be used according to the guidelines and recommendations of the control manufacturer. Concentration ranges provided in the control package insert should be used only for guidance.

For any control material in use, the laboratory should ensure that the matrix of the control material is suitable for use in the assay per the assay package insert.

#### Quality Control Guidance

Refer to "Basic QC Practices" by James O Westgard, Ph.D. for guidance on laboratory quality control practices.<sup>11</sup>

## RESULTS

### Calculation

The Total Protein2 assay utilizes the Linear data reduction method to generate a calibration and results.

### Flags

Some results may contain information in the Flags field. For a description of the flags that may appear in this field, refer to the ARCHITECT System Operations Manual, Section 5.

### Reportable Interval

Based on representative data for the limit of quantitation (LoQ) and the limit of detection (LoD), the ranges over which results can be reported are provided below according to the definitions from CLSI EP34, 1st ed.<sup>12</sup>

|                                                  | g/dL       | g/L     |
|--------------------------------------------------|------------|---------|
| Analytical Measuring Interval (AMI) <sup>a</sup> | 0.2 - 18.3 | 2 - 183 |
| Reportable Interval <sup>b</sup>                 | 0.2 - 18.3 | 2 - 183 |

<sup>a</sup> AMI: The AMI extends from the LoQ to the upper limit of quantitation (ULoQ). This is determined by the range of values in g/dL (g/L) that demonstrated acceptable performance for linearity, imprecision, and bias.

<sup>b</sup> The reportable interval extends from the LoD to the upper limit of the AMI.

NOTE: The default Low Linearity value of the assay file corresponds to the lower limit of the reportable interval.

### LIMITATIONS OF THE PROCEDURE

- Results should be used in conjunction with other data; e.g., symptoms, results of other tests, and clinical impressions.
- Substances that demonstrated interference with the Total Protein2 assay are listed in the SPECIFIC PERFORMANCE CHARACTERISTICS, Analytical Specificity, Interference section of this package insert.
- Potential interference has not been evaluated for substances other than those described in the SPECIFIC PERFORMANCE CHARACTERISTICS, Analytical Specificity, Interference section of this package insert.
- In very rare cases, gammopathy, in particular type IgM (Waldenström's macroglobulinemia), may cause unreliable results.<sup>13</sup>
- The Total Protein2 assay is susceptible to positive interference effects from dextran in the therapeutic concentration range.<sup>14</sup>
- SmartWashes for assays impacted by Total Protein2 must be configured to avoid interference due to reagent carryover. See the INSTRUMENT PROCEDURE section of this package insert for the required assay file updates.

## EXPECTED VALUES

It is recommended that each laboratory determine its own reference range based upon its particular locale and population characteristics.

### Reference Range

#### Serum<sup>15</sup>

| Age               | Range<br>(g/dL) | Range*<br>(g/L) |
|-------------------|-----------------|-----------------|
| Cord              | 4.8 - 8.0       | 48 - 80         |
| Premature         | 3.6 - 6.0       | 36 - 60         |
| Newborn           | 4.6 - 7.0       | 46 - 70         |
| 1 week            | 4.4 - 7.6       | 44 - 76         |
| 7 months - 1 year | 5.1 - 7.3       | 51 - 73         |
| 1 - 2 years       | 5.6 - 7.5       | 56 - 75         |
| > 2 years         | 6.0 - 8.0       | 60 - 80         |
| Adult, ambulatory | 6.4 - 8.3       | 64 - 83         |
| Adult, recumbent  | 6.0 - 7.8       | 60 - 78         |
| > 60 years        | lower by < 0.2  | lower by < 2    |

\* Alternate result units were calculated by Abbott and are not included in the citation provided.

Abbott has not evaluated reference ranges in the pediatric population.

### Plasma

Due to the presence of fibrinogen protein, the values obtained for a plasma sample are generally higher than for serum, and will vary among populations.<sup>7</sup> The normal range for fibrinogen is 0.2 – 0.4 g/dL.<sup>15</sup>

## SPECIFIC PERFORMANCE CHARACTERISTICS

Representative performance data are provided in this section. Results obtained in individual laboratories may vary.

### Precision

#### Within-Laboratory Precision

A study was performed based on guidance from CLSI EP05-A3.<sup>16</sup> Testing was conducted using 3 lots of the Total Protein2 reagent, 3 lots of the Consolidated Chemistry Calibrator, 1 lot of commercially available controls, and 3 instruments. Two controls and 3 human serum panels were tested in duplicate, twice per day on 20 days on 3 reagent lot/calibrator lot/instrument combinations, where a unique reagent lot and a unique calibrator lot is paired with 1 instrument. The performance from a representative combination is shown in the following table.

| Sample          | n  | Mean<br>(g/dL) | Within-Run<br>(Repeatability) |     | Within-Laboratory <sup>a</sup> |                              |
|-----------------|----|----------------|-------------------------------|-----|--------------------------------|------------------------------|
|                 |    |                | SD                            | %CV | SD<br>(Range <sup>b</sup> )    | %CV<br>(Range <sup>b</sup> ) |
| Control Level 1 | 80 | 6.6            | 0.06                          | 0.9 | 0.06<br>(0.06 - 0.07)          | 0.9<br>(0.8 - 1.1)           |
| Control Level 2 | 80 | 4.1            | 0.04                          | 1.0 | 0.06<br>(0.04 - 0.06)          | 1.4<br>(0.9 - 1.4)           |
| Panel A         | 80 | 0.8            | 0.01                          | 1.4 | 0.02<br>(0.01 - 0.02)          | 2.4<br>(1.4 - 2.4)           |
| Panel B         | 80 | 9.2            | 0.08                          | 0.8 | 0.08<br>(0.07 - 0.08)          | 0.9<br>(0.7 - 0.9)           |
| Panel C         | 80 | 16.7           | 0.11                          | 0.7 | 0.13<br>(0.10 - 0.14)          | 0.7<br>(0.6 - 0.8)           |

<sup>a</sup> Includes within-run, between-run, and between-day variability.

<sup>b</sup> Minimum and maximum SD or %CV across all reagent lot and instrument combinations.

| Sample          | n  | Mean<br>(g/L) | Within-Run<br>(Repeatability) |     | Within-Laboratory <sup>a</sup> |                       |
|-----------------|----|---------------|-------------------------------|-----|--------------------------------|-----------------------|
|                 |    |               | SD                            | %CV | (Range <sup>b</sup> )          | (Range <sup>b</sup> ) |
| Control Level 1 | 80 | 66            | 0.6                           | 0.9 | 0.6<br>(0.6 - 0.7)             | 0.9<br>(0.8 - 1.1)    |
| Control Level 2 | 80 | 41            | 0.4                           | 1.0 | 0.6<br>(0.4 - 0.6)             | 1.4<br>(0.9 - 1.4)    |
| Panel A         | 80 | 8             | 0.1                           | 1.4 | 0.2<br>(0.1 - 0.2)             | 2.4<br>(1.4 - 2.4)    |
| Panel B         | 80 | 92            | 0.8                           | 0.8 | 0.8<br>(0.7 - 0.8)             | 0.9<br>(0.7 - 0.9)    |
| Panel C         | 80 | 167           | 1.1                           | 0.7 | 1.3<br>(1.0 - 1.4)             | 0.7<br>(0.6 - 0.8)    |

<sup>a</sup> Includes within-run, between-run, and between-day variability.

<sup>b</sup> Minimum and maximum SD or %CV across all reagent lot and instrument combinations.

## Accuracy

A study was performed to estimate the bias of the Total Protein2 assay relative to standard reference material (NIST SRM 927e). Testing was conducted using 3 lots of the Total Protein2 reagent, 2 lots of the Consolidated Chemistry Calibrator, and 2 instruments. The bias ranged from -0.7% to -0.5% across all instruments, calibrator and reagent lots.

## Lower Limits of Measurement

A study was performed based on guidance from CLSI EP17-A2.<sup>17</sup> Testing was conducted using 3 lots of the Total Protein2 reagent kit on each of 2 instruments over a minimum of 3 days. The maximum observed limit of blank (LoB), limit of detection (LoD), and limit of quantitation (LoQ) values are summarized below.

|                  | g/dL | g/L |
|------------------|------|-----|
| LoB <sup>a</sup> | 0.0  | 0   |
| LoD <sup>b</sup> | 0.2  | 2   |
| LoQ <sup>c</sup> | 0.2  | 2   |

<sup>a</sup> The LoB represents the 95th percentile from n ≥ 60 replicates of zero-analyte samples.

<sup>b</sup> The LoD represents the lowest concentration at which the analyte can be detected with 95% probability based on n ≥ 60 replicates of low-analyte level samples.

<sup>c</sup> The LoQ is defined as the lowest concentration at which a maximum allowable precision of 20 %CV was met and was determined from n ≥ 60 replicates of low-analyte level samples.

## Linearity

A study was performed based on guidance from CLSI EP06-A.<sup>18</sup> This assay is linear across the analytical measuring interval of 0.2 to 18.3 g/dL (2 to 183 g/L).

## Analytical Specificity

### Interference

#### Potentially Interfering Endogenous Substances

A study was performed based on guidance from CLSI EP07-A2.<sup>19</sup> Each substance was tested at 2 levels of the analyte (approximately 6 g/dL and 8 g/dL). No significant interference (interference within ± 10%) was observed at the following concentrations.

| Potentially Interfering Substance     | Interferent Level |                 |
|---------------------------------------|-------------------|-----------------|
|                                       | Default Units     | Alternate Units |
| Bilirubin - conjugated                | 30 mg/dL          | 355.8 μmol/L    |
| Bilirubin - unconjugated              | 30 mg/dL          | 513.0 μmol/L    |
| Hemoglobin                            | 150 mg/dL         | 1.50 g/L        |
| Paraprotein (IgM lambda) <sup>a</sup> | 0.3 g/dL          | 3.00 g/L        |
| Triglycerides                         | 3000 mg/dL        | 33.9 mmol/L     |

Interference beyond ± 10% [based on 95% confidence interval (CI)] was observed at the concentrations shown below for the following substances.

| Potentially Interfering Substance     | Interferent Level |                 | Analyte Level |                 | % Interference<br>(95% CI) |
|---------------------------------------|-------------------|-----------------|---------------|-----------------|----------------------------|
|                                       | Default Units     | Alternate Units | Default Units | Alternate Units |                            |
| Hemoglobin                            | 300 mg/dL         | 3.00 g/L        | 6 g/dL        | 60 g/L          | 12%<br>(12%, 13%)          |
| Paraprotein (IgM lambda) <sup>a</sup> | 1 g/dL            | 10.0 g/L        | 6 g/dL        | 60 g/L          | 37%<br>(37%, 38%)          |
| Paraprotein (IgM lambda) <sup>a</sup> | 1 g/dL            | 10.0 g/L        | 8 g/dL        | 80 g/L          | 34%<br>(33%, 34%)          |

<sup>a</sup> Interference was evaluated against expected total protein result which included the added paraprotein.

### Potentially Interfering Exogenous Substances

A study was performed based on guidance from CLSI EP07-A2.<sup>19</sup> Each substance was tested at 2 levels of the analyte (approximately 6 g/dL and 8 g/dL). No significant interference (interference within ± 10%) was observed at the following concentrations.

| Potentially Interfering Substance   | Interferent Level   |                 |
|-------------------------------------|---------------------|-----------------|
|                                     | Default Units       | Alternate Units |
| Acetaminophen                       | 250 mg/L            | 1655 μmol/L     |
| Acetylcysteine                      | 1663 mg/L           | 10 194 μmol/L   |
| Acetylsalicylic acid                | 1000 mg/L           | 5550 μmol/L     |
| Amino acids                         | 117 μmol Cys/L      | N/A             |
| Ammonium hydroxide                  | 107 μmol Nitrogen/L | N/A             |
| Ampicillin-Na                       | 1000 mg/L           | 2692.6 μmol/L   |
| Ascorbic acid                       | 300 mg/L            | 1704 μmol/L     |
| Azlocillin                          | 5 g/L               | 10.8 mmol/L     |
| Calcium dobesilate                  | 200 mg/L            | 478.0 μmol/L    |
| Carbenicillin                       | 300 mg/dL           | 7929 μmol/L     |
| Cefotaxime                          | 31 mg/dL            | 682.0 μmol/L    |
| Cefoxitin                           | 2500 mg/L           | 5850 μmol/L     |
| Chloramphenicol                     | 500 mg/L            | 1545 μmol/L     |
| Cyclosporine                        | 5 mg/L              | 4.16 μmol/L     |
| Desacetylcefotaxime                 | 6 mg/dL             | 145.1 μmol/L    |
| Dextran                             | 2 g/L               | 50.0 μmol/L     |
| Doxorubicin                         | 70 mg/L             | 128.9 μmol/L    |
| Doxycycline                         | 50 mg/L             | 112.5 μmol/L    |
| Ibuprofen                           | 500 mg/L            | 2425 μmol/L     |
| Levodopa                            | 20 mg/L             | 101.4 μmol/L    |
| Methyldopa                          | 20 mg/L             | 94.6 μmol/L     |
| Metronidazole                       | 200 mg/L            | 1168 μmol/L     |
| Penicillin G                        | 500 mg/L            | 1497 μmol/L     |
| Phenobarbital                       | 10 mg/dL            | 431.0 μmol/L    |
| Phenylbutazone                      | 400 mg/L            | 1296 μmol/L     |
| Primidone                           | 4 mg/dL             | 183.2 μmol/L    |
| Rifampicin                          | 60 mg/L             | 73.2 μmol/L     |
| Sodium heparin                      | 10 U/mL             | N/A             |
| Sulfasalazine                       | 30 mg/dL            | 753.0 μmol/L    |
| Theophylline (1,3-dimethylxanthine) | 100 mg/L            | 555.0 μmol/L    |
| Valproic Acid                       | 50 mg/dL            | 3465 μmol/L     |

N/A = Not applicable

Interference beyond ± 10% [based on 95% confidence interval (CI)] was observed at the concentrations shown below for the following substances.

| Potentially Interfering Substance | Interferent Level |                   | Analyte Level |                 | % Interference<br>(95% CI) |
|-----------------------------------|-------------------|-------------------|---------------|-----------------|----------------------------|
|                                   | Default Units     | Alternate Units   | Default Units | Alternate Units |                            |
| Azlocillin                        | 6 g/L             | 13.0 mmol/L       | 6 g/dL        | 60 g/L          | 11%<br>(10%, 12%)          |
| Dextran                           | 7.5 g/L           | 187.5 $\mu$ mol/L | 6 g/dL        | 60 g/L          | 30%<br>(29%, 30%)          |
| Dextran                           | 7.5 g/L           | 187.5 $\mu$ mol/L | 8 g/dL        | 80 g/L          | 25%<br>(24%, 25%)          |
| Doxorubicin                       | 105 mg/L          | 193.4 $\mu$ mol/L | 6 g/dL        | 60 g/L          | 15%<br>(14%, 15%)          |
| Doxorubicin                       | 105 mg/L          | 193.4 $\mu$ mol/L | 8 g/dL        | 80 g/L          | 11%<br>(11%, 12%)          |

Interferences from medication or endogenous substances may affect results.<sup>20</sup>

## Method Comparison

A study was performed based on guidance from CLSI EP09-A3<sup>21</sup> using the Passing-Bablok regression method.

| Total Protein2 vs Total Protein on the ARCHITECT c System |              |                         |                |       |                          |
|-----------------------------------------------------------|--------------|-------------------------|----------------|-------|--------------------------|
| n                                                         | Units        | Correlation Coefficient | Intercept      | Slope | Concentration Range      |
| Serum                                                     | 127<br>(g/L) | 1.00                    | 0.29<br>(2.88) | 0.97  | 1.4 - 16.5<br>(14 - 165) |

## BIBLIOGRAPHY

- Walker HK, Hall WD, Hurst JW, editors. *Clinical Methods: The History, Physical, and Laboratory Examinations*. 3rd ed. Boston: Butterworths; 1990:497-499.
- Jeppsson JO, Laurell CB, Franzén B. Agarose gel electrophoresis. *Clin Chem* 1979;25(4):629-638.
- US Department of Labor, Occupational Safety and Health Administration, 29 CFR Part 1910.1030, Bloodborne pathogens.
- US Department of Health and Human Services. *Biosafety in Microbiological and Biomedical Laboratories*. 5th ed. Washington, DC: US Government Printing Office; December 2009.
- World Health Organization. *Laboratory Biosafety Manual*. 3rd ed. Geneva: World Health Organization; 2004.
- Clinical and Laboratory Standards Institute (CLSI). *Protection of Laboratory Workers From Occupationally Acquired Infections; Approved Guideline—Fourth Edition*. CLSI Document M29-A4. Wayne, PA: CLSI; 2014.
- Bakker AJ, Gorgels J, Draisma J, et al. Simple method for correcting total protein in plasma for actual fibrinogen content. *Clin Chem* 1992;38(11):2221-2223.
- Cuhadar S, Atay A, Koseoglu M, et al. Stability studies of common biochemical analytes in serum separator tubes with or without gel barrier subjected to various storage conditions. *Biochem Med* 2012;22(2):202-214.
- Cuhadar S, Koseoglu M, Atay A, et al. The effect of storage time and freeze-thaw cycles on the stability of serum samples. *Biochem Med* 2013;23(1):70-77.
- Clinical and Laboratory Standards Institute (CLSI). *Procedures for the Handling and Processing of Blood Specimens for Common Laboratory Tests; Approved Guideline—Fourth Edition*. CLSI Document GP44-A4. Wayne, PA: CLSI; 2010.
- Westgard JO. *Basic QC Practices*. 3rd ed. Madison, WI: Westgard Quality Corporation; 2010.
- Clinical and Laboratory Standards Institute (CLSI). *Establishing and Verifying an Extended Measuring Interval Through Specimen Dilution and Spiking*. 1st ed. CLSI Guideline EP34. Wayne, PA: CLSI; 2018.
- Bakker AJ, Mucke M. Gammopathy interference in clinical chemistry assays: mechanisms, detection and prevention. *Clin Chem Lab Med* 2007;45(9):1240-1243.
- Delanghe JR, Hamers N, Taes YE, et al. Interference of dextran in biuret-type assays of serum proteins. *Clin Chem Lab Med* 2005;43(1):71-74.
- Burtis CA, Bruns DE, editors. *Tietz Fundamentals of Clinical Chemistry and Molecular Diagnostics*. 7th ed. St Louis, MO: Saunders; 2015:975-976.
- Clinical and Laboratory Standards Institute (CLSI). *Evaluation of Precision of Quantitative Measurement Procedures: Approved Guideline—Third Edition*. CLSI Document EP05-A3. Wayne, PA: CLSI; 2014.
- Clinical and Laboratory Standards Institute (CLSI). *Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures; Approved Guideline—Second Edition*. CLSI Document EP17-A2. Wayne, PA: CLSI; 2012.
- Clinical and Laboratory Standards Institute (CLSI). *Evaluation of the Linearity of Quantitative Measurement Procedures: A Statistical Approach; Approved Guideline*. CLSI Document EP06-A. Wayne, PA: CLSI; 2003.
- Clinical and Laboratory Standards Institute (CLSI). *Interference Testing in Clinical Chemistry; Approved Guideline—Second Edition*. CLSI Document EP07-A2. Wayne, PA: CLSI; 2005.
- Young DS. Laboratory test listings. In: *Effects of Drugs on Clinical Laboratory Tests*. 5th ed. AACC Press; 2000:chap 3.
- Clinical and Laboratory Standards Institute (CLSI). *Measurement Procedure Comparison and Bias Estimation Using Patient Samples; Approved Guideline—Third Edition*. CLSI Document EP09-A3. Wayne, PA: CLSI; 2013.

## Key to Symbols

### ISO 15223 Symbols

|  |                                           |
|--|-------------------------------------------|
|  | Consult instructions for use              |
|  | Manufacturer                              |
|  | Sufficient for                            |
|  | Temperature limitation                    |
|  | Use by/Expiration date                    |
|  | <i>In Vitro</i> Diagnostic Medical Device |
|  | Lot Number                                |
|  | List Number                               |
|  | Serial number                             |

### Other Symbols

|  |                                                                                         |
|--|-----------------------------------------------------------------------------------------|
|  | Distributed in the USA by                                                               |
|  | Identifies products to be used together                                                 |
|  | Information needed for United States of America only                                    |
|  | Product of Ireland                                                                      |
|  | Reagent 1                                                                               |
|  | For use by or on the order of a physician only (applicable to USA classification only). |

Note for number formatting:

- A space is used as thousands separator (example: 10 000 specimens).
- A period is used to separate the integer part from the fractional part of a number written in decimal form (example: 3.12%).

ARCHITECT and related brand marks are trademarks of Abbott.  
Other trademarks are the property of their respective owners.



Abbott Ireland  
Diagnostics Division  
Lisnamuck, Longford  
Co. Longford  
Ireland  
+353-43-3331000



**DISTRIBUTED IN THE USA BY**

Abbott Laboratories  
Abbott Park, IL 60064 USA

**Customer Service:** Contact your local representative or find  
country-specific contact information on  
[www.corelaboratory.abbott](http://www.corelaboratory.abbott)

Revised February 2022.

©2020, 2022 Abbott Laboratories