

	Teat Bapart	No.190038B
XIHARI	Test Report	Page 1 of 53
	Table of Contents	
Ca	ontents	Page
ont cover	New Parties Could be	
ontents		1
ummary		2
est conclusion		3
isual inspection of polymer housing		4
spection of creepage distance		5
Direct current reference voltage test	/	6
eakage current at 0.75Ud.c.ref test		7
Power frequency reference voltage to	est	8
Continuous current test		9
internal partial discharge test		10
Radio interference voltage test		11
Seal test		12-13
Residual voltage test		14-16
Long duration current impulse with	stand test	20-22
Operating duty test	Contraction of the second seco	20-22
Power-frequency voltage-versus-tir		24-25
Insulation withstand tests on the an	rester housing	26-29
Bending moment test		30-33
Arrester moisture ingress test	Contractioned Schools	34-35
Arrester weather ageing test		36-41
Environment test		42-43
Product drawings		44
Photographs		45-52
Test circuit diagram		53
Typical oscillogram		
A Contraction of the second		174
Tente a Colonal Int. Tons Th.		

X		RI	Test	Repo	ort	No.190038B
						Page 2 of 53
			Su	mmary	na l	
A	pparatus	YH10W-216/	562W Polymer	-housed m	etal-oxide surge	arresters without gaps
	Name	NanYang JinN	Viu Electric Co.,Lt			
Client	Connection		Zhongyuan Road ng Henan Provin 56606 Fax		(0)	ongbai County,
Ma	nufacturer	NanYang JinN	liu Electric Co.,Lt	d.		
Manu	ufacture date	2019.01	of painting has	ing		
Manufa	cture serial No.	. 19101				A
	Nominal vol	tage U _n		kV _{r.m.s.}	220	
	Arrester rate	d voltage Ur	1 0 7 1 Carl 10	kV _{r.m.s.}	216	
	Arrester con	tinuous operating	voltage U _c	kV _{r.m.s.}	168	
Main	A.C. referen	ce voltage(Ia.c.ref=	=1mA) ≥	$kV_p/\sqrt{2}$	216	
technical	DC reference	e voltage(Id.c.ref =	lmA) ≥	kV _{d.c.}	314	
data	Nominal dise	charge current In	Contract desired in	kAp	10	
assigned	Lightning im	pulse residual vo	oltage <	kVp	562	
by the	Steep current	t impulse residua	l voltage \leq	kVp	630 -	Constitution of the
manufac	Switching in	pulse residual vo	oltage 🖉 ≤	kVp	478	What the strend is
turer	Line discharg	ge class	and the second	class	3	
	Shape and di	allow monthly			drawings" of pa of this report.	ge 42. 43 and "Photographs "
	The size of re			mm	Φ52×20	
	Materials and	d colors of housir		red, silico	one rubber	
The tes	ted object is	Q/JN 1001-2018 Enterprise stand		used motol	-ovide euroe com	esters without gaps
manu compl followin docur	tacturer to y with the ng technical nents and awings	JN-1005-2018 arresters without JN-1005.2019	Type tests outli gaps of YH10W-216/5 Outline Drawin	ine for YH	10W-216/562W mer-housed met	Polymer-housed metal-oxide s al-oxide surge arresters Polymer-housed metal-oxide s
1	Note	2. Client express consists of two u The arrester Y No.190007B) are the size of resiste YH10W-216/562 power-frequency	nits in series, the u TH10W-216/562W e of the same serie ors, test technica 2W: long duration	e voltage U unit is arres and the an s. The two al requirem current im- me charact	J _{ImA,DC} ≤320kV _D ster YH10WZ-14 products have th itents, so the follo pulse withstand eristics test, arr	, load rate η =85%, the arreste
Tests wi	tnessed by:	Zhang Yu			A COLUMN TO AN	1 / 1 - I and the s
ate of sa	mple arrived:	2019-01-22	Dute	3313	8 - Law	A AND STOR
Date	of tests:	From 201	9-02-26 To	2019-07-31	No. States	

XIHAR	Test Report	No.190038B
		Page 3 of 53
	Test Conclusion	er Housing
Client:	NanYang JinNiu Electric Co., Ltd.	
Туре:	YH10W-216/562W	
Apparatus:	Polymer-housed metal-oxide surge	e arresters without gaps
Manufacturer:	NanYang JinNiu Electric Co., Ltd.	
Test Classification		
Tests have been pe		
	nspection of polymer housing	
	on of creepage distance	
	urrent reference voltage test	
	e current at 0.75Ud.c.ref test	
	requency reference voltage test	
Continu	ous current test	
Internal	partial discharge test	
Radio in	nterference voltage test	
Seal test		
	l voltage test	
	aration current impulse withstand test	[Class 3 line discharge,18 times
	ng duty test	[4/10µs,100kA, 2 times]
	requency voltage-versus-time characte	
	on withstand tests on the arrester housi	ng
17	moment test moisture ingress test	
	weather ageing test	
	ment test	
Linvingi		
pont		
4		
Test Judge:		
	1032-2010 Metal-oxide surge arreste	rs without gaps for a.c. systems
	50099-4:2006, MOD)	
Conclusion:		
All the	tests above satisfied the requirements of	of standards.
Validity:	and a second sec	
5 (252)	t report from the date of approval, full	three years must be required content of
	lar test reports, to continue the effectiv	
	M	器研究院有限演
Translated by:	9 Checked by: 27	Approved by have & 7
11		验检测专用章) 二) [* 1//
1 1		
Date: 2219-08-	14 Date: 2018-	

XIHARI	Test Report	No.190038B
AIIIANI		Page 4 of 53
Visu	al Inspection of Polymer H	ousing
Atmospheric conditions: P=97.6kPa	t=13.3°C RH=38%	Date: 2019-03
Serial No.: 1~3		
Succession .		
By checked, no visible defects on the	polymer housing surface.	
Test result: Passed.		
Non-Aven of corpuge timesers Act		

XIHA	DI	Test Repo	rt	No.190038B
АПА		Test Kepe		Page 5 of
	Inspe	ction of Creepag	e Distance	
Atmospheric condition Max. operating voltag		t=13.3°C RH=38%		Date: 2
Serial No.	Creepag	ge distance mm)		creepage distance mm/kV)
1	8	390	10	33.3
Req.	-	/		≥31
Test result: Passed. Note:Ratio of creepag	e distance= Actual m	aeasured creepage distanc	e/U _m .	
		easured creepage distanc	e/Um.	

XIHARI	Test Rep	oort	No.190038B
			Page 6 of
Direct	Current Referen	nce Voltage	Test
			Date:
Atmospheric conditions: P=98.4kPa	t=16.8°C RH=34		
Serial No.		D.C. reference	voltage U _{d.c.ref} at I _{d.c.ref} =11 (kV)
1			318.3
Req.		550	≥314
Test result: Passed.			
		-	

VILLADI	Toot Poport	No.190038B
XIHARI	Test Report	Page 7 of 53
Leak	kage Current at 0.75U _{d.c.re}	fTest
		Date: 2019
Atmospheric conditions: P=98.4kPa	t=16.8°C RH=34%	ent at 0.75Ud.c.ref
Serial No.	Leakage cuir	μA)
1		6
Req.		≤50
Test result: Passed.		
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-

XIHARI	Test Report	No	.190038B
		Page	8 of 53
Power Fre	equency Reference	Voltage Test	
			Date: 20
Atmospheric conditions: P=98.4kPa t=1	6.8°C RH=34%	ce voltage U _{a.c.ref} at I _{a.c.}	=lmA(pe
Serial No.		(kV)	
1		226.6	Pick.
Req.		≥216	100
Test result: Passed.		100	5100
Tust manth Present			
		-	

XIHA	RI	Test Repo	ort	No.190038B
				Page 9 of
	i.	Continuous Curre	ent Test	
Atmospheric conditions	s: P=98.4kPa	t=16.8°C RH=34%	6	Date:
		Dunthucto W	Cor	ntinuous current
Serial No.	0.54	Applied U _c (kV)	I _r (Peak) (μΑ)	I _x (r.1 (μ.
1		168.3	120	52
Req.		168	≤300	≤10

Internal Partial Discharge Test	XIHA		Test F	lepor	t	No.190038B
Atmospheric conditions: P=98.4kPa t=16.8°C RH=34% Serial No. Applied U, (kV) Continuous time at U, (s) Applied 1.05U, (kV) 1 216.4 10 176.8 Req. 216 2~10 176.4						Page 10 of
Atmospheric conditions: P=98.4kPat=16.8°CRH=34%Serial No.Applied Ur (kV)Continuous time at Ur (s)Applied 1.05Uc (kV)1216.410176.8Req.2162~10176.4Test result: Passed.		Int	ernal Partial	Discha	rge Test	
Serial No. Applied Ur (kV) at Ur (s) Applied 1.05Ur (kV) 1 216.4 10 176.8 Req. 216 2~10 176.4 Test result: Passed. - -	tmospheric conditio	ons: P=98.4kPa	t=16.8°C RI	H=34%		Date: 201
Req. 216 2~10 176.4 Test result: Passed.	Serial No.	Applied U _r (kV)	at U	r	Applied 1.05U (kV)	Je PD v (p
Test result: Passed.	1	216.4	10		176.8	4
	Req.	216	2~10)	176.4	<
					-	

Page 11 of 5 Radio Interference Voltage Test Date: 20 Atmospheric conditions: P=98.4kPa t=16.8°C RH=34% Testing frequency:1	Page 11 of 5 Radio Interference Voltage Test Date: 20 Atmospheric conditions: P=98.4kPa t=16.8°C RH=34% Testing frequency: 1 Serial No. Applied 1.05Ue (kV) Field density (dB) RIV value (µV) 1 177.1 40.3 103.5 Req. 176.4 / ≤2500 Test result: Passed. -	Page 11 of 5 Radio Interference Voltage Test Date: 20 Atmospheric conditions: P=98.4kPa t=16.8°C RH=34% Testing frequency: 1 Serial No. Applied 1.05Ue (kV) Field density (dB) RIV value (µV) 1 177.1 40.3 103.5 Req. 176.4 / ≤2500 Test result: Passed. -	XIHAR	Test I	Report	No.190038B
Atmospheric conditions: P=98.4kPa t=16.8°C RH=34% Testing frequency:1 Serial No. Applied 1.05Uc (kV) Field density (dB) RIV value (µV) 1 177.1 40.3 103.5 Req. 176.4 / ≤2500 Test result: Passed. -	Atmospheric conditions: P=98.4kPa t=16.8°C RH=34% Testing frequency:1 Serial No. Applied 1.05Uc (kV) Field density (dB) RIV value (µV) 1 177.1 40.3 103.5 Req. 176.4 / ≤2500 Test result: Passed. -	Atmospheric conditions: P=98.4kPa r=16.8°C RH=34% Testing frequency:1 Serial No. Applied 1.05Uc (kV) Field density (dB) RIV value (µV) 1 177.1 40.3 103.5 Req. 176.4 / ≤2500 Test result: Passed. -	АПАК	- Iost I		Page 11 of 5.
Atmospheric conditions: P=98.4kPa t=16.8°C RH=34% Serial No. Applied 1.05Uc (kV) Field density (dB) RIV value (µV) 1 177.1 40.3 103.5 Req. 176.4 / ≤2500	Atmospheric conditions: P=98.4kPa t=16.8°C RH=34% Serial No. Applied 1.05U _c (kV) Field density (dB) RIV value (µV) 1 177.1 40.3 103.5 Req. 176.4 / ≤2500	Atmospheric conditions: P=98.4kPa t=16.8°C RH=34% Serial No. Applied 1.05U _c (kV) Field density (dB) RIV value (µV) 1 177.1 40.3 103.5 Req. 176.4 / ≤2500		Radio Interferer	nce Voltage Test	
Serial No. Applied 1.05Uc (kV) Field density (dB) RIV value (µV) 1 177.1 40.3 103.5 Req. 176.4 / ≤2500	Serial No. Applied 1.05Uc (kV) Field density (dB) RIV value (\muV) 1 177.1 40.3 103.5 Req. 176.4 / ≤2500	Serial No.Applied 1.05Uc (kV)Field density (dB)RIV value (µV)1177.140.3103.5Req.176.4/≤2500Test result: Passed	Atmospheric conditions: P=98	.4kPa t=16.8°C R	H=34%	
Req. 176.4 / ≤2500 Test result: Passed. -	Req. 176.4 / ≤2500 Test result: Passed. -	Req. 176.4 / ≤2500 Test result: Passed. -	Serial No.	Applied 1.05U _c (kV)	Field density (dB)	RIV value
Test result: Passed.	Test result: Passed.	Test result: Passed.	1	177.1	40.3	103.5
			Req.	176.4	1	≤2500
			Test result: Passed.	Parcet In air		

XIH/	ARI	Test	Report	N	o.190038B
				Page	12 of
		Sea	l Test		1000
1 Immersed in boi NaCl content of		1kg/m ³		Date: 201	9-05-22~20
Serial No.		Test items		Keep time (h)	R
	- OTSLUT	In boiling water		42	
1	I	mmersed in water	The second	1	
		Placed in air		6	
Senat 84	Deloc	Alee	Report	Dana	
			ante lan effendi		

Page 13 of 53Seal TestDate: 2019-03-15-2019-052. Verification test2.2.1 Direct current reference voltage at $I_{dexet} = ImA$ Serial No.Refore (kV)After (kV)1318.3317.723140.2 ≤ 5 2.2 Leakage current at 0.75U _{dexef} Serial No.Before (µA)After (µA)Req. of I_{lek} (µA)Change (µA)Req. of change (µA)168 ≤ 50 2 ≤ 20 2.3 Internal partial discharge at 1.05U_c $=$ $=$ Serial No.Before (µC)After (µA)Req. of PD (µC)Change (µC)Req. of change (µA)2.3 Internal partial discharge at 1.05U_c $=$ $=$ Test result: PassedTest result: PassedNote: Seal test. immersed in boiling water test and verification test of bending moment test combined.	Page 13 of 53Page 13 of 53Seal TestDate: 2019-03-152019-052 Verification testDate: 2019-03-152019-052.1 Direct current reference voltage at $I_{d curef} = ImA$ Serial No.Before After Req. of $U_{ImA,DC}$ Change (%)1318.3317.7 \geq 3140.2 \leq 52.2 Leakage current at $0.75U_{d.curef}$ Serial No.Before After Req. of I_{lek} Change Req. of chan (µA)168 \leq 502 \leq 202.3 Internal partial discharge at $1.05U_c$ Serial No.Before After Req. of PD (µC)Change (pC)2.3 Internal partial discharge at $1.05U_c$ Serial No.Before After (µC)Req. of PDChange (pC)14.54.9 \leq 100.4 \leq 10Test result: Passed.	Page 13 of 53Seal TestDate: 2019-03-15-2019-052Verification test2.1Direct current reference voltage at $I_{d.cref}$ = ImASerial No.Before (kV)After (kV)Req. of $U_{ImA,DC}$ Change (%)Req. of chan (%)1318.3317.7 \geq 3140.2 \leq 52.2Leakage current at $0.75U_{d.cref}$ Effore (μA) (μA) (μA) (μA) 168 \leq 502 \leq 202.3Internal partial discharge at $1.05U_c$ Effore (pC) (pC) (pC) (pC) 14.54.9 \leq 100.4 \leq 10Test result: PassedNote: Seal test. immersed in boiling water test and verification test of bending moment test combined.	Page 13 of 53Seal TestDate: 2019-03-15-2019-052Verification test2.1Direct current reference voltage at $I_{d.cref}$ = ImASerial No.Before (kV)After (kV)Req. of $U_{ImA,DC}$ Change (%)Req. of chan (%)1318.3317.7 \geq 3140.2 \leq 52.2Leakage current at $0.75U_{d.cref}$ Effore (μA) (μA) (μA) (μA) 168 \leq 502 \leq 202.3Internal partial discharge at $1.05U_c$ Effore (pC) (pC) (pC) (pC) 14.54.9 \leq 100.4 \leq 10Test result: PassedNote: Seal test. immersed in boiling water test and verification test of bending moment test combined.	Page 13 of 53Seal TestDate: 2019-03-15-2019-052Verification test2.1Direct current reference voltage at $I_{d.cref} = ImA$ Serial No.Before (kV)After (kV)Req. of $U_{ImA,DC}$ Change (%)Req. of char (%)1318.3317.7 \geq 3140.2 \leq 52.2Leakage current at $0.75U_{d.cref}$ Effore (µA)(µA)(µA)(µA)168 \leq 502 \leq 202.3Internal partial discharge at 1.05U_cEffore (pC)(pC)(pC)(pC)14.54.9 \leq 100.4 \leq 10Test result: PassedNote: Seal test.immersed in boiling water test and verification test of bending moment test combined.	VIL	ADI	Te	st Report	No	.190038B	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ЛП	ARI			Page	13 of 53	
2 Verification test 2.1 Direct current reference voltage at $I_{d_{0,ref}}$ =1mA Serial No. Before After Req. of $U_{1mA,DC}$ Change (%) (%) 1 318.3 317.7 ≥314 0.2 ≤5 2.2 Leakage current at 0.75U _{d.cref} Serial No. Before After Req. of I_{lek} Change (µA) (µA) 1 6 8 ≤50 2 ≤20 2.3 Internal partial discharge at 1.05U _c Serial No. Before After Req. of PD Change Req. of chan (pC) (pC) (pC) (pC) (pC) (pC) (pC) 1 4.5 4.9 ≤10 0.4 ≤10 Test result: Passed Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	2 Verification test 2.1 Direct current reference voltage at $I_{d_{0,ref}} = ImA$ Serial No. Req. of (kV) Req. of $U_{ImA,DC}$ Change (%) 1 318.3 317.7 \geq 314 0.2 \leq 5 2.2 Leakage current at 0.75U _{d.cref} Serial No. Before After Req. of I_{lek} Change (µA) (µA) 1 6 8 \leq 50 2 \leq 20 2.3 Internal partial discharge at 1.05U _c Serial No. (pC) (pC) (pC) (pC) (pC) (pC) 1 4.5 4.9 \leq 10 0.4 \leq 10 Test result: Passed	2 Verification test 2.1 Direct current reference voltage at $I_{d_{0,ref}}$ =1mA Serial No. Before After Req. of $U_{1mA,DC}$ Change (%) (%) 1 318.3 317.7 ≥314 0.2 ≤5 2.2 Leakage current at 0.75U _{d.cref} Serial No. Before After Req. of I_{lek} Change (µA) (µA) 1 6 8 ≤50 2 ≤20 2.3 Internal partial discharge at 1.05U _c Serial No. Before After Req. of PD Change Req. of chan (pC) (pC) (pC) (pC) (pC) (pC) (pC) 1 4.5 4.9 ≤10 0.4 ≤10 Test result: Passed Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	2 Verification test 2.1 Direct current reference voltage at $I_{d_{0,ref}}$ =1mA Serial No. Before After Req. of $U_{1mA,DC}$ Change (%) (%) 1 318.3 317.7 ≥314 0.2 ≤5 2.2 Leakage current at 0.75U _{d.cref} Serial No. Before After Req. of I_{lek} Change (µA) (µA) 1 6 8 ≤50 2 ≤20 2.3 Internal partial discharge at 1.05U _c Serial No. Before After Req. of PD Change Req. of chan (pC) (pC) (pC) (pC) (pC) (pC) (pC) 1 4.5 4.9 ≤10 0.4 ≤10 Test result: Passed Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	2 Verification test 2.1 Direct current reference voltage at $I_{d_{0,ref}} = ImA$ Serial No. Before After Req. of $U_{ImA,DC}$ Change (%) Req. of char (%) (kV) (kV) (kV) (%) (%) (%) (%) 1 318.3 317.7 \geq 314 0.2 \leq 5 2.2 Leakage current at 0.75U _{d.cref} Serial No. Before After Req. of I_{lek} Change Req. of char (µA) (µA) (µA) (µA) (µA) (µA) (µA) (µA)			Resid	Seal Test			
Serial No.Before (kV)After (kV)Req. of $U_{imA,DC}$ (kV)Change (%)Req. of chan (%)1318.3317.7 \geq 3140.2 \leq 52.2Leakage current at 0.75U _{d-oref} \otimes \otimes 10.2 \leq 5Serial No.Before (µA)After (µA)Req. of I _{lek} (µA)Change (µA)Req. of chan (µA)168 \leq 502 \leq 202.3Internal partial discharge at 1.05U _c \otimes \otimes \leq 502 \leq 202.3Internal partial discharge at 1.05U _c \otimes \otimes (pC) (pC) (pC) (pC) 14.54.9 \leq 100.4 \leq 10Test result: PassedNote: Seal test, immersed in boiling water test and verification test of bending moment test combined.	Serial No.Before (kV)After (kV)Req. of $U_{1mA,DC}$ (kV)Change (%)Req. of chan (%)1318.3317.7 \geq 3140.2 \leq 52.2 Leakage current at $0.75U_{d,cref}$ Serial No.Before (µA)After (µA)Req. of I_{lek} (µA)Change (µA)Req. of chan (µA)168 \leq 502 \leq 202.3 Internal partial discharge at $1.05U_c$ Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (µC)Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)14.54.9 \leq 100.4 \leq 10Test result: PassedNote: Seal test, immersed in boiling water test and verification test of bending moment test combined.	Serial No.Before (kV)After (kV)Req. of $U_{imA,DC}$ (kV)Change (%)Req. of chan (%)1318.3317.7 \geq 3140.2 \leq 52.2Leakage current at 0.75U _{d-oref} \otimes \otimes 10.2 \leq 5Serial No.Before (µA)After (µA)Req. of I _{lek} (µA)Change (µA)Req. of chan (µA)168 \leq 502 \leq 202.3Internal partial discharge at 1.05U _c \otimes \otimes \leq 502 \leq 202.3Internal partial discharge at 1.05U _c \otimes \otimes (pC) (pC) (pC) (pC) 14.54.9 \leq 100.4 \leq 10Test result: PassedNote: Seal test, immersed in boiling water test and verification test of bending moment test combined.	Serial No.Before (kV)After (kV)Req. of $U_{imA,DC}$ (kV)Change (%)Req. of chan (%)1318.3317.7 \geq 3140.2 \leq 52.2Leakage current at 0.75U _{d-oref} \otimes \otimes 10.2 \leq 5Serial No.Before (µA)After (µA)Req. of I _{lek} (µA)Change (µA)Req. of chan (µA)168 \leq 502 \leq 202.3Internal partial discharge at 1.05U _c \otimes \otimes \leq 502 \leq 202.3Internal partial discharge at 1.05U _c \otimes \otimes (pC) (pC) (pC) (pC) 14.54.9 \leq 100.4 \leq 10Test result: PassedNote: Seal test, immersed in boiling water test and verification test of bending moment test combined.	Serial No.Before (kV)After (kV)Req. of $U_{imA,DC}$ (kV)Change (%)Req. of char (%)1318.3317.7 \geq 3140.2 \leq 52.2 Leakage current at 0.75U _{denef} Serial No.Before (µA)After (µA)Req. of I_{lek} (µA)Change (µA)Req. of char (µA)168 \leq 502 \leq 202.3 Internal partial discharge at 1.05U _c Serial No.Before (pC)After (pC)Req. of PD (pC)Change (µC)Req. of char (µC)Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of char (µC)Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of char (pC)14.54.9 \leq 100.4 \leq 10Test result: Passed.~Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	2 Verification test						
(kV)(kV)(kV)(kV)(b)(b)(b)1318.3317.7 \geq 3140.2 \leq 52.2 Leakage current at 0.75U _{d coref} Serial No.Before (µA)After (µA)Req. of I _{lek} (µA)Change (µA)Req. of chan (µA)168 \leq 502 \leq 202.3 Internal partial discharge at 1.05U _c </th <th>(kV)(kV)(kV)(kV)(b)(b)(b)(b)1318.3317.7\geq3140.2\leq52.2 Leakage current at 0.75U_{d cref}Serial No.BeforeAfterReq. of I_{lek}ChangeReq. of chan168\leq502\leq202.3 Internal partial discharge at 1.05U_cSerial No.BeforeAfterReq. of PDChangeReq. of chan(pC)(pC)(pC)(pC)(pC)14.54.9\leq100.4\leq10Test result: Passed.Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.</th> <th>(kV)(kV)(kV)(kV)(b)(b)(b)1318.3317.7\geq3140.2\leq52.2 Leakage current at 0.75U_{d coref}Serial No.Before (µA)After (µA)Req. of I_{lek} (µA)Change (µA)Req. of chan (µA)168\leq502\leq202.3 Internal partial discharge at 1.05U_c<!--</th--><th>(kV)(kV)(kV)(kV)(b)(b)(b)1318.3317.7\geq3140.2\leq52.2 Leakage current at 0.75U_{d coref}Serial No.Before (µA)After (µA)Req. of I_{lek} (µA)Change (µA)Req. of chan (µA)168\leq502\leq202.3 Internal partial discharge at 1.05U_c<!--</th--><th>(kV)(kV)(kV)(kV)(c0)(c0)1318.3317.7\geq3140.2\leq52.2 Leakage current at 0.75U_{d coref}Serial No.Before (µA)After (µA)Req. of I_{lek} (µA)Change (µA)Req. of char (µA)168\leq502\leq202.3 Internal partial discharge at 1.05U_c<!--</th--><th>and the state of the</th><th>Before</th><th>After</th><th>Req. of UImA.DC</th><th></th><th></th></th></th></th>	(kV)(kV)(kV)(kV)(b)(b)(b)(b)1318.3317.7 \geq 3140.2 \leq 52.2 Leakage current at 0.75U _{d cref} Serial No.BeforeAfterReq. of I _{lek} ChangeReq. of chan168 \leq 502 \leq 202.3 Internal partial discharge at 1.05U _c Serial No.BeforeAfterReq. of PDChangeReq. of chan(pC)(pC)(pC)(pC)(pC)14.54.9 \leq 100.4 \leq 10Test result: Passed.Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	(kV)(kV)(kV)(kV)(b)(b)(b)1318.3317.7 \geq 3140.2 \leq 52.2 Leakage current at 0.75U _{d coref} Serial No.Before (µA)After (µA)Req. of I _{lek} (µA)Change (µA)Req. of chan (µA)168 \leq 502 \leq 202.3 Internal partial discharge at 1.05U _c </th <th>(kV)(kV)(kV)(kV)(b)(b)(b)1318.3317.7\geq3140.2\leq52.2 Leakage current at 0.75U_{d coref}Serial No.Before (µA)After (µA)Req. of I_{lek} (µA)Change (µA)Req. of chan (µA)168\leq502\leq202.3 Internal partial discharge at 1.05U_c<!--</th--><th>(kV)(kV)(kV)(kV)(c0)(c0)1318.3317.7\geq3140.2\leq52.2 Leakage current at 0.75U_{d coref}Serial No.Before (µA)After (µA)Req. of I_{lek} (µA)Change (µA)Req. of char (µA)168\leq502\leq202.3 Internal partial discharge at 1.05U_c<!--</th--><th>and the state of the</th><th>Before</th><th>After</th><th>Req. of UImA.DC</th><th></th><th></th></th></th>	(kV)(kV)(kV)(kV)(b)(b)(b)1318.3317.7 \geq 3140.2 \leq 52.2 Leakage current at 0.75U _{d coref} Serial No.Before (µA)After (µA)Req. of I _{lek} (µA)Change (µA)Req. of chan (µA)168 \leq 502 \leq 202.3 Internal partial discharge at 1.05U _c </th <th>(kV)(kV)(kV)(kV)(c0)(c0)1318.3317.7\geq3140.2\leq52.2 Leakage current at 0.75U_{d coref}Serial No.Before (µA)After (µA)Req. of I_{lek} (µA)Change (µA)Req. of char (µA)168\leq502\leq202.3 Internal partial discharge at 1.05U_c<!--</th--><th>and the state of the</th><th>Before</th><th>After</th><th>Req. of UImA.DC</th><th></th><th></th></th>	(kV)(kV)(kV)(kV)(c0)(c0)1318.3317.7 \geq 3140.2 \leq 52.2 Leakage current at 0.75U _{d coref} Serial No.Before (µA)After (µA)Req. of I _{lek} (µA)Change (µA)Req. of char (µA)168 \leq 502 \leq 202.3 Internal partial discharge at 1.05U _c </th <th>and the state of the</th> <th>Before</th> <th>After</th> <th>Req. of UImA.DC</th> <th></th> <th></th>	and the state of the	Before	After	Req. of UImA.DC			
110.09.1.0.12.0.02.2 Leakage current at 0.75Udc.refSerial No.Before (μ A)After (μ A)Req. of Itek (μ A)Change (μ A)Req. of chan (μ A)168 \leq 502 \leq 202.3 Internal partial discharge at 1.05Uc </td <td>110.00.11.12.01.12.2Leakage current at 0.75Udc.refSerial No.Before (μA)After (μA)Req. of Itek (μA)Change (μA)Req. of chan (μA)168\leq502\leq202.3Internal partial discharge at 1.05UcSerial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)14.54.9\leq100.4\leq10Test result: PassedNote: Seal test.immersed in boiling water test and verification test of bending moment test combined.</td> <td>110.09.1.0.12.0.02.2 Leakage current at 0.75Udc.refSerial No.Before (μA)After (μA)Req. of Itek (μA)Change (μA)Req. of chan (μA)168\leq502\leq202.3 Internal partial discharge at 1.05Uc<!--</td--><td>110.09.1.0.12.0.02.2 Leakage current at 0.75Udc.refSerial No.Before (μA)After (μA)Req. of Itek (μA)Change (μA)Req. of chan (μA)168\leq502\leq202.3 Internal partial discharge at 1.05Uc<!--</td--><td>11009.1009.1001002.2Leakage current at 0.75UdcorefSerial No.Before (μA)After (μA)Req. of Ilek (μA)Change (μA)Req. of char (μA)168$\leq 50$2$\leq 20$2.3Internal partial discharge at 1.05UcSerial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of char (pC)14.54.9$\leq 10$0.4≤ 10Test result: PassedNote: Seal test, immersed in boiling water test and verification test of bending moment test combined.</td><td>L Cardella Per</td><td></td><td></td><td></td><td></td><td></td></td></td>	110.00.11.12.01.12.2Leakage current at 0.75Udc.refSerial No.Before (μ A)After (μ A)Req. of Itek (μ A)Change (μ A)Req. of chan (μ A)168 \leq 502 \leq 202.3Internal partial discharge at 1.05UcSerial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)14.54.9 \leq 100.4 \leq 10Test result: PassedNote: Seal test.immersed in boiling water test and verification test of bending moment test combined.	110.09.1.0.12.0.02.2 Leakage current at 0.75Udc.refSerial No.Before (μ A)After (μ A)Req. of Itek (μ A)Change (μ A)Req. of chan (μ A)168 \leq 502 \leq 202.3 Internal partial discharge at 1.05Uc </td <td>110.09.1.0.12.0.02.2 Leakage current at 0.75Udc.refSerial No.Before (μA)After (μA)Req. of Itek (μA)Change (μA)Req. of chan (μA)168\leq502\leq202.3 Internal partial discharge at 1.05Uc<!--</td--><td>11009.1009.1001002.2Leakage current at 0.75UdcorefSerial No.Before (μA)After (μA)Req. of Ilek (μA)Change (μA)Req. of char (μA)168$\leq 50$2$\leq 20$2.3Internal partial discharge at 1.05UcSerial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of char (pC)14.54.9$\leq 10$0.4≤ 10Test result: PassedNote: Seal test, immersed in boiling water test and verification test of bending moment test combined.</td><td>L Cardella Per</td><td></td><td></td><td></td><td></td><td></td></td>	110.09.1.0.12.0.02.2 Leakage current at 0.75Udc.refSerial No.Before (μ A)After (μ A)Req. of Itek (μ A)Change (μ A)Req. of chan (μ A)168 \leq 502 \leq 202.3 Internal partial discharge at 1.05Uc </td <td>11009.1009.1001002.2Leakage current at 0.75UdcorefSerial No.Before (μA)After (μA)Req. of Ilek (μA)Change (μA)Req. of char (μA)168$\leq 50$2$\leq 20$2.3Internal partial discharge at 1.05UcSerial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of char (pC)14.54.9$\leq 10$0.4≤ 10Test result: PassedNote: Seal test, immersed in boiling water test and verification test of bending moment test combined.</td> <td>L Cardella Per</td> <td></td> <td></td> <td></td> <td></td> <td></td>	11009.1009.1001002.2Leakage current at 0.75UdcorefSerial No.Before (μ A)After (μ A)Req. of Ilek (μ A)Change (μ A)Req. of char (μ A)168 ≤ 50 2 ≤ 20 2.3Internal partial discharge at 1.05UcSerial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of char (pC)14.54.9 ≤ 10 0.4 ≤ 10 Test result: PassedNote: Seal test, immersed in boiling water test and verification test of bending moment test combined.	L Cardella Per						
Serial No.Before (μ A)After (μ A)Req. of I _{lek} (μ A)Change (μ A)Req. of chan (μ A)168 \leq 502 \leq 202.3Internal partial discharge at 1.05Uc2 \leq 20Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)14.54.9 \leq 100.4 \leq 10Test result: Passed.Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	Serial No.Before (μ A)After (μ A)Req. of I _{lek} (μ A)Change (μ A)Req. of chan (μ A)168 \leq 502 \leq 202.3Internal partial discharge at 1.05Uc2 \leq 20Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)14.54.9 \leq 100.4 \leq 10Test result: PassedNote: Seal test, immersed in boiling water test and verification test of bending moment test combined.	Serial No.Before (μ A)After (μ A)Req. of I _{lek} (μ A)Change (μ A)Req. of chan (μ A)168 \leq 502 \leq 202.3Internal partial discharge at 1.05Uc2 \leq 20Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)14.54.9 \leq 100.4 \leq 10Test result: Passed.Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	Serial No.Before (μ A)After (μ A)Req. of I _{lek} (μ A)Change (μ A)Req. of chan (μ A)168 \leq 502 \leq 202.3Internal partial discharge at 1.05Uc2 \leq 20Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)14.54.9 \leq 100.4 \leq 10Test result: Passed.Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	Serial No.Before (μ A)After (μ A)Req. of I _{lek} (μ A)Change (μ A)Req. of char (μ A)168 ≤ 50 2 ≤ 20 2.3 Internal partial discharge at 1.05UcSerial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of char (pC)14.54.9 ≤ 10 0.4 ≤ 10 Test result: PassedNote: Seal test, immersed in boiling water test and verification test of bending moment test combined.				2314	0.2		
Serial No. (μA) (μA) (μA) (μA) (μA) (μA) 168 ≤ 50 2 ≤ 20 2.3Internal partial discharge at 1.05UcSerial No.BeforeAfterReq. of PDChange (pC) (pC) (pC) (pC) (pC) (pC) 14.54.9 ≤ 10 0.4 ≤ 10 Test result: Passed.Note: Seal test s immersed in boiling water test and verification test of bending moment test combined.	Serial No. (μA) (μA) (μA) (μA) (μA) (μA) 168 ≤ 50 2 ≤ 20 2.3 Internal partial discharge at 1.05UcSerial No.BeforeAfterReq. of PDChange (pC) (pC) (pC) (pC) (pC) 14.54.9 ≤ 10 0.4 ≤ 10 Test result: Passed.Note: Seal test s immersed in boiling water test and verification test of bending moment test combined.	Serial No. (μA) (μA) (μA) (μA) (μA) (μA) 168 ≤ 50 2 ≤ 20 2.3Internal partial discharge at 1.05UcSerial No.BeforeAfterReq. of PDChange (pC) (pC) (pC) (pC) (pC) (pC) 14.54.9 ≤ 10 0.4 ≤ 10 Test result: Passed.Note: Seal test s immersed in boiling water test and verification test of bending moment test combined.	Serial No. (μA) (μA) (μA) (μA) (μA) (μA) 168 ≤ 50 2 ≤ 20 2.3Internal partial discharge at 1.05UcSerial No.BeforeAfterReq. of PDChange (pC) (pC) (pC) (pC) (pC) (pC) 14.54.9 ≤ 10 0.4 ≤ 10 Test result: Passed.Note: Seal test s immersed in boiling water test and verification test of bending moment test combined.	Serial No. (μA) (μA) (μA) (μA) (μA) (μA) 168 ≤ 50 2 ≤ 20 2.3Internal partial discharge at 1.05UcSerial No.BeforeAfterReq. of PDChange (pC)14.54.9 ≤ 10 0.4Test result: Passed.Note: Seal test s immersed in boiling water test and verification test of bending moment test combined.	An anno an			Reg. of Let	Change	Req. of chan	
1 0 0 2.0 2.3 Internal partial discharge at 1.05Uc Serial No. Before (pC) After (pC) Req. of PD (pC) Change (pC) Req. of chan (pC) 1 4.5 4.9 ≤ 10 0.4 ≤ 10 Test result: Passed. Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	1 0 0 2.0 2.3 Internal partial discharge at 1.05Uc Serial No. Before (pC) After (pC) Req. of PD (pC) Change (pC) Req. of chan (pC) 1 4.5 4.9 ≤ 10 0.4 ≤ 10 Test result: Passed. Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	1 0 0 2.0 2.3 Internal partial discharge at 1.05Uc Serial No. Before (pC) After (pC) Req. of PD (pC) Change (pC) Req. of chan (pC) 1 4.5 4.9 ≤ 10 0.4 ≤ 10 Test result: Passed. Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	1 0 0 2.0 2.3 Internal partial discharge at 1.05Uc Serial No. Before (pC) After (pC) Req. of PD (pC) Change (pC) Req. of chan (pC) 1 4.5 4.9 ≤ 10 0.4 ≤ 10 Test result: Passed. Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	1 0 0 2.0 2.0 2.10 2.3 Internal partial discharge at 1.05U _c 3 3	Serial No.		2010/07/07/07/07				
Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)14.54.9 ≤ 10 0.4 ≤ 10 Test result: PassedNote: Seal test, immersed in boiling water test and verification test of bending moment test combined.	Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)14.54.9 ≤ 10 0.4 ≤ 10 Test result: PassedNote: Seal test, immersed in boiling water test and verification test of bending moment test combined.	Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)14.54.9 ≤ 10 0.4 ≤ 10 Test result: PassedNote: Seal test, immersed in boiling water test and verification test of bending moment test combined.	Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)14.54.9 ≤ 10 0.4 ≤ 10 Test result: PassedNote: Seal test, immersed in boiling water test and verification test of bending moment test combined.	Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of char (pC)14.54.9 ≤ 10 0.4 ≤ 10 Test result: Passed.~Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	1	6	8	≤50	2	≤20	
Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)14.54.9 ≤ 10 0.4 ≤ 10 Test result: Passed.~Note: Seal test , immersed in boiling water test and verification test of bending moment test combined.	Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)14.54.9 ≤ 10 0.4 ≤ 10 Test result: Passed.~Note: Seal test , immersed in boiling water test and verification test of bending moment test combined.	Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)14.54.9 ≤ 10 0.4 ≤ 10 Test result: Passed.~Note: Seal test , immersed in boiling water test and verification test of bending moment test combined.	Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)14.54.9 ≤ 10 0.4 ≤ 10 Test result: Passed.~Note: Seal test , immersed in boiling water test and verification test of bending moment test combined.	Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of char (pC)14.54.9 ≤ 10 0.4 ≤ 10 Test result: PassedNote: Seal test s immersed in boiling water test and verification test of bending moment test combined.	2.3 Internal part	tial discharge at 1	.05Uc	DAS SIV	IB	1	
1 4.5 4.9 ≤10 0.4 ≤10 Test result: Passed. Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	1 4.5 4.9 ≤10 0.4 ≤10 Test result: Passed. Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	1 4.5 4.9 ≤10 0.4 ≤10 Test result: Passed. Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	1 4.5 4.9 ≤10 0.4 ≤10 Test result: Passed. Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.	1 4.5 4.9 ≤10 0.4 ≤10 Test result: Passed. Note: Seal test, immersed in boiling water test and verification test of bending moment test combined.		Before	After				
Test result: Passed. Note: Seal test. immersed in boiling water test and verification test of bending moment test combined.	Test result: Passed. Note: Seal test. immersed in boiling water test and verification test of bending moment test combined.	Test result: Passed. Note: Seal test. immersed in boiling water test and verification test of bending moment test combined.	Test result: Passed. Note: Seal test. immersed in boiling water test and verification test of bending moment test combined.	Test result: Passed. Note: Seal test. immersed in boiling water test and verification test of bending moment test combined.	1	4.5	4.9	<10	0.4	≤10	
							ng water test an	-	g moment test comb	vined.	
						immersed in boili		-	g moment test comb	vined.	
						immersed in boili		-	g moment test comb	vined.	
						immersed in boili		-		vined.	
						immersed in boili		-		vined.	
						immersed in boili		-		vined.	
						immersed in boili		-		vined.	
						immersed in boili		-		vined.	
						immersed in boili		-		vined.	

No. 100000 Test Report Page 14 of Page 14 of Residual Voltage Test Image 14 of Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3" Residual Voltage Test Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3" Colspan="3">Colspan="3">Colspan="3" Colspan="3">Colspan="3" Colspan="3"	XI	HAF	1	Tes	st Rep	ort	No.190038B	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		TAT		100	ie nop		Page 14 of	53
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Residu	al Voltag	ge Test		
Typical oscillogram see Fig. 190038B 3-1190038B 3-3.Residual voltage of sections (kV) Residual voltage of sections of arrester at In (kV) Max. residual voltage of arrester at In (kV) Serial No. $U_{ImA.DC}$ (kV) $0.5I_n$ I_n $2I_n$ (kA) Residual voltage of arrester at In (kV) Max. residual voltage of arrester at In (kV) B14.267.037.378.07553.6B24.267.037.368.08552.9					RH=34%		Date:	201
Residual voltage of sections Residual voltage of sections Max. residual voltage of arrester at In Serial No. $U_{1mA,DC}$ $0.5I_n$ I_n $2I_n$ Residual voltage of arrester at In Max. residual voltage of arrester at In (kA) (kA) (kA) (kA) (kA) (kA) (kV) <td< th=""><th>1. Lightni</th><th>ng impulse resi</th><th>dual voltage</th><th>test</th><th></th><th></th><th></th><th></th></td<>	1. Lightni	ng impulse resi	dual voltage	test				
Serial No. $U_{1mA,DC}$ (kV) I_n $2I_n$ Residual voltage of arrester at I_n Max. residual voltage of I_n Max. residual voltage	Туріса	l oscillogram se	æ Fig. 19003	8B 3-1~1900	038B 3-3.			-
Serial No. $U_{1mADC}_{(kV)}$ $0.5I_n$ I_n $2I_n$ of arrester at I_n arrester at I_n (kA) (kA) (kA) (kA) (kA) (kV) (kV) B1 4.26 7.03 7.37 8.07 553.6 B2 4.26 7.03 7.36 8.08 552.1 B3 4.26 7.03 7.36 8.08 552.9		1	Residu	al voltage of (kV)	sections	Residual voltage		
Image: Non-State in the image:	Serial No.	U _{1mA.DC} (kV)	0.5I _n	Ia	2In	of arrester at In		
B1 4.26 7.03 7.37 8.07 553.6 B2 4.26 7.05 7.35 8.09 552.1 553.6 B3 4.26 7.03 7.36 8.08 552.9 553.6		4.26		100		(kV)	(kV)	
B2 4.26 7.05 7.35 8.09 552.1 553.6 B3 4.26 7.03 7.36 8.08 552.9 553.6	DI	4.26				553.6		
B3 4.26 7.03 7.36 8.08 552.9							553.6	
			Constant of the	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1				

	IAR		t Report	Page 15 of	53
		Residu	al Voltage Test		
	conditions: P= rent impulse rea	98.4kPa t=16.8°C F sidual voltage test	RH=34%	Date:	2019-0
Serial No.	U _{1mA.DC} (kV)	Residual voltage at In of sections (kV)	Residual voltage of arrester at I _n	Max. residual voltage of arrester at I_n	Req (kV
31		(KV)	(kV)	(kV)	
B1	4.26	7.88	591.9	611.A	
B2	4.26	7.86	590.4	591.9	≤63
B3	4.26	7.86	590.4		

XIF	IAR		Test	Report	No.190	
					Page 16	of 53
		g Dur	Residu	al Voltage Test	and Less	_
	conditions: P=9		t=16.8°C RF	I=34%	Γ	Date: 201
Serial No.	U _{1mA.DC} (kV)	Resi	dual voltage at A of sections (kV)	Residual voltage of arrester at 500A (kV)	Max. residual voltage of arrester at 500A (kV)	1
B1	4.26		5.57	418.4	1.01	
B2	4.26	191	5.55	416.9	418.4	3
B3	4.26		5.57	418.4		
Test result:	Passed.					
				- 192		

XII	HARI	Test	Report	-	No.190038B
				I	Page 17 of :
	Long D	uration Curre	ent Impulse Wi	thstand Te	st
					Date: 2
	c conditions: P=95.7kPa				
	llogram see Fig. 19003 Serial No.	8B 9-4~190038B 9- B4	6. B5	B6	Re
U _{lmA.DC}	(kV)	4.38	4.38	4.38	
UlmA.DC	(kV)	3.01	3.01	3.01	3~
8/20µs,U _{10kA} ,		7.55	7.57	7.55	1
30/60µs,U _{125A} ,		5.54	5.57	5.55	
W	(kJ)	0.01	9.81 (class 3 line		-
т	(µs)	2417	(class 3 line dischar		2400(100%
	Current (A)	692	689	695	1
1st.	Voltage (kV)	5.88	5.92 -	5.89	1
	Energy (kJ)	9.83	9.86	9.89	9.81 (90%
	Current (A)	688	675	686	1
2nd.	Voltage (kV)	5.92	6.06	5.96	1
	Energy (kJ)	9.84	9.89	9.88	9.81(100
	Current (A)	685	671	678	1
3rd.	Voltage (kV)	5.93	6.09	5.99	1
	Energy (kJ)	9.82	9.88	9.82	9.81(100
	Current (A)	693	692	694	1
4th.	Voltage (kV)	5.88	5.93	5.90	1
	Energy (kJ)	9.85	9.92	9.90	9.81(100
	Current (A)	685	678	683	1
5th.	Voltage (kV)	5.93	6.08	5.97	1
-	Energy (kJ)	9.82	9.96	9.86	9.81(100
	Current (A)	683	672	678	1
6th.	Voltage (kV)	5.95	6.12	5.99	1
	Energy (kJ)	9.82	9.94	9.82	9.81(100

XII	HARI	Test	Report		No.190038B
				P	age 18 of 53
	Long Dura	ation Curren	nt Impulse Wi	hstand Tes	st
					Continue last pag
S	erial No.	B4	B5	B6	Req.
	Current (A)	692	692	694	/
7th.	Voltage (kV)	5.92	5.93	5.90	1
	Energy (kJ)	9.90	9.92	9.90	9.81(100%~110%
	Current (A)	678	673	672	a surrey allow
8th.	Voltage (kV)	6.01	6.08	6.05	/
	Energy (kJ)	9.85	9.89	9.83	9.81(100%~110%
	Current (A)	675	663	668	/
9th.	Voltage (kV)	6.05	6.13	6.09	1
	Energy (kJ)	9.87	9.82	9.83	9.81(100%~110%
570_	Current (A)	689	696	682	/
10th.	Voltage (kV)	5.92	5.96	5.97	1
	Energy (kJ)	9.86	10.03	9.84	9.81(100%~110%
	Current (A)	676	673	668	/
11th.	Voltage (kV)	6.03	6.09	6.08	1
	Energy (kJ)	9.85	9.91	9.82	9.81(100%~110%
	Current (A)	673	668	665	/
12th.	Voltage (kV)	6.07	6.11	6.13	/
	Energy (kJ)	9.87	9.86	9.85	9.81(100%~110%
illina Bilan	Current (A)	695	691	682	/
13th.	Voltage (kV)	5.89	5.98	5.97	1
	Energy (kJ)	9.89	9,99	9.84	9.81(100%~110%
Note	Current (A)	678	672	675	1
14th.	Voltage (kV)	6.05	6.09	6.05	1
	Energy (kJ)	9.91	9.89	9.87	9.81(100%~110%

XII	IARI	Test	Report		No.190038B
A II				Pa	ge 19 of 53
	Long Dur	ation Curren	nt Impulse W	ithstand Test	
				10-	Continue last pa
Ser	ial No.	B4	B5	B6	Req.
an a firmely	Current (A)	668	665	668	1
15th.	Voltage (kV)	6.08	6.15	6.10	1
	Energy (kJ)	9.82	9.88	9.85	9.81(100%~110%
50	Current (A)	689	685	688	/
16th.	Voltage (kV)	5.91	6.02	5.99	1
	Energy (kJ)	9.84	9.97	9.96	9.81(100%~110%
	Current (A)	671	668	678	1
17th.	Voltage (kV)	6.05	6.11	6.08	/
	Energy (kJ)	9.81	9.86	9.96	9.81(100%~110%
	Current (A)	668	659	665	1
18th.	Voltage (kV)	6.11	6.17	6.14	/
	Energy (kJ)	9,86	9.83	9.87	9.81(100%~110%
Withst	and times	18	18	18	18
Check	ing samples	All right	All right	All right	All right
8/20µs, U _{10kA} , a	fter (kV)	7.51	7.64	7.59	1
Change of U _{10k} /	(%)	0.5	0.9	0.5	≤5
Note: 1) Each san	ussed. (Test data come fi nple shall be subjected t group of 50s to 60s and	o 18 current impu	lses in six groups of		

l

XIHAR			Report	Page	20 of 53
		Operating	Duty Test		
1. Accelerated ageing test Parameters of arrester				Date: 201	9-02-26~2019-04
$U_r = 108kV$ $U_c = 84kV$	U1mA215	7kV load rate η=8	5% (Declared by c	lient)	
Required voltage value U _{et} =	$(\eta \times U_{1mA})$	$\sqrt{2}$			
Testing time:1000h+100h; A	ctual time:	1001h			
Required testing temperature	e:115°C±4H	<	0.42	10.10	1011-
Serial No.		Al	A2	A3	Req.
U _{1mA}	(kV)	4.14	4.14	4.14	1
U _{ct}	(kV)	2.49	2.49	2.49	2.49
			a 12	10.19	10.09
Time	20		Power losses (W)	10.35	Temperatur
Time	30	A1	A2 -	A3	(°C)
2019.02.26 16:00		2.072	2.033	2.058	115.1
2019.02.26 17:00		2.345	2.252	2.249	115.3
2019.02.26 19:00		2.212	2.223	2.226	115.4
2019.03.02 23:00		2.206	2.212	2.222	115.3
2019.03.07 03:00		2.203	2.208	2.212	115.3
2019.03.11 07:00	- W	2.172	2.178	2.165	115.2
2019.03.15 11:00	100-	2.136	2.132	2.141	115.0
2019.03.19 15:00	_	2.112	2.108	2.102	115.4
2019.03.23 19:00		2.025	2.013	2.011	115.2
2019.03.27 23:00		1.934	1.943	1.937	115.2
2019.04.01 03:00		1.927	1.932	1.923	115.2
2019.04.05 07:00		1.918	1.925	1.916	115.1
2019.04.09 11:00		1.886	1.916	1.905	115.2
P _{1et}		2.345	2.252	2.249	P _{2et} <1.1×P
P _{2ct}	17.10	1.886	1.916	1.905	P _{1ct} >P _{2ct}
P _{3ct}	1	1.886	1.916	1.905	10.29

XIHAR		st Report	Page	21 of 53
	Oper	rating Duty Test		
E. Marson Constant				Date: 2019
Atmospheric conditions: P=9	6.0kPa t=22.8°C	RH=69%		
2. Switching impulse operat	ing duty test	man la man	100	
Serial No		B7	B8	B9
U _{1mA,DC}	(kV)	8.20	8.20	8.20
8/20µs, U10kA, before	(kV)	14.62	14.60	14.66
30/60µs,U _{125A} ,before	(kV)	10.42	10.40	10.42
Usr	(kV)	5.64	5.64	5.64
Usc	(kV)	4.38	4.38	4.38
Conditioning test : Applied po	wer frequency voltage	1.2Usc=5.26kV, 8/20μs		
the class 7 her flighting	1st.	10.12	10.24	10.00
in the second	2nd.	10.11	10.35	10.46
	3rd.	10.28	_ 10.18	10.28
	4th.	10.47	10.16	10.15
	5th.	10.20	10.35	10.40
	6th.	10.34	10.49	10.45
	7th.	10.38	10.27	10.33
	8th.	10.01	10.45	10.39
	9th.	10.23	10.32	10.23
Current	10th.	10.24	10.32	10.43
(kA)	11th.	10.48	10.25	10.3
	12th.	10.09	10.42	10.00
free per sta	13th.	10.19	10.18	10.0
	14th.	10.39	10.04	10.10
	15th.	10.42	10.46	10.4
Charle -	16th.	10.05	10.03	10.3
Walter, Visan after	17th.	10.44	10.02	10.12
Charles Connection of the	18th.	10.17	10.31	10.2
Det worth Paracel Const.	19th.	10.04	10.31	10.03
	20th.	10.26	10.49	10.14

	-	07	aratina I	Juty Test		
	ACT-D	Op	crating 1	Duty Test	ACTO DELES DE	Cantinua la
- automation and	Serial	l No.		B7	B8	Continue la B9
		1st. current	(kA)	100.3	99,9	99.
4/10µs high current i	mpulse		(Cool to 23°C		1
withstand		2nd. current	(kA)	104.7	95.8	97.
	J	Heated to 60°C,appli			withstand	
Applied class 3 line d			(kJ)		18.36(100%~110%)	
Virtual time T		mp not not g	(µs)		[2400(100%~120%	1000 C
Approx Aller 3 line 4	in hugo	Current	(A)	690	696	693
1st. class 3 line disc		Voltage	(kV)	11.44	11.54	11.
impulse energy	y	Energy	(kJ)	19.08	19.41	19.2
the cost differences		Current	(A)	679	674	681
2nd.class 3 line disc		Voltage	(kV)	11.58	11.62	. 11.6
impulse energy	y	Energy	(kJ)	19.00	18.93	19.1
	-		ver frequency	voltage within 42m	IS	10
Applied Usr		Exercit (k2)	(kV)	5.64	5.64	5.6
Keeping time at Usr		-2	(s)	10	10	10
Applied Use	EC.	ILM	(kV)	4.38	4.38	4.3
		1st. minute	1.1	6.15	6.27	6.1
Power losses at U _{sc}		15th. minute		3.03	2.98	3.02
(w)		30th. minute		1.96	1.88	1.89
(Checking	samples	1000	All right	All right	All rig
8/20ue 11			(kV)	14.60	14.62	14.6
8/20µs, U10kA, after		La realizada	(%)	0.1	0.1	0.3

X	IHAF	RI Te	st Repo	rt	Page 23	of 53
	Power-f	requency Voltag	e-versus-ti	me Characte	eristics Test	
						ate: 201
Atmos	pheric conditions: P	=96.0kPa t=22.8°C	RH=69%			
	Serial No		B10	B11	B12	В
U1mA.DC	And And	(kV)	8.28	8.28	8.28	8.
Usr	timber kel	(kV)	5.70	5.70	5.70	5.
Usc	A SHILL SHARE	(kV)	4.44	4.44	4.44	4.
30/60µs,	,U _{125A}	(kV)	10.46	10.50	10.50	10
		Heated to 60°C, applied	2 times class 3 1	ine discharge with	stand	150
Applied	class 3 line discharg	ge impulse energy (kJ)		18.63 (100)%~110%)	Note
Virtual t	ime T	(µs)	and mark	2417 [2400(1	00%~120%)]	no.in
1		Current (A)	682	685	679	6
	ss 3 line discharge	Voltage (kV)	11.66	11.62	11.7	11
m	ipuise energy	Energy (kJ)	19.22	19.24	19.20	19
		Current (A)	668	669	663	6
	ss 3 line discharge	Voltage (kV)	11.76	11.62	11.84	11
in	ipuise energy	Energy (kJ)	18.99	18.79	18.97	18
Over-vo	ltage times K.		1.2	1.1	1.05	1
Applied	over-voltage KU _{sr}	(kV)	6.84	6.28	5.98	5
Keeping time			0.1s	10s	30s	12
Applied	Usc	(kV)	4.44	4.44	4.44	4
Keeping	g time at U _{sc}	(min)	30	30	30	3
Checkin	ng samples		All right	All right	All right	All
	Over-voltage time	s K	1.2	1.1	1.05	1
Req.	Keeping time		0.1s	10s	30s	12

Insulation Withstand Tests on The ArrestoAtmospheric conditions: P= 96.1 kPa t= 29.5°C RH= 66 %1.Lightning impulse voltage withstand test $U_e=950kV$ Arc distance =2364mmCorrection factor: $K_e=1.007$ Applied voltage after adj. $U_s=U_e \times K_t=956.7kV$ Serial U_s V_s <th>er Hous</th> <th>Date</th> <th>: 2019-07-16</th>	er Hous	Date	: 2019-07-16
1.Lightning impulse voltage withstand test $U_e = 950kV$ Arc distance = 2364mm Correction factor: $K_t = 1.007$ Applied voltage after adj. $U_s = U_e \times K_t = 956.7kV$ Serial No. U_s (kV_p) Test value U_t (kV_p) (kV) t $1st. \sim 5th.$ 963.6 965.2 967.8 961.8 $4t$ $6th. \sim 10th.$ 963.0 957.9 959.4 959.0			: 2019-07-16
No. (kV_p) (kV) + 1st.~ 5th. 963.6 965.2 967.8 961.8 + 6th.~ 10th. 963.0 957.9 959.4 959.0			
1st.~ 5th. 963.6 965.2 967.8 961.8 + 6th.~ 10th. 963.0 957.9 959.4 959.0	1	Times	Result
	963.8		
11th~15th, 964.7 963.8 960.5 961.5	961.5	15	No punctu No flashov
	961.6	Neg	incrine-
W 956.7 1st.~ 5th. 959.8 964.6 961.4 964.7	967.4		
- 6th.~ 10th. 958.1 966.5 960.2 967.0	966.6	15	No puncto No flasho
11th.~ 15th. 964.2 965.9 959.0 958.0	963.1		-

Test Report Page 25 of 5 Insulation Withstand Tests on The Arrester Housing Date: 20 Insulation Withstand Tests on The Arrester Housing Date: 20 Atmospheric conditions: $P = 96.1 kPa = 29.5 °C RH = 66 %$ 2. Power-frequency withstand voltage test Are distance L=2364mm twate=26.5 °C Rain conductivity: 105.1 µS/cm Rainfall: horizon: 1.29mm/min, vertical: 1.39mm/min Wet: Correction factor: $K_1 = 0.991$ $U_e=395kV$ Applied voltage after adj. $U_e=U_e \times K_1 = 391.4 kV$ Result W Wet 392.2 No punctu No flashov W Wet 392.2 No flashov Test result: Passed.	VILIA	DI	Toot Pe	aport	No.190038B
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ХІПА	AR	Test Re		Page 25 of 5
Atmospheric conditions : P= 96.1 kPa t= 29.5°C RH= 66 % 2. Power-frequency withstand voltage test Are distance L=2364mm twate=26.5°C Rain conductivity: 105.1µS/cm Rainfall: horizon: 1.29mm/min, vertical: 1.39mm/min Wet: Correction factor: $K_1 = 0.991$ $U_e=395kV$ Applied voltage after adj. $U_e = U_e \times K_1 = 391.4kV$ Serial No. Test voltage Ut (min) W Wet 392.2 1 No flashov Test result: Passed.]	Insulation Wit	thstand Tests of	on The Arrester H	ousing
2. Power-frequency withstand voltage test Arc distance L=2364mm $t_{water}=26.5^{\circ}$ C Rain conductivity: 105.1 \muS/cm Rainfall: horizon: 1.29mm/min, vertical: 1.39mm/min Wet: Correction factor: $K_1 = 0.991$ Ue = 395kV Applied voltage after adj. $U_r = U_e \times K_1 = 391.4 kV$ Serial No. Test voltage Keeping time Result W Wet 392.2 1 No punctu Test result: Passed. -					Date: 20
Arc distance L=2364mm $t_{water}=26.5^{\circ}$ C Rain conductivity: 105.1 µS/cm Rainfall: horizon: 1.29mm/min, vertical: 1.39mm/min Wet: Correction factor: $K_1 = 0.991$ Ue = 395kV Applied voltage after adj. $U_z = U_e \times K_1 = 391.4 kV$ Serial No. Test voltage Keeping time (min) Result (min) W Wet 392.2 1 No punctive No flashow Test result: Passed. - -	Atmospheric conditi	ions : P= 96.1 kPa	t= 29.5°C RH= 66	5%	
Rain conductivity: 105.1µS/cm Rainfall: horizon: 1.29mm/min, vertical: 1.39mm/min Wet: Correction factor: $K_1 = 0.991$ $U_e=395kV$ Applied voltage after adj. $U_s=U_e \times K_1 = 391.4kV$ Serial No. Test voltage U_t Keeping time (min) W Wet 392.2 1 No punctu No flashov Test result: Passed. -	2. Power-frequency	withstand voltage te	st		
Rainfall: horizon: 1.29mm/min, vertical: 1.39mm/min Wet: Correction factor: $K_1 = 0.991$ $U_e = 395kV$ Applied voltage after adj. $U_e = U_e \times K_1 = 391.4kV$ Serial No. Test voltage U_t $(kV_{rms.})$ Keeping time (min) Result W Wet 392.2 1 No punctu No flashov Test result: Passed. -			Offen March		
Wet: Correction factor: $K_1 = 0.991$ $U_e=395kV$ Applied voltage after adj. $U_s = U_e \times K_1 = 391.4kV$ Serial No. Test voltage U_t $(kV_{z.m.s.})$ Keeping time (min) Result W Wet 392.2 1 No punctu No flashov Test result: Passed. -			· 1 1 20		
$U_e=395kV$ Applied voltage after adj. $U_s=U_e\times K_1=391.4kV$ Serial No. Test voltage U_t $(kV_{t.m.h})$ Keeping time (min) Result W Wet 392.2 1 No punctu No flashov Test result: Passed. -			rtical: 1.39mm/min		
Serial No. Test $voltage U_t (kV_{zm.s.})$ Keeping time (min) Result W Wet 392.2 1 No punctu No flashov Test result: Passed. -			er adj. $U_s = U_e \times K_1$	=391.4kV	Norochieles
Serial No. Ut (KVzms.) (min) Recent with the second		Test v	oltage		Regult
W Wet 392.2 1 No flashov	Serial No.	(kV	U _t 		Result
Test result: Passed.	w	Wet	392.2	1	No punctu No flashou
	Test result: Passed				
	Test result: Passed			-	
	Test result: Passed				
	Test result: Passed				
	Test result: Passed				
	Test result: Passed				
	Test result: Passed				
	Test result: Passed				

Page 20 of 33 Page 20 of 33 Bending Moment Test Date: 2019-0 1. Bending moment test $F_1=980$ N, $F_2 = 417.2$ N, Applied bend load $F=2.5 \times (F_1+F_2/2)= 2971.5$ N (Applied on the arrester top.) Date: 2019-0 Serial No. F Offset Max (mm) Offset/Housing height (%)	XII	HAF	R	Test	Report	t	
Date: 2019-0 I. Bending moment test F1=980 N. $F_2 = 417.2$ N, Applied bend load $F=2.5 \times (F_1+F_2/2)=2971.5$ N (Applied on the arrester top.) Serial No. Reening moment F Offset Max (mm) Offset (mm) Offset/Housing height (%) Checking sample (%) 1 3.0 90 730.5 102.0 3.7 No suddenly chan Req. 2.9715 60-90 / / ≤ 5 No suddenly chan						F	Page 26 of 53
1. Bending moment test F1=980 N. $F_2 = 417.2$ N, Applied bend load $F=2.5 \times (F_1+F_2/2)= 2971.5$ N (Applied on the arrester top.) Serial No. Bending moment F Keeping time (s) Offset Max (mm) Offset/Housing height (%) Checking sample 1 3.0 90 730.5 102.0 3.7 No suddenly chan Req. 2.9715 60-90 / / \leq 5 No suddenly chan	2.17			Bending M	Ioment T	est	
Serial No. Bending moment F (N) Keeping (ime (s) Offset Max (mm) Offset (mm) Offset (mm) Offset/Housing height (%) Checking sample 1 3.0 90 730.5 102.0 3.7 No suddenly char Req. 2.9715 60~90 / / ≤5 No suddenly char	1. Bending	moment test $E = 417$	2 NI Amplied	bend load F=2.5	$(F_1+F_2/2)=2$	2971.5 N (Applied or	
1 3.0 90 730.5 102.0 3.7 No suddenly chan Req. 2.9715 60~90 / / ≤5 No suddenly chan		Bending moment F	Keeping time	Offset Max	Offset	Offset/Housing height	Checking sample
Req. 2.3/13 00-50 -	1		90	730.5	102.0	3.7	No suddenly chan
	Reg.	2.9715	60~90	1	1	≤5	No suddenly char
						-	

Page 27 of 53 Page 27 of 53 Bending Moment Test Date: 2019-07 Atmospheric conditions: P=96.4kPa t=30.8°C RH=59% 2. Sealing check(hot water immersion method) Immersion method) Serial No. Immersion method) Immersion method) 1 Treperature (°C) Immersion method) 1 Treperature (°C) Immersion method) 1 1 7 30.8 46.2 35 There is no continuity bubbles	Page 27 of 53 Bending Moment Test Date: 2019-0 Atmospheric conditions: P=96.4kPa t=30.8°C RH=59% 2. Sealing check(hot water immersion method) Serial No. Immersion method) Immersion $(°C)$ (°C) (K) (min) 1 77 30.8 46.2 35 There is no continuity bubbles Req. / / 45±5 \geq 30 There is no continuity bubbles	Page 27 of 53 Bending Moment Test Date: 2019-0' Atmospheric conditions: $P=96.4kPa$ $r=30.8 \ C$ RH=59% 2. Sealing check(hot water immersion method) Serial No. Immersion method) 1 77 of 53 Date: 2019-0' Serial No. Immersion method) Immersion (°C) (K) (min) 1 77 30.8 46.2 35 There is no continuity bubbles Bubbles Bubbles Bubbles Serial No. (°C) (°C)	XIH		Test	Report		No.190038B
Atmospheric conditions: P=96.4kPa t=30.8°C RH=59% 2. Sealing check(hot water immersion method) Immersion Immersion Immersion Serial No. Hot water Environment (°C') Temperature (°C') Immersion (°C') Immersion (°C') Immersion (°C') 1 77 30.8 46.2 35 There is no continuity bubbles Req. / / 45±5 \geq 30 There is no continuity bubbles	Date: 2019-0 Atmospheric conditions: P=96.4kPa t=30.8°C RH=59% 2. Sealing check(hot water immersion method) Serial No. Hot water Environment temperature (°C.) Immersion time (°C.) Immersion (°C.) 1 77 30.8 46.2 35 There is no continuity bubbles Req. / / 45±5 ≥30 There is no continuity bubbles	Date: 2019-0' Atmospheric conditions: P=96.4kPa t=30.8°C RH=59% 2. Sealing check(hot water immersion method) Serial No. Hot water Environment temperature (°C.) Immersion time (°C.) Immersion time (°C.) 1 77 30.8 46.2 35 There is no continuity bubbles Req. / / 45±5 ≥30 There is no continuity bubbles			1000	Ropor c		Page 27 of 53
Atmospheric conditions: $P=96.4kPa$ $t=30.8$ C $RH=59\%$ 2. Sealing check(hot water immersion method) Immersion Immersion Checking samples Serial No. Hot water Environment Temperature Immersion Checking samples 1 77 30.8 46.2 35 There is no continuity bubbles Req. / / 45±5 ≥ 30 There is no continuity bubbles	Atmospheric conditions: $P=96.4kPa$ $t=30.8$ C $RH=59\%$ 2. Sealing check(hot water immersion method)	Atmospheric conditions: $P=96.4kPa$ $t=30.8$ C $RH=59\%$ 2. Sealing check(hot water immersion method) Immersion Immersion Checking samples Serial No. Hot water Environment Temperature Immersion Checking samples 1 77 30.8 46.2 35 There is no continuity bubbles Req. / / 45±5 ≥ 30 There is no continuity bubbles			Bending	Moment Te	st	
Serial No.Hot water temperature (\heartsuit)Environment temperature (\heartsuit)Temperature difference (K)Immersion time (min)Checking samples17730.846.235There is no continuity bubblesReq.//45±5 \geq 30There is no continuity bubbles	Serial No.Hot water temperature (\heartsuit)Environment temperature (\heartsuit)Temperature difference (\bigstar)Immersion time (min)Checking samples17730.846.235There is no continuity bubblesReq.//45±5 \geq 30There is no continuity bubbles	Serial No.Hot water temperature (\heartsuit)Environment temperature (\heartsuit)Temperature difference (K)Immersion time (min)Checking samples17730.846.235There is no continuity bubblesReq.//45±5 \geq 30There is no continuity bubbles				RH=59%		Date: 2019-07
I II II II II III Bubbles Req. / / / 45±5 ≥ 30 There is no continuity bubbles	I II II II II III Bubbles Req. / / / 45 ± 5 ≥ 30 There is no continuity bubbles	I II II Solar 40.2 Solar bubbles Req. / / 45±5 ≥ 30 There is no continuity bubbles		Hot water temperature	Environment temperature	difference	time	Checking samples
Key. / 4,23 2.30 bubbles	Key. / 4,523 2,50 bubbles	Key. / 4,23 2,30 bubbles	1	77	30.8	46.2	35	There is no continuity bubbles
			Req.	1	1	45±5	≥30	There is no continuity
							-	

XIH	ARI	Test	Repo	rt		.190038B 28 of 53
					rage	20 01 55
		Bending	Momen	t Test		
 Immersed in bo 					Date: 201	9-07-29~2019-
NaCl content o Serial No.	of boiling water is 1	Ikg/m ³ Test items	Neg e	K	eep time (h)	Req. (h)
	118.3)	In boiling water		1	42	42
1	In	nmersed in water			1	1
Smitho		Placed in air		1000	6	≤8
						1
				-		

XIH		Test	Report	No	o.190038B
АП	ANI	1000	Roport	Page	29 of 53
		Bending	Moment Test	81	
4. Verification te	st			Date: 20	19-07-01~2019-07
4.1. Direct curren	nt reference voltage	at Id.c.ref=1mA	A CONTRACTOR		
Serial No.	Before (kV)	After (kV)	Req. of U _{1mADC} (kV)	Change (%)	Req. of chang (%)
1	318.3	317.7	≥314	0.2	≤5
4.2. Leakage cur	rent at 0.75Ude.ref	TRACTOR			ARKE
Serial No.	Before (µA)	After (µA)	Req. of I _{lek} (µA)	Change (µA)	Req. of chang (µA)
1	6	8	≤50	2	≤20
4.3 Internal part	ial discharge at 1.05	5U.			
Serial No.	Before (pC)	After (pC)	Req. of PD (pC)	Change (pC)	Req. of chang (pC)
1	4.5	4.9	≤10	0.4	≤10
4.4 8/20ue resid	lual voltage at 5kA				
Serial No.	Before (kV)	After (kV)	Req. of U _{res} (kV)	Change (%)	Req. of chang (%)
1	526.3	527.2	1	0.2	≤5
4.5 Resistive cu	rrent at U.				
Serial No.	Before(peak) (µA)	After(peak) (µA)	Req. of I _t (peak) (µA)	Change (%)	Req. of char (%)
1	120	130	≤300	8.3	≤20
1 Test result: Passe	120		1	8.3	≤20

3 04.14.17.04-04.35.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.09.04 04.14.17.04-04.15.04 04.14.17.04-04.15.04 04.14.17.04-04.15.04 04.14.17.04-04.15.04 04.14.17.04 04.1	VIL		Test	Report		No.190038B	
Serial No. Torque applied (N·m) Tolerance time (s) Checking samples 5 100 30 All right Req. 100 30 All right	XIN	IARI	Test	Report	1	Page 30 of	53
Serial No. Torque applied (N·m) Tolerance time (s) Checking samples 5 100 30 All right Req. 100 30 All right		A	rrester Mois	ture Ingress Te	st		
Serial No. Torque applied (N·m) Tolerance time (s) Checking samples 5 100 30 All right	1 Terminal to	roue preconditioning te	st		-	Date:	2019-04
S 100 30 All right Req. 100 30 All right		Torqu	e applied		ne	Checking sa	imples
Req. 100	5	The true come	100	30	Aspe	All rig	ht
3 04.14 17.00-04.15 09-01 -44.3 200 6.4 34 64.15 12:00-04.14 (92.3) -44.3 90 1.8 36 100 50400 cr 90 1.8 36 100 50400 cr 100 90 1.8 36	Req.		100	30		All rig	ht
0415 2230 - 0416 0731 49.0 - 90 1A 35 0415 2230 - 0416 0731 49.0 - 90 1A 35 010 2040 - 90 1A 35 010 2040 - 90 1A 35		anner an - b	citocal	-212			
The Telescole Man and Man and Man and Telescole Press 14.							
				- 906			

Page 31 of 53 Page 31 of 53 Arrester Moisture Ingress Test Date: 2019-04-12-2019-04 2. Thermo-mechanical preconditioning test Client express: applied bend load F=1.8kN (Applied on the arrester top) Serial No. Test time(keeping warm) Testing temperature (°C) Applied bend load F= Keepin time Od.12 16:50 - 04.13 08:51 +60.0 0 1.8 16 Od.12 16:50 - 04.13 08:51 +60.0 0 1.8 16 Od.12 16:50 - 04.13 08:51 +60.0 0 1.8 16 Od.13 17:20 - 04.14 09:23 -25.2 180 1.8 16 Od.14 17:00 - 04.15 09:04 +45.2 270 1.8 16 Od.15 17:30 - 04.16 09:31 -40.0 90 1.8 16	XII	IARI	Test	Report		No.190038	3
Date: 2019-04-12-2019-04 2. Thermo-mechanical preconditioning test Client express: applied bend load F=1.8kN (Applied on the arrester top) Serial No. Test time(keeping warm) $Testing temperature (°C) Angle degrees Bend load (kN) (h) 04.12 16:50 ~ 04.13 08:51 +60.0 0 1.8 16 04.13 17:20 ~ 04.14 09:23 -25.2 180 1.8 16 04.14 17:00 ~ 04.15 09:04 +45.2 270 1.8 16 04.15 17:30 ~ 04.16 09:31 40.0 90 1.8 16 Req. Twice cycles of heat and cold 60^{\circ}C \rightarrow -25^{\circ}C \rightarrow -40^{\circ}C 0 ~ 360 1.8 ≥16$	~					Page 31 of	53
2. Thermo-mechanical preconditioning test Client express: applied bend load F=1.8kN (Applied on the arrester top) Test ime(keeping warm) Testing temperature (°C) Applied bend load F Keepin time Serial No. Test time(keeping warm) Testing temperature (°C) Applied bend load F Keepin time 04.12 16:50 ~ 04.13 08:51 +60.0 0 1.8 16 04.12 16:50 ~ 04.13 08:51 +60.0 0 1.8 16 04.12 16:50 ~ 04.13 08:51 +60.0 0 1.8 16 04.13 17:20 ~ 04.14 09:23 -25.2 180 1.8 16 0 0 1.8 16 0 0 1.8 16 0 1.8 16 0 1.8 16 0 1.8 16		A	rrester Mois	ture Ingress T	est		
Serial No. Test time(keeping warm) Testing temperature (°C) Applied bend load (kN) Keeping time (keeping warm) 04.12 16:50 - 04.13 08:51 +60.0 0 1.8 16 04.12 16:50 - 04.13 08:51 +60.0 0 1.8 16 04.13 17:20 - 04.14 09:23 -25.2 180 1.8 16 04.14 17:00 - 04.15 09:04 +45.2 270 1.8 16 04.15 17:30 - 04.16 09:31 -40.0 90 1.8 16 Req. Twice cycles of heat and cold $\frac{60^\circ C \rightarrow .25^\circ C}{$					Date	: 2019-04-12-	-2019-04-
Serial No. Test time(keeping warm) temperature (°C) Angle degrees (°) Bend load (kN) time (h) 04.12 16:50 - 04.13 08:51 +60.0 0 1.8 16 04.13 17:20 - 04.14 09:23 -25.2 180 1.8 16 04.14 17:00 - 04.15 09:04 +45.2 270 1.8 16 04.15 17:30 - 04.16 09:31 -40.0 90 1.8 16 Req. Twice cycles of heat and cold $60^{\circ}C \rightarrow -25^{\circ}C \\ \rightarrow 45^{\circ}C \rightarrow -40^{\circ}C}$ 0 ~ 360 1.8 ≥16	Client exp	press: applied bend load	I F=1.8KN (Applied		Applied		
$5 \qquad \qquad$	Serial No.	Test time(keepin	ig warm)	temperature	degrees	Bend load	time
$5 \qquad \qquad$		04.12 16:50 ~ 04	.13 08:51	+60.0	0	1.8	16
$04.14\ 17:00\ -\ 04.15\ 09:04$ $+45.2$ 270 1.8 16 $04.15\ 17:30\ -\ 04.16\ 09:31$ -40.0 90 1.8 16 Req. Twice cycles of heat and cold $60^{\circ}C \rightarrow -25^{\circ}C}{\rightarrow 45^{\circ}C \rightarrow -40^{\circ}C}$ $0\ -\ 360$ 1.8 ≥ 16		04.13 17:20 - 04	.14 09:23	-25.2	180	1.8	16
Req.Twice cycles of heat and cold $60^{\circ}C \rightarrow -25^{\circ}C \\ \rightarrow 45^{\circ}C \rightarrow -40^{\circ}C $ $0 \sim 360$ 1.8 ≥ 16	5	04.14 17:00 ~ 04	.15 09:04	+45.2	270	1.8	16
Req. Twice cycles of heat and cold $\rightarrow 45^{\circ}C \rightarrow -40^{\circ}C$ $0^{\sim}300$ 1.8 ≥ 10		04.15 17:30 ~ 04	.16 09:31	-40.0 -	90	1.8	16
	Req.	Twice cycles of he	at and cold		0~360	1.8	≥16

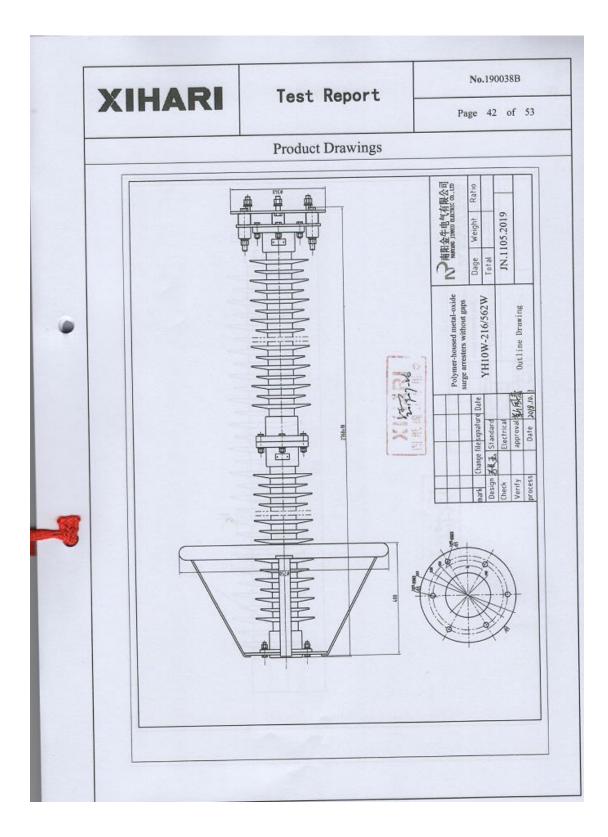
XII	HAR		Test	Repor	t	N	No.190038B
	1.0-41 4					Page	e 32 of 53
		Arres	ster Mois	ture Ingi	ress Te	st	
	d in boiling wate		3			Date: 2	019-05-222019-0
Serial			t items	Rei o	K	eep time (h)	Req. (h)
	1.1	In boil	ing water			42	42
5	e version of TY	Immers	ed in water			/	1
Second Sec		Place	ed in air	-		6	≤8
				-			
<u>41. Ber</u>							
					-		
43 2010							
- and the							

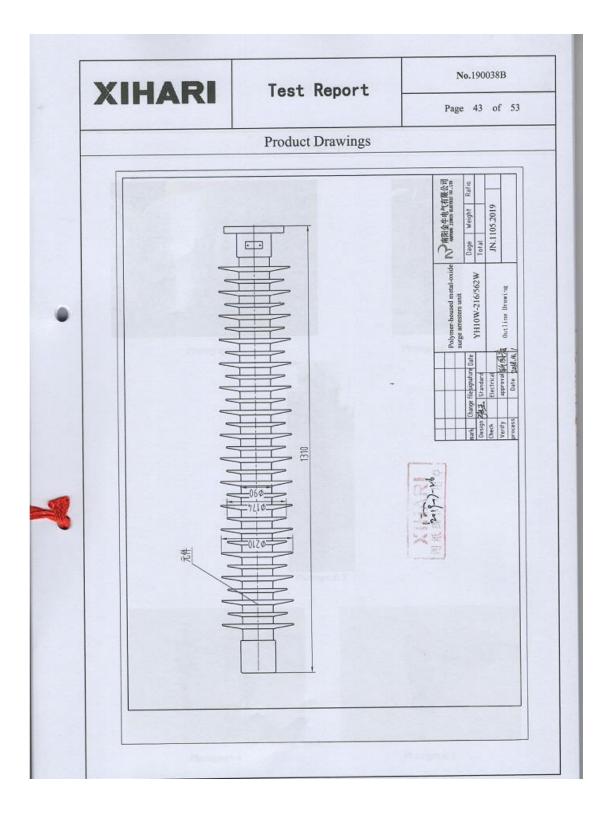
eq. of change (%) ≤5
(%)
≤5
eq. of chang (μA)
≤20
141
eq. of chang (pC)
≤10
2.67
eq. of chang (%)
≤5
Req. of chan (%)
≤20

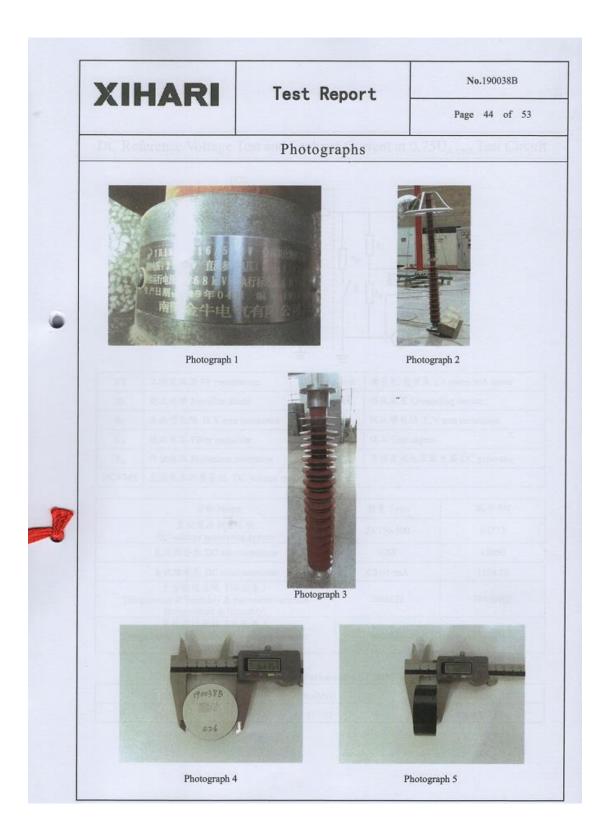
X		IARI	Test	Repor		No.190038B Page 34 of 53
		A	rrester Wea	other Age	ing Test	
						: 2019-02-26~2019-04
Start		019.02.26 17:00 E	and time: 2019.0	4.09 09:00		
	room vol al No.	ume: 10.83m ³ Date	Fog room temperature (°C)	Applied voltage Ut (Uc) (kV)	Flowmeter rate (L/h)	Water flow rate (L/(m ³ ·h))
-		2019.02.26 17:00	21	14.0	4.4	0.41
		2019.02.20 17:00	20	14.0	4.4	0.41
-		2019.03.06 17:00	22	14.0	4.4	0.41
		2019.03.10 17:00	20	14.0	4.4	0.41
		2019.03.14 17:00	20	14.0	4.4	0.41
		2019.03.18 17:00	21	14.0	~ 4.0	0.37
1	BL	2019.03.22 17:00	21	14.0	4.0	0.37
		2019.03.26 17:00	21	14.0	4.0	0.37
		2019.03.30 17:00	20	14.0	4.4	0.41
		2019.04.03 17:00	20	14.0	4.0	0.37
		2019.04.07 17:00	20	14.0	4.0	0.37
		2019.04.09 09:00	20	14.0	4.0	0.37
F	Req.	1000h	20±5	14	/	0.4±0.1
2) TI 3) C Ci	here is no he salt co reepage d reepage d	flashover during the te ntent is 5kg/m ³ when th listance of arrester =415 listance of sample(Req.) listance of sample(Actu	e test started. 95mm, n≤673mm,		fter the test;	

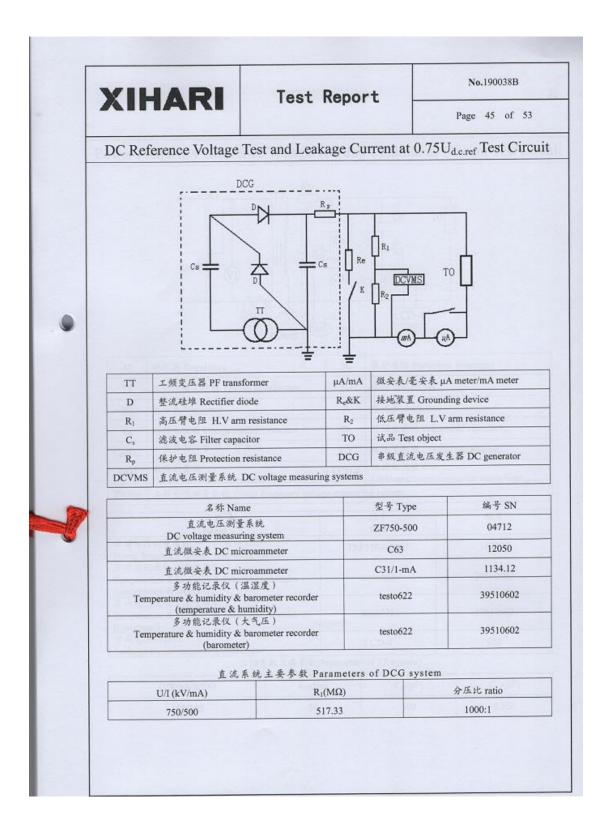
Page 35 of 53 Arrester Weather Ageing Test Date: 2019-02-26-2019-04 2. Verification test Date: 2019-02-26-2019-04 2.1. Direct current reference voltage at $I_{d.cref}$ =1mA Serial No. Before (kV) Change (%) BL 25.2 2.1. Direct current reference voltage at $I_{d.cref}$ =1mA Serial No. Before (kV) Change (%) BL 25.2 24.9 / 1.2 ≤ 5 2.2 Internal partial discharge at $1.05U_c$ Colspan="2">Colspan="2">Colspan="2">Change (%)	Page 35 of 53Arrester Weather Ageing TestDate: 2019-02-26-2019-022. Verification test2.1. Direct current reference voltage at $I_{d.cref}$ =1mASerial No.Before (kV)After (kV)Change (%)Req. of U1mA.DCBL25.224.9/1.2 ≤ 5 2.2 Internal partial discharge at $1.05U_c$ Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)BL4.34.9 ≤ 10 0.6 ≤ 10	Page 35 of 53Arrester Weather Ageing TestDate: 2019-02-26-2019-042. Verification test2.1. Direct current reference voltage at $I_{d.cref}$ =1mASerial No.Before (kV)Change (%)BL25.224.9/1.2 ≤ 5 2.2 Internal partial discharge at $1.05U_c$ Serial No.Before (pC)After (pC)Change (%)Serial No.Before (pC)After Req. of PD (pC)Change (pC)Serial No.Before (pC)After Req. of PD (pC)Change (pC)Serial No.Before (pC)After Req. of PD (pC)Change (pC)BL4.34.9≤100.6≤10	XIH	API	Tes	st Report	N	io.190038B
Date: 2019-02-26~2019-02 2. Verification test 2.1. Direct current reference voltage at $I_{d.c.ref}$ =1mA Serial No. Before (kV) After (kV) Req. of $U_{1mA,DC}$ (V/N) Change (V/N) Req. of change (V/N) BL 25.2 24.9 / 1.2 ≤ 5 Serial No. Before (pC) After (pC) Req. of PD (pC) Change (pC) Req. of change (pC) BL 4.3 4.9 ≤ 10 0.6 ≤ 10	Date: 2019-02-26~2019-02 2. Verification test 2.1. Direct current reference voltage at $I_{d.c.ref}$ =1mA Serial No. Before (kV) After (kV) Req. of $U_{1mA,DC}$ (Value) Change (Value) Req. of change (Value) BL 25.2 24.9 / 1.2 ≤ 5 Serial No. Before (pC) After (pC) Req. of PD (pC) Change (pC) Req. of change (pC) BL 4.3 4.9 ≤ 10 0.6 ≤ 10	Date: 2019-02-26-2019-04 2. Verification test 2.1. Direct current reference voltage at $I_{d.c.ref}$ =1mA Serial No. Before (kV) After (kV) Req. of $U_{1mA,DC}$ (KV) Change (%) Req. of change (%) BL 25.2 24.9 / 1.2 ≤ 5 Serial No. Before at 1.05Uc Serial No. Before (pC) After (pC) Req. of PD (pC) Change (pC) Req. of change (pC) BL 4.3 4.9 ≤ 10 0.6 ≤ 10	ЛП	ANI	10.		Page	e 35 of 53
2. Verification test 2.1. Direct current reference voltage at $I_{de, ref} = 1mA$ Serial No. Before (kV) After (kV) Req. of $U_{1mA,DC}$ (kV) Change (%) Req. of change (%) BL 25.2 24.9 / 1.2 ≤ 5 2.2 Internal partial discharge at $1.05U_c$ Serial No. Before (pC) After (pC) Req. of PD (pC) Change (%) Req. of change (pC) BL 4.3 4.9 ≤ 10 0.6 ≤ 10	2. Verification test 2.1. Direct current reference voltage at $I_{d.c.ref}$ =1mA Serial No. Before (kV) After (kV) Req. of $U_{1mA,DC}$ (kV) Change (%) Req. of chang (%) BL 25.2 24.9 / 1.2 ≤ 5 2.2 Internal partial discharge at $1.05U_c$ Serial No. Before (pC) After (pC) Req. of PD (pC) Change (%) Req. of chan (pC) BL After (pC) Req. of PD (pC) Change (%) Req. of chan (pC) BL After (pC) Req. of PD (pC) Change (%) Req. of chan (pC) BL After (pC) Req. of PD (pC) Change (%) Req. of chan (pC) BL After (pC) Req. of PD (pC) Change (%) Req. of chan (pC) BL After (pC) Req. of PD (pC) Change (pC) Req. of chan (pC)	2. Verification test 2.1. Direct current reference voltage at $I_{d.c.ref}$ =1mA Serial No. Before (kV) After (kV) Req. of $U_{1mA,DC}$ (KV) Change (%) Req. of change (%) BL 25.2 24.9 / 1.2 ≤ 5 2.2 Internal partial discharge at $1.05U_c$ Serial No. Before (pC) After (pC) Req. of PD (pC) Change (pC) Req. of change (pC) BL 4.3 4.9 ≤ 10 0.6 ≤ 10		1	Arrester W	Veather Ageing Te	est	
Serial No.Before (kV)After (kV)Req. of U_{1mADC} (kV)Change (%)Req. of change (%)BL25.224.9/1.2 ≤ 5 2.2Internal partial ≤ 10 /1.2 ≤ 5 Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of change (pC)BL4.34.9 ≤ 10 0.6 ≤ 10	Serial No.Before (kV)After (kV)Req. of $U_{1mA,DC}$ (kV)Change (%)Req. of change (%)BL25.224.9/1.2 ≤ 5 2.2 Internal partiaJischarge at 1.05UcJischarge at 1.05UcSerial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of change (pC)BL4.34.9 ≤ 10 0.6 ≤ 10	Serial No.Before (kV)After (kV)Req. of $U_{1mA,DC}$ (kV)Change (%)Req. of change (%)BL25.224.9/1.2 ≤ 5 2.2Internal partitischarge at 1.05Uc ≤ 5 ≤ 5 ≤ 5 Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of change (pC)BL4.34.9 ≤ 10 0.6 ≤ 10			e at L	19-19-1 1	Date: 20	019-02-26~2019-04
2.2 Internal partial discharge at $1.05U_c$ Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)BL4.34.9 ≤ 10 0.6 ≤ 10	2.2 Internal partial discharge at $1.05U_c$ Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)BL4.34.9 ≤ 10 0.6 ≤ 10	2.2 Internal partial discharge at $1.05U_c$ Serial No.Before (pC)After (pC)Req. of PD (pC)Change 		Before	After	Req. of U1mA.DC		Req. of chang (%)
Serial No.Before (pC)After (pC)Req. of PD (pC)Change 	Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)BL4.34.9 ≤ 10 0.6 ≤ 10	Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)BL4.34.9 ≤ 10 0.6 ≤ 10	BL	25.2	24.9	1	1.2	≤5
Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)BL4.34.9 ≤ 10 0.6 ≤ 10	Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)BL4.34.9 ≤ 10 0.6 ≤ 10	Serial No.Before (pC)After (pC)Req. of PD (pC)Change (pC)Req. of chan (pC)BL4.34.9 ≤ 10 0.6 ≤ 10	2.2 Internal parti	al discharge at 1.050	Je			9
			Serial No.					Req. of chang (pC)
			BL	4.3	4.9	<10	0.6	<10
						-		

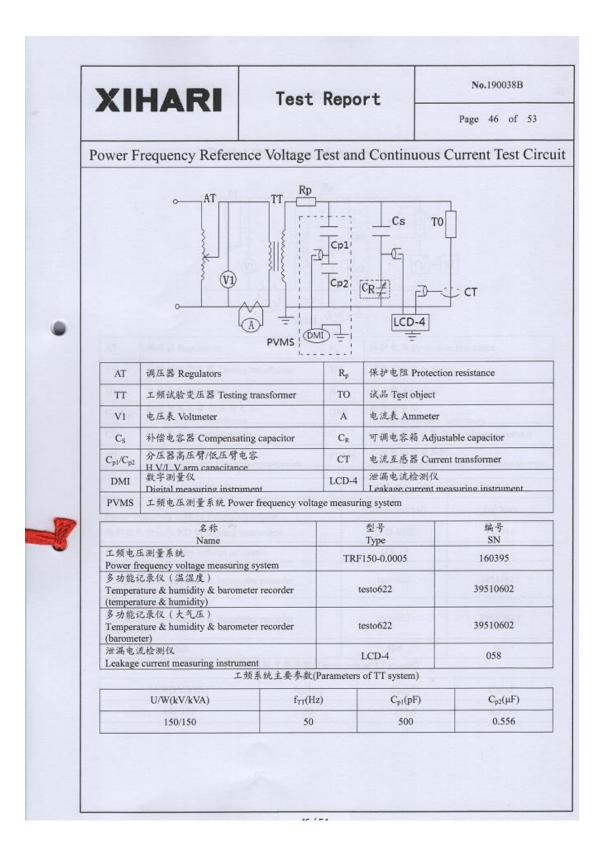
XIH	ARI	Test Report		o.190038B
				36 of 53
		Environment Tes	t	
Atmospheric condit	ions: P=97.8kPa t= ge test before environme	13.2°C RH=52%		Date: 2019
Serial No.	Applied U _r (kV)	Continuous time at U _r (s)	Applied 1.05U _c (kV)	PD valı (pC)
6	108.5	10	88.5	4.1
Req.	108	2~10	88.2	≤10
			-	
			-	
			-	
			-	

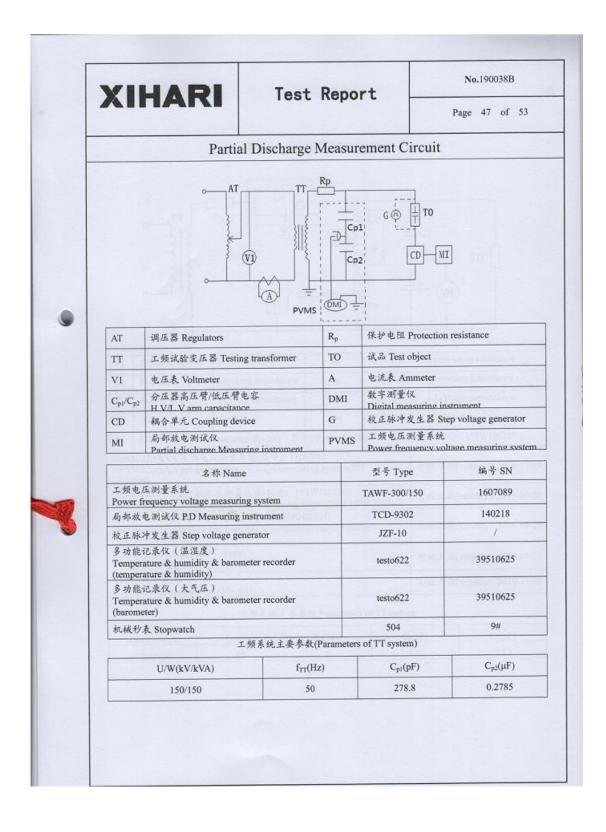

	XIHARI		Test Report				
					Page 37 of 53		
		Enviro	nment Test				
	itions: P=97.8kPa (hot water immersio	t=13.2°C RH= m method)	52%		Date: 2019-03-		
Serial No.	Hot water temperature (°C)	Environment temperature (°C)	Temperature difference (K)	Immersion time (min)	Checking samples		
6	60	13.2	46.8	35	There is no continuity a bubbles		
Req.	1.000	Lo and	45±5	≥30	There is no continuity a bubbles		
	12/12/14	25.00					

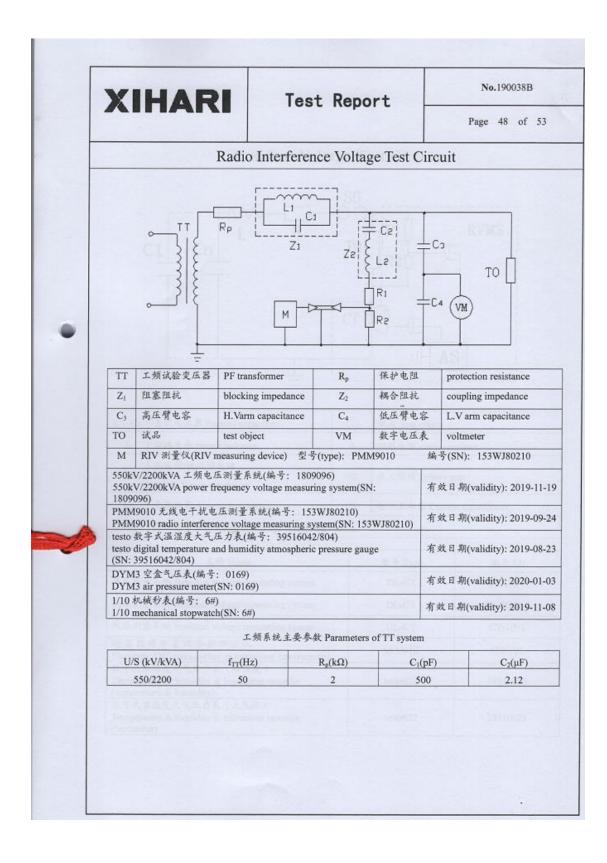

XIH	ARI	Test Repo	ort	No.190038B Page 38 of 53	
				rage 38 of 35	
		Environment			
3、SO2 test			Di	ate: 2019-03-11~2019	
Serial No.	Test date	SO ₂ Flow rate (V ₀ L/V ₀ L)	Ambient temperature (°C)	Relative humidi (%)	
	2019.03.11	25×10 ⁻⁶	25	77	
	2019.03.12	25×10 ⁻⁶	25	77	
	2019.03.13	25×10 ⁻⁶	24	76	
	2019.03.14	24×10 ⁻⁶	24	76	
	2019.03.15	25×10 ⁻⁶	24	76	
	2019.03.16	24×10 ⁻⁶	24	76	
	2019.03.17	26×10 ⁻⁶	25	75	
	2019.03.18	26×10 ⁻⁶	26	76	
	2019.03.19	25×10 ⁻⁶	24	76	
	2019.03.20	25×10 ⁻⁶	25	77	
6	2019.03.21	25×10 ⁻⁶	25	77	
	2019.03.22	25×10 ⁻⁶	25	77	
	2019.03.23	25×10 ⁻⁶	24	76	
	2019.03.24	24×10 ⁻⁶	25	75	
	2019.03.25	26×10 ⁻⁶ 24×10 ⁻⁶	25	77	
	2019.03.26	24×10 25×10 ⁻⁶	25	75	
	2019.03.27	25×10 ⁻⁶	24	76	
	2019.03.28 2019.03.29	23×10 24×10 ⁻⁶	24	76	
	2019.03.29	25×10 ⁻⁶	24	76	
	2019.03.30	23×10 ⁻⁶	24	76	
Req.	20×24h	$(25 \pm 5) \times 10^{-6}$	25 ± 2	75 ± 5	

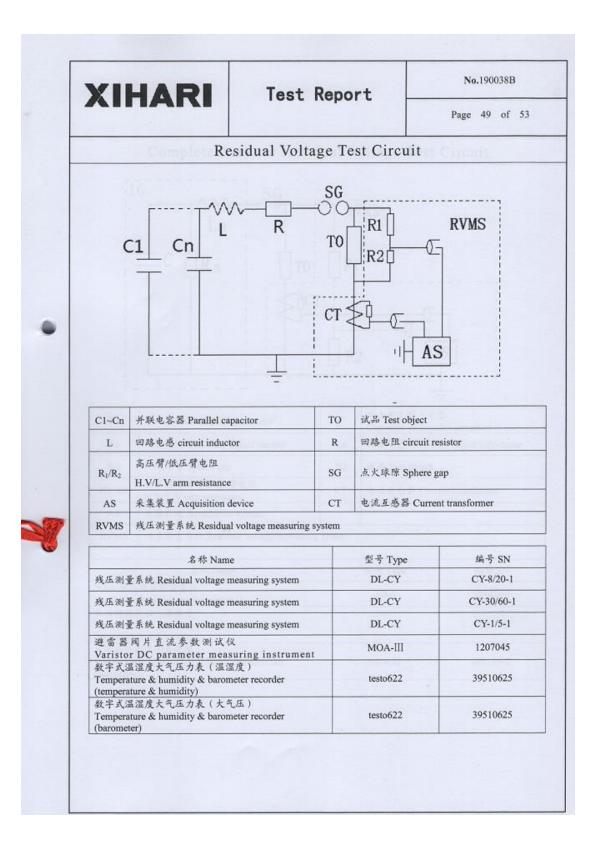

	HARI	Test Repo	ort	No.190038B
				Page 39 of 53
		Environment	Test	
	test tions concentration: 5%		Date	2019-04-01~2019-04
Serial No.	Test date	Temperature (°C)	Relative humidity (%)	PH value of the sa solutions before atomized
	2019.04.01 09:30	36	85	7.1
Pay.	2019.04.02 09:30	35	85	6.8
	2019.04.03 09:30	36	85	7.0
6	2019.04.04 09:30	36	85	7.1
	2019.04.05 09:30	35	86	6.9
	2019.04.05 09:31		Test Stop	
Req.	96h	35±2	≥85	6.5~7.2

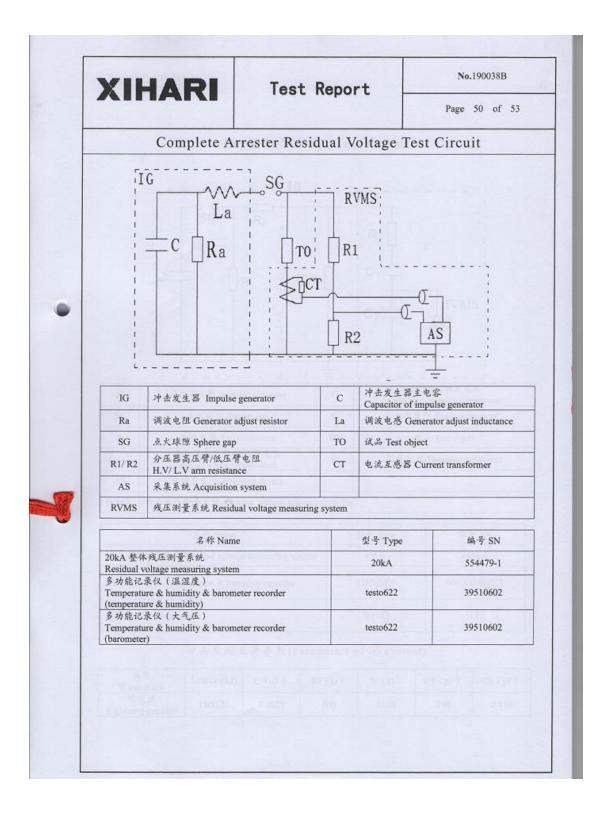

XIH	ARI	Test Report		5.190038B
				40 of 53
		Environment Test		
	itions: P=96.1kPa t=			Date: 2019
5. Internal partial of Serial No.	discharge test after envir Applied U _r (kV)	Continuous time at U _r (s)	Applied 1.05U _c (kV)	PD val (pC)
6	108.5	10	88.4	4.9
Req.	108	2~10	88.2	≤10
			-	
	**		-	
	~		-	
	~		-	
	**			

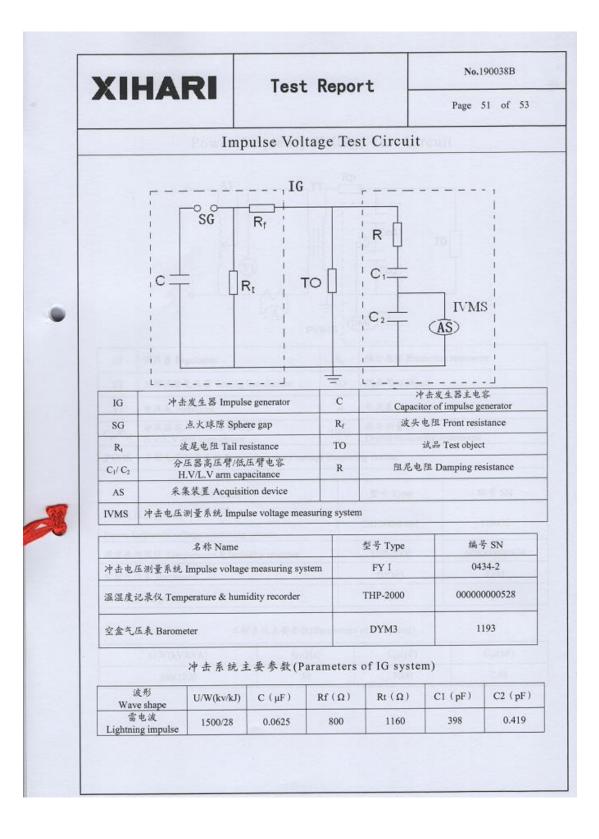

Environment Test	Page 41 of 53 Page 41 of 53 Environment Test Date: 2019-04-0 Atmospheric conditions: P=96.1kPa t=21.9°C RH=46% 6. Sealing check after environment test (hot water immersion method) Immersion time Checking samples Serial No. Hot water temperature (°C) Immersion time (°K) Checking samples 6 65 21.9 43.1 35 There is no continuity at bubbles Req. / / 43.1 35 Date: 2019-04-0 Mathematical states of the states of	XIH/	RI	Test	Report		No.190038B
Date: 2019-04-00 Atmospheric conditions: P=96.1kPa t=21.9°C RH=46% 6. Sealing check after environment test (hot water immersion method) Immersion method) Serial No. Immersion method) Met water temperature (°C) Immersion method) 6 65 21.9 43.1 35 There is no continuity at bubbles Req. / / January (°C) Checking samples Req. / / January (°C) Immersion time (°K) Req. / / January (°C) Immersion time (°K) Checking samples Immersion (°C) Checking samples Bubbles	Date: 2019-04-0 Atmospheric conditions: P=96.1kPa t=21.9°C RH=46% 6. Sealing check after environment test (bot water immersion method) Immersion Checking samples Serial No. temperature temperature Immersion Checking samples 6 65 21.9 43.1 35 There is no continuity at bubbles 7 7 45±5 ≥30 There is no continuity at bubbles 7 7 45±5 ≥30 There is no continuity at bubbles						Page 41 of 53
Atmospheric conditions: P=96.1kPa t=21.9°C RH=46% 6. Sealing check after environment test (hot water immersion method) Immersion method Serial No. Hot water temperature (°C) Environment (°C) Temperature (°C) Immersion time (°C) Checking samples 6 65 21.9 43.1 35 There is no continuity at bubbles Req. / / 45±5 ≥30 There is no continuity at bubbles	Atmospheric conditions: P=96.1kPa t=21.9°C RH=46% 6. Sealing check after environment test (hot water immersion method) Serial No. temperature test (hot water immersion method) 6 65 21.9 43.1 35 There is no continuity at bubbles 7 7 45±5 ≥30 There is no continuity at bubbles 7 7 45±5 ≥30 There is no continuity at bubbles 8 Test result: Passed. (Test data come from the No.190007B test report.) Attributes Attributes			Enviro	nment Test		
6. Sealing check after environment test (hot water immersion method) 6. Sealing check after environment test (hot water immersion method) Temperature temperature (K) Immersion time (min) Checking samples Serial No. Hot water temperature (°C) Environment (K) Temperature (min) Checking samples 6 65 21.9 43.1 35 There is no continuity ai bubbles Req. / / 45±5 ≥30 There is no continuity ai bubbles	6. Sealing check after environment test (hot water immersion method) Serial No. Hot water (C) (C) (C) (C) (K) (min) Checking samples (C) (C) (K) (min) (C) (C) (K) (min) (K) (min) (K) (min) (K) (min) (K) (K) (K)	Atmospheric conditio	ons: P=96.1kPa	t=21.9°C RH=4	6%		Date: 2019-04-0
Serial No.Hot water temperature (°C)Environment temperature (°C)Temperature difference (K)Immersion time (min)Checking samples66521.943.135There is no continuity at bubblesReq.//45±5 \geq 30There is no continuity at bubbles	Serial No. Hot water temperature (C) Invironment temperature difference difference (min) Checking samples 6 65 21.9 43.1 35 There is no continuity at bubbles Req. / / 45±5 ≥30 There is no continuity at bubbles Test result: Passed. (Test data come from the No.190007B test report.) - -						
66521.943.135There is no continuity ai bubblesReq.//45±5 \geq 30There is no continuity ai bubbles	Image: Constraint of the state of the		Hot water temperature	Environment temperature	Temperature difference	time	Checking samples
Req. / 45 ± 5 ≥ 30 bubbles	Req. / 45±5 230 bubbles Test result: Passed. (Test data come from the No.190007B test report.) -	6		and the second second		17.	
	Test result: Passed. (Test data come from the No.190007B test report.)	Rea	1	1	45±5	≥30	
	ALE / VSW						

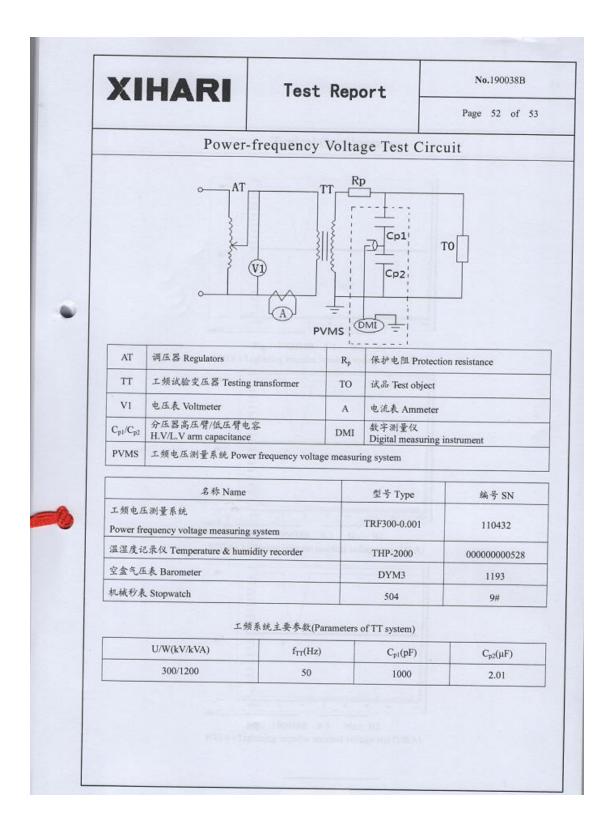


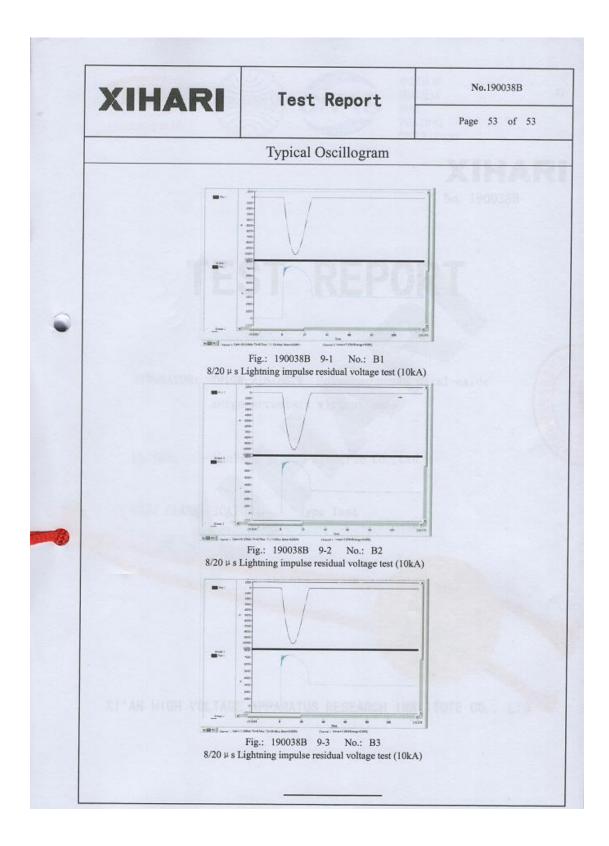












DNV·GL

KEMA INSPECTION REPORT

3037-19

Object	Polymer-housed metal oxide surge arresters without gaps for AC system
Туре	YH10W-3, YH10W-6, YH10W-9, YH10W- Serial No. See chapter 1.2 12, YH10W-15, YH10W-18, YH10W-21, YH10W-24, YH10W-27, YH10W-30, YH10W-33, YH10W-36
	3 kV ~ 36 kV AC system
Client	Nanyang Jinniu electric co., Ltd., Industry park of Tongbai, Henan Province, 47450 Nanyang City, China
Manufacturer	Nanyang Jinniu electric co., Ltd., Industry park of Tongbai, Henan Province, 47450 Nanyang City, China
Inspected by	KEMA B.V., Utrechtseweg 310, Arnhem, the Netherlands
Test location	Power Industry Quality Inspection and Test Center for Electric Equipment, Wuhan, China
Date of tests	3 December 2018 to 3 March 2019
Test specification	The tests were in accordance with the client's instructions. Test procedure and test parameters were based on IEC 60099-4:2014.
Regarding	Type Tests
Summary and conclusion	The object passed the tests.

This report applies only to the object tested. The responsibility for conformity of any object having the same type references as that tested rests with the Manufacturer.

This report consists of 96 pages in total.

KEMA B.V. QUE

Bas Verhoeven Director, High-Voltage Laboratory

Arnhem, 2 August 2019

1.

- 2 -

INFORMATION SHEET

Inspection Reports

An Inspection Report contains a record of one or more tests which have been carried out according to the client's instructions. These tests are not necessarily in accordance with a recognized standard. The test results do not verify ratings of the test object.

KEMA Laboratories issues three types of Inspection Reports:

1.1 The tests have been carried out in accordance with....

This sentence will appear on the front page of an Inspection Report if all type tests have been performed in accordance with a recognized standard. The Inspection Report contains verified drawings and a description of the equipment tested. Detailed rules are given in KEMA's Inspection procedure. The condition of the test object after the tests is assessed and recorded in the Inspection Report.

1.2 The tests were in accordance with the client's instructions. Test procedure and test parameters were based on....

This sentence will appear on the front page of an Inspection Report if the number of tests, the test procedure and the test parameters are based on a recognized standard and related to the ratings assigned by the manufacturer. If the object does not pass the tests, such behaviour will be mentioned on the front sheet. Verification of the drawings (if submitted) and assessment of the condition after the tests are only done on the client's request.

1.3 The tests were in accordance with the client's instructions.

This sentence will appear on the front page of an Inspection Report if the tests, test procedure and/or test parameters are not in accordance with a recognized standard.

2 Standards

When reference is made to a standard, and the date of issue is not stated, this standard refers to the latest issue, including amendments which have been officially published prior to the date of the tests.

3 Official and uncontrolled test documents

The official test documents of DNV GL are issued in bound form. Uncontrolled copies may be provided as a digital file for convenience of reproduction by the client. The copyright has to be respected at all times.

- 3 -

TABLE OF CONTENTS

1	Identification of the object tested	4
1.1	Ratings/characteristics of the object tested	4
1.2	Description of the object tested	4
1.3	List of drawings	5
2	General Information	6
2.1	Persons attending the inspection	6
2.2	The inspection was carried out by	6
2.3	Purpose of the tests	6
2.4	Inspection of the test set-up	6
3	Arrester	7
3.1	Test of the bending moment	7
3.1.1	Bending moment	7
3.1.2	Mechanical/thermal preconditioning	8
3.2	Weather ageing test	9
3.2.1	Salt-fog	9
3.2.2	UV-light test	10
4	Arrester housing	11
4.1	Lightning impulse voltage test	11
4.2	Power-frequency voltage test	11
5	Arrester section	12
5.1	Residual voltage test	12
5.2	Lightning impulse	12
5.2.1	Steep current	12
5.3	Test to verify the repetitive charge transfer rating	13
5.4	Test to verify long term stability under continuous operating voltage	14
5.5	Heat dissipation behavior verification of test sample	15
5.6	Operating duty test	16
5.7	Power-frequency voltage-versus-time test	17
5.8	Test to verify the dielectric withstand of the internal components of an arrester	18
6	Photographs of test object	19
7	Drawings of the test objects	22
Append	lix A Test report (CEPRI)	35

1 IDENTIFICATION OF THE OBJECT TESTED

1.1 Ratings/characteristics of the object tested

- 4 -

Rated voltage (U _r)	3 ~ 36 kV
Rated frequency	50/60 Hz
Number of phases	1

1.2 Description of the object tested

Object	Polymer-housed metal oxide surge arresters without gaps for AC system
Manufacturer of Arrester	Nanyang jinniu electric co.,LTD
Туре	YH10W-3, YH10W-6, YH10W-9, YH10W-12, YH10W-15, YH10W-18, YH10W-21, YH10W-24, YH10W-27, YH10W- 30, YH10W-33, YH10W-36
Serial number	5 arrester (001~005)
	10 thermally prorated sections (201 \sim 210)
	16 resistors (301 \sim 316)
	12 housings (401~412)
	1 dielectrically prorated section (501)
	3 specimens of shed and housing materials (601 ${\sim}$ 603)
AC reference voltage (1 mA)	3,2 - ≥ 38,4 kV
Nominal discharge current	10 kA
Continuous operating voltage (U _{cov})	2,55 ~ 29 kV
Residual voltage at	
nominal discharge current (8/20 µs)	≤ 8,5 ~ 102 kV
steep current (1/5 μs)	≤ 10,5 ~115 kV
Arrester class	Distribution
Insulation level	
Lightning impulse	60 ~ 185 kV
Switching impule	28 ~ 90 kV
Block dimensions	
Outer diameter	42 mm
Height	22,5 mm
Number of metal oxide blocks	1 - 12
Manufacturer of ZnO blocks	Nanyang jinniu electric co.,LTD

3037-19

- 5 -

1.3 List of drawings

The manufacturer has guaranteed that the object submitted for tests has been manufactured in accordance with the following drawings and/or documents. KEMA Laboratories has verified that these drawings and/or documents adequately represent the object tested. The manufacturer is responsible for the correctness of these drawings and/or documents and the technical data presented.

The following drawings and/or documents have been included in this report:

	•
Drawing no./document no.	Revision
Assembly drawing	-
JNKH1003	А
JNKH1006	А
JNKH1009	А
JNKH1012	А
JNKH1015	А
JNKH1018	А
JNKH1011	А
JNKH1014	А
JNKH1017	А
JNKH1030	А
JNKH1033	А
JNKH1036	А

3037-19

- 6 -

2 GENERAL INFORMATION

2.1 Persons attending the inspection

Name	Company
Zhongqiu Zuo	Power Industry Quality Inspection and Test,
Lulu Wang	Wuhan, China
Jiarui Huang	
Li Chen	
Juxia Liang	

Jie Huang Yu Zhang Nanyang Jinniu Electric co., Ltd., Nanyang,China

2.2 The inspection was carried out by

Name André van Stijn **Company** KEMA B.V., Arnhem, the Netherlands

2.3 Purpose of the tests

Purpose of the tests was to verify whether the material complies with the specified requirements.

2.4 Inspection of the test set-up

The tests were carried out at the laboratory of Wuhan High Voltage Research Institute of State Grid. The results of the inspection activities are based on the witnessed tests and information about measuring devices and the test set-up as provided by the manufacturer. The measuring devices, the test set-up and the provided calibration reports were verified by KEMA Laboratories.

Result

The inspection did not give rise to remarks

- 7 -

3037-19

3 ARRESTER

3.1 Test of the bending moment

Standard and date

Standard	IEC 60099-4, subclause 8.11
Test date	3 th December to 9 th December 2018

The test was performed on a complete arrester with the maximum physical length of this design. For this test three samples were used.

The following initial measurements were performed:

- Watt loss
- Internal partial discharge
- Residual voltage.

This test consists of two parts:

- Bending moment
- Mechanical/thermal preconditioning.

After the above mentioned test all three samples were subjected to a water immersion test, were the samples were immersed in boiling water with 1 kg/m^3 of NaCl during 42 h.

After all test were completed the initial measurements were repeated and the results compared with the first initial results.

3.1.1 Bending moment

Procedure

For this test two samples were used. The bending load was increased smoothly to the specified short-term load (SSL) of 400 N during 63 s. During this time the deflection was measured. Then the load was realised smoothly. Next the residual deflection was measured.

Result

The object passed the test.

The results of this measurement are summarized in appendix A, page 19 to 21 and 24.

3.1.2 Mechanical/thermal preconditioning

Procedure

For this test one sample was used and subjected to a torque test. The sample was vertically mounted on a rigid support. At the top of the sample an axial torque was applied of 80 N.m during. Next the sample was mounted on a rigid base inside an environmental chamber. A test load of 80 N was applied in one initial direction for 24h. After this 24 h the sample was turned 90 physical degrees. This repeated for 180 and 270 physical degrees. During this time span of in total 96h the temperature in the environmental chamber was changed accordance figure 11 of IEC 60099-4.

Result

The object passed the test. The results of this measurement are summarized in appendix A, page 20.

- 9 -

3037-19

3.2 Weather ageing test

Standard and date

Standard	IEC 60099-4, subclause 10.8.17
Test date	5 December 2018 to 16 January 2019

This test consists of two tests:

- Salt fog test
- UV light test.

3.2.1 Salt-fog

Procedure

The used test sample was the longest electrical section with the minimum specific leakage distance and the highest rated voltage of this type. The sample was cleaned with deionized water before starting the test.

The following initial measurements were performed:

- Reference voltage
- Partial discharge.

Next a time-limited continuous test under salt fog, at constant power-frequency voltage equal to 39,4 kV, was carried out in a moisture-sealed corrosion-proof chamber. An aperture of not more than 80 cm² was provided for the natural exhaust air. A room humidifier of constant spraying capacity was used as the water atomizer.

The fog filled the chamber and was not directly sprayed onto the test sample. The salt water, prepared with NaCl and deionized water, was supplied to the sprayer. For power-frequency test voltage, a test transformer was used.

The test sample was mounted vertically. There was enough clearance between the roof of the chamber and test sample and from the walls in order to avoid electrical field disturbance. After this test the initial measurements were repeated and the results compared with the first initial results.

Result

The object passed the test. The results of this measurement are summarized in appendix A, page 22.

3.2.2 UV-light test

For this test three samples were used. The insulator housing material was subjected to a 1000 h UV light according ISO 4892-1 and 4892-3, using type 1 fluorescent UV lamp with exposure method 1.

Result

The object passed the test. The results of this measurement are summarized in appendix A, page 23.

- 11 -

3037-19

4 ARRESTER HOUSING

Standard and date

Standard	IEC 60099-4, subclause 8.2
Test date	5 December 2018

4.1 Lightning impulse voltage test

If the dry arcing distance or the sum of the partial dry arcing distances in m is larger than the test voltage in kV divided by 500 kV/m, this test is not required. this test is not required. In this case is was measured and it was confirmed to omit this test. Reference is made to the report of the test laboratory which is summarized in appendix A, page 5.

4.2 Power-frequency voltage test

The housings of arresters intended for outdoor use shall be tested in wet conditions, unless the dry arcing distance or the sum of the partial dry arcing distances is larger than given by the equation d = [1,82 (e (U/859) - 1)] 0,833, where *d* is the distance in m and *U* is the peak value of the power-frequency test voltage in kV, this test is not required. In this case is was measured and it was confirmed to omit this test. Reference is made to the report of the test laboratory which are summarized in appendix A, page 5.

- 12 -

3037-19

5 ARRESTER SECTION

Standard and date

Standard	IEC 60099-4, subclauses 8.3 to 8.8 and 8.15
Test date	6 December 2018

5.1 Residual voltage test

All residual voltage tests were carried out on arrester sections. The rated voltage of one section is 3 kV and consisted of one metal-oxide block. By multiplying the measured residual voltage by the number of sections per arrester the equivalent residual voltage of the arrester was calculated.

5.2 Lightning impulse

Procedure

Three lightning current impulses with a waveform of $8/20 \ \mu$ s with a peak value of respectively 5 kA, 10 kA and 20 kA, this is respectively 0.5, 1 and 2 times the nominal discharge current, were applied to each of the three sections. The maximum value of the residual voltage was recorded.

Requirement

The equivalent residual voltage of the arrester at nominal discharge current (10 kA) should be below the specified residual voltage given in appendix A.

Result

The object passed the test.

The results of this measurement are summarized in appendix A, page 7 and 8.

5.2.1 Steep current

Procedure

One steep current impulse with a waveform of $1/5 \ \mu s$ and a peak value of 10 kA was applied to each of the three sections. The maximum value of the residual voltage was recorded.

Requirement

The equivalent residual voltage of the arrester at nominal discharge current should be below the specified steep current impulse residual voltage given in appendix A, page 6.

Result

The object passed the test.

The results of this measurement are summarized in appendix A, page 9 and 10.

- 13 -

5.3 Test to verify the repetitive charge transfer rating

Standard and date

Standard	IEC 60099-4, subclauses 8.5
Test date	3 to 5 December 2018

Procedure

For this test 10 samples were used. The following initial measurements were performed:

- Residual voltage ate nominal discharge current
- Reference voltage.

All samples were subjected to 20 long duration impulse currents with a transfer charge of 1,1 x Q_{rs} = 1,1 x 0,4 = 0,44 C.

After this test the initial measurements were repeated and the results compared with the first initial results.

Requirement

- No evidence of puncture, flashover or other significant damage.
- Change of residual and reference voltage should be less than 5%.

Result

The object passed the test.

The results of this measurement are summarized in appendix A, page 11 and 12.

- 14 -

3037-19

5.4 Test to verify long term stability under continuous operating voltage

Standard and date

Standard	IEC 60099-4, subclauses 8.16
Test date	4 December 2018 to 15 January 2019

Procedure

The test was performed on three new samples placed in a temperature controlled oven heated to 115 °C. The three samples were subjected to a long duration test with a corrected U_{cov} of 2,70 kV during 1000 hours. During the whole test duration the resistive power losses are measured.

Requirement

- The overall increase of $P_{min} < 1.3 \times P_{min}$.
- The final measurement $P_{end} \le 1,1 \times P_{start}$.

Result

The object passed the test.

The results of this measurement are summarized in appendix A, page 12 to 14.

5.5 Heat dissipation behavior verification of test sample

Standard and date

Standard	IEC 60099-4, subclauses 8.6
Test date	9 December 2018

In order to prove that the test samples as used during the operating duty test are thermal equivalent to the complete arrester a test following the procedure in IEC 60099-4, Annex B has been carried out.

The result of this test is summarized in appendix A, page 15, it was proved that the test sample is thermal equivalent.

- 16 -

3037-19

5.6 Operating duty test

Standard and date

Standard	IEC 60099-4, subclauses 8.7
Test date	2 March 2019

Procedure

The operating duty test was carried out on three arrester sections mounted in a thermal equivalent test housing. The rated voltage of one section is 3 kV and consisted of one metal-oxide block. Successively the following tests were carried out according figure 3 of IEC 60099-4.

Each sample was subjected to an weather ageing test as described in chapter 4 of this report. During this test the tests samples were placed in a prorated section. The thermal equivalency was determined in chapter 5.5 of this report.

The following initial measurements were performed:

- Residual voltage ate nominal discharge current
- Reference voltage.

Next, each sample was subjected to two high current impulses of 100 kA as conditioning. After this the samples were pre-heated to 60 °C. Next two lightning current impulses of 8/20 μ s were applied, within 1 minutes, each with a Q_{th} of 0,56 C to obtain a total Q_{th} of 1,1 C. Next, within 100 ms, a power frequency of 3,2 kV during 10 s and 2,6 kV during 30 min was applied. During these 30 min the power dissipation of the sample was measured.

Following this and after the samples are cooled down to ambient temperature the initial measurements were repeated and the results compared with the first initial results.

Requirement

- The measurement of the losses during the voltage application did not show thermal instability
- Change of residual voltage should be less than 5%
- No evidence of puncture, flashover or other significant damage.

Result

The object passed the test. The results of this measurement are summarized in appendix A, page 16.

- 17 -

5.7 Power-frequency voltage-versus-time test

Standard and date

Standard	IEC 60099-4, subclauses 8.8
Test date	2 and 3 March 2019

Procedure

For this test six samples were used. Two samples were used for the test sequence without prior duty. The samples were pre-heated to 60 °C. For the test sequence with prior duty each sample was subjected to two lightning current impulses of 8/20 μ s was applied. During test a voltage of 3,68 kV was applied during 0,1 s for the fourth sample and 3,14 kV during 1000 s for the first sample, followed by a applied voltage of 2,59 kV during 30 min.

Result

The object passed the test. The results of this measurement are summarized in appendix A, page 17 to 18.

Version: 1

- 18 -

3037-19

5.8 Test to verify the dielectric withstand of the internal components of an arrester

Standard and date

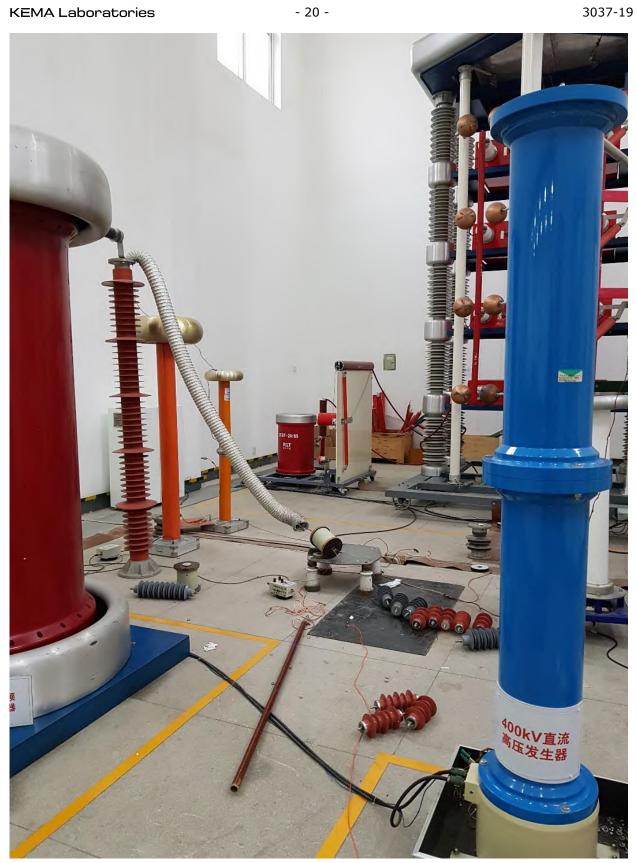
Standard	IEC 60099-4, subclauses 8.15
Test date	3 March 2019

Procedure

This test was performed on one sample. The following initial measurements were performed:

- Residual voltage ate nominal discharge current
- Reference voltage.

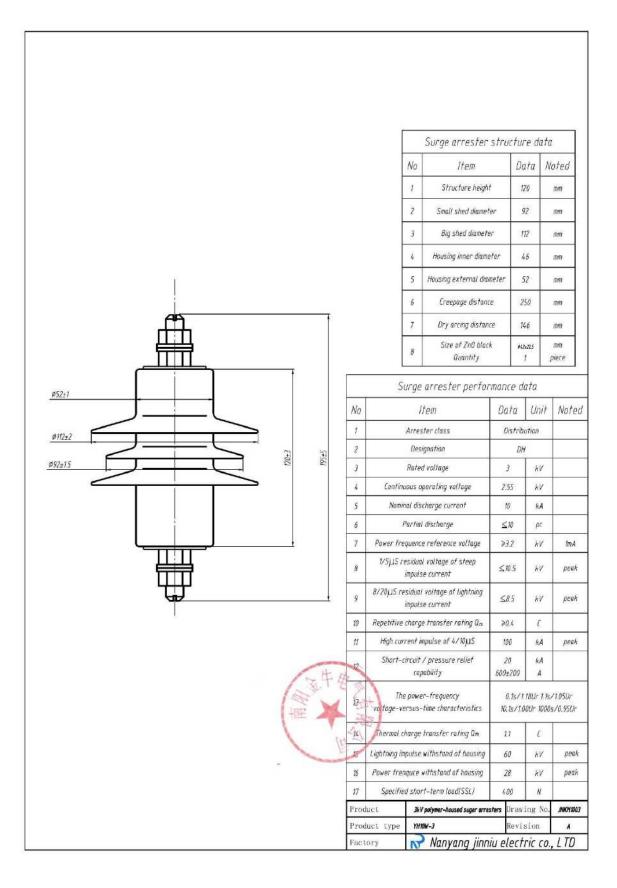
Next, the sample was pre-heated to 60 $^{\circ}$ C and subjected to a high current impulse of 100 kA. After the sample was allowed to cool down the initial measurements were repeated and the results compared with the first initial results.

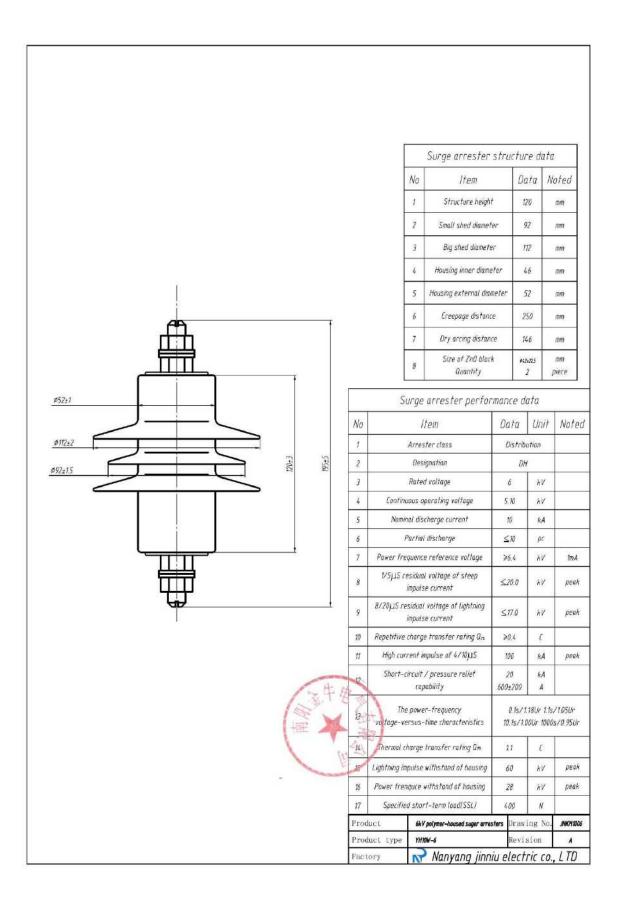

Result

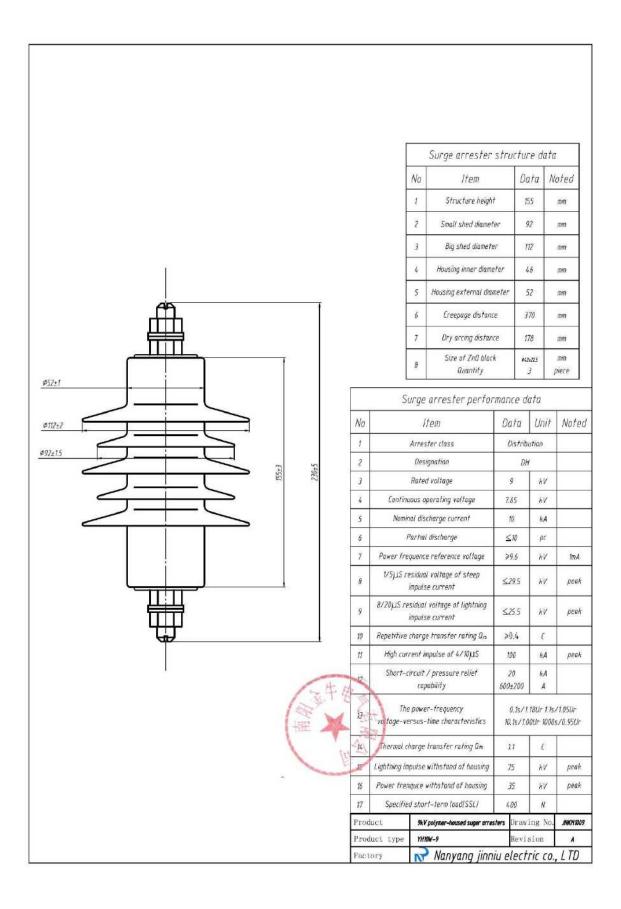
The object passed the test.

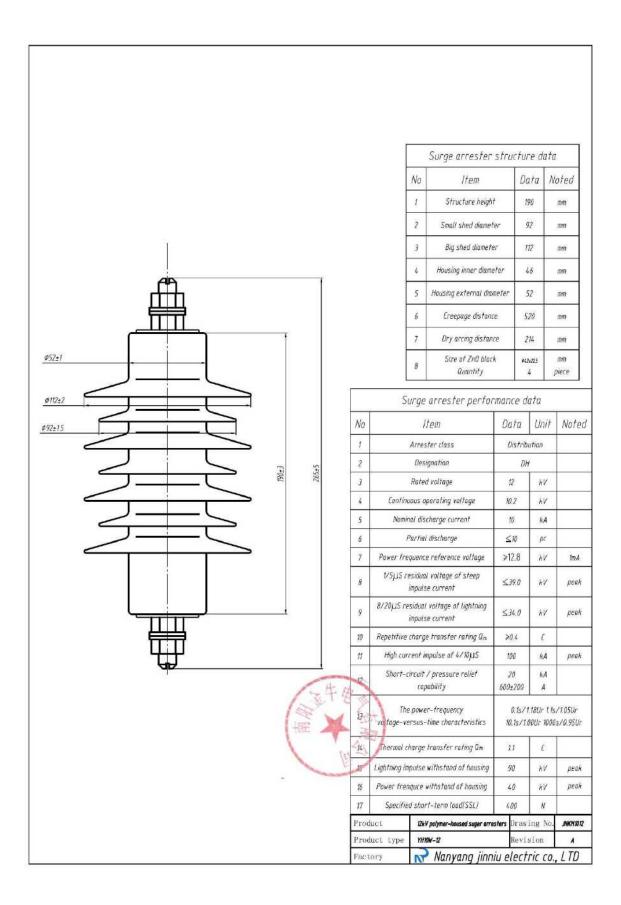
The results of this measurement are summarized in appendix A, page 19

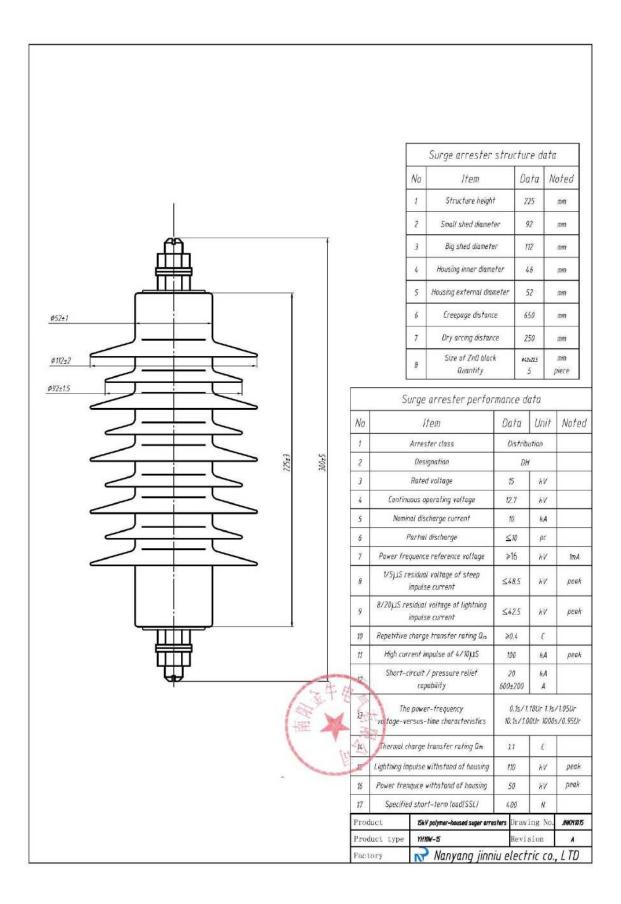
6 PHOTOGRAPHS OF TEST OBJECT

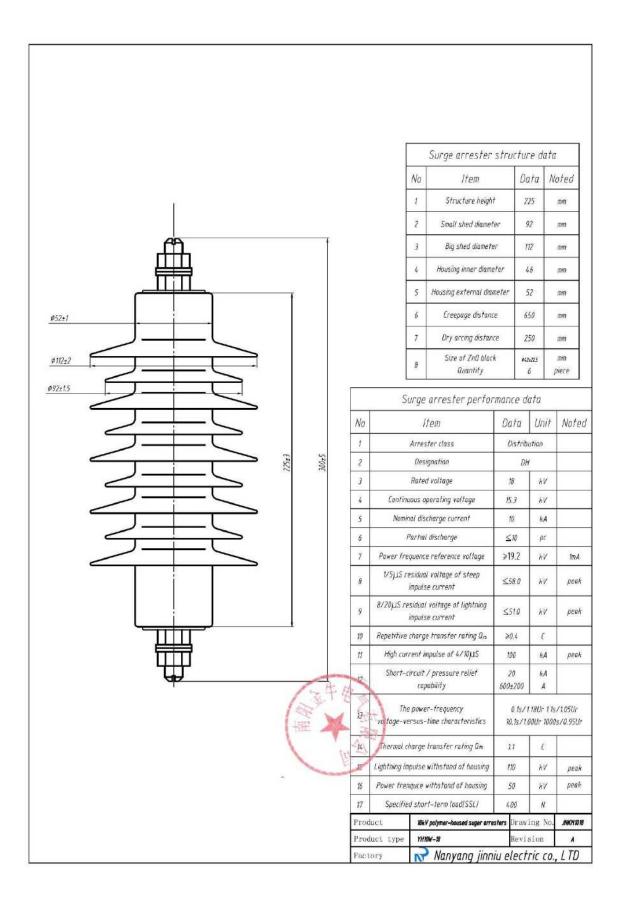

Object under power frequency voltage test

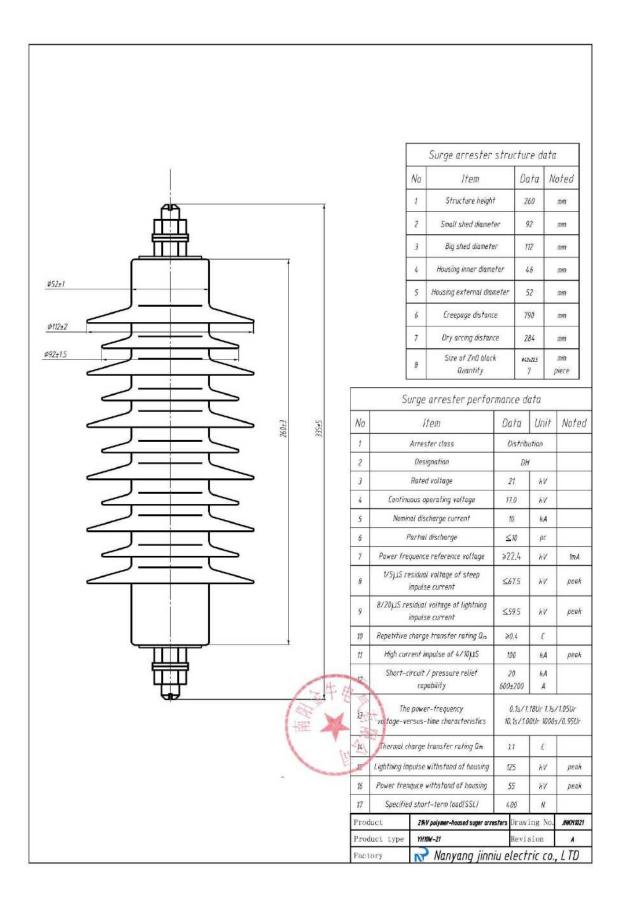


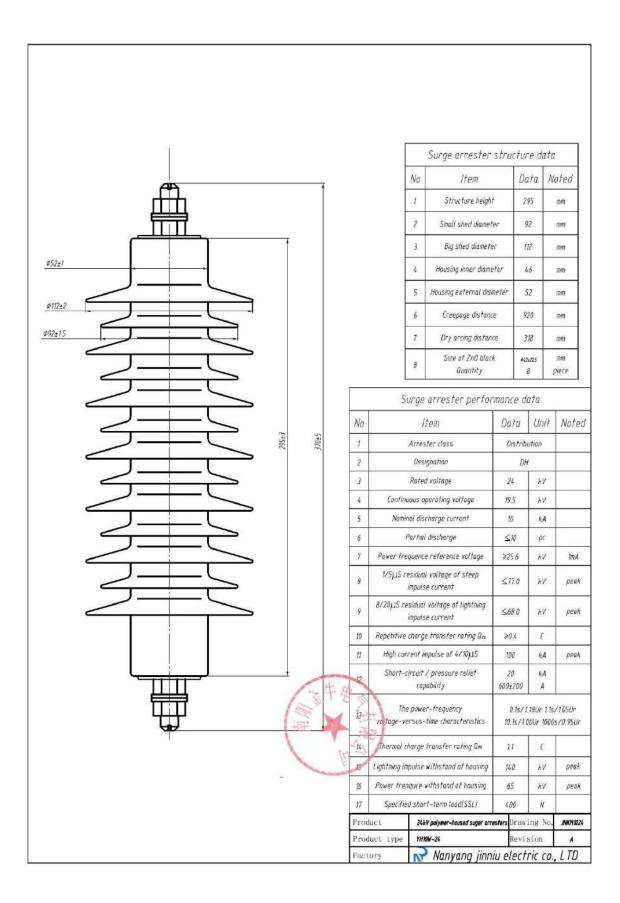

Test to verify the dielectric withstand of the internal components of an arrester

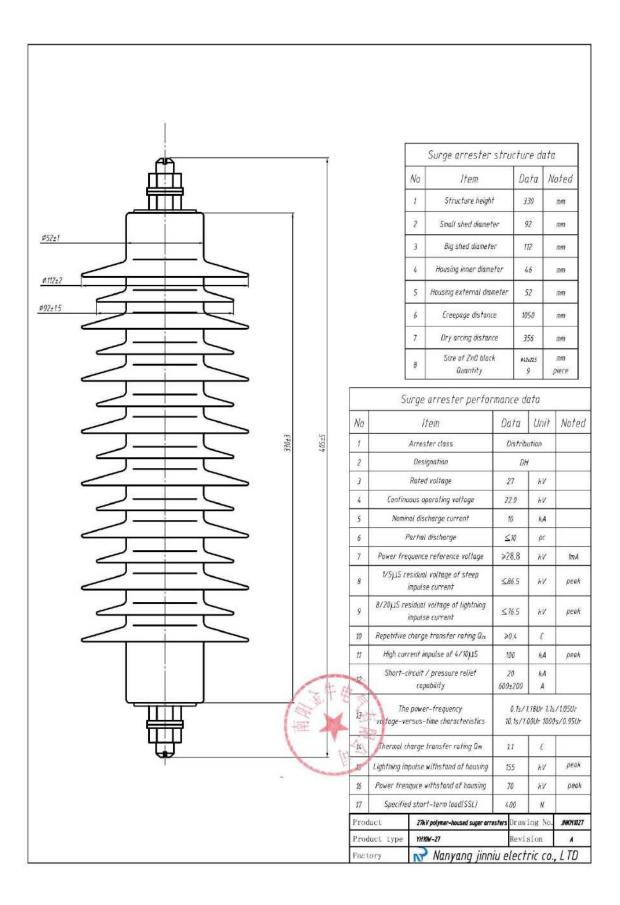

3037-19

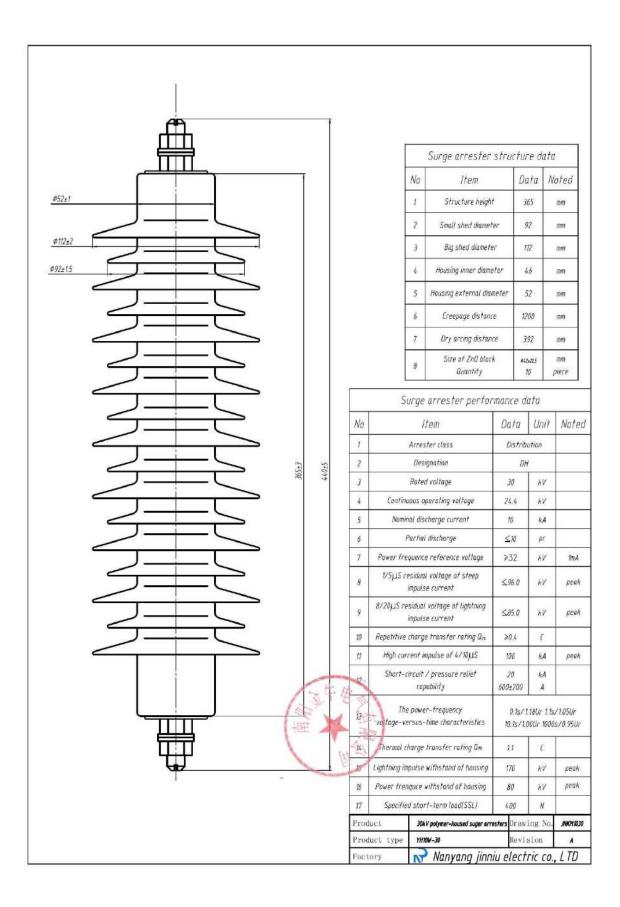

7 DRAWINGS OF THE TEST OBJECTS

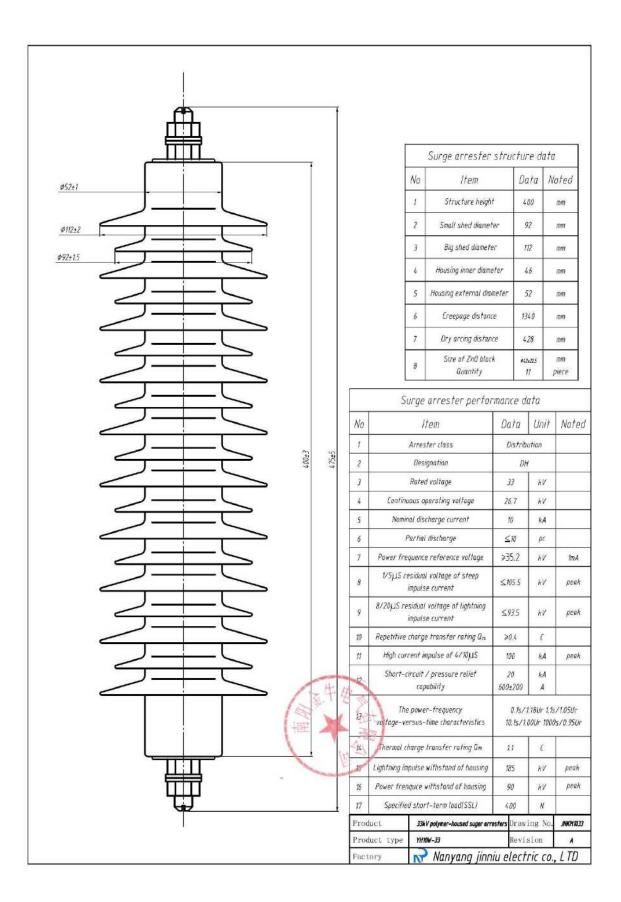


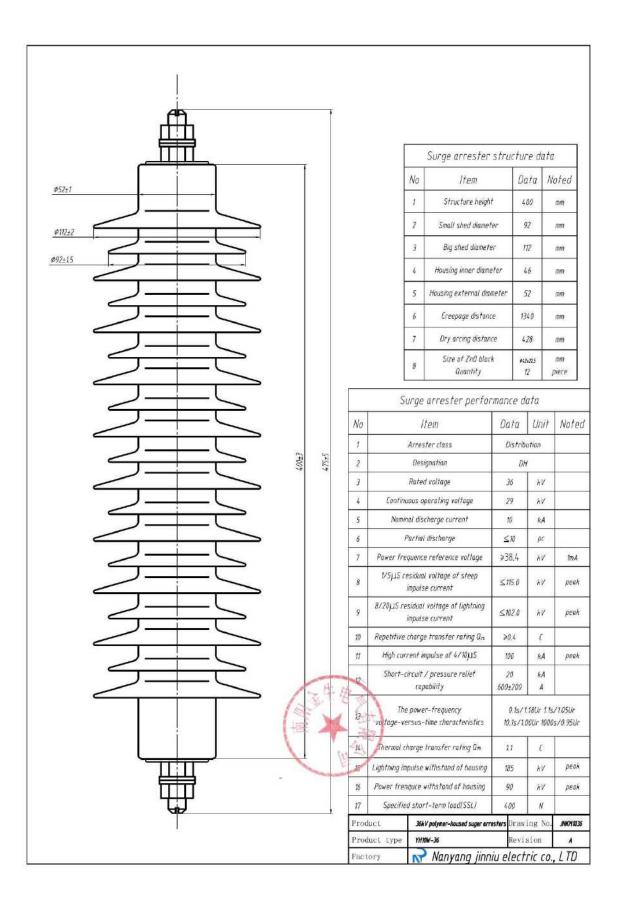


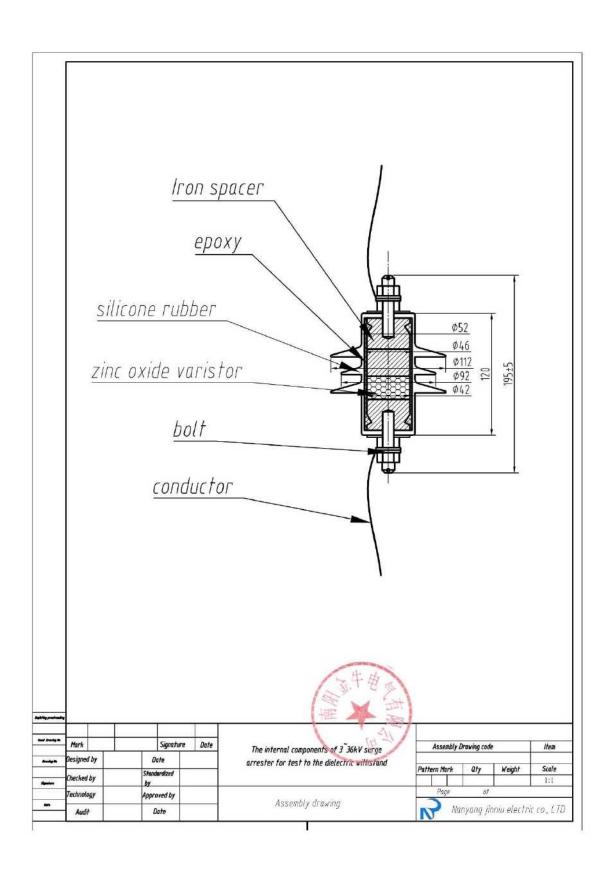







3037-19


3037-19



3037-19

3037-19

- 35 -

3037-19

Appendix A Test report (CEPRI)

TEST REPORT

CEPRI-EETC02-2018-0066

Client: Nanyang jinniu electric co.,LTD

Object: Polymer-housed metal oxide surge arresters without gaps for a.c. system

Туре: YH10W-3, YH10W-6, YH10W-9, YH10W-12, YH10W-15, YH10W-18, YH10W-21, YH10W-24, YH10W-27, YH10W-30, YH10W-33, YH10W-36 (Ф42mm×22.5mm)

Test Category: Type Test

OWER INDUSTRY QUALITY INSPECTION AND TEST CENTER FOR ELECTRIC EQUIPMENT 4 3

1 20

4

1.15.

C

е^н в

Catalogue

1.Catalogue	1
2.Signature Page	2
3.Test Results	3
4.Content	5
5.Appendix A The Typical Test Waveform2	5
6.Appendix B Sample instruction4	
7.Appendix C Main test device4	2
8. Appendix D Photos of the arresters	
9. Appendix E Visual and dimensional check of the arresters	8

Power Industry Quality Inspection and Test CEPRI-EETC02-2018-0066 **Test Report** Total 60 Page 2 **Center for Electric Equipment** Nanyang jinniu electric Nanyang jinniu electric co.,LTD Manufacturer Client co.,LTD YH10W-3, YH10W-6, YH10W-9, YH10W-12, YH10W-15, YH10W-18, Polymer-housed metal oxide surge YH10W-21, YH10W-24, arresters without gaps for a.c. Type Object YH10W-27, YH10W-30, system YH10W-33, YH10W-36 (Ф42mm×22.5mm) 5 arrester (001~005) 10 thermally prorated sections (201~210) 16 resistors (301~316) 12 housings (401~412) Serial No. By the client delivery Sampling procedure 1 dielectrically prorated section(501) 3 specimens of shed and housing materials (601~603) 2018.12.03~2019.03.03 Date Type Test Test Category Metal-oxide surge arrestors without gaps for a.c. IEC60099-4 Edition 3.0 (2014-06) Requirements systems Polymer-housed metal oxide surge arresters without gaps for a c. system of YH10W-3, YH10W-6, YH10W-9, YH10W-12, YH10W-15, YH10W-18, YH10W-21, YH10W-24, YH10W-27, YH10W-30, YH10W-33 and YH10W-36 have passed the type tests specified Conclusion in IEC60099-4 Edition 3.0 (2014-06). Note :See appendix A for sample instruction. Note 黄佳瑞 Compiled by: 王陆璐 Verified by: 熊易 Checked by:左中秋 Date of issue: 2019.06.1) 2:= Approved by: 王保山

a² a

	Test Repor	rt Pov	ver Industry Qua Center for Ele	llity Inspection an ectric Equipment		CEPRI-EETC02-2 Total 60 Pa		
Test No.	Results	Item	Requi	irements	Results		Evalua tion	
1	Insulation withstand tests on the arrester housing		Lightning impulse voltage		The dry ar larger thar the equation not require	Pass		
2	Residual voltage test	Lightning impulses current Los t Center Los to the Steep impulse current	YH10W-12 YH10W-15 YH10W-18 YH10W-21 YH10W-24 YH10W-27 YH10W-30 YH10W-33 YH10W-36 YH10W-3 YH10W-5 YH10W-12 YH10W-15	$ \begin{array}{ $	8.16 kVp 16.32 kVp 24.48 kVp 32.64 kVp 40.80 kVp 48.96 kVp 57.12 kVp 65.28 kVp 73.44 kVp 81.60 kVp 89.76 kVp 97.92 kVp 10.28 kVp 10.28 kVp 28.79 kVp 38.22 kVp 47.65 kVp 56.73 kVp 56.73 kVp 56.73 kVp 94.45 kVp 94.45 kVp 103.88 kV 112.96 kV		Pass	
3	Repetitive withstand	charge transfer test	10 samples shou times 8/20µs ligh the charge value should not less th	htning impulses and and the current	Q _{rs} : 0.440	C~0.454C	Pass	
4		ify long term nder continuous voltage	The accelerated resistors should according to the procedure.	be carried out		<1.3P _{min} , P _{start} , the samples he requirements.	Pass	

0.0

	lest Report	Power Industry Quality Inspection an Center for Electric Equipment	nd Test	CEPRI-EETC02-2 Total 60 Pa	
No.	Items	Requirements		Results	
5	Heat dissipation by verification test	The test section is for all instants during the cooling period have a temperature higher than the complete arrester.	Fulfilled th See fig 5.	ne requirements.	Pass
6	Operating duty tes	The switching surge operating duty test should be carried out according to the specified procedure. The residual voltage shall not have changed by more than 5%.	out accord	samples are carried ing to the specified The residual anged ratio is from +2.41%.	Pass
7	Power-frequency voltage-versus-tim characteristics	Supply the Power frequency voltage-versus-time characteristics for the range of voltage from $1.18U_r^*$ to $0.95U_r^-$, the range of time from $0.1s$ to $1000s$ for with prior duty, $1.20U_r^*$ to $0.98U_r^*$, the range of time from $0.1s$ to $1000s$ for without prior duty.	With prior 1.18Ur* 1.05Ur* 1.00Ur* 0.95Ur* Without pr 1.20Ur* 0.98Ur*	0.1s 1.1s 10.1s 1000s	Pass
8	Test to verify the withstand of the ir components of an	ernal 1 time 100kA <mark>-4/10µs</mark>	98.4kA, no flashover, significant	cracking or other	Pass
9	Bending moment	Bending load of SLL:80.0N, Bending load of SSL=400N for 60s~90s,and meet the evaluation requirements.			Pass
10	Weather aging tes	Samples should pass salt fog test, and meet the evaluation requirements. Samples should pass UV light test, and meet the evaluation requirements.	Faifilled t	ne requirements.	- Pass
11	Water immersion	Put the samples into the boiling water with 0.1%NaCl for42 h: The change rate of power loss should	I ∆Residual =-0.37% PD =2.40J	%~-5.24% voltage ~+4.38%	Pass

S V

Test Report		Power Industry Quality Inspection and Test Center for Electric Equipment Tot								
Content:			19				Ċ.			
1 Insulation withstan	d tests on the	arreste	er hous	ing						
Samples: 12 housings of ar	rester (401~412))								
Requirements of standards:										
1.1 Power-frequency volta	ige withstand to	est	-	14 C						
Test data: the dry arcing di	stance value is l	are that	n the va	lue given by	the equ	ation, so	the tests	s were n	ot required	
		80.				6				
the test data were listed in t		POT				(1997) 1997 - 1997				
the test data were listed in t	able 1.	POT				(1997) 1997 - 1997		410	411/412	
the test data were listed in t T sample	able 1.	requency	y voltag	e withstand	value c	alculatio	on			
the test data were listed in t T sample Rated voltage, kV	able 1. Fable 1 Power-fn 401/402	requency 403	y voltag 404	e withstand 405/406	value ca	alculatio	on 409	410	411/412	
the test data were listed in t	able 1. Fable 1 Power-fn 401/402 3/6 7.48/14.96	403 9	y voltag 404 12	e withstand 405/406 15/18	value c 407 21	alculatio 408 24	50 409 27	410 30	411/412 33/36	
the test data were listed in t r sample Rated voltage, kV IEC standard, kV _p	able 1. Fable 1 Power-fn 401/402 3/6 7.48/14.96 28 5 0.096	403 9 22.44	y voltag 404 12 29.92	e withstand 405/406 15/18 37.4/44.88	value c 407 21 52.36	alculatio 408 24 59.84	27 67.32	410 30 74.8	411/412 33/36 82.28/89.70	

1.2 Lightning impulse voltage withstand test

Test data: The dry arcing distance value is large than the value given by the equation, so the tests were not required, the test data were listed in table 2.

Labic	Lightin	6 mpun	e i oning			-			1
sample	401/402	403	404	405/406	407	408	409	410	411/412
Rated voltage, kV	° 3/6	9	12	15/18	21	24	27	30	33/36
IEC standard, kVp	11.05/22.1	33.15	44.2	55.25/66.3	77.35	88.4	99.45	110.5	121.5/132.6
Manufacturer claimed, kV _p	60	0.75	90	110	125	140	155	170	185
d=U/500, m	0.120	0.150	0.180	0.220	0.250	0.280	0.310	0.340	0.370
Dry arcing distance actual, m	0.146	0.178	0.214	0.250	0.284	0.318	0.356	0.392	0.428

Table 2 Lightning impulse voltage withstand value calculation

Test Report

2 Residual voltage test

Samples:3 resistors (301~303)

Residual voltage tests were performed on three sections of arrester, consisting of one ϕ 42mm × 22.5mm

non-linear metal-oxide resistors.

Requirements of standards:

- a. The residual voltages of sections are measured at 5kA, 10kA, 20kA by 8/20µs. The maximum values of the determined residual voltages shall be drawn in a residual voltage versus discharge current curve. The residual voltage read on the curve corresponding to the 10kA is defined as the lightning impulse protection level of the arrester.
- b. The residual voltage of sections and metal blocks are measured at 10kA by 1/5µs used inductive effect checking the residual voltages of sections and then multiply a factor, ① Matrix to the residual voltages of arrester,② Use Inductive voltage time function to ensure the inductive voltage drop of the arrester terminal. Defined ①+② as the impulse shape of the residual voltage.

Test data: Fulfilled the requirements, the test data were listed in table $3\sim 5$, the residual voltage versus rate of rise were shown in fig 1, the test waveforms were shown in appendix A fig A.1.

Wave	10	Residu	ual voltag <mark>e (</mark> pea	ık), kV	Res	idual voltage R	atio
		Sample 301	Sample 302	Sample 303	Sample 301	Sample 302	Sample 303
8/20	en	7.30	7.46	7.54	0.91	0.93	0.92
8/20	t C	8.00	8.04	8. 16	1.00	1.00	1.00
8/20	Tes	8.99	8.99	9.23	1.12	1.12	1.13
1/5			8.96	9.08	1.12	1.11	1.11
	Shape, p 8/20 8/20 8/20	Wave Shape, µs4 8/20 8/20 8/20 9 8/20	Wave \subseteq Shape, $\mu s =$ 8/20 = 7.30 8/20 = 8.00 8/20 = 8.99	Wave Sample 301 Sample 302 Shape, µs Sample 301 Sample 302 8/20 5 7.30 7.46 8/20 5 8.00 8.04 8/20 5 8.99 8.99 1/5 8.96 8.96 8.96	Wave Sample 301 Sample 302 Sample 303 Shape, µs Sample 301 Sample 302 Sample 303 8/20 7.30 7.46 7.54 8/20 8.00 8.04 8.16 8/20 8.99 8.99 9.23 1/5 8.96 8.96 9.08	Wave Constrained and any of the product of the pro	Wave Sample 301 Sample 302 Sample 303 Sample 301 Sample 302 Shape, µst Sample 301 Sample 302 Sample 303 Sample 301 Sample 302 8/20 5 7.30 7.46 7.54 0.91 0.93 8/20 5 8.00 8.04 8.16 1.00 1.00 8/20 5 8.99 8.99 9.23 1.12 1.12 1/5 5 8.96 8.96 9.08 1.12 1.11

Table 3 Sample residual voltage data summary

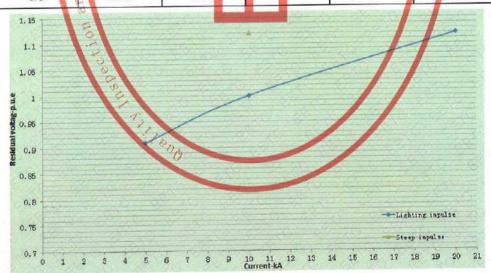


Fig 1 Residual voltage versus rate of rise

Test Report		lustry Quality Inspection nter for Electric Equipme		Total	60 Page 7
	Table	4 Lightning impulse residu	al voltage test		kV (peal
57. St. 15	Samples		301	302	303
Section Contractor		U _{1mAAC}	3.32	3.25	3.25
		8/20µs, 5 kA _p	7.30	7.46	7.54
Residual voltage	e of the sections	8/20μs, 10 kAp	8.00	8.04	8.16
	-	8/20µs, 20 kAp	8.99	8.99	9.23
		Pow ^e ^T Ratio, n		1	
		C U _{5kAp}	7.30	7.46	7.54
N 10 1	NULLON OF	U _{10kAp}	8.00	8.04	8.16
	YH10W-3	U _{20kAp}	8.99	8.99	9.23
	20	Equivalent U _{10kAp}		8.16	5
	4.4	$U_{10kAp} R$ quired		≤8.5	ومساورتها
	pmen	Ratio, n	19 8 V	2	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100
	udi	UskAp	14.60	14.92	15.08
	YHIOW-6	UlokAp	16.00	16.08	16.32
		U _{20kAp}	17.98	17.98	18.46
	for	Equivalent U _{10kAp}	19	16.32	L.,
_	54	U _{10kAp} Required		≤17.0	
	- ite	Ratio, n	01.00	2028	22.62
	Cen	U _{SkAp}	21.90	22.38 24.12	22.02
	YH10W-9	U _{10kAp}	24.00 26.97	26.97	27.69
	Tes	U _{20kAp}	20.97	24.48	21.05
	L Pu	Equivalent U _{10kAp}		₹25.5	
Residual voltage	10	U _{10kAp} Required Ratio, n		4	1
of the arresters	Tion	U _{5kAp}	29.20	29.84	30.16
		U _{10kAp}	32.00	32.16	32.64
-	YH10W-12	U _{20kAp}	35.96	35.96	36.92
	1 SHI	Equivalent U _{10kAp}		32.64	
	12	U _{10kAp} Required	//	≤34.0	
		Briokap Internation		5	
		UskAp	36.50	37.30	37.70
		U _{10kAp}	40.00	40.20	40.80
	YH10W-15	U _{20kAp}	44.95	44.95	46.15
Sec. 1.		Equivalent U _{10kAp}		40.80	
		U _{10kAp} Required		≤42.5	
	Q	Ratio, n		6	
Sec. 18	30.45.4	U_{5kAp}	43.80	44.76	45.24
	VI110W 10	U _{10kAp}	48.00	48.24	48.96
2.5	YH10W-18	U _{20kAp}	53.94	53.94	55.38
Se		Equivalent U_{10kAp}	3. 19	48.96	Star Star
18 J. G.	지 말 오랫 같이 집	U10kAp Required		≤51.0	

1

*

• .

Test Report		astry Quality Inspection ter for Electric Equipme		CEPRI-EETC Total 6	02-2018-006 0 Page 8
10 C V.	Samples	19. N. S. Y. M.	301	302	303
		Ratio, n	C.C. Sel	7	
		UskAp	51.10	52.22	52.78
8 6 8 8		U _{10kAp}	56.00	56.28	57.12
612513	YH10W-21	U _{20kAp}	62.93	62.93	64.61
		Equivalent U _{10kAp}	10 M&A	57.12	
		U10kAp Required	Made No.	≤59.5	
		e ^T Ratio, n		8	
10 A 10 A		UskAp	58.40	59.68	60.32
		U _{10kAp}	64.00	64.32	65.28
	YH10W-24	U _{20kAp}	71.92	71.92	73.84
	40'	Equivalent U _{10kAp}		65.28	
	5	U _{10kAp} Required	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	≤68.0	
	2	Ratio, n		9	
	i pmen i	UskAp	65.70	67.14	67.86
		U _{10kAp}	72.00	72.36	73.44
	YH10W-27	U _{20kAp}	80.91	80.91	83.07
	JO	Equivalent U _{10kAp}	S	7 <mark>3</mark> .44	
esidual voltage	μ	U _{10kAp} Required	≤76.5		
of the arresters	Q	Ratio, n		10	
in the artesters	Cent	Uskap	73.00	74.60	75.40
		U _{10kAp}	80.00	80,40	81.60
	YH10W-30	U _{20kAp}	89.90	89.90	92.30
	0 E	Equivalent U _{10kAp}		81.60	
	pu	U _{10kAp} Required		₹85.0	
-	0	Ratio, n		11	
	UOT	U _{5kAp}	80.30	82.06	82.94
-		U _{10kAp}	88.00	88.44	89.76
	YH10W-33	U _{20kAp}	98.89	98.89	101.53
	SIL	Equivalent U _{10kAp}		89.76	
	172	U _{10kAp} Required		≤93.5	
-		Ratio, n		12	
		Pha Ratio, n UskAp	87.60	89.52	90.48
		U _{10kAp}	96.00	96.48	97.92
	YH10W-36	U _{20kAp}	107.88	107.88	110.76
14 15 11		Equivalent U _{10kAp}		97.92	
10 million (1997)	1.10	U _{10kAp} Required	≤102.0		

Test Repor	t Pow	er Industry Quality Inspection a Center for Electric Equipment		CEPRI-EET Total	C02-2018-000 50 Page 9
	Tal	ble 5 Steep current impulse residual	voltage test		kV (peak)
and the second	Sar	nples	301	302	303
		mAAC	3.32	3.25	3.25
Residual voltage of		1/5µs, U _{10kAp}	8.96	8.96	9.08
Residual voltage o	the second second second second	1/5µs 10kAp	1. 1. 1. 1. 1.	0.10	
tesidual voltage a		1/5µs 10kAp	8.96	8.96	9.08
esidual voltage a	iter concention	Ratio, n o wer		1	
		① U _{16kAp}	8.96	8.96	9.08
		2) inductive voltage drop	10kV	/m×0.120m=1	.20kV
	YH10W-3	12:Residual voltage of arrester	10.16	10.16	10.28
_		Equivalent U _{10kAp}		10.28	
6	0	U _{10kAp} Required		≤10.5	
	200	Ratio, n		2	
	pmen	① U _{10kAp}	17.92	17.92	18.16
	5	②inductive voltage drop	10kV	$m \times 0.120 \text{m} = 1$	1
	YH10W-6	1)+2:Residual voltage of arrester	19.12	19.12	19.36
	0 L	Equivalent U _{10kAp}	1 2 1 1	19.36	
		U _{10kAp} Required		≤20.0	-
F	te	Ratio, n	19 ¹	3	1
	en	① U _{10kAp}	26.88	26.88	27.24
	ے YH10W-9	②inductive voltage drop		$1/m \times 0.155m = 1$	
	I HIOW-9	1+2:Residual voltage of arrester	28.43	28.43	28.79
Residual	F	Equivalent U _{10kAp}	0	28.79	
5	рич	U _{10kAp} Required		₹29.5	
voltage of the	E	Ratio, n		4	26.22
arresters	1.0	1 U _{10kAp}	35.84	35.84	36.32
	YH10W-12	2 inductive voltage drop		$1/m \times 0.190m = 1$	
	THIOW IS ?	Testudai voltage of arrester	37.74	37.74	38.22
		Equivalent U _{10kAp}	//	38.22	
-		U10kAp Required		≤39.0	
		Ratio, n ₂₀	44.80	5 44.80	45.40
		① U _{10kAp}		44.80 //m×0.225m=2	2.0.80.000
	YH10W-15	②inductive voltage drop	47.05	47.05	47.65
6 18 19	an copyrighter and 11/2016	①+②:Residual voltage of arrester	47.05	47.65	47.05
20 11		Equivalent U _{10kAp}		≤48.5	100
	St. N. Co.	U _{10kAp} Required		6	
		Ratio, n	53.76	53.76	54.48
		 U_{10kAp} Dinductive voltage drop 		//m×0.225m=	all in the second second
10 20 10	YH10W-18	①+②:Residual voltage of arrester	56.01	56.01	56.73
1. 12 Mar 19 19		Equivalent U _{10kAp}		56.73	
1. St. 1. St		U _{10kAp} Required	2	≤58.0	
N. S. Market	State of the	O lukAp Roquindu		1. N. 18 N.	19 A. F.

- - -

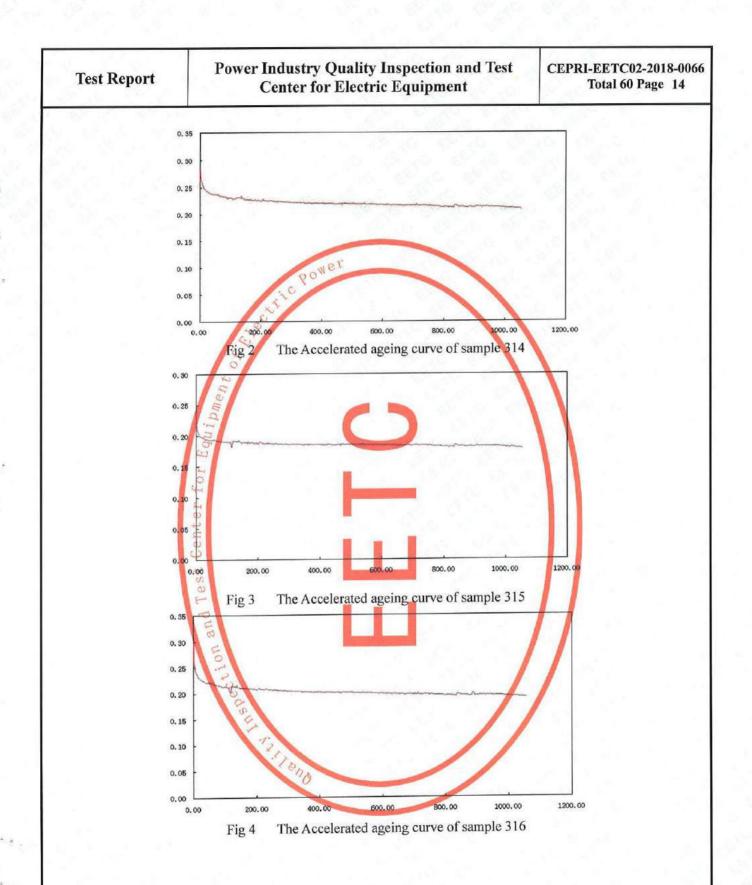
Test Repo	rt Pov	ver Industry Quality Inspection a Center for Electric Equipmen		CEPRI-EET Total	C02-2018-006 50 Page 10
82.20	Sa	mples	301	302	303
	1.00	Ratio, n	10 18	7	
		① U _{10kAp}	62.72	62.72	63.56
France P		@inductive voltage drop	10k	$V/m \times 0.260m = 2$.60kV
St. 45. 1	YH10W-21	①+②:Residual voltage of arrester	65.32	65.32	66.16
		Equivalent U _{10kAp}	5 8	66.16	1
· · · · · · · · ·		U _{10kAp} Required	3. C. C.	≤67.5	
		Ratio, n o wer		8	
1			71.68	71.68	72.64
		2)inductive voltage drop	10k	V/m×0.295m=2	.95kV
	YH10W-24	1 2:Residual voltage of arrester	74.63	74.63	75.59
	6	Equivalent U _{10kAp}		75.59	
	0	U _{10kAp} Required		≤77.0	ð
-	15	Ratio, n	0.00	9	
	pmen	① U _{10kAp}	80.64	80.64	81.72
	5	②inductive voltage drop	10k	V/m×0.330m=3	.30kV
	YH10W-27	1+2:Residual voltage of arrester	83.94	83.94	85.02
	01	Equivalent U _{10kAp}	5 N 18 14	85.02	
Residual	ique .	U _{10kAp} Required	40 E.C.	≤ 86.5	
voltage of the	O	Ratio, n	10 N	10	
arresters	ent	① U _{10kAp}	89.60	89.60	90.80
	0	②inductive voltage drop	10kV	√/m×0. <mark>3</mark> 65m=3	.65kV
	YH10W-30	1+2:Residual voltage of arrester	93.25	93.25	94.45
	Ð	Equivalent U _{10kAp}	S. 19	94.45	
	pu	U _{10kAp} Required		≰96.0	
-	0	Ratio, n		11	
	HOI	① U _{10kAp}	98.56	98.56	99.88
199	YH10W-33	②inductive voltage drop	10kV	$\sqrt{m} \times 0.400 \text{m} = 4$.00kV
	YHIUW-35	+2:Residual voltage of arrester	102.56	102.56	103.88
		Equivalent U _{10kAp}	//	103.8	
		U10kAp Required		≤105.5	
		Ratio, n		12	
		① U10kAp	107.52	107.52	108.96
	VILLOWICZ	2 inductive voltage drop	10kV	$V/m \times 0.400m = 4$	T
12.1	YH10W-36	①+②:Residual voltage of arrester	111.52	111.52	112.96
2. 63.44		Equivalent U _{10kAp}		112.96	
		U _{10kAp} Required		≤115.0	

Test Report

3 Repetitive charge transfer withstand

Samples:10 resistors (304~313)

Requirements of standards: The samples should withstand more than 0.40C by 8/20µs lightning impulses for 20 times, and after test, have no breakdown or flashover or breakage, the change of residual voltage within $\pm 5\%$, the change of reference voltage within $\pm 5\%$, also should withstand capability to one 8/20 current impulse of at least 0.5 kA/cm² peak current density or 2 times I_n, whichever is lower.

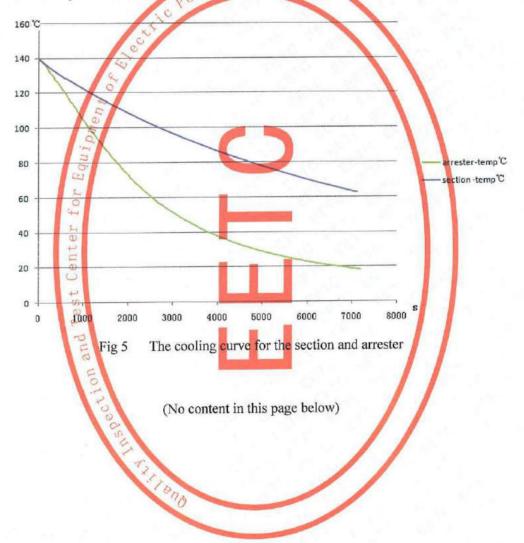

Test data: Fulfilled the requirements, the test data were listed in the table 6, the test waveforms were shown in appendix A fig $A.2 \sim$ fig A.3.

-		1	able 6	Repetitiv	e charge	transfer	withstan	d			
	Samples	304	305	306	307	308	309	310	311	312	313
Before	U_{lmAAC} , kV	3.51	3.49	3.54	3.49	3.49	3.48	3.50	3.48	3.48	3.49
test	8/20μs U _{10kA} , kV	8.33	8.29	8.33	8.33	8.29	8.20	8.41	8.33	8.29	8.20
	Q _{rs} , C	'ni.		Q _{rs} (Cl	aimed repe	etitive charg	ge transfer	rating)* 1	.1=0.44		
1 st	Q _{rs} , C	0,452	0.451	0.450	0.454	0.452	0.453	0.446	0.443	0.453	0.452
2 nd	Q _{rs} , C	0.446	0.443	0.443	0.443	0.446	0.443	0.444	0 <mark>.4</mark> 43	0.443	0.45
3 rd		0.443	0.443	0.443	0.443	0.444	0.443	0.452	0 <mark>.4</mark> 43	0.443	0.44
4 th	Q _{is} , C	0.446	0.446	0.445	0.443	0.443	0.443	0.443	0. <mark>4</mark> 45	0.443	0.44
5 th	Q _{rs} , C	0.445	0.445	0.443	0.445	0.446	0.444	0.451	0 <mark>.4</mark> 43	0.443	0.44
6 th		0.443	0.440	0.446	0.440	0.446	0.443	0.443	0.443	0.443	0.44
7 th	Q _{rs} , C	-0.443	0.447	0.447	0. <mark>44</mark> 3	0.443	0.454	0.445	0.443	0.443	0.45
8 th	Q _{rs} , C	0.446	0.445	0.444	0.443	0.446	0.443	0,440	0.443	0.443	0.44
9 th	Q _{rs} , C	0.447	0.447	0.447	0.452	0.443	0.446	0.447	0.440	0.443	0.44
10 th	Q _{rs} , C	0.445	0.445	0.444	0.443	0.445	0.444	0.444	0.440	0.447	0.44
11 th	Q _{rs} , C	0.445	0.443	0.444	0.447	0.446	0,446	0.443	0.446	0.443	0.44
12 th	Q _{rs} , C	0.443	0.443 2	7 0.440	0.446	0.444	0.443	0.443	0.445	0.443	0.44
13 th	Q _{rs} , C	0.445	0.445	0.444	0.447	0.446	0.443	0.444	0.447	0.443	0.44
14 th	Q _{1s} , C	0.440	0.445	0.444	0.446	0.444	0.443	0.440	0.446	0.444	0.44
15 th	Q _{rs} , C	0.444	0.443	0.444	0.446	0.445	0.444	0.446	0.440	0.446	0.44
16 th	Q _{rs} , C	0.444	0.444	0.440	0.445	0.440	0.443	0.446	0.444	0.444	0.44
17 th	Q _{rs} , C	0.445	0.446	0.447	0.444	0.444	0.443	0.440	0.446	0.447	0.44
18 th	Q _{rs} , C	0.445	0.445	0.445	0.445	0.443	0.443	0.445	0.447	0.443	0.44
19 th	Q _{rs} , C	0.440	0.440	0.444	0.443	0.446	0.440	0.440	0.440	0.440	0.45
20 th	Q _{rs} , C	0.440	0.440	0.443	0.442	0.443	0.440	0.440	0.440	0.440	0.44

Test	Report	Pow	er Indus Cente	try Qua r for Ele				t	CEPRI-EE Tota	ETC02-20 al 60 Page	
	One 8/20 current		0.	5kA/cm ² =0).5*3.14*(4	.2/2) ² =6.9	2kA which	is highe	r than 2 time	s I _n	
	impulse, kA	9.37	7.36	7.04	7.12	7.20	7.28	7.12	7.16	7.08	10.12
	U _{1mAAC} , kV	3.64	3.62	3.66	3.61	3.63	3.57	3.62	3.57	3.59	3.59
	Change rate, %	+3.70	+3.72	+3.39	+3.44	+4.01	+2.59	+3.43	+2.59	+3.16	+2.8
Test valuation	8/20μs U _{10kA} , kV	8.70	8.67	8.70	8.70	8.67	8.57	8.66	8.61	8.66	8.66
	Change rate, %	+4.44	+4.58	0 04144 ^T	+4.44	+4.58	+4.51	+2.97	+3.36	+4.46	+5.6
	Visual inspection to verify long t	is highers samples	than $+5$ within \pm	%, the chan 5%.	nge of resid	ual voltage	e and the cl	hange of	of residual vo `reference vo		
fest data			ts, the test	data were		table 7~	~8, the ac	celerate	ed ageing c	urves wei	e
	4		Power los		cenerated	Beng					
	Time/Sample		φ42×22.	5mm, 🚽	$U_{a} = 2.53$	5 <mark>×(1+0</mark> .	15×0.4)	= 2.70	kV ,115°C	2	
				314	C.		315	de.		316	
04		0		0.32		10 6	0.24			0.30	
04	4/12/2018 11:40	P		0.27			0.21			0.25	
04	5/12/2018 11:40	6	T 81	0.24			0.20			0.23	
		0		0.24		12	0.19			0.22	
	5/12/2018 11:40			0.23		16	0.19			0.22	
00	5/12/2018 11:40 7/12/2018 11:40	- S									
00			a.	0.23	1. I. I.		0.19		100	0.21	
00 07 08	7/12/2018 11:40		au Fo	0.23 0.23		100	0.19 0.19	/		0.21 0.22	
00 00 80 09	7/12/2018 11:40 3/12/2018 11:40		+2	0.23				/			
00 07 08 09	7/12/2018 11:40 3/12/2018 11:40 0/12/2018 11:40	1 m	~	0.23			0.19	/		0.22	
00 07 08 09 10	7/12/2018 11:40 3/12/2018 11:40 0/12/2018 11:40 0/12/2018 11:40	1 m	+2	0.23			0.19 0.19	/		0.22 0.21	
000 002 008 009 10 11 12	7/12/2018 11:40 8/12/2018 11:40 9/12/2018 11:40 9/12/2018 11:40 1/12/2018 11:40	1 m	+2	0.23 0.23 0.23			0.19 0.19 0.19			0.22 0.21 0.21	
000 07 08 09 10 11 12 12	7/12/2018 11:40 8/12/2018 11:40 9/12/2018 11:40 0/12/2018 11:40 1/12/2018 11:40 2/12/2018 11:40	1 m	+2	0.23 0.23 0.23 0.23			0.19 0.19 0.19 0.19 0.19	/		0.22 0.21 0.21 0.21	
000 07 08 09 10 11 12 12 13 14	7/12/2018 11:40 8/12/2018 11:40 9/12/2018 11:40 0/12/2018 11:40 1/12/2018 11:40 2/12/2018 11:40 3/12/2018 11:40	1 m	+2	0.23 0.23 0.23 0.23 0.23 0.23			0.19 0.19 0.19 0.19 0.19 0.19			0.22 0.21 0.21 0.21 0.21	
000 07 08 09 10 17 12 13 14 14	7/12/2018 11:40 8/12/2018 11:40 9/12/2018 11:40 0/12/2018 11:40 1/12/2018 11:40 2/12/2018 11:40 3/12/2018 11:40 4/12/2018 11:40	1 m	+2	0.23 0.23 0.23 0.23 0.23 0.23 0.23			0.19 0.19 0.19 0.19 0.19 0.19 0.19			0.22 0.21 0.21 0.21 0.21 0.21 0.21	
000 005 009 10 11 12 12 12 14 15 10	7/12/2018 11:40 8/12/2018 11:40 0/12/2018 11:40 0/12/2018 11:40 1/12/2018 11:40 2/12/2018 11:40 3/12/2018 11:40 4/12/2018 11:40 5/12/2018 11:40	1 m	+2	0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23			0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19			0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21	
000 07 08 09 10 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	7/12/2018 11:40 8/12/2018 11:40 9/12/2018 11:40 9/12/2018 11:40 1/12/2018 11:40 1/12/2018 11:40 1/12/2018 11:40 1/12/2018 11:40 5/12/2018 11:40 5/12/2018 11:40	1 m	+2	0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.22 0.22			0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19			0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21	
000 07 08 09 10 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	7/12/2018 11:40 8/12/2018 11:40 9/12/2018 11:40 9/12/2018 11:40 1/12/2018 11:40 1/12/2018 11:40 8/12/2018 11:40 1/12/2018 11:40 5/12/2018 11:40 5/12/2018 11:40	1 m	+2	0.23 0.23 0.23 0.23 0.23 0.23 0.22 0.22			0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19			0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21	

. .

Test Report	Power Industry Qua Center for El		CEPRI-EETC02-2018-006 Total 60 Page 13	
21/12/2018 11:40	0.22	18 1 1 N	0.19	0.20
22/12/2018 11:40	0.22	10 2	0.19	0.20
23/12/2018 11:40	0.22	10 M	0.19	0.20
24/12/2018 11:40	0.22	1.0 St.	0.19	0.20
25/12/2018 11:40	0.22	1.0 6 1	0.19	0.20
26/12/2018 11:40	0.22		0.19	0.20
27/12/2018 11:40	0.22 ^{er}		0.19	0.20
28/12/2018 11:40	0.22	St. 18	0.19	0.20
29/12/2018 11:40	0.22		0.19	0.20
30/12/2018 11:40	0.22	6 10.00	0.18	0.20
31/12/2018 11:40	0.22	11. 10.3	0.19	0.20
01/01/2019 11:40	5 0.22	1	0.18	0.20
02/01/2019 11:40	0.22		0.18	0.20
03/01/2019 11:40	0.22		0.18	0.20
04/01/2019 11:40	0.22	1111	0.18	0.20
05/01/2019 11:40	0.21		0.18	0.20
06/01/2019 11:40		1. 16 28	0.18	0.20
07/01/2019 11:40	0.21		0.18	0.19
08/01/2019 11:40	0.22		0.18	0.20
09/01/2019 11:40	0.21		0.18	0.19
10/01/2019 11:40	0.21		0.18	0.19
11/01/2019 11:40	0.21		0.18	0.20
12/01/2019 11:40	0.21		0.18	0.20
13/01/2019 11:40	0.21			0.19
14/01/2019 11:40	0.21	0.18		0.19
15/01/2019 11:40	0.21		0,18	0.19
	Table 8 Pow	ver losses relati	onship	
Samples	no	314	315	316
U _{1maac} , kV		3.26	3.24	3.20
U _c , kV _{rms}		2.70	0.21	2.70
Power losses P _{start} , 3h, W		0.27		0.25
Power losses P _{end} , 1000+11	0.05		0.18	0.19
P _{max} , W		0.27		0.23
P_{\min}, W	0.21 0.22		0.18	0.19
$\frac{(P_{\text{max}} - P_{\text{min}}) / 1.3P_{\text{min}}}{(1.1 P_{\text{min}})}$				
P _{max} /1.1 P _{start} Note: (1) Because(P _{max} - P (2) The temperature of		0.91 rt, the samples fulf	0.91 filled the requirement	0.91



5 Heat dissipation behavior verification of test sample

Samples: 1 thermally prorated section (210) 1 arrester (005)

Requirements of standards: the MO resistors in the sample shall be heated to 140°C by the application of power-frequency voltage. When the temperature is reached, the voltage source shall be disconnected and the cooling time curve shall be determined. At any time, the measured cooling curve of section falls shall above the measured cooling curve of the arrester.

Test data: Fulfilled the requirements, the test waveform was shown in fig 5

Test Report

Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC02-2018-0066 Total 60 Page 16

6 Operating duty test

Samples: 3 thermally prorated sections (201~203)

Requirements of standards: 3 thermally prorated sections should pass the high current impulse operating duty test. Test data: Fulfilled the requirements, the test data were listed in table 9, the test waveforms were shown in appendix A fig A.4 \sim fig A.6.

Samples		201	202	203		
U _{lmAAC} , kV		3.39	3.44	3.46		
U _{sr} , kV _{rms}		· · C	3.18	3.23	3.24	
U _{sc} , kV _{rms}	-		2.54	2.58	2.59	
8/20µs, U10kA ,be	fore, kV		8.41	8.41	8.29	
Conditioning test	One high current	impulse, kA	98.8	100.4	99.2	
preheated samples			preheated samples to 60.0 °C±3 °C			
Rated thermal	Lightning	1 st Q _{th} ,C	0.558	0.562	0.566	
charge	current impulse	2 nd Q _{th} ,C	0.568	0.568	0.594	
transfer,Q _{th}	Qth rating (2 time	s), C	1.126	1.130	1.160	
	54	Req.	as short as possible (within 100ms)			
	Time D	Actual	85.6	86.0	95.6	
Applied voltage	C	U _{sr} *, kV _{rms}	3.18	3.25	3.25	
after the 2 nd impulse Applied voltage and duration		Duration, s	10	10	10	
		U _{sc} [*] , kV _{nns}	2.61	2.63	2.64	
	an	Duration, min	30	30	30	
1	1s		1.16	1,25	1.18	
	5 min		1.07	1.11	1.14	
	10 min		1.03	1.10	1.12	
	15 min 5		1.04	1.09	1.09	
	20 min		1.04	1.08	1.09	
	25 min		1.01	1.07	1.06	
	30 min		1.02	1.07	1.06	
Samples cooled to	>		cooled	d to ambient 20°C	±15℃	
$8/20\mu s$, U_{10kA} , after, kV		8.57	8.57	8.49		
Variability of the residual voltage, %		+1.90	+1.90	+2.41		
Visual inspection		No puncture, flashover, cracking or other significant damage				

Toot	Da	nowf
Test	NC	port

7 Power-frequency voltage-versus-time test

Samples: 6 thermally prorated sections (204~209)

Requirements of standards: The 4 sections of arrester should pass the power-frequency voltage-versus-time test.

Test data: Fulfilled the requirements, the test data were listed in table $10 \sim 11$, and the Power-frequency voltage-versus-time curve was shown in fig 6, the test waveforms were shown in appendix A fig A.7 \sim A.8.

Table 10 Power-frequency voltage-versus-time test data (with prior duty)

	Table TO LONGE						
	Samples	Power	204	205	206	207	
U _{1mAAC} , kV		in C	3.47	3.38	3.30	3.33	
U _{sr} , kV _{rms}		S. C.	3.29	3.17	3.09	3.12	
U _{sc} , kV _{rms}	4		2.63	2.54	2.48	2.50	
8/20µs, U10kA ,be	efore, kV		8.16	8.12	8.20	8.12	
preheated sample	es le		preheated samples to 60.0 °C±3 °C				
	1 st impulse	Q _{th} ,C	0.576	0.567	0.565	0.565	
Lightning	2 nd impulse	Q _{th} ,C	0.575	0.587	0.572	0.579	
current impulse	Qth rating (2 times	s), C	1.151	1.154	1.136	1.144	
	4	Req.	as short as possible (within 100ms)				
	Time 💭	Actual	96.0	86.4	88 <mark>.</mark> 4	87.2	
Applied voltage	Ű	U _{sr} *, kV _{rms}	3.14	3.18	3.25	3.68	
after the 2 nd	est	TOV scale	0.95	1.00	1.05	1.18	
impulse Applied v and duration	Applied voltage	Duration, s	1000	10.1	1.1	0.1	
	co l	U _{sc} *, kV _{rms}	2.63	2.63	2.61	2.59	
	iou	Duration,	30	30	30	30	
	1s		1.19	0.87	1.14	1.28	
5 min 10 min Power loss, W 15 min			1.17	0.85	0.87	0.88	
		To	1.17	0.84	0.86	0.88	
		1 eng	1.15	0.83	0.87	0.88	
	20 min	0	1.14	0.83	0.88	0.86	
25 min			1.14	0.82	0.84	0.85	
30 min	30 min	30 min		0.82	0.84	0.84	
Samples cooled t	to		1. 1. 20	cooled to ambi	ent 20°C±15°C		
	us, U_{10kA} , after, kV 8.41		8.41	8.33	8.37	8.37	
Variability of the residual voltage, %		+3.06	+2.59	+2.07	+3.08		

Test Repor	t Pow	er Industry Qua Center for Ele	CEPRI-EETC02-2018-006 Total 60 Page 18		
Т	able 11 Powe	r-frequency voltag	e-versus-time test data (witho	ut prior duty)	
Samples		208	209		
U _{1mAAC} , kV			3.33	3.33	
U _{sr} , kV _{rms}			3.12	3.12	
U _{se} , kV _{rms}	김 씨는 여기		2.50	2.50	
8/20µs, U _{10kA} ,befo	ore, kV		8.12	8.12	
preheated samples		Power	preheated sample	es to 60.0℃±3℃	
- 4		Usr kVrms	3.74	3.09	
	5	TOV scale	1.20	0.98	
Applied voltage	Applied voltage	Duration, s	0.1	1000	
	1	U _{se} *, kV _{rms}	2.54	2.55	
	ртел	Duration,	30	30	
	1s		0.85	0.86	
	5 min 🚊		0.83	0.83	
	10 min		0.83	0.78	
Power loss, W	15 min		0.84	0.79	
~	20 min		0.83	0.79	
	25 min-		0.83	0.78	
	30 min		0.83	0.78	
Samples cooled to	pu		cooled to ambie	ent 20°C±15°C	
3/20µs, U10kA ,after	, kV 🗧		8.33	8.24	
Variability of the residual voltage, %			+2.59	+1.48	
Visual inspection	e he		No puncture, flashover, crackir	g or other significant damage	
1. 0. 0.	225 225 115 15 15 15 16 195 199 199 199 199 199 199 199			Without prior duty With prior duty time,s	

Toot	Do	port
TCor	UC	port

8 Test to verify the dielectric withstand of the internal components of an arrester

Samples: 1 dielectrically prorated section (501)

Requirements of standards: preheat the sample to 60° C, consists of one application of a 100kA high-current impulse. There should be no evidence of a dielectric breakdown. the test data were listed in table 12, and the test waveforms were shown in appendix A fig A.9.

Table 12 Test to verify	the dielectric withstand	l of the internal co	omponents of an arrester
Table 12 rest to verify	the divice in it interiound	. OI CHIC MADE AND A	our pour our our our our our our our our our

Sample POW	501
U _{1mAAC} , kV	3.30
8/20µs, U _{10kA} , before, kV	8.08
preheated samples	preheated samples to 60°C±3°C
high-current impulse, kA	98.4
Samples cooled to	cooled to ambient 20℃±15℃
8/20 μ s, U _{10kA} , after, kV	8.24
Variability of the residual voltage, %	+1.98
Visual inspection	No puncture, flashover, cracking or other significant damage
Ŭ	

9 Bending moment

Samples: 3 arresters(001~003)

Requirements of standards: the test of bending moment shall be performed one after the other on three samples as follows: Step 1.1: subject two of the samples to a bending moment test. The bending load shall be increased smoothly to specified short-term load (SSL) within 30s to 90s. When the test load is reached, it shall be maintained for 60s to 90s. Step 1.2: subject the third sample to mechanical/thermal preconditioning test. Step 2: subject all three samples to the water immersion test.

9.1 Bending moment (part 1: on sample 001)

(1) Measure the power loss, partial discharge, residual voltage before the thermo-mechanical preconditioning test; (2)After terminal torque preconditioning of established procedure, the sample should withstand the cold-heat cycling test at +60°C±5K to -25°C±5K, and +45°C±5K to -40°C±5K. Each cycling time is 48 hours. The temperature of the hot and cold periods shall be maintained for at least 16h. During the test, the continuous static mechanical load of 50% F_s should be applied, its direction change rates every 24 hours, the interruption time should not exceed 1h.

(3)The test samples shall be kept immersed in a vessel, in boiling deionized water with 1kg/m3 of NaCl for 42h.

(4)Measure the power loss and partial discharge ,and then put two successive impulses at nominal discharge current in 50 to 60s, which the wave shape shall be in the range of $T1/T2=(4 \text{ to } 10)/(10 \text{ to } 25)\mu s$.

(5)After test, there should be no visible mechanical damage. The change rate of power loss should not exceed 20%, the change rate of U_{ImAAC} should not exceed 2%, the change rate of residual voltage should not exceed 5%, the

		dustry Quality Ins enter for Electric E		CEPRI-EETC02-2018-006 Total 60 Page 20
	I the requirements, the	test data were listed ir	discharge should not ex 1 table 13. ment test part 1	ceed 10pC.
Sample	S. 6 49.0	100 and		001
Sample	Power loss, mW	0-00-00-00-	4	1031
	Partial discharge, p	C.		5.40
Before test	Residual voltage, 1	or		98.49
		0KA, 0/20µS, KV		
	U _{1mAAC} , kV			39.9
Terminal torque	Torque applied to a	rrester, N·m		30.0
preconditioning	Duration, s	<u> </u>		30
	Specified short-tern	n load(SLL), N		80.0
	Actual applied, N			80.0
	ni,	Equip		:30~04/12/2018,
	Eq			62°C, Load angle:0°
Thermo-	Load angle, temperature and duration			4:30~05/12/2018,14:30
mechanical				13°C, Load angle:180°
preconditioning				4:30~06/12/2018,14:30 46°C,Load angle:270°
preconditioning				4:30~07/12/2018,14:30
				8°C, Load angle:90°
			Maintained time of h	
	FP	10 10 1 0 1 0	temperature > 16 h	ingheot and to west
	pue	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Interruption time < 0	.5 h
	E	12.00 20.00		7:00~09/12/2018, 11:00.
	The test samples sha	Ill be kept immersed		he boiling water with
Boiling water	in a vessel, in boiling deionized water			ove the sample placed under
immersion test	with 1kg/m ³ of NaC			, dry 5h after the sample has mperature then finish the
	73		verification test in 1h	and a state of the second
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	n i	Value, mW		977.0
	Power loss	Change rate, %		-5.24
	Partial discharge, pC			2.40
	2 times impulses at	1 st impulse, kV		98.13
Verification	nominal discharge	2 nd impulse, kV	10 V 10 0	98.49
test	current	Residual voltage		+0.37
	Residual voltage	Value, kV	18 JU 18 1	98.13
	10kA, 8/20µs	Change rate %	1. N. C	-0.37
	a and the second	Value, kV	S . C . S . G . S	39.2
	U _{1mAAC}	Change rate,%		-1.75
Sample check			mechanical damage	1

Test Report

9.2 Bending moment (part 2: on sample002 and 003)

(1) Measure the power loss, partial discharge, residual voltage before the bending moment test.

(2) The arresters were mounted to the horizontal base of the test equipment and loading was applied at a rate necessary to reach the desired bending moment in 30s to 90 s. After reaching the target load, the load should maintained 60s to 90s and the deflection shall be measured. After release of load, the residual deflection shall be measured.

(3) After the bending moment test, there is no visible mechanical damage and no mutating at the deflection-load, the remaining permanent deflection should not exceed $\frac{5}{5}$ % of the length of the housing.

(4) The samples shall pass water immersion test. The change rate of power loss should not exceed 20%, the change rate of residual voltage should not exceed 5%, the partial discharge should not exceed 10pC.

Test data: Fulfilled the requirements, the test data were listed in table 14, the waveforms were shown in appendix A fig A.10.

Samples	nen		002	003
	Power loss, mW		981.6	1050
Before bending	Partial discharge, p	Partial discharge, pC		3.1
moment test	Residual voltage, 10	0kA, 8/20µs <mark>,</mark> kV	95.80	94.76
	U _{ImAAC} , kV		40.0	39.5
	Specified short-term	n load(SSL), N	4(00
Bending moment	Actual applied, N		400	400
test	Time, s		63	63
	Sample check		No visible mec	hanical damage
	put	Housing h <mark>e</mark> ight, mm	420	420
After bending	deflection	Maximum deflection, mm	6.61	11.69
moment test		Residual deflection, mm	1.20	6.26
	Seal inspection	Hot water immersion test	No continu	ous bubbles
Boiling water	Boiling water with 0.	.1%NaCl for 42 h	Time: 07/12/2018,16:	30~09/12/2018,10:30.
	72	Value, mW	875.0	938.0
	Power loss Change rate, %		-10.9	-10.7
	Partial discharge, pt		2.40	2.40
	2 times impulses at	and the second se	100.0	98.2
a di si na i	nominal discharge	2 nd impulse, kV	99.7	98.7
Verification test	current	Residual voltage change	-0.30	+0.51
8. O. M.	Residual voltage,	Value, kV	100.0	98.2
1. S. S. S.	10kA, 8/20µs	Change rate, %	+4.38	+3.63
Sa No Sala	31 B 18 8	Value, kV	40.1	39.5
8. 60 - 8° 80	U _{1mAAC}	Change rate, %	+0.25	0

No visible mechanical damage.

Sample check

Table 14 Bending moment test part 2

Test Report	Pow	er Industry Quality Inspection Center for Electric Equipm		CEPRI-EETC02-2018-006 Total 60 Page 22	
10 Weather age 10.1 Salt fog test Sample: 1 arrester(6 Requirements of sta	004)	nple should pass salt fog test of esta	ablished procedu	ıre.	
· · · · · · · · · · · · · · · · · · ·		s, the test data were listed in table			
		e of surface tracking, erosion, or put	ncturing.		
Sample	1		11	004	
Before test	U _{1mAAC} , KV Partial disch	harge, pC		39.4 5.4	
Test condition	Test time: 10		10 X 2	lets: 5~10μm	
Test procedure	for 1000h w voltage is ap times power	should withstand salt fog test hile the continuous operating oplied. It is allowed to have 6	2)Begin time: 0 End time: 16/ 3)Power supply i	$t_{c} = 28.8 k V_{rms}$ 5/12/2018, 15:00 701/2019, 15:00 interruption times: 0; uption times: 0.	
Test estimate	through the layer until the	entire thickness of the outer tr ne next layer of material, the en	rial traces of cor ntire thickness of	rent a time, no leakage and rosion is not through the of the outer layer until the nex the shed is not breakdown.	
		value, kV		39.8	
After test	U _{1mAAC}	change rate, %	+1.01		
	Partial disch		Section 1	2.0	

....

Te	st Report	Power Industry Quality Center for Electri	CEPRI-EETC02-2018-0066 Total 60 Page 23	
Samples		shed and housing materials(601~6 s: The samples should pass UV lig		edure, the roughness Rz should
not exce Test dat	eed 0.1mm. a: Fulfilled the re-	quirements, the test data were list est, the surface of specimens had n	ed in table 16. The test sponsored areas.	ecimens successfully withstood
Samples	3	CTable 16 UV	Flight test	603
	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	Test time: 1000	h Irradiance of arc	und: 0.76W/m ²
Test con	dition	×	∼63℃ for 8h UV light 49∼52 ℃ for 4h condensa	
Test pro	cedure	The sample should withstand U for 1000 hours. 4 hours conden 8 hours UV light test, circular 1	sation after End time:	05/12/2018, 15:30 16/01/2019, 15:30
6	Surface NO.1	0.417	0.423	0.436
Rz, μm	Surface NO.2	0.451	0.422	0.358
Rz≤0.0	1mm, Fulfilled th	e requirements		
Sample	check	No	visible cracks and raised a	reas
		(No content in the	is page below)	

10.0

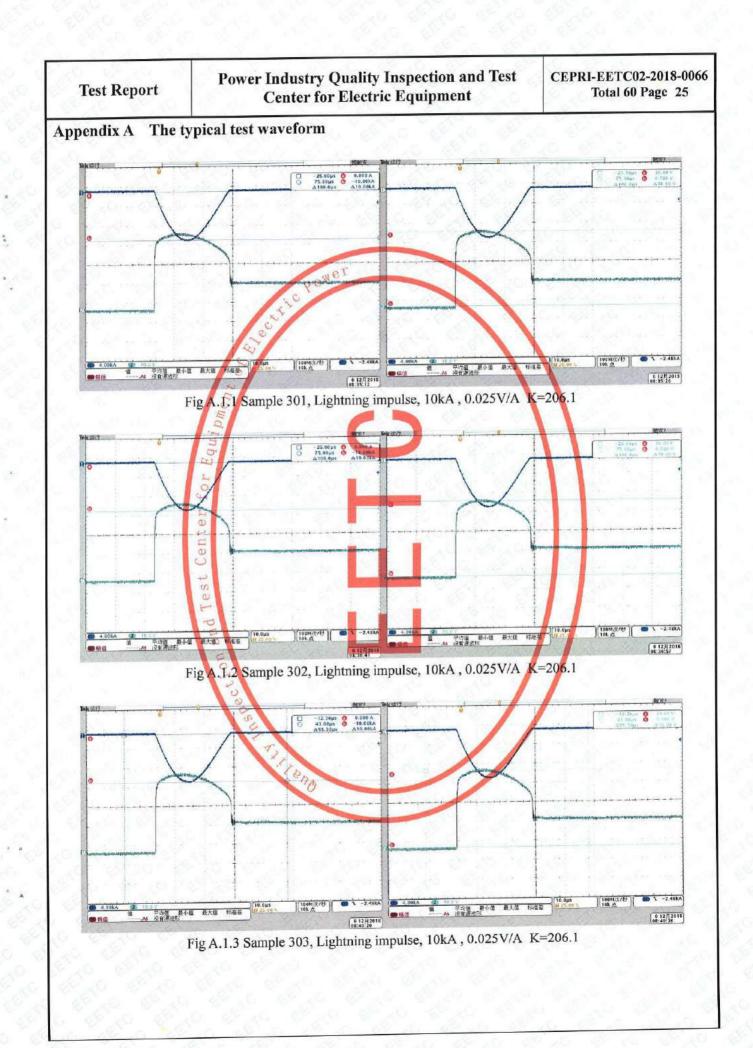
Test Report

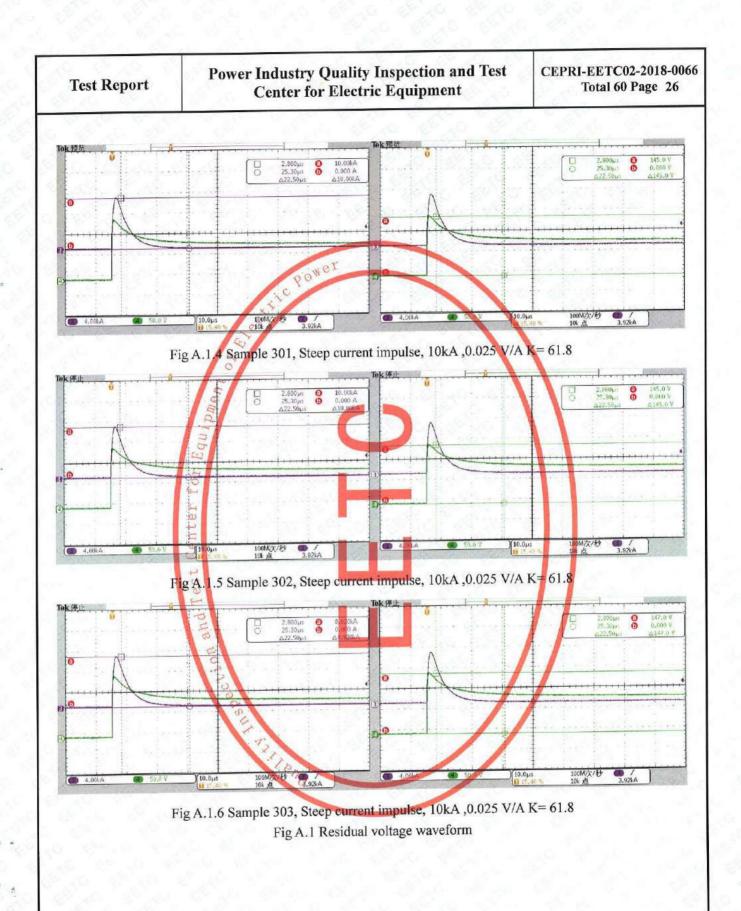
11 Water immersion test

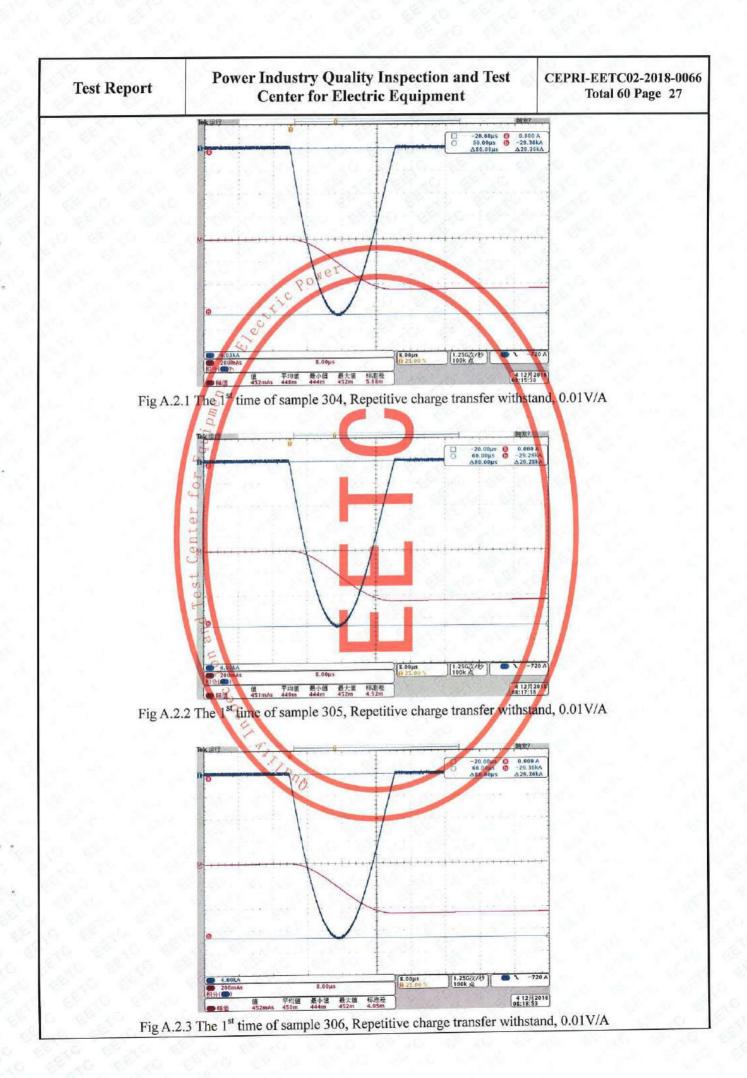
Samples:3 arresters(001~003)

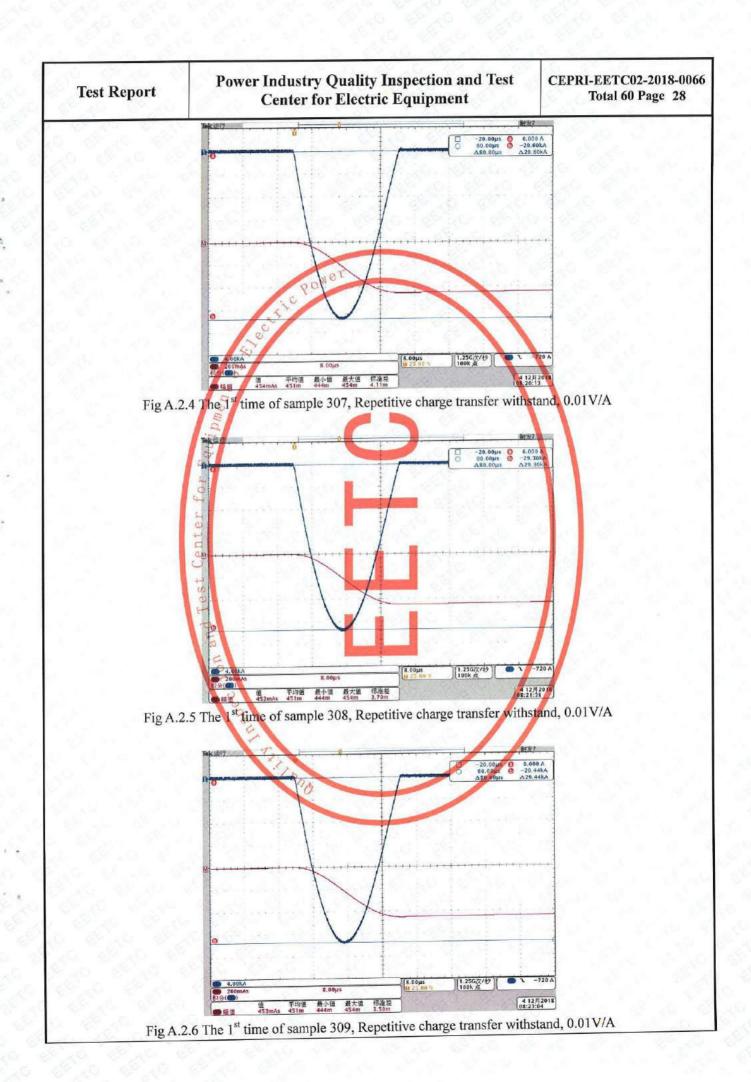
Requirements of standards: Before test, measure the power loss, partial discharge, residual voltage, then immerse the samples into the boiling water of 0.1% NaCl for 42h, then cooled to normal temperature in air for 8 hours; After the test, measure the power loss, partial discharge, residual voltage. The requirements as following:

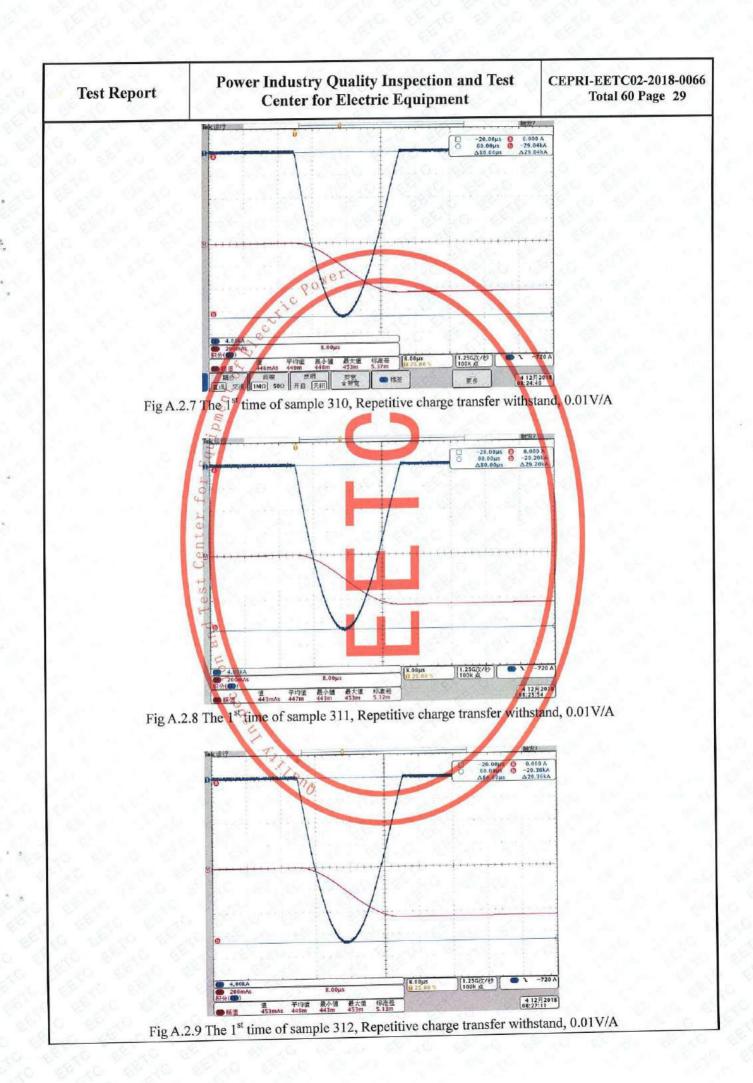
Table 17 Water immension test

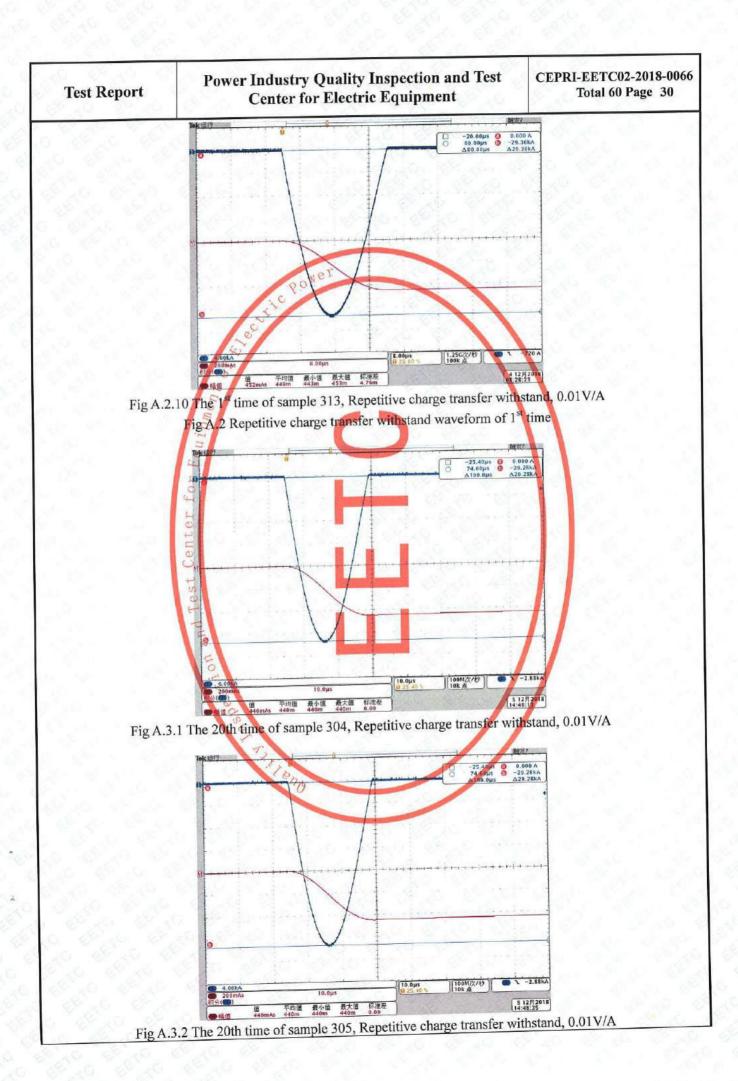

a. The change rate of power loss should not exceed 20%;

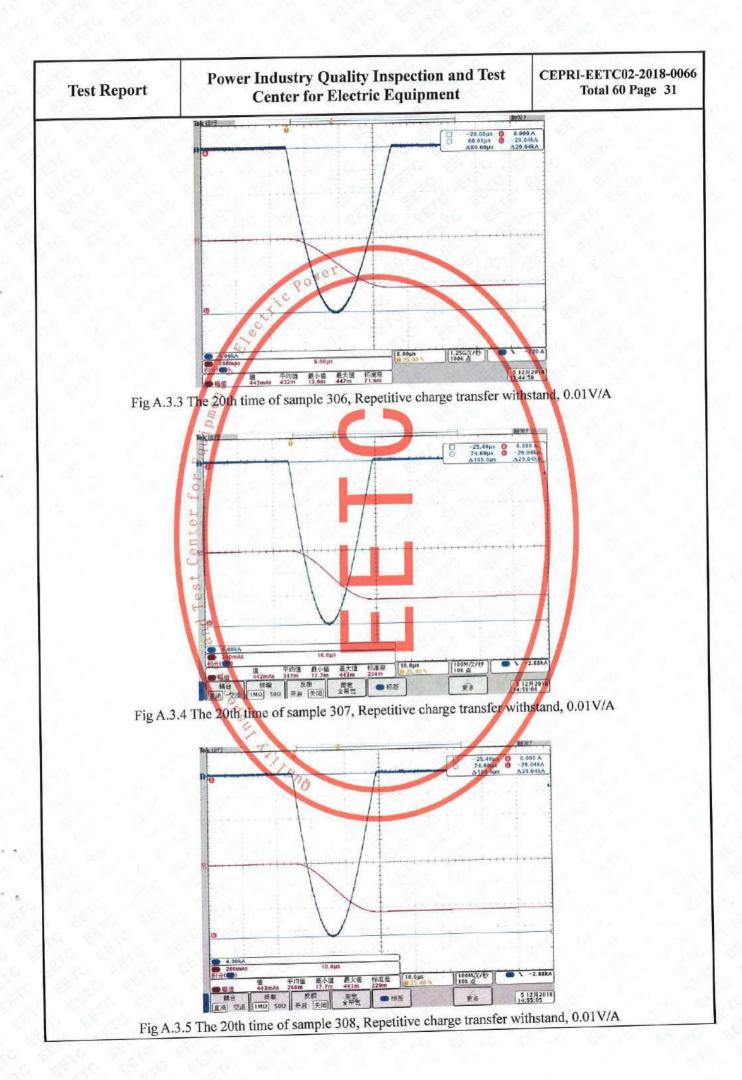

- b. the change rate of residual voltage should not exceed 5%;
- c. The partial discharge≤10pC;

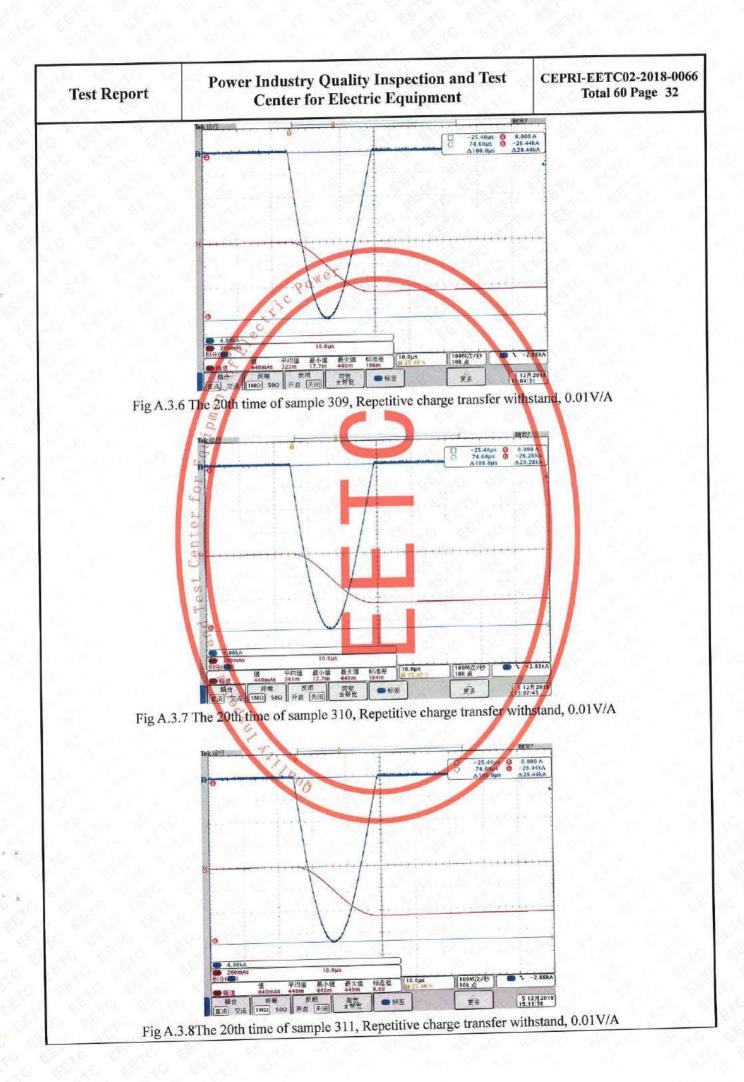

d. The change rate of U_{1mAAC} should not exceed 2%;

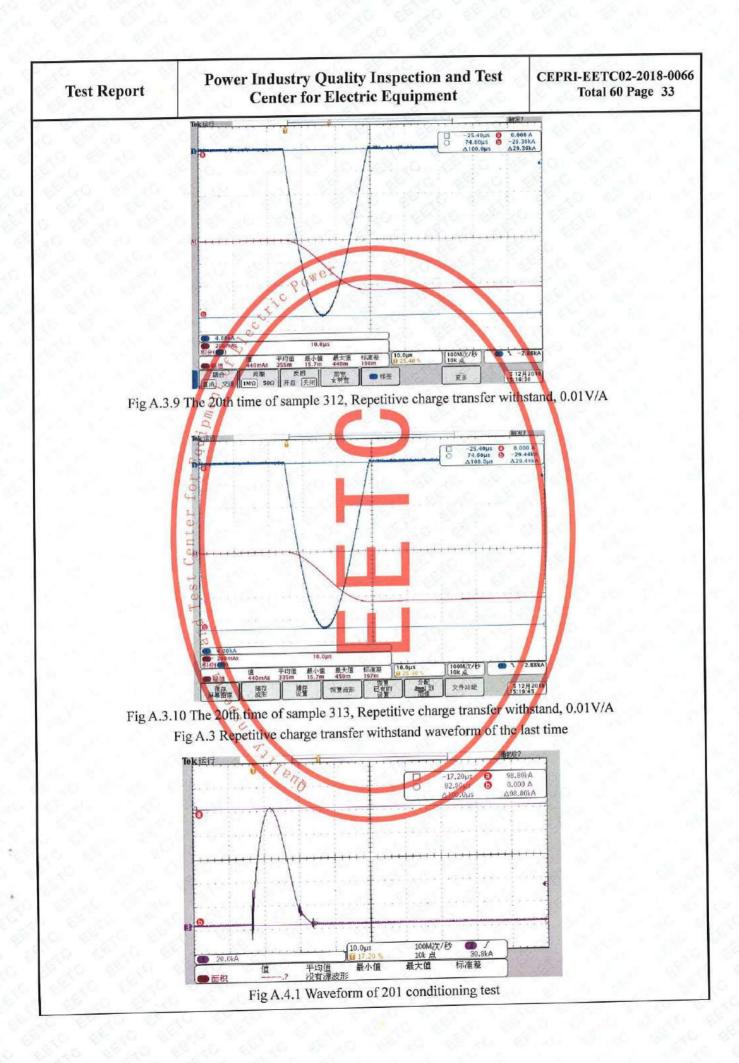

Test data: Fulfilled the requirements, the test data were listed in table 17.


	6	Table 17 Water imm	ersion test		
Real Providence	Samples	(001	002	003
12	Power loss, m	W	1031	981.6	1050
	Partial discha	rge, pC	5.4	5.8	3.1
Before test	Residual volta	age,10kA, kV	98.49	95.80	94.76
	UlmAAC, kV		39.9	40.0	39.5
Water immersion test	Putanto boilir	ng water with 0.1%NaCl fo	r 42 h		
	Power loss	Value, mW	977.0	875.0	938.0
	Power loss	Change rate, %	-5.24	-10.9	-10.7
After test	Partial dischar	rge, pC	2.40	2.40	2.40
	Residual	Value, kV	98.13	100.0	98.2
	voltage, 10kA	Change rate, %	-0.37	+4.38	+3.63
		Value, kV	39,2	40.1	39.5
	U _{1mAAC}	Change rate, %	-1.75	+0.25	0









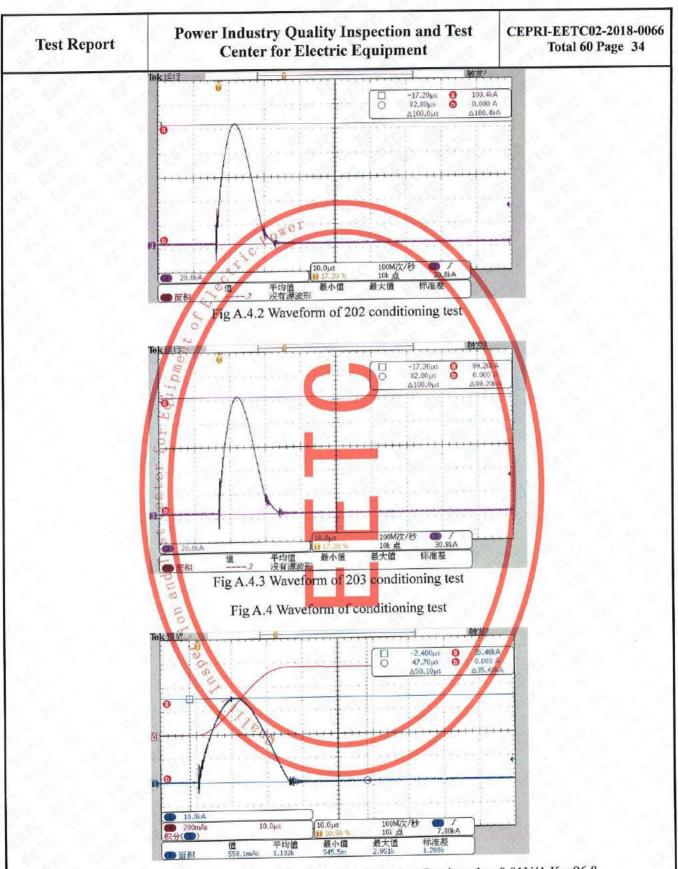
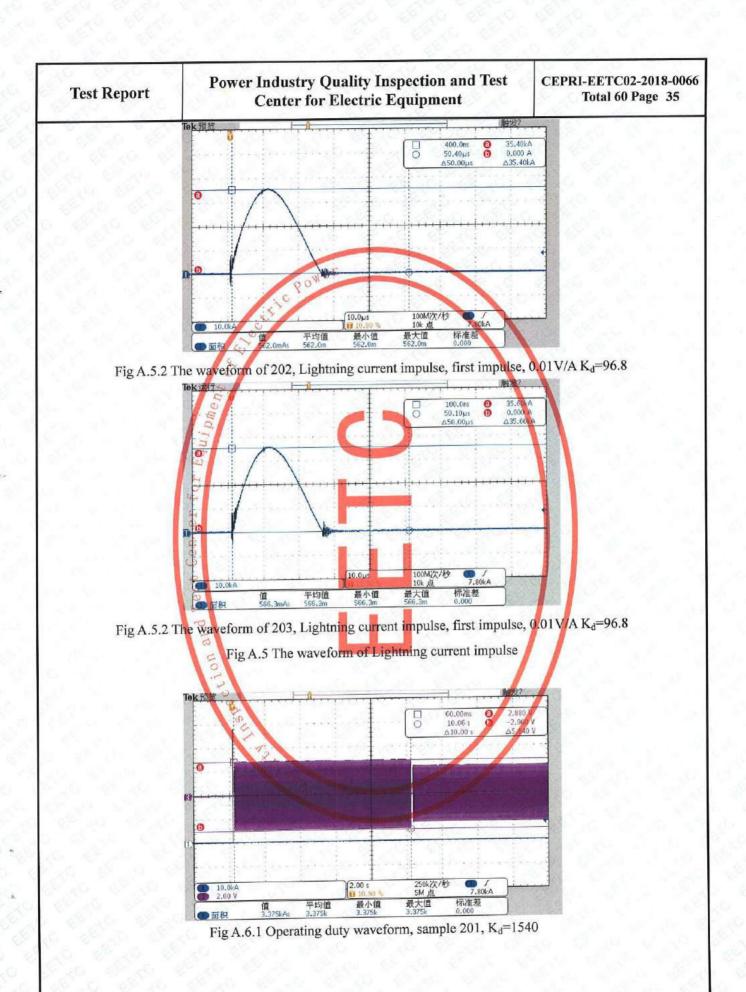
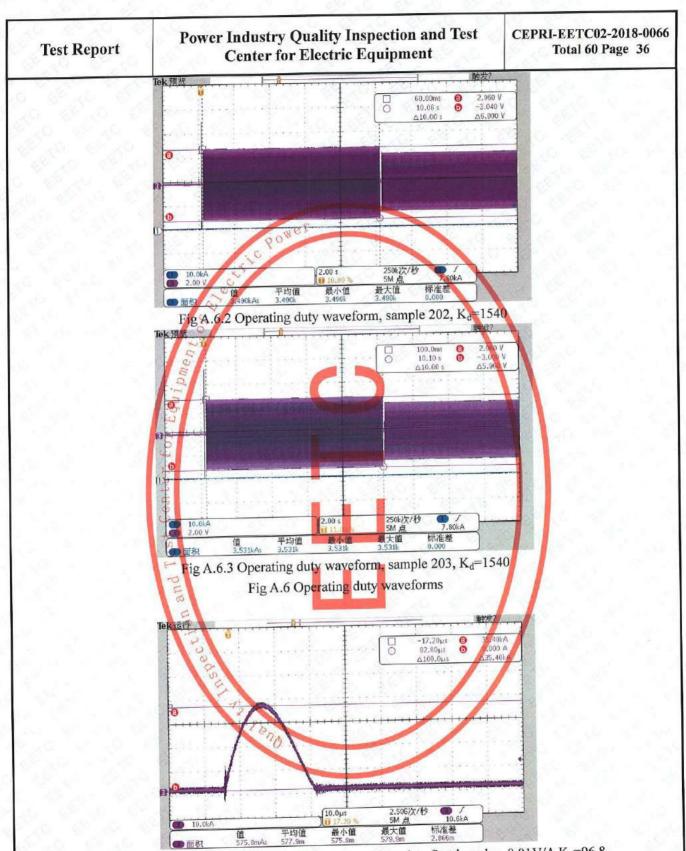
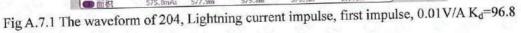





Fig A.5.1 The waveform of 201, Lightning current impulse, first impulse, $0.01V/A K_d=96.8$

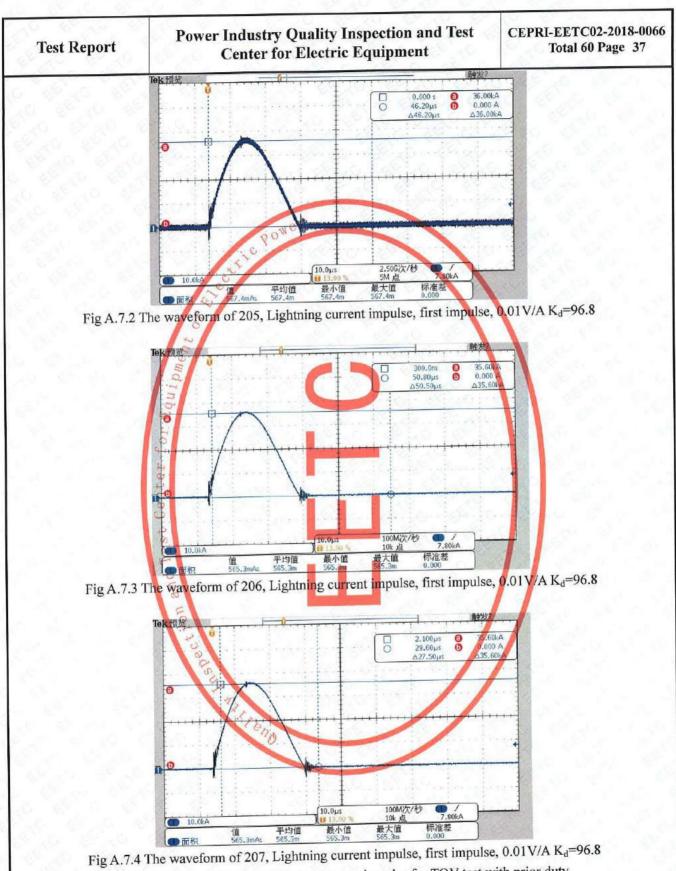


Fig A.7 The waveform of lightning current impulse for TOV test with prior duty

20 6 19 4

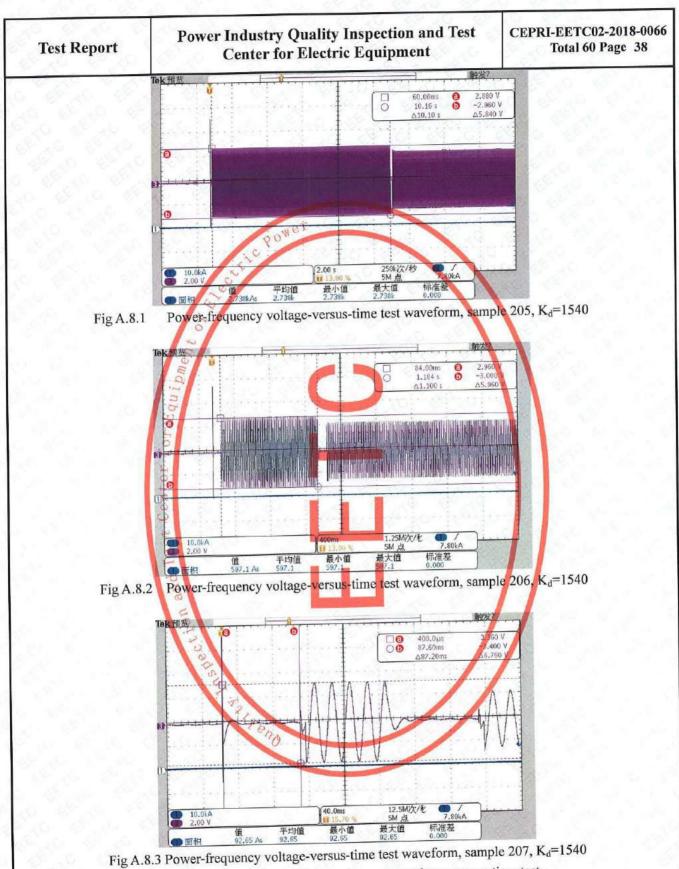
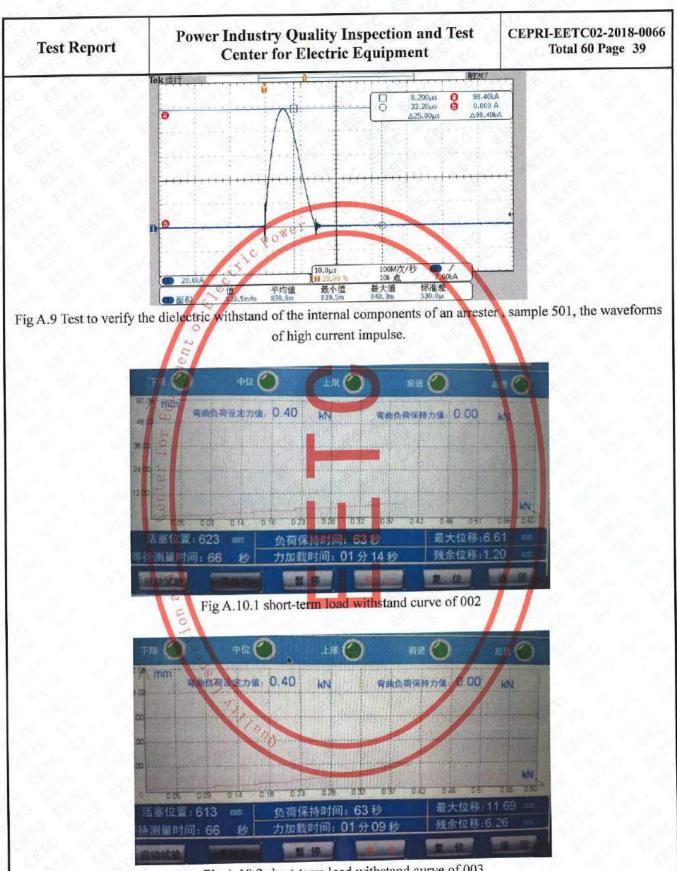
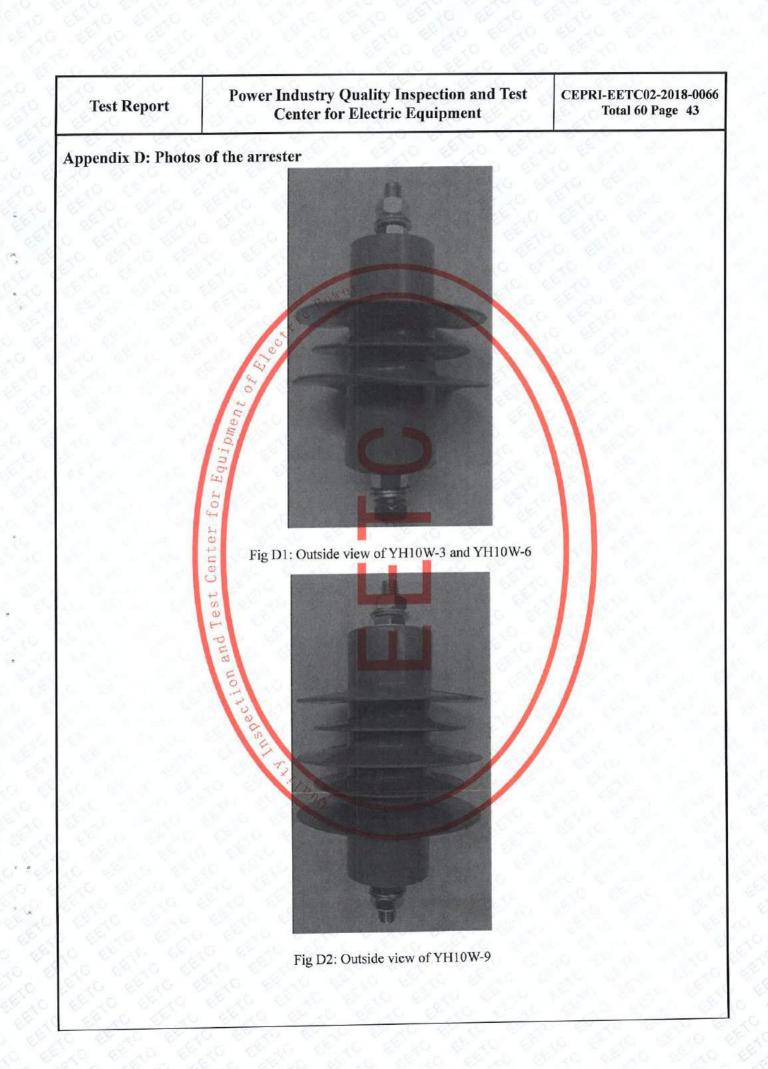
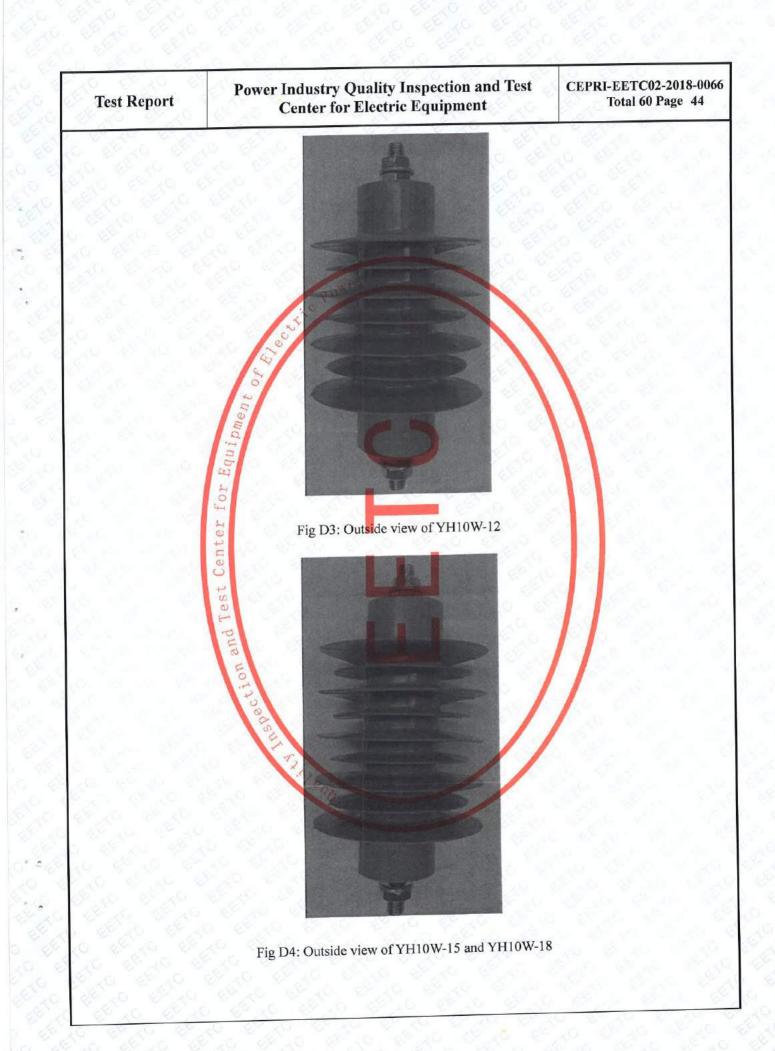
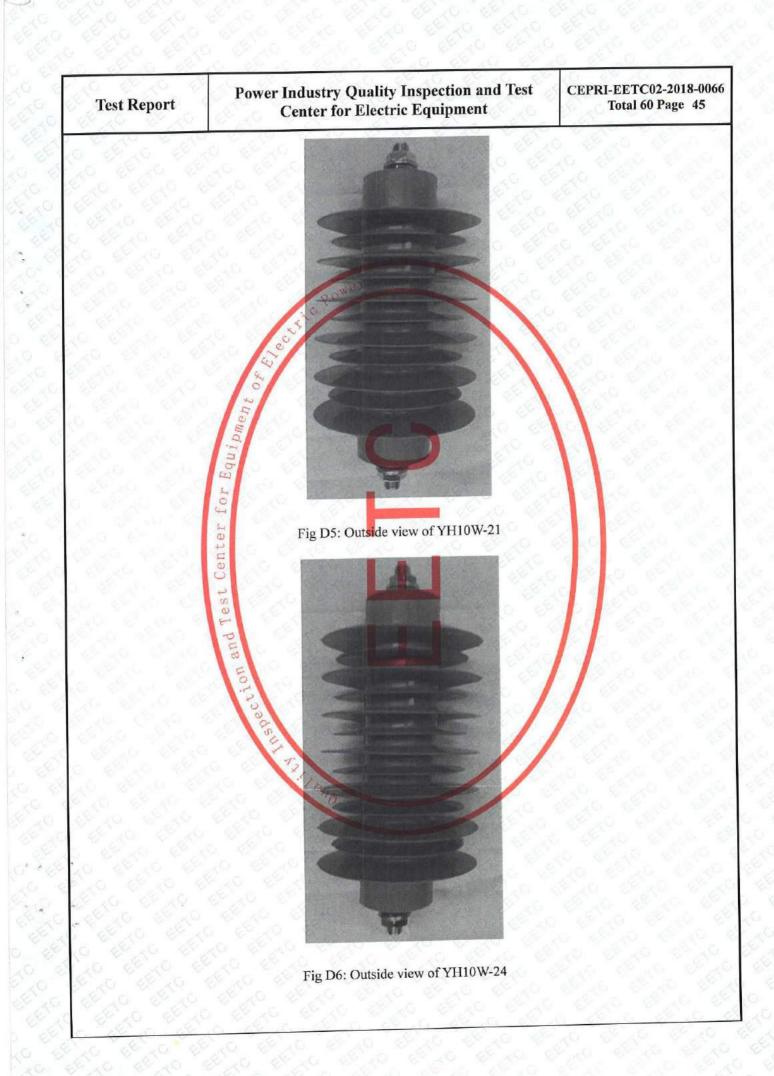


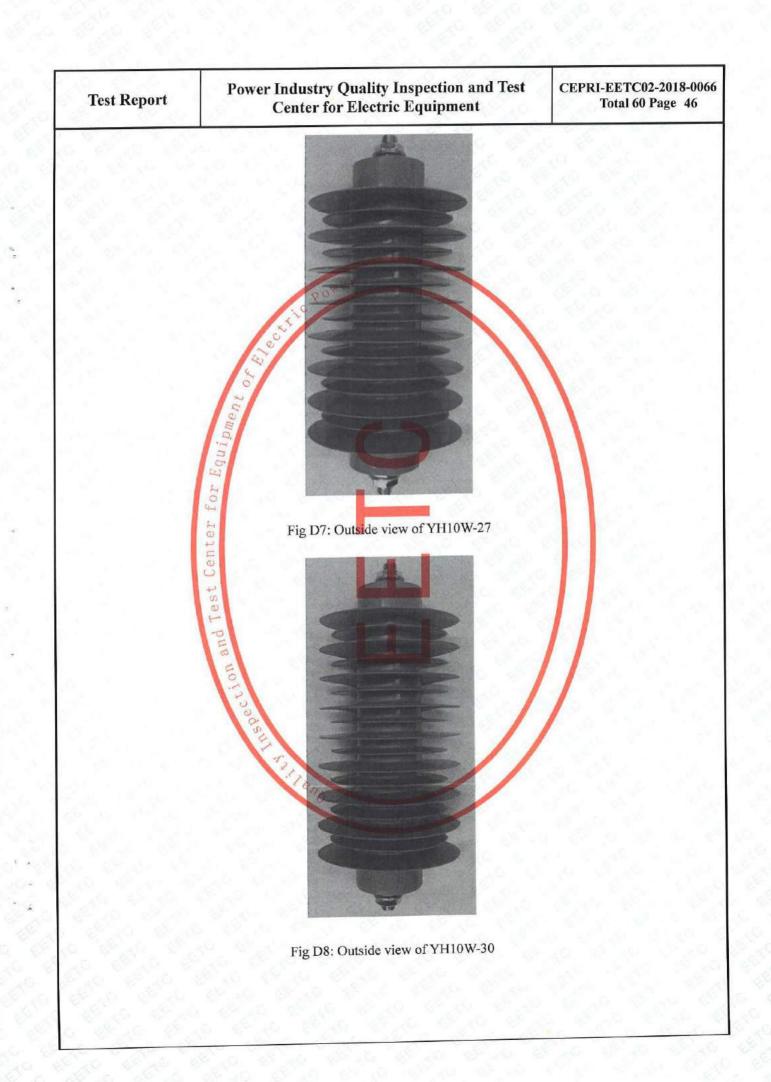
Fig A.8 The waveforms of power-frequency voltage-versus-time test

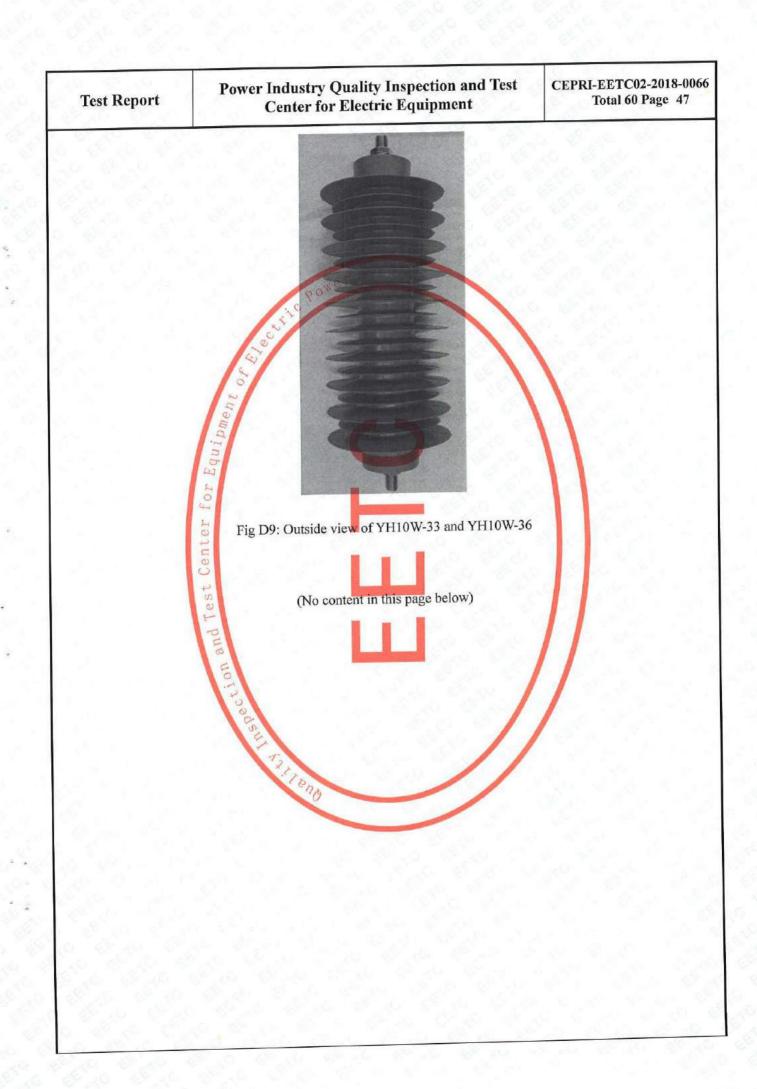


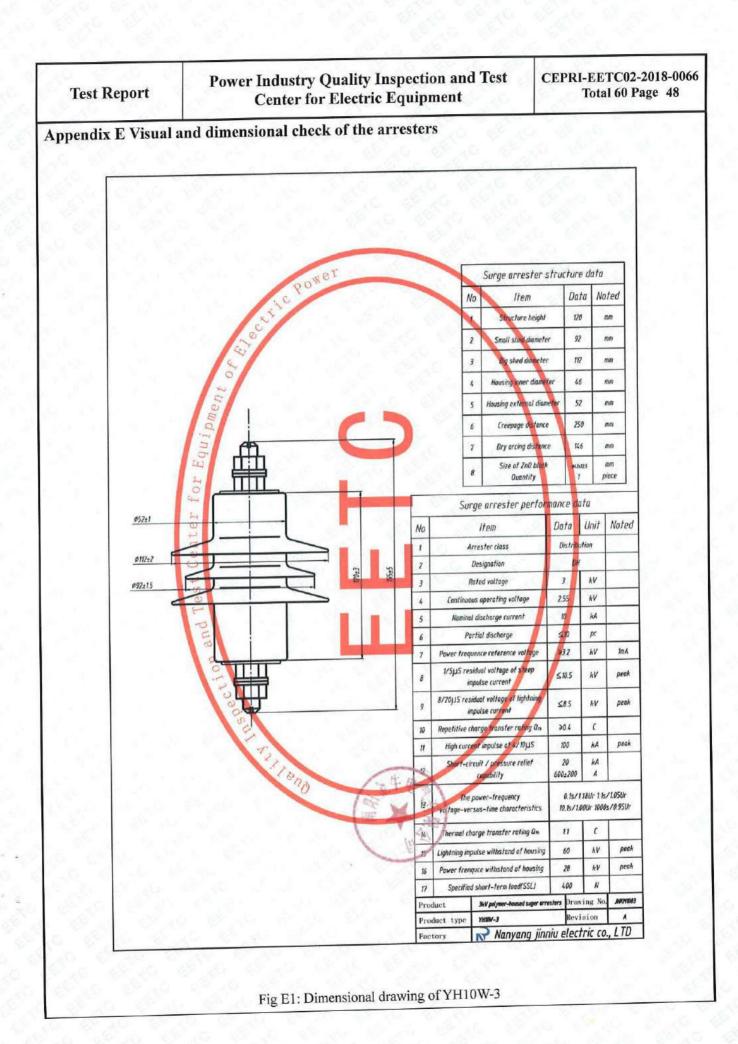

Fig A.10.2 short-term load withstand curve of 003 Fig A.10 Test curve of bending moment part 2

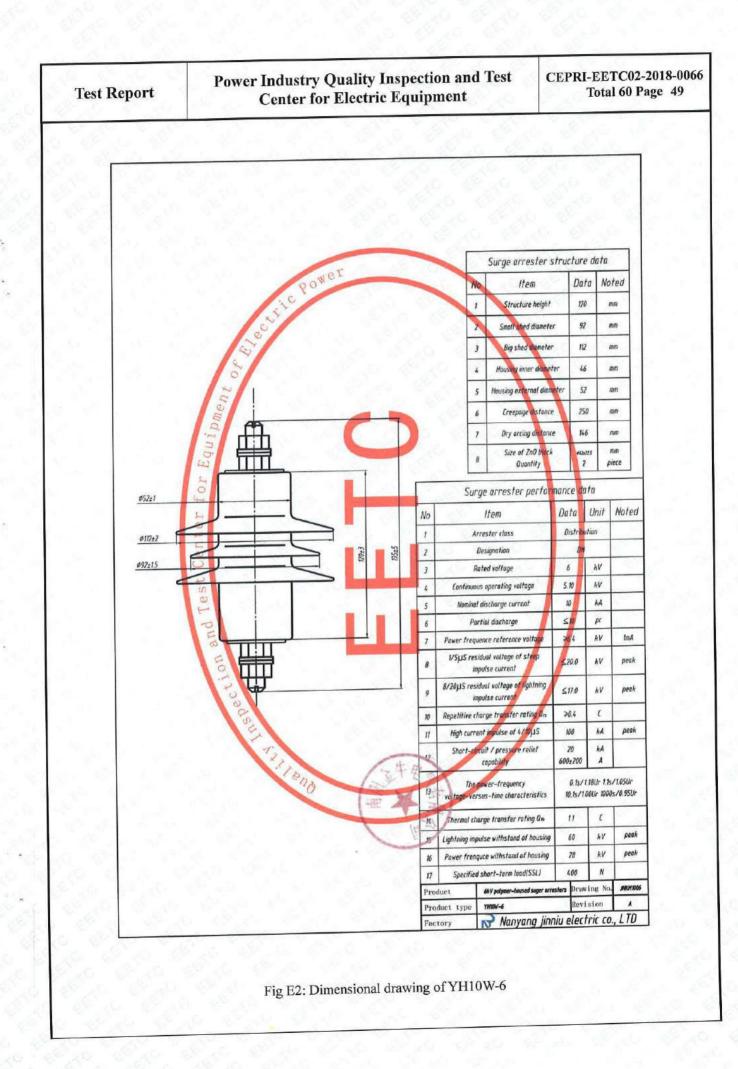

Test Report	Powe	r Industry Quality Inspection Center for Electric Equipm	n and Test ent	CEPRI-EETC02-2018-00 Total 60 Page 40	
Appendix B: Sam The test sa		on correspondence are as follows:	6°, "E		
Category name	Quantity	Number of samples	Short numb	er Comment	
100 100 100 100 100 100 100 100 100 100	1. 1. 1.	EETC02-18/11/02-0066-001	001	State States &	
	12. 23	EETC02-18/11/02-0066-001	002		
Arrester	5	EETC02-18/11/02-0066-001	003	Type YH10W-36	
	1.4.14	EETC02-18/11/02-0066-001	004		
	2.22	EETC02-18/11/02-0066-001	005	o second b	
20 19 20		EETC02-18/11/02-0066-201	201		
	50	EETC02-18/11/02-0066-202	202	1. 1. C. A. C.	
	20	EETC02-18/11/02-0066-203	203		
	pme	EETC02-18/11/02-0066-204	204	19 Mar + 19	
Thermally prorated	69 <i>uipmen</i>	EETC02-18/11/02-0066-205	205		
section	5	EETC02-18/11/02-0066-206	206		
	er fo	EETC02-18/11/02-0066-207	207	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		EETC02-18/11/02-0066-208	208	and the second	
	Cent	EETC02-18/11/02-0066-209	209	10000	
	st.	EETC02-18/11/02-0066-210	210	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
the of the	E E	EETC02-18/11/02-0066-301	301		
	and	EETC02-18/11/02-0066-302	302		
	HO	EETC02-18/11/02-0066-303	303	-	
	1	EETC02-18/11/02-0066-304	304	· · ·	
	epe	EETC02-18/11/02-0066-305	305	· · ·	
		EETC02-18/11/02-0066-306	306	-	
		-ÉETC02-18/11/02-0066-307	307	A Barren Charles	
		EETC02-18/11/02-0066-308	308	No. Con	
Resistor	16	EETC02-18/11/02-0066-309	309	S. C. S. S. S.	
	8 . Cal	EETC02-18/11/02-0066-310	310		
	19/10/18	EETC02-18/11/02-0066-311	311		
	0.000	EETC02-18/11/02-0066-312	312	Server State S	
18 36 6	1. S.S.	EETC02-18/11/02-0066-313	313		
No Merio	9 . 0 S	EETC02-18/11/02-0066-314	314	14. C.S. + 15	
	6666	EETC02-18/11/02-0066-315	315		
20 0 00	de la se	EETC02-18/11/02-0066-316	316		

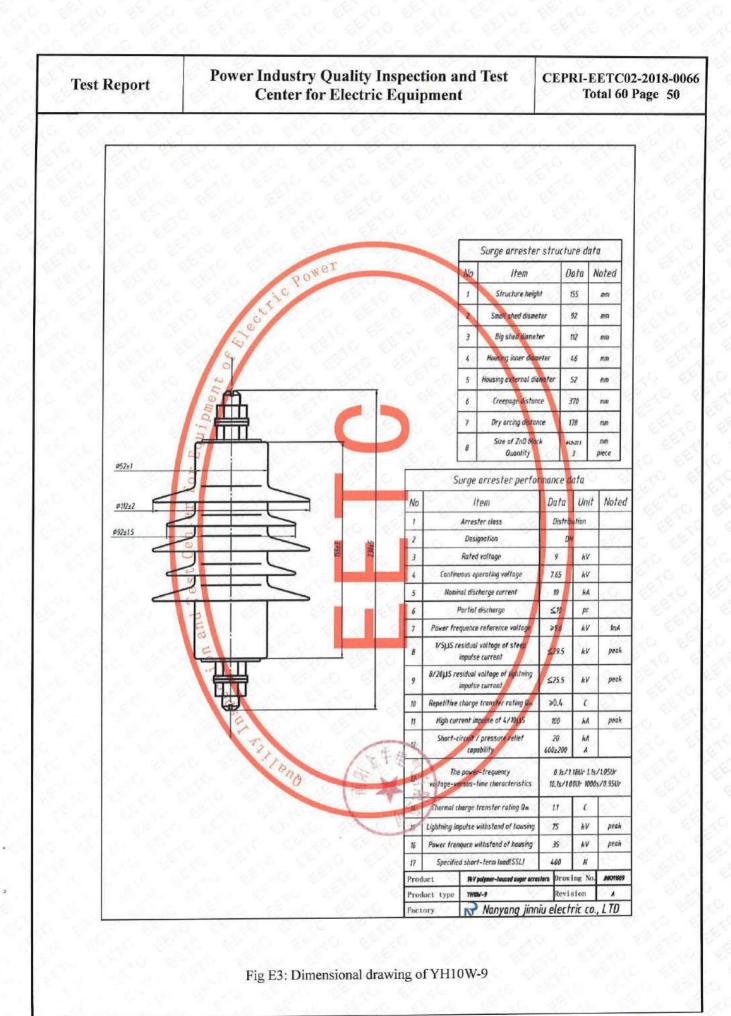

Test Report	Powe	Power Industry Quality Inspection and Test Center for Electric Equipment			I-EETC02-2018-0060 Total 60 Page 41
Category name	Quantity	Number of samples	Short numb	er	Comment
NO SELE	19. 20 E	EETC02-18/11/02-0066-401	401	20	Type YH10W-3
		EETC02-18/11/02-0066-402	402	er de	Type YH10W-6
Housing	2014	EETC02-18/11/02-0066-403	403	20	Type YH10W-9
	1220	EET C02-18/11/02-0066-404	404	100	Type YH10W-12
	2.2	EETC02-18/11/02-0066-405	405	G X	Type YH10W-15
	2	2) EETC02-18/11/02-0066-406	406	20	Type YH10W-18
	12 0	EETC02-18/11/02-0066-407	407		Type YH10W-21
	pmenu	EETC02-18/11/02-0066-408	408		Type YH10W-24
	Equi	EETC02-18/11/02-0066-409	409		Type YH10W-27
	for	EETC02-18/11/02-0066-410	410		Type YH10W-30
	ter	EETC02-18/11/02-0066-411	411	210	Type YH10W-33
	Cen	EETC02-18/11/02-0066-412	412		Type YH10W-36
Dielectrically prorated	t I G	EETC02-18/11/02-0066-501	501		Star Star
	P	EETC02-18/11/02-0066-601	601	11	£
specimens of shed and	ionean	EETC02-18/11/02-0066-602	602		a Neter S
housing materials	5	EETC02-18/11/02-0066-603	603		28. Y. 34.

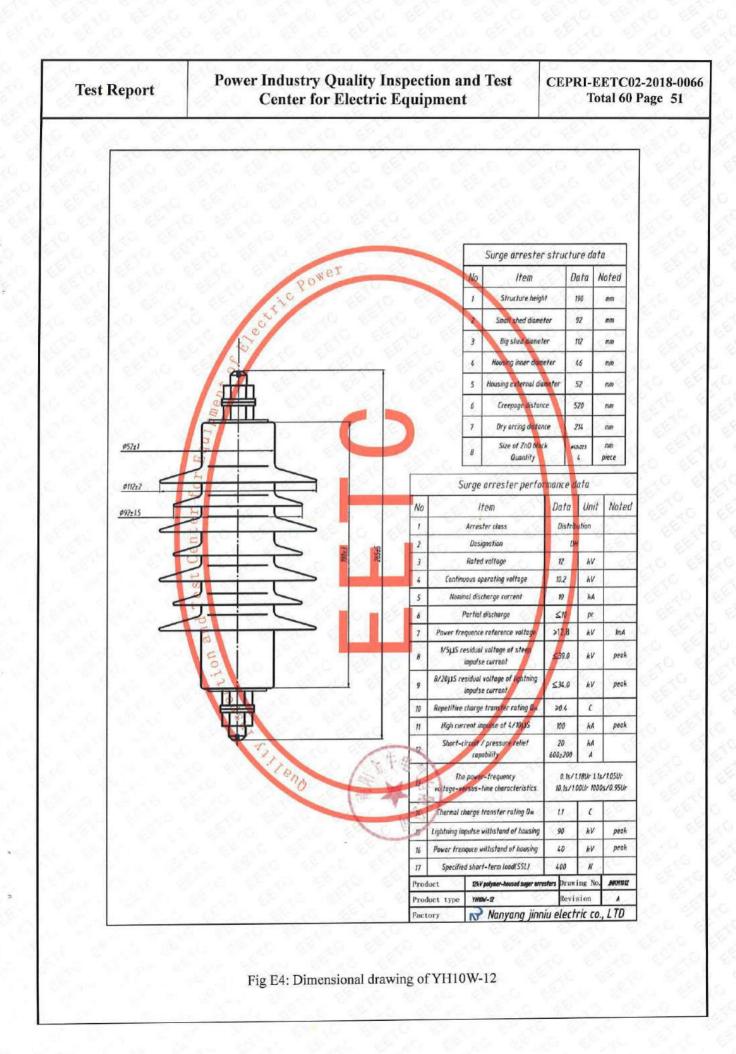

	Fest Report	Power	Industry Quality I Center for Electric		Fest CEPRI-EET Total		FC02-2018-0066 1 60 Page 42	
App	endix C: Mai	n test device	10.00	5 20 10	de la	de la		
NO.	Device name	Device NO.	Measurement	Uncertainty /Accuracy	Calibra	tion institution	Expiration date	
1	Long duration (rectangular) current impulse generator	EETC02-0001	2ms 10 kA , 30kV	U _{rel} =0.015 k=2 U _{rel} =0.014 k=2	 Construction of the state of th	center for high measurement	2019-06-04	
2	impulse current generator	EETC02-0003	8/20 μs 100 kA, 20kV 4/10 μs 150 kA, 20kV 30/80 μs 50 kA, 20kV	U _{rel} =0.017 k=2 U _{rel} =0.014 k=2	and the second second second second	center for high measurement	2019-06-04	
3	Steep current impulse generator	EETC02-0004	² 1/5μs 20kA , 20kV	U _{rel} =0.015 k=2 U _{rel} =0.014 k=2	National center for high voltage measurement		2019-06-04	
4	impulse current generator	EETC02-0005	8/20 μs 50 kA, 20kV 30/80 μs 10 kA, 20kV	U _{rel} =0.015 k=2 U _{rel} =0.014 k=2		center for high measurement	2019-06-04	
5	Operating duty test system	EETC02-0009	0~10kV; 0~100A	U _{rel} =0.0058 k=2 U _{rel} =0.009 k=2		center for high measurement	2019-10-25	
6	Accelerated aging test system	т <i>б</i> д ЕЕТС02-0036	115℃; 0-6kV	U _{rel} =0.3°C k=2 U _{rel} =0.0058 k=2	met	ei province eorological etrological cation station	2019-10-24	
7	Partial discharge test system	EETC09-1046	0-500 pC	Class 10		l center for high e measurement	2019-11-02	
8	Series resonance measurement system	ی EETC09-1029	(40-1100) kV	Class 3		l center for high e measurement	2020-02-01	
9	Impulse voltage measurement system	EETC09-1030	(200-3000)kV	Class 3		l center for high e measurement	2019-04-27	

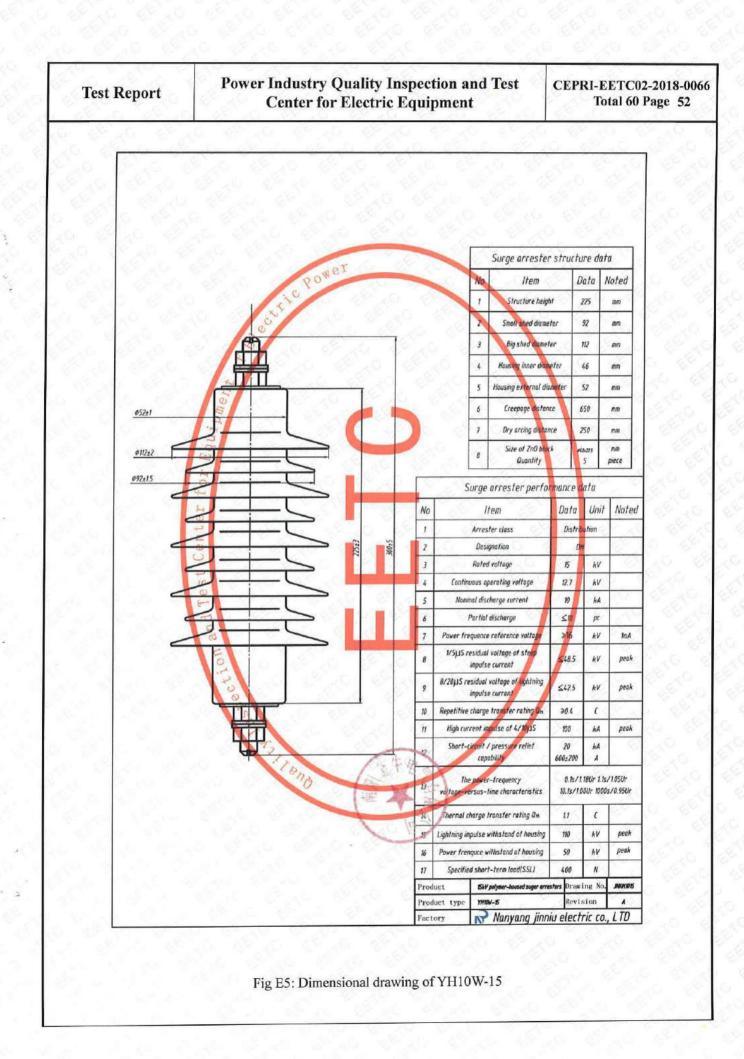

521.1 0ng

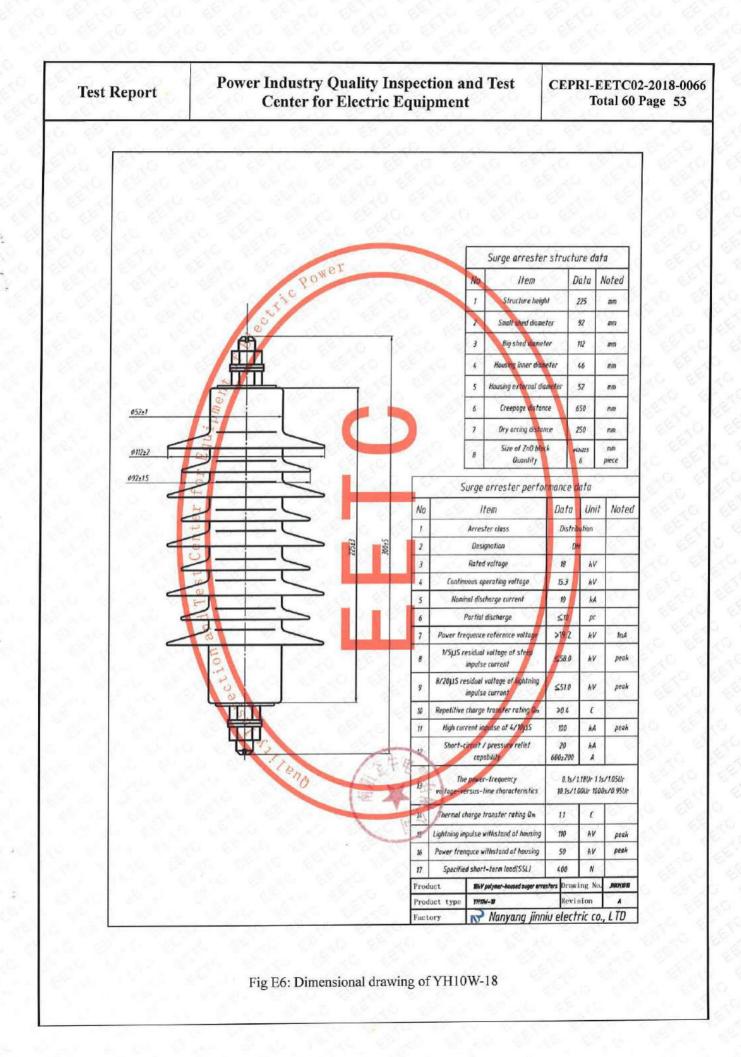


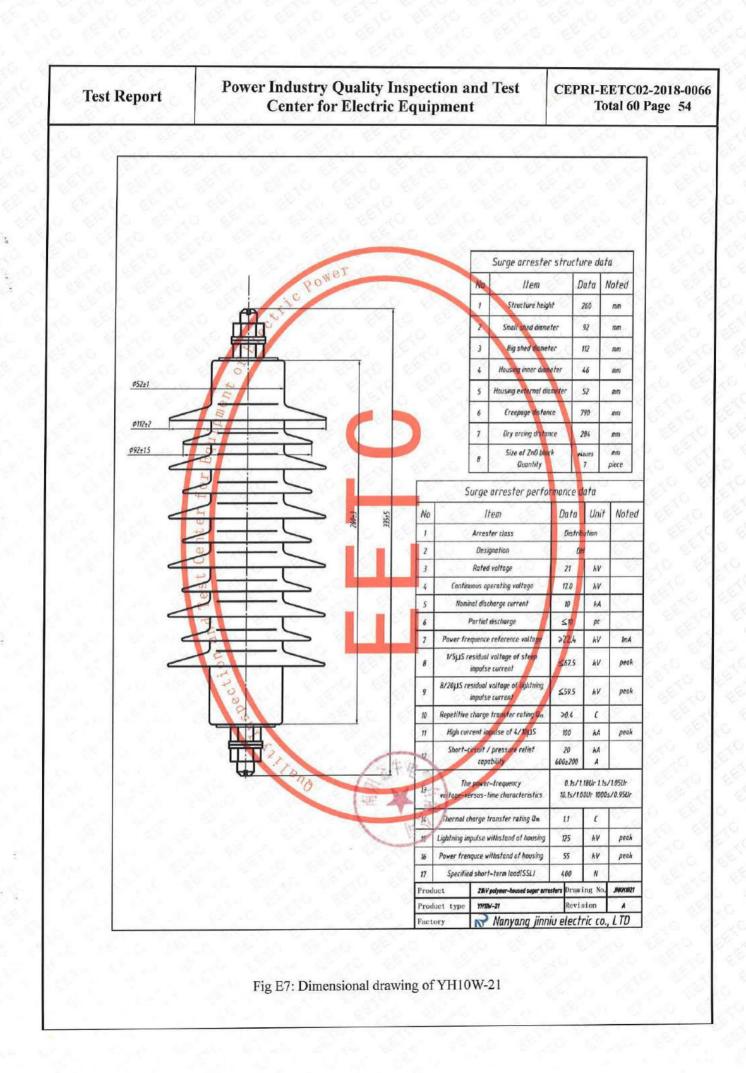


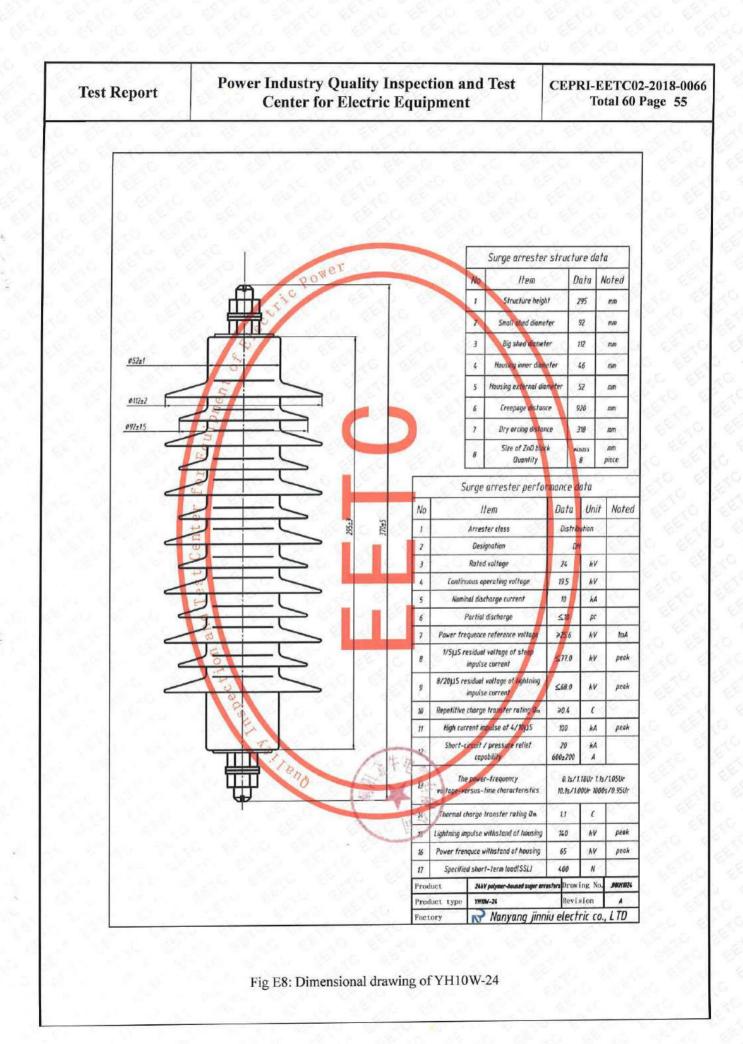


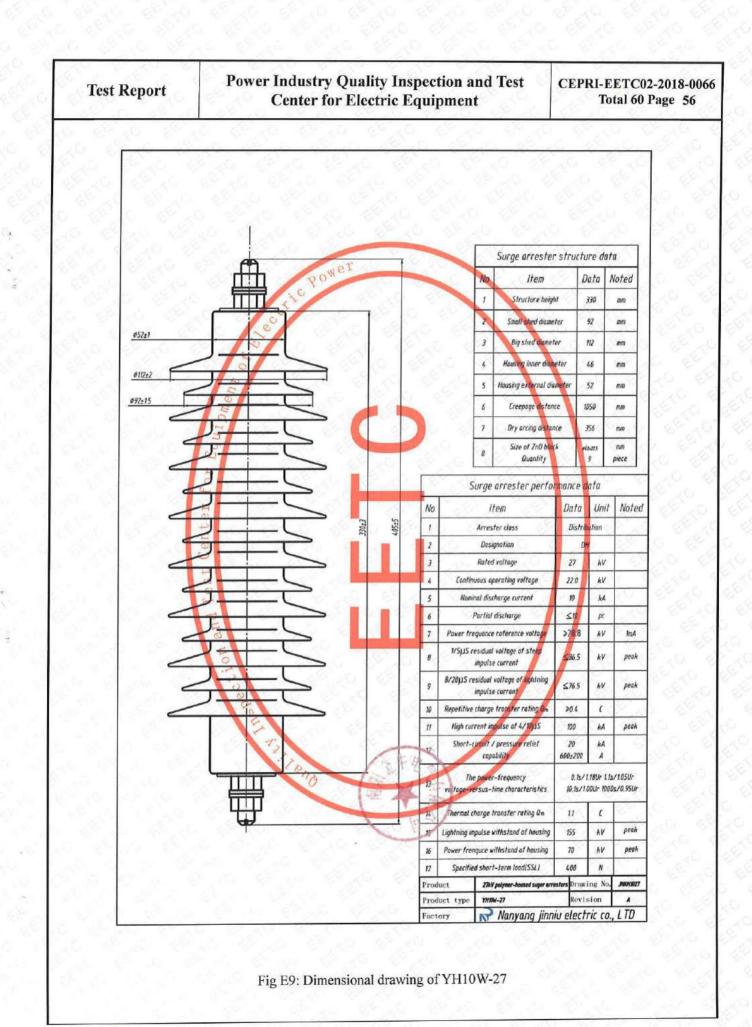


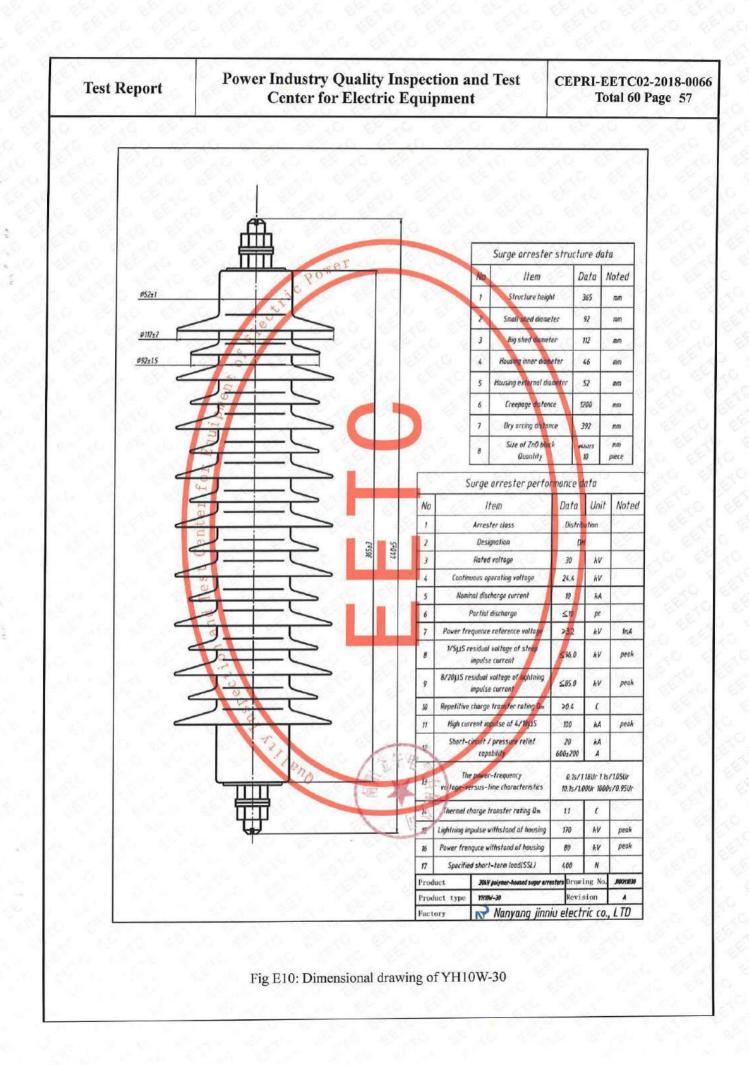


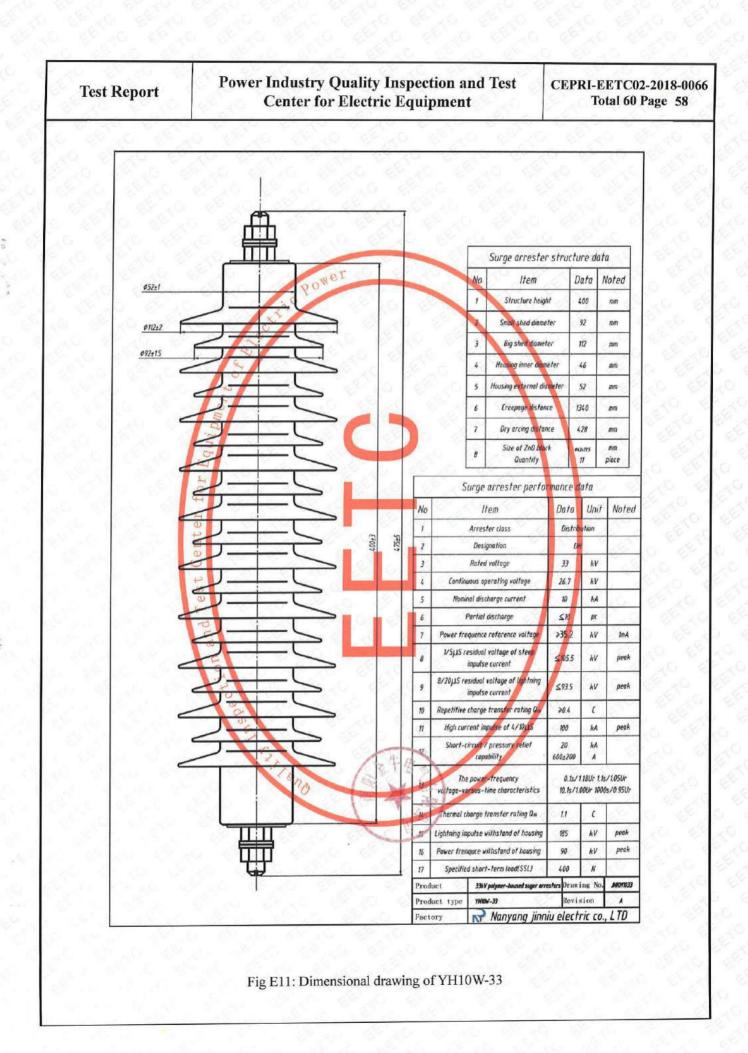












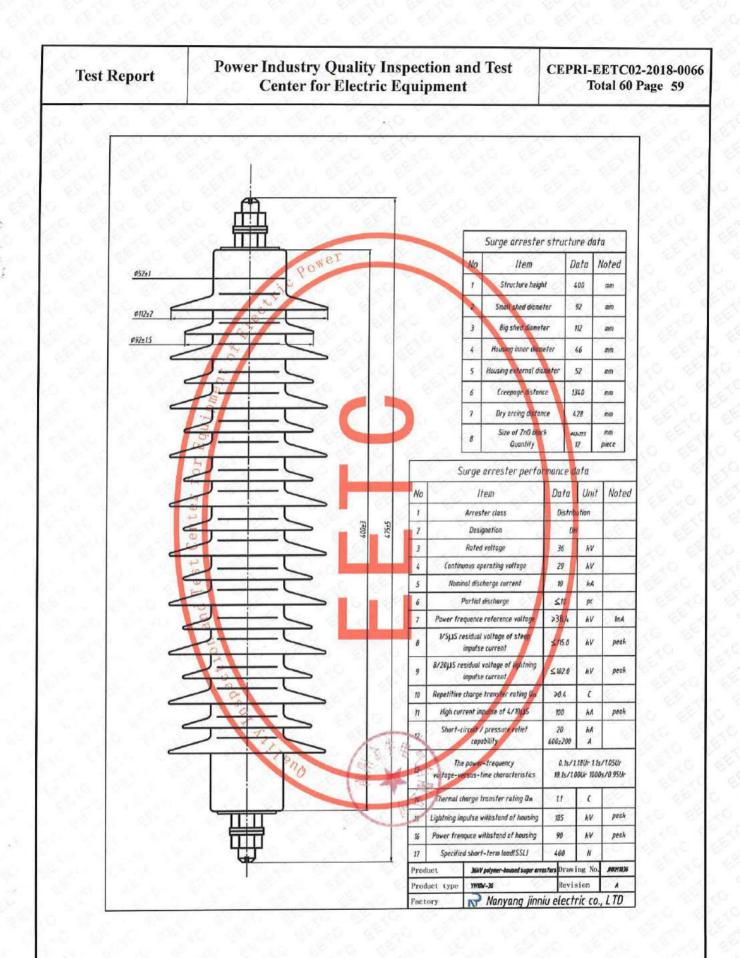


Fig E12: Dimensional drawing of YH10W-36

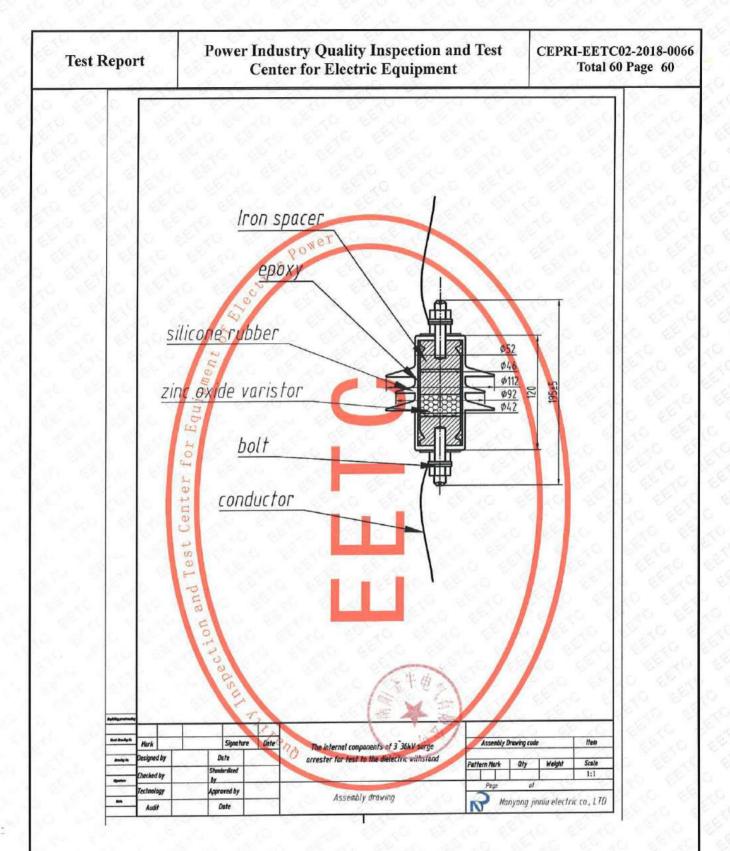


Fig E13: Dimensional drawing of dielectrically prorated section