Type test report no. VR 1E 001e

Temperature rise of contacts of diverter switch

	Product Approval CTTP/Wag 10.02.2017
Type test for types:	Diverter switches VACUTAP ${ }^{\circledR}$ VRS / VRM / VRH / VRX with maximum rated through-current up to 1000 A.
Test specification:	IEC 60214-1:2014, sub-clause 5.2.2: "Temperature rise of contacts".
Test sample:	VACUTAP ${ }^{\circledR}$ VRS III 1000 Y - 72.5, S/N: 1782303.
Manufacturer:	Maschinenfabrik Reinhausen GmbH, Regensburg, Germany.
Date of test:	January 2017.
Place of test:	Maschinenfabrik Reinhausen GmbH, Regensburg, Germany.
Tests performed:	Measurement of temperature rise of contacts with a test current of 1.2 times the maximum rated through-current.
	The test was performed on a single phase (sector) of the diverter switch.
	Test current: $1.2 \times 1000 \mathrm{~A}=1200 \mathrm{~A}$.
Test results:	The requirements of IEC 60214-1:2014 were met. All steady temperature rises of contacts were below the maximum admissible value of 20 K .

This report contains 4 pages.
i. V. Dr. Thomas Strof [valid without signature]

Maschinenfabrik Reinhausen GmbH - PRODUCT APPROVAL -

Page 2 of 4 / VR 1E 001e

1. Test specification

The type tests were performed in accordance with IEC 60214-1:2014 "Tap-changers - Part 1: Performance requirements and test methods", sub-clause 5.2.2 "Temperature rise of contacts".

2. Data of test sample

Type designation:
Type characteristics:
Serial number / IBASE:
Year of manufacture:
Manufacturer:

VACUTAP ${ }^{\circledR}$ VRS III 1000 Y - 72.5
Diverter switch
1782303 / 576668179
2016
Maschinenfabrik Reinhausen GmbH, Regensburg, Germany.

3. Scope of application

Diverter switches type VACUTAP ${ }^{\circledR}$ VR are available in the basic design variants VACUTAP $^{\circledR}{ }^{\circledR}$ VRS, VACUTAP ${ }^{\circledR}$ VRM, VACUTAP ${ }^{\circledR}$ VRL, VACUTAP ${ }^{\circledR}$ VRH and VACUTAP ${ }^{\circledR}$ VRX.
The design of sectors (current paths) and contacts that carry current continuously is the same for all diverter switches type VACUTAP ${ }^{\circledR}$ VRS, VACUTAP ${ }^{\circledR}$ VRM, VACUTAP ${ }^{\circledR}$ VRH and VACUTAP ${ }^{\circledR}$ VRX with maximum rated through-current up to 1000 A.

According to IEC 60214-1:2014 the type test was performed on a single phase (single current path) of diverter switch type VACUTAP ${ }^{\circledR}$ VRS III $1000 \mathrm{Y}-72.5$ with a test current of 1.2 times of the maximum rated through-current $(1.2 \times 1000 A=1200 \mathrm{~A})$.

The temperature rise of contacts does not depend on the insulation levels of the diverter switch.
Therefore this type test report is valid for diverter switches type VACUTAP ${ }^{\circledR}$ VR with following characteristics:

- Design variants:
- Number of phases:
- Number sectors (per phase):
- Maximum rated through-current:

VRS, VRM, VRH or VRX
1, 2 or 3
1 or 2^{1}
up to 1000 A
${ }^{1}$ Single phase design with two sectors for applications with variable shunt reactors with maximum rated step voltage $2 \times 6000 \mathrm{~V}$ (VACUTAP ${ }^{\circledR}$ VRX).

4. Test conditions / Test arrangement

Mounting:	The test sample was mounted in a test tank.
Surrounding medium:	Transformer oil according to the requirements of IEC 60296. The oil temperature was less than $40^{\circ} \mathrm{C}$.
Condition of the test sample:	New, as manufactured.
Connection of the test sample:	Test circuit connected to the take-off terminal " Y " and the diverter switch terminal " B " of the test sample (see figure 1).
Connection leads:	Copper bars with dimensions $50 \times 10 \mathrm{~mm}$ (cross-section of $500 \mathrm{~mm}^{2}$).
Measurement:	By means of thermocouples (NiCr-Ni, type K) welded onto the contacts and reference points 25 mm below the contacts.
Measuring points:	See figure 2.

Figure 1: Test circuit and position of the test sample during the test.

Movable contacts (diverter switch insert):

Stationary contacts (oil compartment):

Figure 2: Measuring points.

5. Tests performed

Test current:
Test duration:

$$
1.2 \times 1000 \mathrm{~A}=1200 \mathrm{~A} .
$$

Measurement at steady temperature rise, i.e. the change of temperature was less than 1 K for more than one hour.
Table 1 shows the determined temperature rise of contacts. The highest temperature rise is always indicated for parallel or equivalent contacts. Table 2 shows diverter switches type VACUTAP ${ }^{\circledR}$ VRS, VACUTAP ${ }^{\circledR}$ VRM, VACUTAP ${ }^{\circledR}$ VRH and VACUTAP ${ }^{\circledR}$ VRX covered by this type test.
All steady temperature rises of contacts were below the admissible value of 20 K .

Designation of contacts	Measuring points (see fig. 2)	Steady temperature rise
Main contact connected to take-off terminal		
Stationary contacts	$691 \ldots 693,695 \ldots 699$	10.7 K
Stationary arcing contact	694	8.5 K
Oil below stationary contacts	690	-
Movable contacts	$570 \ldots 573,575 \ldots 578$	10.7 K
Movable arcing contact	574	8.4 K
Oil below movable contacts	579	-
Main contact connected to diverter switch terminal	$621 \ldots 624,626 \ldots 629$	10.2 K
Stationary contacts	625	8.8 K
Stationary arcing contact	620	-
Oil below stationary contacts	$200 \ldots 203,205 \ldots 208$	11.3 K
Movable contacts	204	8.6 K
Movable arcing contact	209	-
Oil below movable contacts		

Table 1: Steady temperature rises of measuring points.

Maximum rated through-current of diverter switch VACUTAP $^{\circledR} \mathrm{VR}$	Basic design variants	Number of phases	Number of sectors per phase
650 A	VRX	1	2
	VRH	1,2 or 3	1
700 A	VRS, VRM	1,2 or 3	1
1000 A	VRS, VRM	1,2 or 3	1

Table 2: Diverter switches covered by this type test.

6. Test results

The requirements of IEC 60214-1:2014 "Tap-changers - Part 1: Performance requirements and test methods", sub-clause 5.2.2 "Temperature rise of contacts" were met.
All steady temperature rises of contacts were below the admissible value of 20 K .

