

Eurolimus[™] Product Overview

pre-market dossier for active customers confidential

EUROLIMUS[™] ■ PRODUCT OVERVIEW

EUROLIMUS[™] INDICATIONS

Eurolimus[™], Sirolimus Eluting Coronary Stent System

- Treatment of symptomatic ischemic coronary heart disease (from *de novo lesions* & *restenosised lesions of the coronary arteries*)
- Treatment of **acute or suspected occlusions** (for patients with unsuccessful balloon dilatation)
- Prevents restenosis, assures **homogeneous drug distribution** and uniform release kinetics
- Longterm efficacy & extremely low rates of thrombosis (acute, subacute, late & very late)

EUROLIMUS

Sirolimus Eluting Coronary Stent System

EUROLIMUS[™] SPECIFICATIONS

Stent Specifications

Type of design	Open-cell, 3 interlinks
Design detail	9 crowns
Material	Cobalt Chromium L605
Expansion range	2.25 mm – 4.00 mm
Strut thickness	0.0026" (65 µm)
Strut width (main segment)	0.0028" (72 µm)
Strut width (interlink)	0.0023" (58 µm)
Foreshortening	< 2.5 %
Mechanical recoil	< 6 %
Metal coverage	< 13.6 %
Matrix thickness	3 – 5 µm
Drug / Polymer	Sirolimus / PLGA
Drug load	1.4 μg / mm²

Delivery System Specifications

Usable length		138 cm
Length guidewire lumen		27 cm
Recommend	led guide catheter	5F (min. I.D. 0.056")
	Balloon	Proprietary polyamide compound
Matarial	Distal shaft	Polyamide, multilayer tube
Material Distal shart		Hydrophilic coating
Proximal shaft		Stainless steel, PTFE coated
Proximal		1.9 F
Slidit Size	Distal	2.8 – 3.0 F, depending on balloon-Ø
Folding		3-fold balloon
Marker bands		Embedded Platinum / Iridium
Tip entry profile		0.017" (0.43 mm)
Max. guidewire		0.014" (0.36 mm)

EUROLIMUS Sirolimus Eluting Coronary Stent System

DESIGN & COATING TECHNOLOGY

STENT DESIGN STRUT & PROFILE

Low Strut thickness for smooth interventions

Crimped Profile

Overexpansion capabilities

Expansion Diameter	CrimpedProfile	Stent ID at RBP	Post Dilatation Limit
2.25	0.87 mm	2.49 mm	3.50 mm
2.50	0.91mm	2.82 mm	3.50 mm
2.75	0.94mm	3.03 mm	3.50 mm
3.00	0.98 mm	3.25 mm	4.00 mm
3.25	1.00 mm	3.53 mm	4.00 mm
3.50	1.01mm	3.80 mm	4.50 mm
4.00	1.03 mm	4.31mm	4.50 mm

Asymmetric Coating

Matrix Thickness Abluminal Side: ~ 5 μm

Cross Section

Matrix Thickness Luminal Side: ~ 3 µm

Cross Section Diagram

STENT DESIGN SIROLIMUS VS LIMUS ANALOGS

Sirolimus mTOR inactivation

Limus Analogs Comparison

Molecular structure of Limus drugs is not altered in the two essential binding sites that interact with target structures mTOR and FKBP-12 Drug's mode of action is essentially the same

Q2 Eurocor

COATING MAKESTHE DIFFERENCE™

Eurolimus[®] drug release

Coating Structure

Drug release covers entire restenotic cascade (100 days)

SEM of coating 600 x

Polymer Matrix

- Initial burst phase followed by second phase of progressive release through thicker drug depleted layer.
- PLGA 85/15 degradable polymer formulation regarded as **non toxic** and **biocompatible**
- Both substances are fully decomposed to water and carbon dioxide between 10–13 weeks

COATING MATRIX STERILIZATION

e-

Superior Sterilization for optimal performance & shelf life

Electron Beam sterilization utilizes direct current or linear accelerator to emit high energy electrons.

- Sterilization is performed completely dry
- 0% degradation of the polymer
- 100 % repeatability of drug release & working mechanism
- Guarantees synchronized drug & polymer release

STUDY OVERVIEW CENTER OVERVIEW

Two completed Studies on real world patients undergoing percutaneous coronary intervention in Europe

ENDPOINTS CLINICAL INDICATORS

Study Endpoints

- **Repeat Revascularization** • (any, including all target & non-target vessels)
- All-cause-mortality ۰
- Any MI (Myocardial Infarction)

Consortium

- **Cardiac Death** •
- ClinicallyDrivenTLR (Target • Lesion Revascularization)
- Target vessel MI (Q-wave or • non Q-wave Myocardial Infarction), CABG (Coronary Artery Bypass Graft)

COHORT DEMOGRAPHICS PATIENT STATUS & MEDICAL HISTORY

Milan, Italy

Thessaloniki, Greece

Demographics	Total	%	Demographics	Total	%
N	171		N	196	
Age (mean)	70.0±11.9		Age (mean)	66.7±10.7	
Male	138	80.7	Male	159	79.8
BMI	27.2 ± 5.1		BMI	27.6 ± 3.3	
Diabetic	37	25.0	Diabetic	54	27.6
History of MI	35	20.7	History of MI	37	18.8
History of stroke TIA	6	3.6	History of stroke TIA	12	6.1
Smoker (current)	35	21.7	Smoker (current)	119	60.7
Hypertension	127	80.9	Hypertension	85	43.4
Hyperlipoproteinemia	71	42.0	Hyperlipoproteinemia	107	54.6
Peripheral Vascular Disease	6	3.6	PeripheralVascularDisease	9	4.6

COHORT DEMOGRAPHICS PATIENT STATUS & MEDICAL HISTORY

Milan, Italy

Cardiac Status	Total	%
Chronic stable angina	59	34.5
SilentIschemia	26	15.2
Unstable angina	26	30.2
MI (Stemi)	38	63.3
MI (Nstemi)	22	36.7

Cardiac History	Total	%
PriorPCI	45	26.3
PriorCABG	29	16.9
PriorMl (>72h)	25	14.6

Coronary Vessel Disease	Total	%
1 v essel	134	78.4
2	30	17.5
3	7	4.1

Thessaloniki, Greece

Cardiac Status	Total	%
Stable angina	84	42.9
Unstable angina	27	13.8
MI (Stemi)	42	21.4
MI (Nstemi)	43	21.9

Cardiac History	Total	%
PriorPCI	18	9.2
PriorCABG	8	4.1
PriorMI (>72h)	16	8.2

Coronary Vessel Disease	Total	%
1 v essel	161	82.2
2	32	16.3
3	3	1.5

LESION LOCATIONS TARGET LESIONS

Location of target lesions

Milan, Italy

- LAD: 88, 38.4%
- RCA: 92, 40.2%
- LCX: 46, 20.1%
- LM: 3, 1.3%

Total of 229 lesions

Total distribution of treated target lesion distribution

Thessaloniki, Greece

- LAD: 116, 54.8%
- RCA: 80, 31.6%
- LCX: 57, 22.5%
- LM: 0, 0.0%

Total of 253 lesions

COHORT DEMOGRAPHICS PROCEDURE CHARACTERISTICS

Milan, Italy

Leftventricularejection	Total	%
Fraction	56.6±9.8	34.5
Fraction≤35%	11	6.4
Amount of Lesions	Total	%
Av erage per patient	1.34	
1 lesion	124	72.5
2 lesions	36	21.1
3 lesions	11	6.4

Le sion Characteristics	Total	%
RVD	3.38 ± 0.51	
SmallvesselsRVD (< 2.75 mm)	25	11.1
Diameter Stenosis	83.01 ± 13.31	
TotalOcclusions	27	11.79

Thessaloniki, Greece

Cardiac Status	Total	%
Fraction	59.7 ± 7.6	

Amount of Lesions	Total	%		
Av erage per patient	1.29			
1lesion	152	77.6		
2 lesions	35	17.9		
3 lesions	6	1.5		
4 lesions	3 1.5			
Lesion Characteristics	Total	%		
RVD	3.09 ± 0.34			
SmallvesselsRVD (< 2.75 mm)	16	6.2		
Diameter Stenosis	86.6 ±10.7			
TotalOcclusions	28	11.1		

 $1 \le 24$ hours $^2 > 24$ hours ≤ 30 days $^3 > 30$ days $^4 > 1$ year

⁵ Dialysis (FU 12 months), Pulmonary Oedema, acute heart failure (1 month post-PCI), Intramural hematoma of aortic root from coronary dissection (at discharge), acute kidney failure (FU 12 months), Mitral-clip procedure (FU 12 months)

ENDPOIN	TRESULTS
	MILAN, ITALT

Follow up results (25.6 ± 5.7 months)

MACE

	Total	%		Total	%	
Target Lesion Failure	2	0.9	MACE	8	3.9	Thrombosis (all)
Cardiac Death	0	0	Cardiac Death	0	0	Acute Stent thrombosis ¹
MI – Attributed to target vessel	0	0	Non Cardiac Death	3	1.7	Subacute stent thrombosis ²
Q-wave	0	0	MI (all)	0	0	Latestent thrombosis ^a
Non Q-wave	0	0	TLR	2	0.9	Very late stent thrombosis*
ClinicalDrivenTLR	2	0.9	By PCI	2	0.9	
Solved by PCI	2	0.9	TVR	2	0.9	Events
			By PCI	2	0.9	
			NonTVR	1	0.4	
			Ву РСІ	1	0.4	l s chemic Events H e morrhagic / Vascular Events

Thrombosis

He matological Dyscrasia

Other Complications⁵

Total

0

0

0

0

0

Total

0

1

0

6

% 0

0

0

0

0

%

0

0.6

0

3.5

TLF

Q2 Eurocor

COHORT DEMOGRAPHICS THESSALONIKI, GREECE

Follow up results (25.6 ± 5.7 months)

MACE

Thrombosis

Total

1

0

1

0

0

Total

0

1

0

0

%

0.5

0

0.5

0

0

% 0

0.5

0

0

TLF

	Total	%		Total	%	
Target Lesion Failure	9	4.6	MACE	13	8.4	Thrombosis (all)
Cardiac Death	2	1.0	Cardiac Death	2	3.0	Acute Stent thrombosis ¹
MI – Attributed to target vessel	2	1.0	Non Cardiac Death	4	2.0	Subacute stent thrombosis ²
Q-wave	1	0.5	MI (all)	3	2.6	Latestent thrombosis ^a
Non Q-wave	1	0.5	MI – target vessel	1	0.9	Very late stent thrombosis *
ClinicalDrivenTLR	5	2.6	MI – non-target vessel	2	1.7	
Solved by PCI	5	2.6	TLR	5	2.0	Events
			By PCI	5	2.0	
			TVR	1	0.4	
			By PCI	1	0.4	Le memberie /Vecculer Evente
			NonTVR	1	0.7	Hemorrhagic/vascularEvents
			By PCI	1	0.7	Hematological Dyscrasia

THANK YOU FOR YOUR ATTENTION!

Q2 Eurocor

Eurocor Tech GmbH In den Dauen 6a 53117 Bonn Germany Phone: +49 (0)228/20 15 0-0 Fax: +49 (0)228/20 15 0-5 info@eurocor.de eurocor.de

Eurocor Tech GmbH does not assume responsibility for editorial or clerical errors. All rights to the mentioned studies lie with the respective authors.