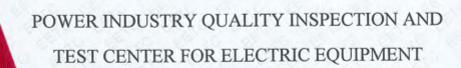


TEST REPORT


CEPRI-EETC03-2019-0826 (E)

Client: Siemens Transformer (Wuhan) Co., Ltd.

Object: Power Transformer

Type: SFZ11-100000/110

Test Category: Routine test, type test and special test

NOTICE

- 1. This report will enter into effect with seals of test center.
- 2. This report is legally made available accompany with compiled, checked, verified and approved signatures.
- 3. Alter the report is invalid.
- 4. This report only takes responsibility to the test object.
- 5. Part of copy is invalid.
- 6. Any objections in the report should be posed within 15 days once the report is received.
- 7. The inspection and testing management system of China Electric Power Research Institute includes the following institutes:

National Wind Power Integration Research and Test Center

☆Power Industry Quality Inspection and Test Center for Electric Equipment

Power Industry Quality Inspection & Test Center for Electric Power Equipment and Instruments

Power Industry Quality Inspection & Test Center for Electrical

Material and Components

Power Industry Quality Inspection & Test Center for Automation Equipment

Power Industry Quality Inspection & Test Center for Communication Equipment

Power Industry Quality Inspection & Test Center for Concrete Power and Communication

Poles

Power System Electromagnetic Compatibility and Electromagnetic Environmental Research and Monitoring Center

Address: NO.143, Luoyu Road, Hongshan District, Wuhan, Hubei Province, 430074.

Fax: 86-27-5937-8488 Service line: 400-656-5689 Supervision hotline: 010-82813498

E-mail: eetc@epri.sgcc.com.cn Website: http://www.epri.sgcc.com.cn

Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC03-2019-0826(E) Total 32 Page 1

Catalogue

1. Catalogue	1
2. Signature Page	2
3. Test Results	3
4. Content	7
5. Appendix A Object Parameters	22
6. Appendix B The Main Test Devices	24
7. Appendix C Lightning Impulse Test Waveforms	26

Power Industry Quality Inspec Center for Electric Equi	CEPRI-EETC03-2019-0826(E) Total 32 Page 2	
Siemens Transformer (Wuhan) Co.,	Manufacturer	Siemens Transformer(Wuhan) Co. Ltd.
草一葉	Туре	SFZ11-100000/110
检测报告	Serial No.	V143101
Routine test, type test and special test	Test Date	2019.08.08~2019.08.12
IEC 60076-2:2011 Power liquid-in IEC 60076-3:2013 Power T external IEC 60076-10:2016 Power tr	Transformers I nmersed transformer ransformers Part 3 clearances in air ransformers Part 10	Part 2: Temperature rise for
temperature-rise test, determination of no-load current, winding hot-spot ter excitation characteristic, measurement transformers, measurement of the pow- of frequency response were performed	f sound levels, memperature-rise memorature from series of zero-sequent of zero-sequent taken by the familion SFZ11-100000	easurement of the harmonics of the asurement, measurement of no-loa rice impedance(s) on three-phase and examp motors and measurement of 110 Power Transformer which was
English version.	anings, the Chines 国泰 杨风泰	e report shall take priority over th
	1 - 11/1	
	Siemens Fransformer Wuhan) Co., Power Transformer Wuhan) Co., Edd: Power Transformer Transformer Transformer Transformer transformer transformer Wuhan One-load current, winding hot-spot terexcitation characteristic, measurement transformers, measurement of the pow of frequency response were performed provided by Siemens Transformer (Wuhan Transformer) Wuhan Transformer (Wuhan Transformer) In the event of any difference in measurements.	Siemens Transformer Wuhan) Co., Manufacturer Type Serial No. Routine test, type test and special test IEC 60076-1:2011 IEC 60076-2:2011 IEC 60076-3:2013 Power Transformers Part 1 IEC 60076-1:2016 Power Transformers Part 3 external clearances in air IEC 60076-10:2016 V143101 According to IEC 60076-1:2011 and other standards temperature-rise test, determination of sound levels, moload current, winding hot-spot temperature-rise mee excitation characteristic, measurement of zero-seque transformers, measurement of the power taken by the far of frequency response were performed on SFZ11-10000 provided by Siemens Transformer(Wuhan) Co., Ltd. All the requirements. In the event of any difference in meanings, the Chinese English version.

Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC03-2019-0826(E) Total 32 Page 3

Test Results

No.	Item	Requirements	Results	Evaluation	
1	Measurement of d.c. Insulation Resistance between Each Winding to Earth and between Windings (Routine Test)	Provide the measured values	HV—LV & earth: 22500 M Ω LV—HV & earth: 21100 M Ω HV & LV— earth: 21200 M Ω	1	
2	Measurement of Absorption Ratio (Routine Test)	Provide the measured values	See Content 1	1	
3	Check of Core and Frame Insulation (Routine Test)	Core: d.c. 2500V 60s Frame: d.c. 2500V 60s Core — frame: d.c. 2500V 60s	d.c. 2500V 60s Without breakdown d.c. 2500V 60s Without breakdown d.c. 2500V 60s Without breakdown	Passed	
4	Determination of Capacitances Windings-to-earth and between Windings (Routine Test)	Provide the measured values	See Content 5	1	
5	Measurement of Dissipation Factor (tan δ) of the Insulation System Capacitances (Routine Test)	Dissipation Factor tan δ(%): ≤0.5	HV—LV & earth: 0.125 LV—HV & earth: 0.175 HV & LV— earth: 0.184	Passed	
6	Measurement of Winding Resistance (Routine Test)	Unbalance rate between three phases: ≤2%(Phase) ≤1%(Line)	Maximum unbalance rate HV winding: 0.75%(Phase) LV winding: 0.06% (Line)	Passed	
7	Measurement of Voltage Ratio and Check of Phase Displacement (Routine Test)	Ratio tolerance (%): -0.5~+0.5 Connection Symbol: YNd11	(-0.14~+0.05) % YNd11	Passed	
8	Measurement of No-load Loss and Current (Routine Test)	No-load loss P_0 (kW): \leq 59.0(1+15%) No-load current I_0 (%): \leq 0.3	47.98kW 0.07%	Passed	
9	Measurement of No-load Loss and Current at 90% and 110% of Rated Voltage (Routine Test)	Test voltage: 90%Ur、110%Ur No-load loss P ₀ (kW): — No-load current I ₀ (%): —	90%Ur 110%Ur 35.36kW 78.69kW 0.05% 0.73%	1	

Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC03-2019-0826(E) Total 32 Page 4

Test Results(continued)

No.	Item Requirements Results		Evaluation	
10	Check of the Ratio and Polarity of Built-in Current Transformers (Routine Test)	Ratio should be consistent with the nameplate. Negative polarity	Ratio was consistent with the nameplate. Negative polarity	Passed
11	Measurement of Short-circuit Impedance and Load Loss (Routine Test)	Load loss at 75°Gn ^t $P_{k75\%}$ (kW)? \approx 328(1+15%) Short-circuit impedance at 75°C $Z_{k75\%}$ (%): 14(1±5%) $Z_{k75\%}$ (Ω /phase): —	348.17kW 13.57% 16.42Q/phase	Passed
12	Leak Testing with Pressure (Routine Test)	Pressure (kPa): 30 Duration (h): 24 No leakage and no damage	30kPa 24h No leakage and no damage	Passed
13	Tests on On-load Tap-Changers (Routine Test)	The operation test on on-load tap-changers should be performed without failure. Collapse of the test voltage of auxiliary circuits shouldn't occur.	The operation test on on-load tap-changers was performed without failure. No collapse of the test voltage of auxiliary circuits occurred.	Passed
	Full wave for the line terminals (Routine Test)	HV (kV): -480(1±3%) LV (kV): -200(1±3%)	(-477.27 ~ -482.63)kV (-199.00 ~ -199.73)kV	Passed
14	Lightning for the Impulse neutral terminal (Type Test)	HVN (kV) : -325(1±3%)	(-321.12~-323.28)kV	Passed
y	Chopped wave for the line terminals (Type Test)	E.	(-525.09 ~ -527.25)kV (-218.57 ~ -219.23)kV	Passed
15	Applied Voltage Test (Routine Test)	HV neutral: 140kV 60s LV winding: 85kV 60s	140kV 60s No collapse 85kV 60s No collapse	Passed
16	Line Terminal AC Withstand Test (Routine Test)	Test voltage(kV): 200 Frequency(Hz): >50 Duration (s): 15≤t≤60 No collapse	200kV 200Hz 30s No collapse	Passed

Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC03-2019-0826(E) Total 32 Page 5

Test Results(continued)

No.	Item	Requirements	Results	Evaluation
17	Induced Voltage Withstand Test with Partial Discharge (Routine Test)	Withstand Test with Duration (s): $15 \le t \le 60$ 30 Partial Discharge Measured voltage $1.58U/\sqrt{3}$ 100		Passed
18	Insulation Oil Test (Routine Test)	Breakdown voltage (kV): ≥65 tan δ 90°C(%):≤0.5 Water content (mg/L): <10	69.4kV 0.12% 2.8mg/ L	Passed
19	Measurement of Dissolved Gasses in Oil (Special Test)	No obviously change before and after the test.	No obviously change before and after the test.	Passed
20	(Special Test) Temperature-rise Test (Type Test)	Cooling type Top oil temperature rise (K): ≤55 Average winding temperature rise: HV winding (K): ≤60 LV winding (K): ≤60	ONAN ONAF 44.9K 46.9K 45.5K 47.4K 46.1K 47.4K	Passed
21	Winding Hot-spot Temperature-rise Measurement	Hot-spot winding temperature rise: HV winding (K): ≤78 LV winding (K): ≰78	59.1K 68.0K 59.8K 68.1K	Passed
22	Determination of Sound Levels (Type Test)	Cooling device state $ \overline{L_{PA}} [dB(A)]: \leq 67 $ $ \overline{L_{WA}} [dB(A)]:$	On service Out of service 62dB (A) 65dB (A) 82dB (A) 88 dB (A)	Passed
23	Measurement of the Power Taken by the Fan and Pump Motors (Type Test)	Provide the measured values	See content 21	1
24	Measurement of Zero-sequence Impedance on Three-phase Transformers (Special Test)	Provide the measured values	See Content 22	1
25	Measurement of the Harmonics of the No-load Current (Special Test)	Provide the measured values	a: 53.9% b: 40.5% c: 37.9%	1

Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC03-2019-0826(E) Total 32 Page 6

Test Results(continued)

No.	Item	Requirements	Results	Evaluation
26	Measurement of No-load Excitation Characteristic (Special Test)	Provide the measured values	See Content 24	1
27	Measurement of Frequency Response (Special Test)	Provide the measured values	See Content 25	1

Test	Rei	port

Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC03-2019-0826(E) Total 32 Page 7

Content

1. Measurement of d.c. Insulation Resistance between Each Winding to Earth and between Windings, Absorption Ratio (Routine Test):

Oil temperature: 27.8°C, Relative humidity: 70.0%

Position	R ₁₅ (MΩ)	R ₆₀ (MΩ)	R ₆₀ /R ₁₅
HV—LV & earth 10700		22500	2.10
LV -HV & earth	8860 er	21100	2.38
HV & LV— earth	8450	21200	2.51

2. Check of Core and Frame Insulation (Routine Test):

Oil temperature: 27.8°C, Relative humidity: 70.0%

	-					
Position	Ap	plied d.c. voltage (V)	Duration (s)	Test	result	R ₆₀ (MΩ)(20°C)
Core—Frame & earth	6.13			Without b	oreakdown	16821
Frame—Core & earth	Dill	2500	60	Without	reakdown	15476
Core—frame				Without	reakdown	19688

3. Measurement of Winding Resistance (Routine Test):

Oil temperature: 28.1°C

Winding	Tapping position		Resistance (Ω)	1	Maximum unbalance rate (%)	Specified value (%)	
	- 4	A-0	B-0	C-0			
1 2 3 4	1 0	0.2173	0.2180	0.2187			
	2	0.2148	0.2155	0.2162			
	3	0.2123	0.2130	0.2138			
	4	5 0.2099	0.2106	0.2113			
	5	0.2076	0.2082	0.2091			
	6	0.2051	0.2058	0.2065			
	7	0.2092	0.2035	0.2043	0.75		
8	8	0.2003	0.2011	0.2018		≤2	
HV	9	0.1971	0.1974	0.1978		<2	
	10	0.2001	0.2008	0.2014			
	11	0.2025	0.2032	0.2049			
	12	0.2049	0.2056	0.2063			
	13	0.2075	0.2082	0.2089	N .		
	14	0.2098	0.2106	0.2112			
15 16 17	15	0.2125	0.2131	0.2038			
	16	0.2148	0.2156	0.2161	No		
	17	0.2174	0.2183	0.2187			
TV		a-b	b-c	c-a	0.06	≤1	
LV	19 E-27	0.03231	0.03233	0.03232	0.00	41	

Test	Re	no	rt

Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC03-2019-0826(E) Total 32 Page 8

4. Measurement of Voltage Ratio and Check of Phase Displacement (Routine Test):

Doubles	Tapping	Calculated	Measured d	eviation of volt	age ratio (%)	Specified	Connection
Position	position	voltage ratio	AB / ab	BC / bc	CA/ca	value (%)	symbol
	1	3.143	-0.02	+0.05	+0.03		
	2	3.107	-0.05	+0.04	+0.04		
	3	3.071	-0.04	+0.05	+0.02		
	4	3.036	-0.08	+0.04	+0.00		
	5	3.000	-0.09	+0.04	+0.01		YNd11
	6	2.964	1.Pm0.08	+0.03	-0.02	-0.5~+0.5	
	7	2.929	-0.09	+0.02	-0.00		
	8	2,893	-0.09	+0.02	-0.03		
HV to LV	9	2,857	-0.12	+0.02	-0.01		
	10	2.821	-0.11	+0.01	-0.02		
	11	₹2.786	-0.10	+0.01	-0.03		
	12	2.750	-0.12	+0.02	-0.04		
	13	2.714	-0.12	+0.02	-0.02		
	14	2.679	-0.13	+0.01	-0.02		
	15	2.643	-0.14	+0.01	-0.04		
	16	2.607	-0.14	+0.01	-0.04		
	17 ₽	2.571	-0.13	+0.00	-0.05	1.0	

5. Determination of Capacitances Windings-to-earth and between Windings, Measurement of Dissipation Factor (tan δ) of the Insulation System Capacitances (Routine Test):

Oil temperature: 28.1°C, Relative humidity: 74.7%

Position	Dissipation factor tanδ (%)	Capacitance C _x (nF)
HV—LV & earth	0.125	11.23
LV —HV & earth	0.175	16.27
HV & LV— earth	0.184	14.13

6. Measurement of No-load Loss and Current (Routine Test);

U/Ur	Applied vo	oltage (kV)	Measured	Measured	No-load loss	No-load	current I ₀	Specific	ed value
O/Or	avg	rms	current (A)	Joss (kW)	Po (kW)	(A)	(%)	P ₀ (kW)	I ₀ (%)
100%	38.499	38.741	1.10	48.28	47.98	1.10	0.07	≤59.0 (1+15%)	≤0.3

7. Measurement of No-load Loss and Current at 90% and 110% of Rated Voltage (Routine Test):

U/Ur	Applied voltage (kV)		Measured	Measured	No-load loss	No-load	current I ₀	Specifie	d value
0/01	avg	rms	current (A)	loss (kW)	P ₀ (kW)	(A)	(%)	P ₀ (kW)	I ₀ (%)
90%	34.643	34.683	0.688	35.40	35.36	0.688	0.05		
110%	42.347	347 45.357 10.94 84.71	84.71	78.69	10.94	0.73			

Test	Re	nor	rt
W-45-4	400		

Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC03-2019-0826(E) Total 32 Page 9

8. Measurement of Short-circuit Impedance and Load Loss (Routine Test):

8.1 Under100%Sr

Oil temperature: 29.2°C

	m	Applied	Measured	Measured	Load loss	Short-in	npedance	Speci	fied value
Winding	Tapping position	current (A)	voltage (kV)		P _{k75°C} (kW)	Z _{k75°C} (%)	Z _{k75°C} (Ω/phase)	P _{k75°C} (kW)	Z _{k75°C} (%)
	1	300.32	10.708	116.68	334.19	14.06	20.59		
HV—LV	9	320.23	9.1081	e 1113.74	348.17	13.57	16.42	≤328 (1±15%)	14(1±5%)
	17	357.50	8:0900	137.82	419.47	13.33	13.07		

8.2 Under70%Sr

	T	Applied	Measured	Measured	Load loss	Short-in	pedance	Specif	fied value
Winding	Tapping position	current (A)	voltage (kV)	loss (kW)	P _{k75°C} (kW)	Z _{k75°C} (%)	Z _{k75°C} (Ωphase)	P _{k75°C} (kW)	Z _{k75°C} (%)
	1	300,32	10.708	116.68	163.75	9.84	20.59		_
HV—LV	9	320.23	9.1081	113.74	170.60	9.50	16.42		_
	17	357.50	8.0900	137,82	205.54	9.33	13.07	-	

9. Tests on On-load Tap-changers (Routine Test):

9.1 Operation test on on-load tap-changers:

With the transformer un-energized, eight complete cycles of operation. With the transformer un-energized and with the auxiliary voltage reduced to 85% of its rated.	
value, one complete cycle of operation. 3. With the transformer energized at rated voltage and frequency at no load, one complete cycle of operation. 4. With one winding short-circuited and, rated current in the tapped winding, 10 tap-change operations across the range of two steps on each side from where a coarse or reversing changeover	Without failure

9.2 Auxiliary circuits insulation test on on-load tap-changers:

Applied position	Test voltage (kV)	Duration (s)	Test result
Auxiliary circuits	(to 2	60	No collapse
Current transformer secondary winding circuits	2.5	60	No collapse

10. Check of the Ratio and Polarity of Built-in Current Transformers (Routine Test):

Nameplate ratio	Checked ratio	A	В	C	0	Polarity
1S1-1S2	600/5	600/5	600/5	600/5		AV
2S1-2S2	600/5	600/5	600/5	600/5		Magatina
3S1-3S2	600/5	600/5	600/5	600/5	_	Negative polarity
4S1-4S2	640/2		640/2		-	polarity
1S1-1S2	300/5				300/5	

Test Report		try Quality Inspo for Electric Equ Test):			03-2019-0826(E) Page 10
Breakdown	voltage (kV)	DDF at 9	90°C (%)	Water cont	ent (mg/L)
Measured value	Specified value	Measured value	Specified value	Measured value	Specified valu

≤0.5

2.8

<10

0.12

Test state	Ha	CO	CO ₂	CH ₄	C ₂ H ₆	C ₂ H ₄	C ₂ H ₂	Total hydrocarbon
Before test	3.04	1.63	51.26	0.08	0	0	0	0.08
After insulation test	3.96	2.07	83.72	0.14	0	0	0	0.14
After temperature-rise test	5.92	6.74	89.43	0.32	0	0	0	0.32

13. Lightning Impulse Test (LI) (Routine Test, Type Test):

≥65

69.4

Temperature: 29.4°C, Relative humidity: 59.0%, Atmospheric pressure: 99.4kPa

Line terminal test sequence: One full wave reference impulse at (50~75)% of the full wave test voltage;

One full wave impulse at the full wave test voltage;

Two chopped wave impulses at the chopped wave test voltage;

Two full wave impulses at the full wave test voltage.

Neutral test sequence: One full wave reference impulse at (50~75)% of the full wave test voltage;

Three full wave impulses at the full wave test voltage.

Test result: (Oscillograms of the test voltage and the current see Appendix C)

			A CONTRACTOR OF THE PROPERTY O		ACC. 4	The second secon			
Applied	Tapping	N CO	Full wave	test voltage	e value (kV	7)	Chopped w	ave test voltage	e value (kV)
terminal	position	(50~70)%	100%	100%	100%	Specified	100%	100%	Specified
Α	1	-251.70	-479.83	-479.73	-479.21	490	-527.25	-526.86	520
В	9	-251.12	-479.10	-478.10	-477.98	-480	-525.09	-526.12	-530 (1±3%)
C	17	-247.83	482.63	-477.27	-478.32	(1±3%)	-525/12	-526.67	(1±3%)
0	1	-168.17	-321.12	-323.28	-322.08	-325 (1±3%)	1		=
a		-102.48	199.31	-199.56	-199.73	200	-219.23	-218.98	220
b	-	-104.73	-199.08	-199.30	-199.58	-200	-218.77	-218.66	-220
c	V-	-104.53	-199.23	199.00	-199.18	(1±3%)	-218.57	-218.57	(1±3%)

14. Applied Voltage Test (AV) (Routine Test):

Applied position	Test voltage (kV)	Duration (s)	Test result
HV neutral	140	60	No collapse
LV winding	85	60	No collapse

Test Report	Power	Industry Quality In Center for Electric	spection and Test Equipment	CEPRI-EETC Total 32	03-2019-0826(E) Page 11
15. Line Termin	al AC Wit	hstand Test (LTAC)	(Routie Test):		
Terminal	Тар	HV voltage (kV)	Frequency (Hz)	During time (s)	Testing results
A	5	200	200	30	No collapse
В	5	200	200	30	No collapse
C	5	200	200	30	No collapse

16. Induced Voltage Withstand Test with Partial Discharge (IVPD) (Routine Test):

Applied volt	age (kV)	Duration	Parti	discharge quantit	y (pC)
	~	Duration	A	В	C
0.4 Ur/√3	25.4		13	13	13
1.2 Ur/√3	76.2	1 min	13	13	13
1.58Ur/√3	5 100	5 min	13	13	13
1.8Ur/√3	127	30 s		-	-
	qui	5 min	13	13	13
	111	10 min	13	13	13
9	ter for	15 min	13	13	13
		20 min	13	13	13
14		25 min	13	13	13
1.58Ur/√3	100	30 min	13	13	13
		35min	13	13	13
	est	40 min	13	13	13
		45 min	13	13	13
\	pue	50 min	13	13	20
	ion	55min	13	20	20
		60 min	13	20	20
1.2Ur/√3	76.2	1 min	13	20	20
0.4Ur/√3	25.4		13	20	20

17. Leak Testing with Pressure (Routine Test):

Applied pressure (kPa)	Duration (h)	Test result		
30	24	No leakage and no damage		

Test R	eport	Pow		ry Qualit			and Test		RI-EETCO Total 32		
18.1 70% 18.1.1 Tes Test	Sr (ONA t details: method: S	N) Short-ci	reuit methors injection:								
Tapping position	Sum	oly	Shorted winding	Rated capacity (kVA)		l loss W)	Test loss (kW)	Stable tin	200	ation h)	Cooling typ
17	Н	/	LV	70000	253	3.52	252.6	3		8	ONAN
2) Testing	g step of ra	ated cur	rent injection								
Tapping position	SUPP	oly	Shorted	Rated capacity (kVA)	cur	rent	Test curren	Measure winding shutdow instant	at Dura	ation h)	Cooling typ
17	HV	7	e Ly	70000	408	3.24	408.42	HV. L	X 1	1	ONAN
Under specified current	HV wind	ing ing	At shutdow At measure At shutdow At measure	ment end n instant ment end	Ц	73.1 71.5 73.1 71.5		53.6 51.0 53.6 51.0		-	31.0
18.1.3 Me		-	winding r			_					-
	Test win	-	2	Cold st		-	ture (°C)	Cole	state res		(mΩ)
	HV wir				28		_	1//	21'		
18.1.4 Me	LV win		resistance	aried with	28		nding cool	ed down: (n		.20	
Tin		1'	2 2	3'	4'	5'	6'	7'	8'	9'	10'
HV wi	-		252.5	251.5	250.7	250.		248.9	248.4	248.0	
LV wii	-			37.49	37.37	37.2		37.13	37.06	36.99	-
Tin		11'	12'	13'	14	15'		17'	18'	19'	
HV WI	nding	247.3 36.88	100000000000000000000000000000000000000	246.7 36.79	246.4 36.74	36.7		245.7 36.63	245.5 36.59	245.3 36.56	
LV win	rdina								76 60		

temperature at shutdown temperature rise (K)

instant (°C)

74.32

74.86

45.5

46.1

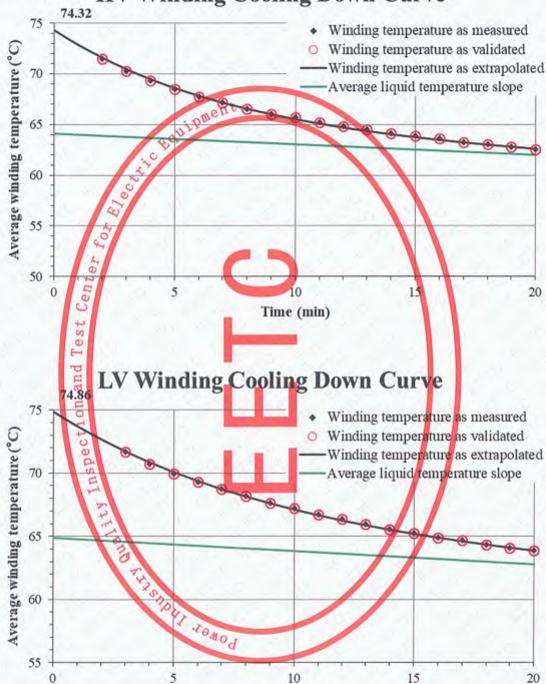
Hot-spot winding

temperature rise (K)

59.1

59.8

rise (K)

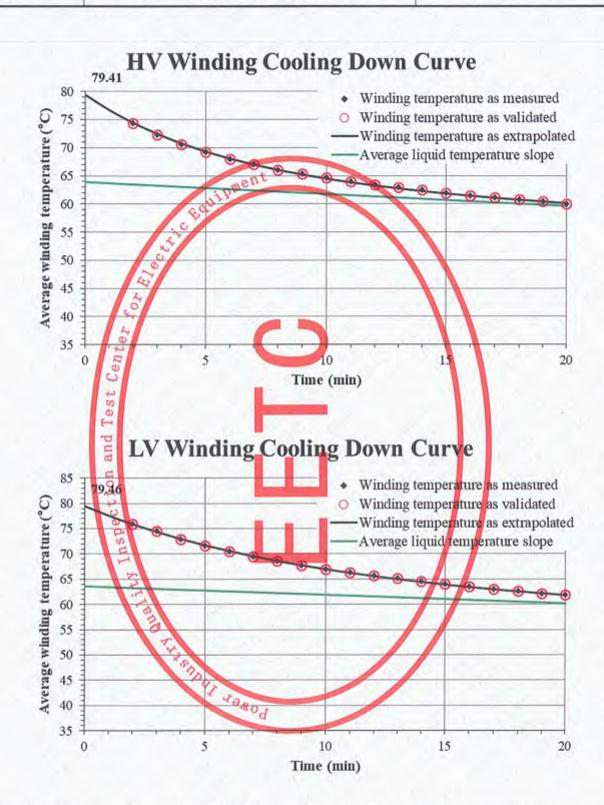

44.9

Test winding

HV winding

LV winding

HV Winding Cooling Down Curve


Time (min)

Test R	eport	Po			ty Inspection and Test tric Equipment					CEPRI-EETC03-2019-0826(E) Total 32 Page 14			
18.2.1 Tes Test	method:	Short-c	circuit metho	d.									
Tapping position	SHDI	ply	Shorted winding	Rated capacity (kVA)	Tota (k'	l loss W)	Test loss (kW)	Stable tim	Dura	ntion 1)	Cooling type		
17	H	V	LV	100000	467	.45	467.00	3	4.	.5	ONAF		
2) Testing	g step of r	ated cu	irrent injection	on one	nt								
Tapping position	SHIDI	ply	Shorted winding	Rated capacity	cur	rent	Test current	Measured winding a shutdown instant	t Dura		Cooling type		
17	Н	V	N.	100000	58	3.2	583.19	WV, LV	1		ONAF		
18.2.2 Me		mpera		s: (°C)			ature Botto	m oil tempe	rature A	-	t temperature		
	Un	der tot				80.0	-		1		33,1		
Under specified	HV wind	dingu	At shutdow At measurer			78.5 75.8		47.9			33.6		
current	TV	nd	At shutdow	n instant		78.5		47.9			33.6		
curcit	LV wind	ilinga E	At measure	ment end		75.8		43.8			-		
18.2.3 Me	asured re	ferenc	e winding r		_								
	Test wi	- 0		Cold s	tate oil te		ure (°C)	Colc	state res	-	e (mΩ)		
	HV wi	-				.4			217				
-	LV wir	nding	3		28	.4			32.	20			
18.2.4 Me	asured w	inding	resistance v	aried with	time as	the win	nding coole	d down: (n	Ω)				
Tin		1'	2	3'	4'	5'	6'		8'	9'	10'		
HV wi	nding	_	254.8	253.1	251.7	250.6	249.6	248.8	248.0	247.	4 246.8		
T 3.7	nding		38 00	037.83	37.64	37.48	37.34	37.21	37.10	37.0	0 36.91		

						-			
-	254.8	253.1	251.7	250.6	249.6	248.8	248.0	247.4	246.8
	38.00	037.83	37.64	37.48	37.34	37.21	37.10	37.00	36.91
11'	12'	1310	14'	15'	16'	17'	18'	19'	20'
246.3	245.8	245.4	245.0	244.6	244.2	243.9	243.6	243.3	243.0
36.83	36.75	36.68	36.61	36.55	36.49	36.43	36.38	36.32	36.28
	1	11' 12' 246.3 245.8	38.00 037.83 11' 12' 13 ¹ 0 ₄ 246.3 245.8 245.4	38.00 0 37.83 37.64 11' 12' 13 ¹ 0 ₄ 14' 246.3 245.8 245.4 245.0	38.00 0 37.83 37.64 37.48 11' 12' 13 ¹ 0 ₄ 14' 15' 246.3 245.8 245.4 245.0 244.6	38.00 0 37.83 37.64 37.48 37.34 11' 12' 13 ¹ 0 ₄ 14' 15' 16' 246.3 245.8 245.4 245.0 244.6 244.2	38.00 0 37.83 37.64 37.48 37.34 37.21 11' 12' 13 ⁸ 34 14' 15' 16' 17' 246.3 245.8 245.4 245.0 244.6 244.2 243.9	38.00 0 37.83 37.64 37.48 37.34 37.21 37.10 11' 12' 13' 34 14' 15' 16' 17' 18' 246.3 245.8 245.4 245.0 244.6 244.2 243.9 243.6	38.00 0 37.83 37.64 37.48 37.34 37.21 37.10 37.00 11' 12' 13' 34 14' 15' 16' 17' 18' 19' 246.3 245.8 245.4 245.0 244.6 244.2 243.9 243.6 243.3

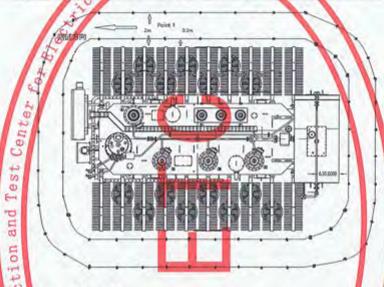
18.2.5	ews .	4	
11875	Det	POCII	10.0
10.2.0	Troit	1 Caul	LEVE.

Top oil temperature rise (K)	Test winding	Average winding temperature at shutdown instant (°C)	Average winding temperature rise (K)	Hot-spot winding temperature rise (K)
400	HV winding	79.41	47.4	68.0
46.9	LV winding	79.46	47.4	68.1

19. Winding Hot-spot Temperature-rise Measurement (Special Test): (See content 18)

Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC03-2019-0826(E) Total 32 Page 16


20. Determination of Sound Levels (Type Test):

20.1 70%Sr, cooling device out of service:

20.1.1 Test condition:

Ctata	Frequency	Tapping	LV excitation	V (m)	1 ()	1. /	Measuring	height (m)
State	(Hz)	position	voltage (kV)	X (m)	l _m (m)	h (m)	1/3h 2/	2/3h
No-load	50	9	38.5	0.3	26.5	3.19	1.06	2,13

State Frequency (Hz)	Frequency	Tapping	HV Current	X (m) I _m (m		h (m)	Measuring	height (m)
	position	(Ay	A (III)	I _m (m)	h (m)	1/3h	2/3h	
Load	50	9	367.4	0.3	26.5	3.19	1.06	2.13

20.1.2 Measured A-weighted sound levels

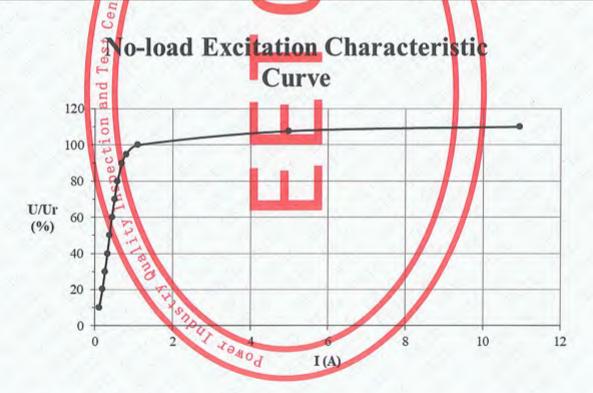
20.1.2.1 No-load sound pressure levels of the background noise: [dB(A)]

		The second second	0040	and the same in a large	1000	8-11-11-11	and the	(/)				
N	0.	1 =	2	3	4	5	6	7	8	9	10	Average
Tartetian .	1/3h	39.7	39.2	39.2	39.2	39.7	40.7	41.7	41.7	41.4	39.8	10.5
Initial	2/3h	39.4	39.9	39.6	40.2	40.2	41.2	41.8	42.2	41.7	39.9	40.5
Piest	1/3h	39.5	39,1	39.4	39.4	39.9	38.9	38.6	39.4	39.9	40.4	20.5
Final	2/3h	38.6	39.7.	39.2	38.7	39.7	39.7	39.2	39.6	40.1	40.2	39.5
			_						-			

20.1.2.2 Sound pressure levels under no-load condition: IdB(A)

No.	1	2	3	J ∂410d	5	6	7	8	9	10
1/3h	69.2	64.5	62.6	63.5	64.5	63.9	68.3	63.7	68.0	62.8
2/3h	62.0	62.0	65.0	65.1	61.3	65.1	62.6	63.8	62.1	60.5
No.	11	12	13	14	15	16	17	18	19	20
1/3h	66.6	68.1	69.0	65.5	65.0	62.0	62.6	62.3	63.6	62.8
2/3h	61,2	60.6	64.1	63.6	63.5	61.5	63.9	61.0	65.3	63.8
No.	21	22	23	24	25	26	27	28	29	30
1/3h	65.1	63.6	65.0	62.5	65.4	61.8	61.1	64.6	61.5	64.2
2/3h	64.5	66.9	61.6	62.6	63.1	62.1	62.6	61.6	66.1	61.3
		Ave	rage					64.3		

Test I	Report	Pow			uality In Electric			Test	CEI		203-2019-0 Page 1	
20.1.2.3	Load sor	ind pres	sure leve	els of the	e backgro	und nois	e: [dB(A)]				
	0.	1	2	3	4	5	6	7	8	9	10	Averag
	1/3h	38.7	38.4	38.2	38.9	38.5	38.6	39.5	39.6	40.3	40.0	
Initial	2/3h	38.7	38.1	38.7	38.5	39.1	38.7	39.2	40.1	40.2	40.2	39.2
	1/3h	38.5	38.2	39.5	39.7	38.5	38.7	38.5	38.9	40.1	40.2	
Final	2/3h	38.6	38.3	39.3	39.5	38.5	38.4	38.3	38.6	40.0	40.1	39.1
20.1.2.4	Sound p	ressure l	evels un	der load	conditio	n: [dB(A)i					
No.	1	2	-	3	nant	5	6		7	8	9	10
1/3h	42.5	48.3	3 4	4.6 01	44.6	50.0	55.1	47	.5	45.3	43.8	44.9
2/3h	46.1	48.0		4:4	45.8	47.8	52.4	48		46.3	43.0	44.1
No.	11	12	5	8	14	15	16	-	7	18	19	20
1/3h	48.1	45.3	# 0 #	4.7	47.4	47.1	44.4	45		44.9	45.3	49.3
2/3h	45.4	45/	7-1	2.9	48.3	46.3	42.2	43	-	44.1	48.9	48.0
No.	21	22	4	23	24	25	26	2	8 8	28	29	30
1/3h	47.6	49:9	-	1.4	45.8	49.7	47.3	46		45.4	44.9	48.1
2/3h	47.1	49.7	-	6.4	47.1	48.5	48.2	42	-	44.6	44.9	44.8
	1	-	Average	011	.,,,	10.2	10.2	12		47.4	11.2	1 110
0.2 1009 State	Freq	ueney	Tappin	g LV e	excitation	X (m)	I _m (m)	h (m)			eight (m)
	Freq (I	-	-	g LV e	excitation age (kV) 38.5	X (m)	I _m (h (m)	1	asuring h /3h .06	eight (m) 2/3h 2.13
	Freq (I	ueney Hz) w 50 uc 11 uency	Tapping position 9 Tapping	g LV e volt	age (kV) 38.5 Current		129	.0	3.19	1 1 Mes	/3h .06	2/3h 2.13 eight (m)
State No-load State	Freq (I	ueney Hz) uencyo uencyo Hz) v	Tapping position 9 Tapping position	g LV e volt	age (kV) 38.5 Current (A)	2.0 X (m)	37	.0 m)	3.19 h (m)	Mes 1	/3h .06 asuring h	2/3h 2.13 eight (m) 2/3h
State No-load	Freq (I	ueney Hz) w 50 uc 11 uency	Tapping position 9 Tapping	g LV e volt	age (kV) 38.5 Current	2.0	37	.0 m)	3.19	Mes 1	/3h .06	2/3h 2.13 eight (m)
State No-load State Load 20.2.1.1	Freq (I d :	ueney Hz) uencyo Hz) vencyo Hz) vencyo Sound pr	Tapping position 9 Tapping position 9	g LV e volt	age (kV) 38.5 Current (A) 367.4 the backg	X (m) 2.0 ground n	I _m (37	(A)]	3.19 h (m)	1 1 Mea 1 1	/3h .06 asuring h /3h .06	2/3h 2.13 eight (m) 2/3h 2.13
State No-load State Load	Freq (I d :	ueney Hz) uency Hz) sound pr	Tapping position 9 Tapping position 9 Tessure let 2	g LV evolt g HV evels of	age (kV) 38.5 Current (A) 367.4 the backg	2.0 X (m) 2.0 ground n	37 I _m (37 oise: [dB] 6	(A)]	3.19 h (m) 3/19	1 1 Mea	/3h .06 assuring h .06 .06 .06	2/3h 2.13 eight (m) 2/3h 2.13
State No-load State Load 20.2.1.1	Freq (I d : freq (I	uency Hz) uency uency Hz) cs 50 Hz 50 sound pr 1 40.2	Tapping position 9 Tapping position 9 Cessure level 40.60	g LV evolt g HV a evels of 3 39.7	38.5 Current (A) 367.4 the backs 4 40.1	2.0 X (m) 2.0 ground n 5 38.2	37 l _m (37 oise: [dB 6 37,1	(A)]	3.19 h (m) 3/19 8 38.7	Mea 1 1 1 9 40.8	/3h .06 assuring h /3h .06 10 41.2	2/3h 2.13 eight (m) 2/3h 2.13
State No-load State Load 20.2.1.1	Freq (H d : Freq (I	ueney Hz) 8 50 Hz uencyo Hz) 8 50 sound pr 1 40.2 38.7	Tapping position 9 Tapping position 9 Tessure le 2 40.6 41.6	g LV evolt g HV evels of 3 39.7	age (kV) 38.5 Current (A) 367.4 the backs 4 40.1 39.2	2.0 X (m) 2.0 ground n 5 38.2 39.5	37 lm (37 oise: [dB 6 37,1 38.1	(A)] 7 38.4 39.0	3.19 h (m) 3/19 8 38.7 38.9	9 40.8 41.1	/3h .06 assuring h .06	2/3h 2.13 eight (m) 2/3h
State No-load State Load 20.2.1.1 No	Freq (H d : : Mo-load : 0. 1/3h 2/3h 1/3h	uency Hz) 8 50 U uency Hz) 6 50 sound pt 1 40.2 38.7 38.4	Tapping position 9 Tapping position 9 Tapping position 9 Tapping 40.6 41.6 39.1	g LV evels of 3	age (kV) 38.5 Current (A) 367.4 the backs 4 40.1 39.2 37.4	2.0 X (m) 2.0 ground n 5 38.2 39.5 38.6	37 l _m (37 oise: [dB 6 37,1 38.1 39.2	(A)] 7 38.4 39.0 38.6	3.19 h (m) 3/19 8 38.7 38.9 38.5	9 40.8 41.1 39.6	/3h .06 assuring he /3h .06 10 41.2 41.5 39.2	2/3h 2.13 eight (m) 2/3h 2.13 Averag
State No-load State Load 20.2.1.1 No	Freq (H d : Freq (I	ueney Hz) 8 50 Hz uencyo Hz) 8 50 sound pr 1 40.2 38.7	Tapping position 9 Tapping position 9 Tessure le 2 40.6 41.6	g LV evolt g HV evels of 3 39.7	age (kV) 38.5 Current (A) 367.4 the backs 4 40.1 39.2	2.0 X (m) 2.0 ground n 5 38.2 39.5	37 lm (37 oise: [dB 6 37,1 38.1	(A)] 7 38.4 39.0	3.19 h (m) 3/19 8 38.7 38.9	9 40.8 41.1	/3h .06 assuring h .06	2/3h 2.13 eight (m) 2/3h 2.13
State No-load State Load 20.2.1.1 No-load	Freq (H d : : Mo-load : 0. 1/3h 2/3h 1/3h 2/3h	uency Hz) 8 50 U uency Hz) 6 50 Sound pt 1 40.2 38.7 38.4 39.7	Tapping position 9 Tapping position 9 40.6 41.6 39.1 38.9	g LV evels of 3 39.7 941.9 37.9	age (kV) 38.5 Current (A) 367.4 the backs 4 40.1 39.2 37.4	2.0 X (m) 2.0 ground n 5 38.2 39.5 38.6 37.1	37 lm (37 oise: [dB 6 37,1 38,1 39,2 38,2	(A)] 7 38.4 39.0 38.6	3.19 h (m) 3/19 8 38.7 38.9 38.5	9 40.8 41.1 39.6	/3h .06 assuring he /3h .06 10 41.2 41.5 39.2	2/3h 2.13 eight (m) 2/3h 2.13 Averag
State No-load State Load 0.2.1.1 Nonitial Final	Freq (H d : : Mo-load : 0. 1/3h 2/3h 1/3h 2/3h	uency Hz) 8 50 U uency Hz) 6 50 Sound pt 1 40.2 38.7 38.4 39.7	Tapping position 9 Tapping position 9 Tapping position 9 40.6 41.6 39.1 38.9	g LV evels of 3 39.7 941.9 37.9	age (kV) 38.5 Current (A) 367.4 the backs 4 40.1 39.2 37.4	2.0 X (m) 2.0 ground n 5 38.2 39.5 38.6 37.1	37 lm (37 oise: [dB 6 37,1 38,1 39,2 38,2	(A)] 7 38.4 39.0 38.6	3.19 h (m) 3/19 8 38.7 38.9 38.5 39.8	9 40.8 41.1 39.6	/3h .06 assuring he /3h .06 10 41.2 41.5 39.2	2/3h 2.13 eight (m) 2/3h 2.13 Averag
State No-load State Load 0.2.1.1 Nonitial Final	Freq (H d : Freq (H 2. No-load : o. 1/3h 2/3h 1/3h 2/3h	uency Hz) 8 50 E uency Hz) 7 50 Sound pr 1 40.2 38.7 38.4 39.7	Tapping position 9 Tapping position 9 Tapping position 9 40.6 41.6 39.1 38.9	g LV evolt g HV evels of 3 39.7 9419 37.9 37.9	age (kV) 38.5 Current (A) 367.4 the backs 4 40.1 39.2 37.4 38.1	2.0 X (m) 2.0 ground n 5 38.2 39.5 38.6 37.1	37 lm (37 oise: [dB 6 37,1 38,1 39,2 38,2	(A)] 7 38.4 39.0 38.6 38.9	3.19 h (m) 3/19 8 38.7 38.9 38.5 39.8	9 40.8 41.1 39.6 39.1	/3h .06 assuring h /3h .06 10 41.2 41.5 39.2 38.9	2/3h 2.13 eight (m) 2/3h 2.13 Averag 39.9
State No-load State Load 0.2.1.1 No initial Final 0.2.1.2 No.	Freq (H 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	uency Hz) 8 50 U uency Hz) 6 50 Sound pt 1 40.2 38.7 38.4 39.7	Tapping position 9 Tapping position 9 Tapping position 9 40.60 41.6 39.1 38.9	g LV evels of 3 39.7 941.9 37.9 der no-le3	age (kV) 38.5 Current (A) 367.4 the backs 4 40.1 39.2 37.4 38.1 oad condi	2.0 X (m) 2.0 ground n 5 38.2 39.5 38.6 37.1	37 lm (37 oise: [dB 6 37.1 38.1 39.2 38.2 38.2 6(A)]	(A)] 7 38.4 39.0 38.6 38.9	3.19 h (m) 3/19 8 38.7 38.9 38.5 39.8	9 40.8 41.1 39.6 39.1	/3h .06 assuring he /3h .06 10 41.2 41.5 39.2 38.9	2/3h 2.13 eight (m) 2/3h 2.13 Averag 39.9 38.7
State No-load State Load 20.2.1.1 No Initial Final 20.2.1.2 No. 1/3h	Freq (H d : Freq (I Sound pi 1 67.6	uency Hz) 8 50 8 uency Hz) 7 50 8 sound pr 1 40.2 38.7 38.4 39.7	Tapping position 9 Tapping position 9 Tapping position 9 40.60 41.6 39.1 38.9 evels und	g LV evolt g HV evels of 3 39.7 94.9 37.9 der no-le 3	age (kV) 38.5 Current (A) 367.4 the backs 4 40.1 39.2 37.4 38.1 oad condi	2.0 X (m) 2.0 ground n 5 38.2 39.5 38.6 37.1 Stion: [dE] 5 67.0	37 lm (37 oise: [dB 6 37,1 38.1 39.2 38.2 6(A)] 6 66.6	(A)] 7 38.4 39.0 38.6 38.9	3.19 h (m) 3/19 8 38.7 38.9 38.5 39.8	9 40.8 41.1 39.6 39.1	/3h .06 assuring he /3h .06 10 41.2 41.5 39.2 38.9 9 67.5	2/3h 2.13 eight (m) 2/3h 2.13 Averag 39.9 38.7
State No-load State Load 20.2.1.1 No Initial Final 20.2.1.2 No. 1/3h 2/3h	Freq (H d :: Mo-load :: 0. 1/3h 2/3h 1/3h 2/3h Sound pi 67.6 66.0	uencyo Hz) sound pt 1 40.2 38.7 38.4 39.7 ressure le 2 66.2 67.4	Tapping position 9 Tapping position 9 Tapping position 9 40.60 41.6 39.1 38.9 evels und	g LV evels of 3 39.7 937.9 37.9 der no-le3 7.1 3.5	age (kV) 38.5 Current (A) 367.4 the backs 4 40.1 39.2 37.4 38.1 oad condi 4 66.2 66.6	2.0 X (m) 2.0 ground n 5 38.2 39.5 38.6 37.1 Stion: [dE) 5 67.0 68.1	37 lm (37 oise: [dB 6 37.1 38.1 39.2 38.2 38.2 6 66.6 67.5	(A)] 7 38.4 39.0 38.6 38.9	3.19 h (m) 3/19 8 38.7 38.9 38.5 39.8	9 40.8 41.1 39.6 39.1 8 66.5 68.0	/3h .06 assuring he /3h .06 10 41.2 41.5 39.2 38.9 9 67.5 66.7	2/3h 2.13 eight (m) 2/3h 2.13 Averag 39.9 38.7

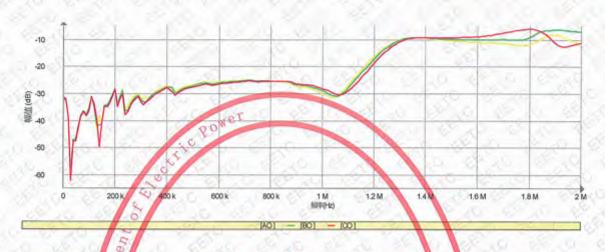

Test R	eport	Powe	r Indu Cent	stry Qu er for E	ality I	nspection Equipm	and T	est		RI-EETC0 Total 32			
No.	21	22	1 2	23	24	25	26	27		28	29	30	
1/3h	65.9	65.6			66.0	67.0	66.5	64.	2	63.3	65.6	65.1	
2/3h	66.1	67.1	-		65.8	66.3	66.3	65.	6	64.5	64.1	66.5	
No.	31	32	-	33	34	35	36	37	7	38	-	Average	
1/3h	67.5	66.1	_	-	66.5	63.0	63.9	65.	.8	64.9		66.3	
2/3h	67.6	65.0			67.3	63.1	64.1	67.	.8	65.3	_	00.3	
					21.00	round nois	e: [dB(A	0)]					
No		1	2	3	4	5	6	7	8	9	10	Average	
1	1/3h	38.2	38.9	38.90	38.2	39.1	38.1	39.1	38.9	38.9	40.7	38.9	
Initial	2/3h	38.1	39.2	38.5	38.5	39.0	38.2	38.7	39.0	39.1	40.1	30.9	
	1/3h	38.3	38.5	38.9	38.2	39.1	38.5	39.1	38.9	38.5	40.0	38.7	
Final	2/3h	38.1	38.2	38.3	38.2		38.3	39.0	38.5	38.2	39.8	36.7	
20.2.1.4		and the second second	-	der load	condit	ion: [dB(A)]						
No.	1	2	1	3	4	5	6	7		8	9	10	
1/3h	67.0	64.4	40 6	4.3	64.1	64,0	64.6	64	.8	64.7	65.0	65.2	
2/3h	65.1	64.	2	54.5	64.5	63.8	64.0	64	.5	64.5	65.3	64.0	
No.	11	12		13	14	15	16	1	7	18	19	20	
1/3h	64.8	66.	-	56.0	66.3	65.9	65.3	65	5.3	64.6	63.5	63.0	
2/3h	64.2	64.		54.8	65.0	65.3	64.6	64	1,1	63.9	63.4	62.5	
No.	21	-22		23	24	25	26	2	7	28	29	30	
1/3h	62.3	62.		51.6	61.6	62.0	62.3	63	3.8	64.1	63.8	64.4	
2/3h	62.5	62.		51.6	61.8	61.8	62.1	63	3.8	63.3	63.1	64.0	
No.	31	+32		33	34	35	36	3	7	38	-	Averag	
1/3h	65.3	64.		64.1	62.8	61.8	62.4	6	1.3	62.3		63.9	
2/3h	63.8	63.	7	63.6	62.5	62.0	61.6	6	1.6	61.8	-		
Coolin	t Result: g device ate	Mea	n sound orption ficient a	of	irface a f test roo Sy (m²	om	Sound absorpti A (m²	on	effectiv	of the e surfaces (m²)	of	etion factor ambient K (dB)	
Out of	service			T	2200		597		1	05.7		2.3	
Ons	ervice	- (0.25	120	2388		391		1	92.0		3.6	
				(BAIL		_			ıle.	at at a Car	and Cus	unntan Soi	
Cooling stat	110	est condit		and press evel L_{PA} [dB(A)]		level w _A [dB(A)	po	wer leve	1000	nthetic Sor ressure lev [dB(A)]		essure lev [dB(A)]	
Out of s	ervice	No-load		62.0 44.4		82.2 64.6		82.3		62		67	
0		Load		7 11/15								1	
Out of s	ervice	No-load		62.7	-	85.5	-	87.5	37.5 65			67	
		Load		60.3		83.1							

20.4 Determination of sound levels evaluation: Passed

Test Report	Power Industry Q Center for	quality Inspection a Electric Equipmen			PRI-EETC03-2019-0826(E) Total 32 Page 19		
21. Measurement	of the Power Taken	by the Fan and P	ump Moto	ors (Type T	Test):		
Motor type	Factory number	Applied voltage (\	V) Ci	irrent (A)	Power (W)		
	57208090-1	380.3		1.011	529.98		
	57208090-2	379.9		1.017	530.84		
	57208090-3	379.8		1.012	528.24		
	57208090-4	379.9		1.015	528.36		
	57208090-5	379.9		1.031	534.36		
	57208090-6	379.8		1.052	534.52		
	57208090-7	pment 379.8		0.998	526.66		
Fan motor	57208090<8	379.9		1.010	530.75		
	57208090-9	380.0		1.024	535.27		
	57208090-10	379.9		1.006	526.84		
	57208090-11	380.2		1.004	517.29		
	57208090-12	379.9		1.007	523.71		
	57208090-13	379.8		1.006	525.56		
	6 57208090-14	379.9	7 11 0	1.015	530.45		
	57208090-15(backup	380.0		1.010	528.39		
Total p	ower (W)	1	7158.0 (cc	ntain backu	os)		
Applied voltage ter	g l	oplied current (A)	Measuring v	oltage (V)	Zero-sequence Impedance (Ω/phase		
ABC-0	9	172.05	891	.08	15.538		
	of the Harmonics o	Harm	nonics of the	No-load Cu	rrent (%) Phase c		
38.499	1.10	53.9	-	Phase b	37.9		
30.499	10	33.7	1	10.5	31.9		
Harmonic frequen	cy Z		I (%)		Phase c		
1	2 Filase	000 000 0410d					
1	100.0	000	100,000		100.000		
3	33.	3 -0d	23.4		9.8		
5	35.0	6	28.0		31.4		
7	21.9	9	16.1		18.3		
9	4.5		4.4		0.7		
11	4.2		5.6		4.2		
13	2.6		1.5		1.8		
Σ	53.9		40.5		37.9		
2	25.5		10.5		31.5		

Test Report	Power Industry Quality Inspection and Test Center for Electric Equipment	CEPRI-EETC03-2019-0826(E) Total 32 Page 20
-------------	---	---

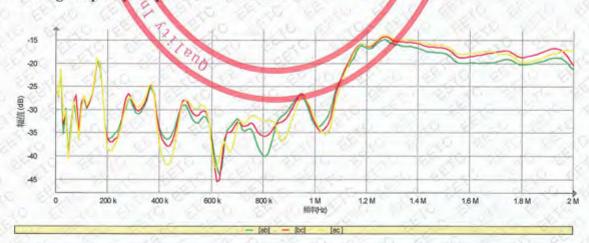
Applied vo	ltage (kV)	Measuring current	Measuring loss
avg	rms	(A)	(kW)
3.8663	3.8615	0.109	0.54
7.7684	7.7663	0.192	2.04
11.586	11.581	0.256	4.28
15.361	15.354	0.315	7.22
19.265	ont 19.261	0.373	11.00
23.086	23.079	0.43	15.41
26.971	26.975	0.496	20.76
30.794	30.799	0.573	27.13
34.643	34.683	0.688	35.40
36.571	36.657	0.798	40.81
\$ 38.499	38.741	110	48.28
41.429	43.026	4.97	71.54
42.347	45.357	10.94	84.71
	avg 3.8663 7.7684 11.586 15.361 19.265 23.086 26.971 30.794 34.643 36.571 58.499 41.429	3.8663 3.8615 7.7684 7.7663 11.586 11.581 15.361 15.354 19.265 19.261 23.086 23.079 26.971 26.975 30.794 30.799 34,643 34.683 36.571 36.657 38.499 38.741 41.429 43.026	avg rms (A) 3.8663 3.8615 0.109 7.7684 7.7663 0.192 11.586 11.581 0.256 15.361 15.354 0.315 19.265 19.261 0.373 23.086 23.079 0.43 26.971 26.975 0.496 30.794 30.799 0.573 34.643 34.683 0.688 36.571 36.657 0.798 58.499 38.741 110 41.429 43.026 4.97



Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC03-2019-0826(E) Total 32 Page 21

25. Measurement of Frequency Response (Special Test):


25.1 HV winding Frequency Response Characteristic curve (Tapping 1):

25.2 HV winding Frequency Response Characteristic curve (Tapping 9):

25.3 LV winding Frequency Response Characteristic curve:

Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC03-2019-0826(E) Total 32 Page 22

Appendix A Object Parameters

A.1 Normal Information of Sample

Rated power: 100000/100000 kVA

Rated voltages: (110±8×1.25%) / 38.5kV

Rated currents: 524.9/1499.6A

Type of cooling: ONAN/ONAF (70%/100%)

Date of manufacture: August 2019

Insulation levels:

HV

HVN

LV

Ui Pme II Um/LI/LIC/AC

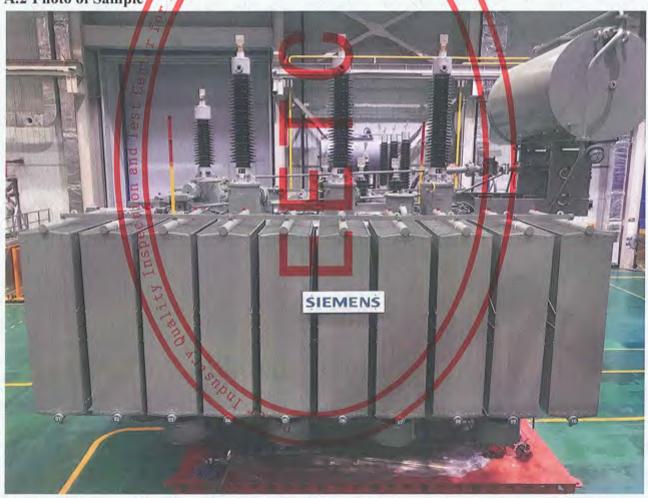
U_m/LI/AC

Um/LI/LIC/AC

Rated frequency: 50Hz

Connection symbol: YNd11

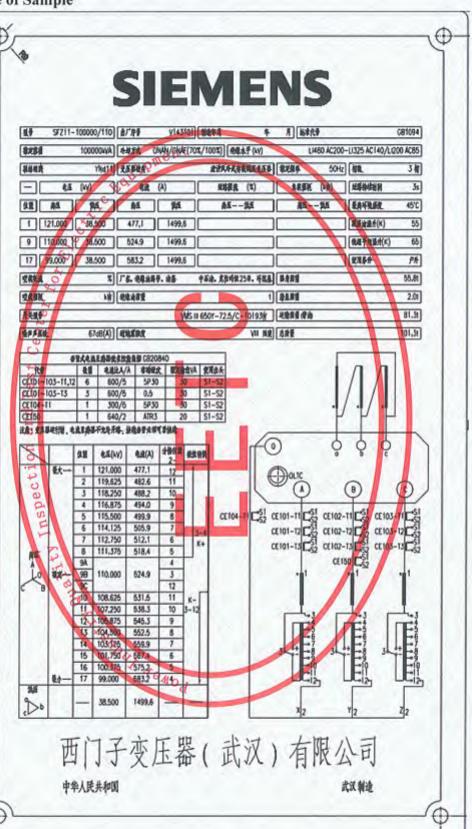
Application conditions: Outdoor


Total weight: 101300kg

126/480/530/200kV

72.5/325/140kV

40.5/200/220/85kV


A.2 Photo of Sample

Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC03-2019-0826(E) Total 32 Page 23

A.3 Nameplate of Sample

Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC03-2019-0826(E) Total 32 Page 24

Appendix B The Main Test Devices

No.	Name / Type / Specification	Serial No.	Measurement Range	Uncertainty / Accuracy class / Maximum Permissible Error	Calibration Institute	Valid Date
1	变压器变比测试仪 Ratio Bridge InstrumentJYT-B	04193365 pm6	n ^t 1-1000	0.1%	Guangzhou GRG Metrology and Test Co., Ltd.	2020.05.22
2	直流电阻仪 Transformer Resistance Test Equipment JYR-40E		5μΩ~20Ω	Class 0.2	Guangzhou GRG Metrology and Test Co., Ltd.	2019.10.16
3	绝缘电阻测试仪 Digital Megaohm Meter MIT525	101310053	1000GΩ	Class 5.0	Guangzhou GRG Metrology and Test Co., Ltd.	2020.07.11
4	全自动变频抗干扰介质损耗因数测试仪 Dielectric Dissipation Factor Insrument JYC	0208238	(0.001~100)%	Class 1.0	National Center for High Voltage Measurement	2019.12.26
5	功率分析仪 Precision Power Analyzer NORMA5000	X815863	5A 600V	Class 0.2	Guangzhou GRG Metrology and Test Co., Ltd.	2019.12.06
6	工频电压峰值表 Peak Voltmeter PFPV-2-14	STWH/PT test/006	300kV	Class 3.0	Guangzhou GRG Metrology and Test Co., Ltd.	2020.04.10
7	电容分压器 Capacitive voltage divider GWC-400/350	130716-2	350kV	Class 1.0	National Center for High Voltage Measurement	2020.03.03
8	多通道数字局放仪 Multi-channel Digital PD Integration Analyzer TWPD-2F	1807XY052	(1~100000)pC	Class 10	Guangzhou GRG Metrology and Test Co., Ltd.	2019.09.13
9	声级计 Sound Level Meter HS5670A	19013030	o _d (20~130)dB	Class 2.0	Guangzhou GRG Metrology and Test Co., Ltd.	2019.12.16
10	多路温度巡检仪 Multi-channel Temperature Testing System JYDT2000	11160092	(0~100)℃	Class 0.5	Guangzhou Gaotie Metrology and Test Co., Ltd.	2019.09.18
11	弱阻尼电容分压器 Damping Capacitor Voltage Divider FYI-2000/400	14005-2	2000kV	Class 3.0	National Center for High Voltage Measurement	2020.03.20

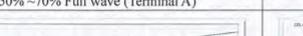
Power Industry Quality Inspection and Test Center for Electric Equipment

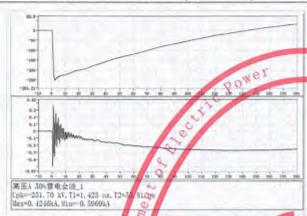
CEPRI-EETC03-2019-0826(E) Total 32 Page 25

Appendix B The Main Test Devices

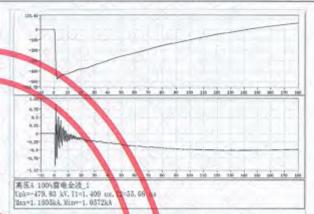
No.	Name / Type / Specification	Serial No.	Measurement Range	Uncertainty / Accuracy class / Maximum Permissible Error	Calibration Institute	Valid Date
12	气相色谱仪 Chromatogram Analysis 2000B	812018	ent	3.2%	Guangzhou GRG Metrology and Test Co., Ltd.	2020.10.16
13	油介质损耗测试仪 Oil Dielectric Loss Measurement Instrument DTLC	812018 510 510 510 510 510 510 510 510 510 510	(0~100) %	Class 0, 1	National Center for High Voltage Measurement	2020.04.02
14	微量水分测试仪 Water content KFM3000	099603017	(0-200) mg	3.5%	Guangzhou GRG Metrology and Test Co., Ltd.	2019.09.06
15	绝缘油耐压测试仪 Oll AC Withstand Voltage Test Instrument OTS100AF 2	101567299	(0~100) kV	±1%	National Center for High Voltage Measurement	2019.10.22
16	仪用电流互 <mark>酸器</mark> Current Tranformer HL45-0.01/1200	018444 018445 018447	(5~2500)A/5A	Class 0.01	National Center for High Voltage Measurement	2020.10.23
17	电压互感器 Voltage Tranformer & HJ12	08233 08234 08235	60kV/100V	Class 0.05	National Center for High Voltage Measurement	2021.03.03
18	绕组变形测试仪 Sweep Frequency Response Analyzer FRAX-99	080230	1000kHz	Class 0.2	Guangzhou GRG Metrology and Test Co., Ltd.	2020.07.12
19	压力表 Stainless Steel Pressure Gauges	190720692117	(0~0.1)MPa	±2.5kPa	Guangzhou GRG Metrology and Test Co., Ltd.	2019.11.24
20	电流互感器分析仪 CT Analyzer	QF514Q	40 _d 10~500	0.05%	Guangzhou GRG Metrology and Test Co., Ltd.	2019.10.21

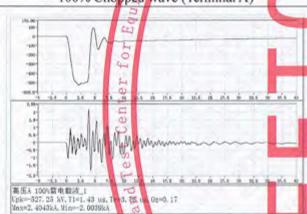
Power Industry Quality Inspection and Test Center for Electric Equipment

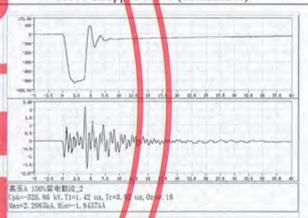

CEPRI-EETC03-2019-0826(E) Total 32 Page 26

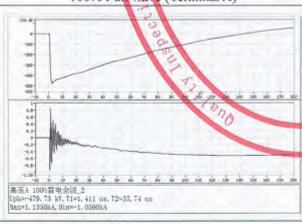

Appendix C Lightning Impulse Test Waveforms

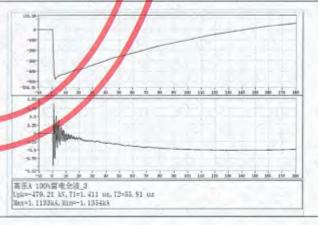
C.1 HV Line Terminal Waveforms


The front time T1: 1.42µs. The tail time T2: 55.8µs. Time to chopping Tc: 3.76µs

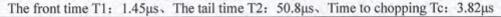



100% Full wave (Terminal A)

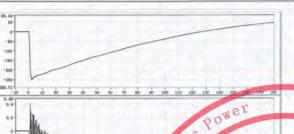

100% Chopped wave (Terminal A)


100% Chopped wave (Terminal A)

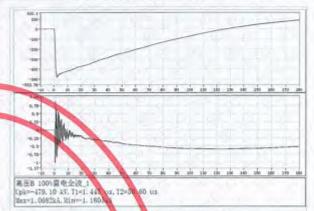
100% Full wave (Terminal A)



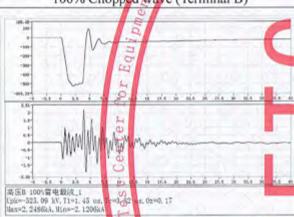
100% Full wave (Terminal A)



Power Industry Quality Inspection and Test Center for Electric Equipment

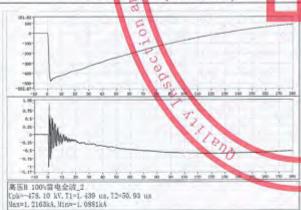

CEPRI-EETC03-2019-0826(E) Total 32 Page 27

50% ~70% Full wave (Terminal B)

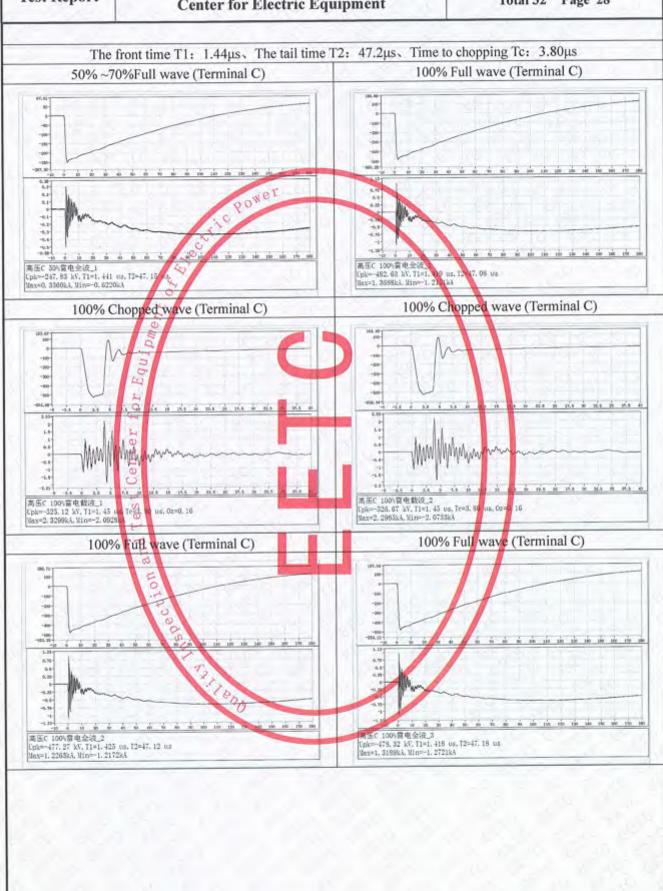


高压B 504章电全被_1 Cpk=-251, 12 kV, T1=1, 452 us, T2=50, 84 Uex=0, 4496kA, Min=-0, 5937kA 100% Full wave (Terminal B)

100% Chopped wave (Terminal B)


100% Chopped wave (Terminal B)

100% Full wave (Terminal B)

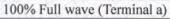


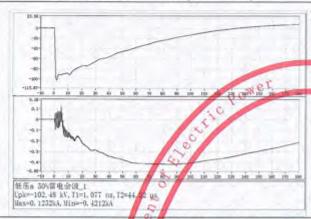
100% Full wave (Terminal B)

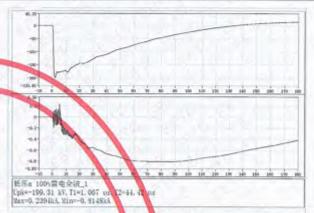
Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC03-2019-0826(E) Total 32 Page 28

Power Industry Quality Inspection and Test CEPRI-EETC03-2019-0826(E) **Test Report** Total 32 Page 29 Center for Electric Equipment C.2 HV neutral Waveforms The front time T1: 1.53µs. The tail time T2: 47.1µs 100% Full wave (Terminal 0) 50% ~70%Full wave (Terminal 0) POWET 10.2 ac to m so im tip 120 120 140 150 160 170 160 高压0 100%質电全线_1 Lpk=-321, 12 kV, T1=1, 488 Max=0, 6356kA, Min=-1, 3036 高压0 30%育电全接_1 Cpk=-168.17 kV, T1=1, 529 us, T2=47, 06 Max=0, 5089kA, Min==0, 9095kA 100% Full wave (Terminal 0) 100% Full wave (Terminal 0) 100 110 120 120 140 150 160 170 180 enter -0.35 -0.55 -0.35 高压0 100%雷电全被 3 Upk=-322.08 kV, T1=1.490 us, T2=47. Max=0.6706k3, Mips=1.3178kA 高田O 1004雲电会被 2 Upk -- 323, 28 kV, T1=1, 489 u Max=0, 6871k3, Min=-1, 3267k 12417. 01 us (Blank below)

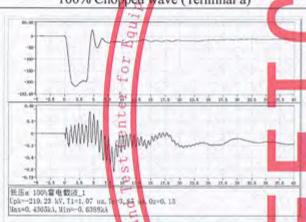

Power Industry Quality Inspection and Test Center for Electric Equipment

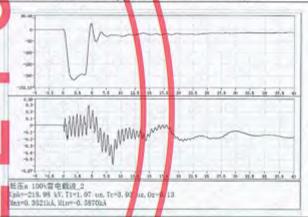

CEPRI-EETC03-2019-0826(E) Total 32 Page 30


C.3 LV Line Terminal Waveforms

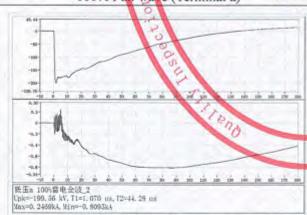
The front time T1: 1.08µs. The tail time T2: 44.3µs. Time to chopping Tc: 3.85µs

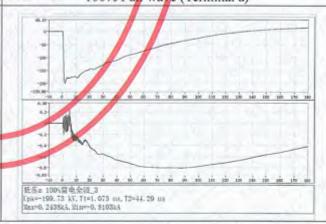
50%~70% Full wave (Terminal a)





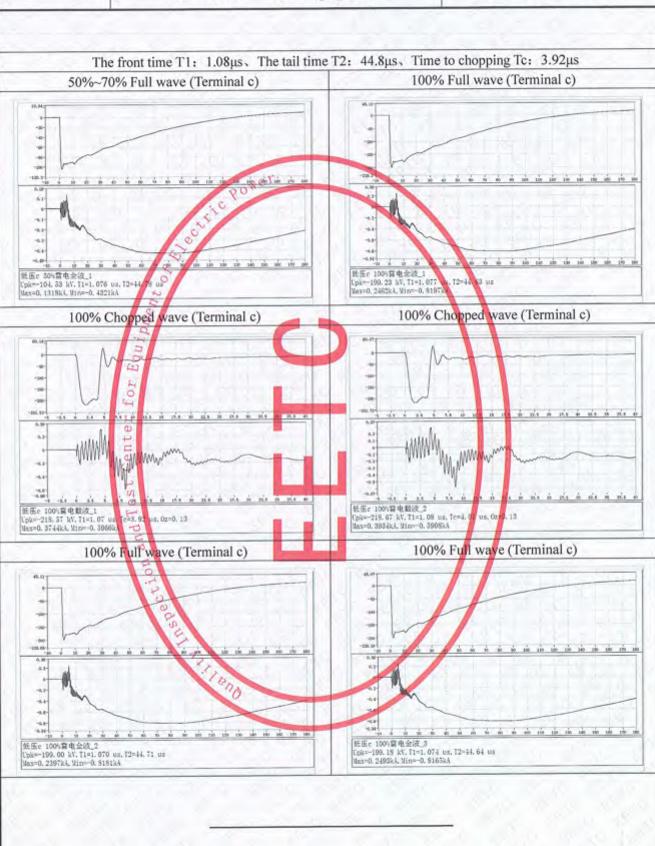
100% Chopped wave (Terminal a)


100% Chopped wave (Terminal a)



100% Full wave (Terminal a)

100% Full wave (Terminal a)


Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC03-2019-0826(E) Total 32 Page 31

Power Industry Quality Inspection and Test Center for Electric Equipment

CEPRI-EETC03-2019-0826(E) Total 32 Page 32

