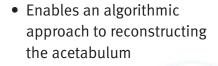




Zimmer® Trabecular Metal™ Acetabular Revision System






# **Expanding options in acetabular revision surgery**

Unique in the industry, the *Zimmer Trabecular Metal* Acetabular Revision System sets new standards in the way surgeons perform revision surgery. It combines *Trabecular Metal* Technology with the ability to tailor individualized solutions for each patient—a combination no other competitive system offers.

- Provides surgeons multiple options to address the wide range of bone deficiencies encountered in acetabular revision—without the need for custom implants
- A viable alternative to structural allograft, without potential for resorption or disease transmission—plus, a more economical and technically easier procedure
- Modular design increases intraoperative flexibility







## **Modularity = Flexibility**

The Zimmer Trabecular Metal Acetabular Revision System gives surgeons an exceptional array of options to properly address the full range of acetabular defects. The system's use of modular components enables surgeons to tailor a solution to specific patient needs without requiring the use of custom implants.

The components that make up the Zimmer Trabecular Metal Acetabular Revision System include Trabecular Metal Modular Multihole Shells, Longevity® Highly Crosslinked

Polyethylene Modular Liners, *Trabecular Metal* Revision Shells, *Longevity* Highly Crosslinked Polyethylene Cemented Revision Liners, *Trabecular Metal* Augments, *Trabecular Metal* Restrictors, *Trabecular Metal* Buttress Augments, *Trabecular Metal* Shim Augments, and Titanium Cages, which are used to create the Cup-Cage Construct.

### **Shells and Liners**

## Trabecular Metal Modular O-Multi-hole Shells

- To create initial stability,
   Trabecular Metal Material
   combines an excellent
   coefficient of friction against
   bone and an elliptical shape<sup>5,6</sup>
- Industry-leading locking mechanism—allows liners to be snapped in and removed easily, providing intraoperative flexibility and ease of liner exchange

## **Longevity** Highly Crosslinked O-Polyethylene Modular Liners

- 89% reduction in wear, compared to conventional polyethylene liners<sup>7</sup>
- Multiple liner options

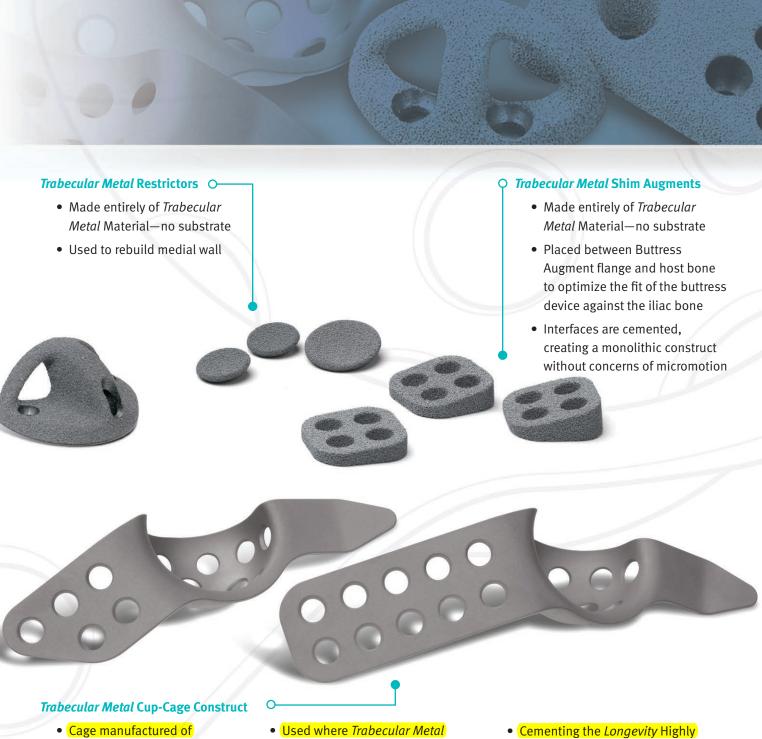
   available, including neutral,
   10° elevated, 20° elevated,
   and 7mm offset in a large
   range of sizes
- Large head diameters, up to 40mm, for increased joint stability and range of motion





## **Augments and Cages**

#### Trabecular Metal Augments O


- Made entirely of *Trabecular Metal* Material—no substrate
- Interfaces are cemented, creating a monolithic construct without concerns of micromotion
- Shell and Augment combination increases total implant surface area for optimized *Trabecular Metal* Material-to-host-bone contact
- Augments sized from 50 to 70mm in 10, 15, 20, and 30mm thicknesses
- Wide array of Augment sizing allows selection to fit the size of the defect, thereby minimizing bone removal



#### **Trabecular Metal Buttress Augments** O

- Made entirely of *Trabecular* Metal Material—no substrate
- Addresses extensive superior segmental defects (Paprosky Type IIIA)
- Alternative to allograft, without potential for bone resorption or disease transmission
- Designed to provide a technically simpler procedure, compared to using structural allograft

- Interfaces are cemented, creating a monolithic construct without concerns of micromotion
- Host bone is conserved while implant size, position, and orientation are determined by the defect
- Allows head center to be restored for optimization of patient kinematics
- Available in straight superior and posterior/anterior column configurations
- Sizing allows use with Trabecular Metal Revision Shells of any size



- Cage manufactured of commercially pure titanium for
- optimized mechanical strengthLeft and right configurations
- Long-flange and short-flange options
- Inferior flange designed to be spiked into ischium
- Shaped to fit individual patient anatomy

- Used where Trabecular Metal Revision Shell alone does not provide adequate stability
- Cage spans acetabular defects and pelvic discontinuities to provide mechanical stability of the Cup-Cage construct until biological ingrowth occurs within the *Trabecular Metal* Revision Shell
- Cementing the Longevity Highly
   Crosslinked Polyethylene Liners,
   Cages, and Trabecular Metal Revision
   Shells together creates a single
   construct, without concerns
   of micromotion

## An algorithmic approach

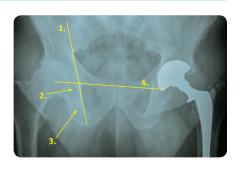
While other algorithmic approaches may be used to discuss acetabular revision, this brochure uses Paprosky's classification of acetabular defects to explain the usage of *Trabecular Metal* Acetabular Revision System Components. This approach provides preoperative indications to predict

defects and solutions intraoperatively. It is based on the severity of bone loss and the ability to obtain cementless fixation for a given bone-loss pattern. This system can be used as a guide to maximize contact between the host bone and the *Trabecular Metal* Components, thus optimizing mechanical stability.

## **Paprosky Classification<sup>8</sup>**

| Defect Type          | Defect Characteristics                                                                                                             |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 1                    | Acetabular rim, anterior column, and posterior column intact and supportive; small, local, contained defects                       |
| IIA                  | Moderate superomedial migration <3cm; >50% host-bone contact                                                                       |
| IIB                  | Moderate superolateral migration <3cm; >50% host-bone contact                                                                      |
| IIC                  | Isolated medial migration, medial to Kohler's line; intact rim                                                                     |
| IIIA                 | Severe superolateral migration >3cm; 40-60% host-bone contact; inadequate stability; defect <1/2 circumference                     |
| IIIB                 | Severe superomedial migration; <40% host-bone contact; inadequate stability; medial to Kohler's line; risk of pelvic discontinuity |
| Pelvic Discontinuity | Partial or complete fracture                                                                                                       |

## **Reconstruction Options**


The integrity of the host-bone stock determines the reconstruction option available:

- Completely supportive acetabulum (ingrowth likely)—Trabecular Metal Shell
- Partially supportive acetabulum (ingrowth possible)—Trabecular Metal Shell with Augments
- Non-supportive (ingrowth unlikely)— Trabecular Metal Shell with Buttress Augments and/or Cage

#### **Four Landmarks**

Indications for component revision are dependent upon four radiographic criteria:

- Kohler's line—integrity of medial wall and superior anterior column
- Acetabular tear drop—integrity of medial wall and inferior portion of anterior and posterior column
- Ischial lysis—integrity of posterior wall and posterior column
- Vertical migration—integrity of superior dome



## **Clinical applications**

## Type I & Type II



Radiograph of Defect

#### Type I Defect

Kohler's Line: Intact Tear Drop: Intact

Ischial Lysis: Minimal to none Vertical Migration: Minimal to none

#### **Type IIA Defect**

Kohler's Line: Intact Tear Drop: Violated

Ischial Lysis: Mild to moderate
Vertical Migration: Minimal to none



Defect

#### Type IIB Defect

Kohler's Line: Intact Tear Drop: Intact Ischial Lysis: Mild Vertical Migration: <3cm

#### **Type IIC Defect**

Kohler's Line: Moderately violated Tear Drop: Moderate lysis

Ischial Lysis: Minimal

Vertical Migration: Minimal to none



Algorithmic Repair

#### Solution 1

Trabecular Metal Modular Cup and Longevity Highly Crosslinked Polyethylene Liner

- Can be used for most Type I & II revision cases
- Large heads, up to 40mm, for additional joint stability and range of motion
- Intraoperative flexibility with a wide array of *Longevity* Highly Crosslinked Polyethylene Liners

#### Solution 2

Trabecular Metal Revision Shell and Longevity Highly Crosslinked Polyethylene Liner

- Prevents backside micromotion
- Cement secures screws
- Isoelastic loading of bone
- Cemented Longevity Highly Crosslinked Polyethylene Liners with large-diameter heads, up to 40mm, for additional joint stability and range of motion



## **Type IIIA—Cavitary**



Radiograph of Defect

# **Type IIIA Cavitary Defect**Kohler's Line: Intact Tear Drop: Minimal lysis Ischial Lysis: Minimal

Vertical Migration: >3cm



Defect



Algorithmic Repair



#### Solution

*Trabecular Metal* Augment in oblong cup position<sup>10</sup>

- Uses the Trabecular Metal
   Augment to fill the superior
   bone void and restore
   head center to natural
   anatomic position
- Cementing the shell to the augment creates a monolithic construct



## **Clinical applications**

## **Type IIIA—Segmental defect**



Radiograph of Defect

#### **Type IIIA Segmental Defect**

Kohler's Line: Moderately violated

but intact

Tear Drop: Minimal lysis Ischial Lysis: Mild Vertical Migration: >3cm



Defect

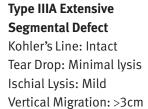


Algorithmic Repair



#### **Solution**

*Trabecular Metal* Augment in flying buttress position<sup>10</sup>


- Uses the Trabecular Metal
   Augment, inverted, as a load-bearing structural support to replace the missing acetabular rim
- Cementing the shell to the augment creates a monolithic construct



## Type IIIA—Extensive segmental defect



Radiograph of Defect





Defect



Algorithmic Repair



#### Solution

Trabecular Metal Buttress Augment

- Trabecular Metal Buttress
   Augment provides a superior step for placement against the ilium and is an alternative to allografts, which are expensive and tend to resorb
- Trabecular Metal Shim
   Augments are available to supplement the fit of the superior flange of the buttresses onto the ilium
- Cementing the shell to the augment creates a monolithic construct



## **Clinical applications**

## Type IIIB—Contained medial defect

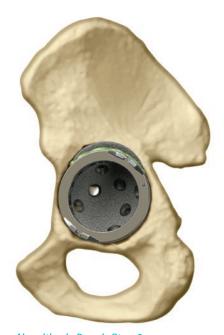


Radiograph of Defect

# Type IIIB Medial Defect Kohler's Line: Violated Tear Drop: Violated, significant lysis Ischial Lysis: Severe Vertical Migration: >3cm



Defect


#### Solution

*Trabecular Metal* Augments in footings position<sup>10</sup>

- Trabecular Metal Augments sized to fit defect, providing a foundation for the shell and filling voids from medial and/or superior defects
- Cementing the shell to the augments creates a monolithic construct



Algorithmic Repair Step 1



Algorithmic Repair Step 2





## **Pelvic Discontinuity**





#### **Pelvic Discontinuity**

 Superior aspect of pelvis is separated from the inferior aspect as a result of bone loss or an acetabular fracture



Defect



Algorithmic Repair



#### **Solution**

Cup/Cage Construct

- Used in situations where the Trabecular Metal Revision Shell alone does not provide adequate stability
- The Trabecular Metal Revision Shell provides potential for bone ingrowth and long-term fixation
- The Cage spans the acetabular defect and provides mechanical stability until biological ingrowth occurs within the *Trabecular Metal* Revision Shell
- Three components—shell, cage, and liner—cemented together create a monolithic construct



## **NOTES:**

#### **References**

- Bobyn J, Stackpool G, Hacking S, Tanzer M, Krygier J. Characteristics of bone in-growth and interface mechanics of a new porous tantalum biomaterial. *J Bone Joint Surq*, 1999;81-B(5):907-914.
- Bobyn J, Hacking S, Krygier J, Chan S, Toh K, Tanzer M. Characterization of a new porous tantalum biomaterial for reconstructive surgery. Scientific Exhibition: 66th Annual Meeting of the American Academy of Orthopaedic Surgeons; Feb. 4-8, 1999; Anaheim, CA.
- Bobyn J, Toh K, Hacking S, Tanzer M, Krygier J. Tissue response to porous tantalum acetabular cups—a canine model. J Arthroplasty, 1999;14(3): 347-354.
- Shimko D, Shimko V, Sander E, Dickson K, Nauman E. Effect of porosity on the fluid flow characteristics and mechanical properties of tantalum scaffolds. Published online Feb. 2005 in Wiley Interscience (www.interscience.wiley.com).
- Zhang Y, Ahn P, Fitzpatrick D, Heiner A, Poggie R, Brown T. Interfacial frictional behavior: cancellous bone, cortical bone and a novel porous tantalum biomaterial. *Journal of Musculoskeletal Research*, 1999;3(4):245-251.
- Shirazi-Adl A, Dammak M, Paiement G. Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants. J Biomed Mat Res, 1993;27:167-175.
- 7. Data on file at Zimmer.
- Paprosky W, Perona P, Lawrence J. Acetabular defect classification and surgical reconstruction in revision arthroplasty. A 6-year follow-up evaluation. J Arthroplasty, 1994;9:33-44.
- Krygier J, Boyden J, Poggie R, et al. Mechanical characterization of a new porous tantalum biomaterial for orthopaedic reconstruction. Proc SIROT. Sydney, Australia, 1999.
- Lewallen D, Meneghini M, Poggie R, et al. Revision Hip Arthroplasty with Porous Tantalum Augments and Acetabular Shells. Scientific Exhibit (SE03), Annual Meeting of the American Academy of Orthopaedic Surgeons; March 22-26, 2006; Chicago, IL.

Contact your Zimmer representative or visit us at www.zimmer.com



