S.A."RED-Nord"

Наименование проекта: Centrala electrică fotovoltaică(1 CEPV-150kw)

02.02.2023

Ваша ФЭ система

Адрес установки

mun. Bălți, str. Șt. Cel Mare, 180 "A".

Обзор проекта

ФЭ система

Подключенная к сети ФЭ система

Климатические данные	Chisinau, MDA (1996 - 2015)	
Выходная мощность ФЭ генератора	150 кВт/пик	
Поверхность ФЭ генератора	712,4 m²	
Количество ФЭ модулей	300	
Количество инверторов	2	

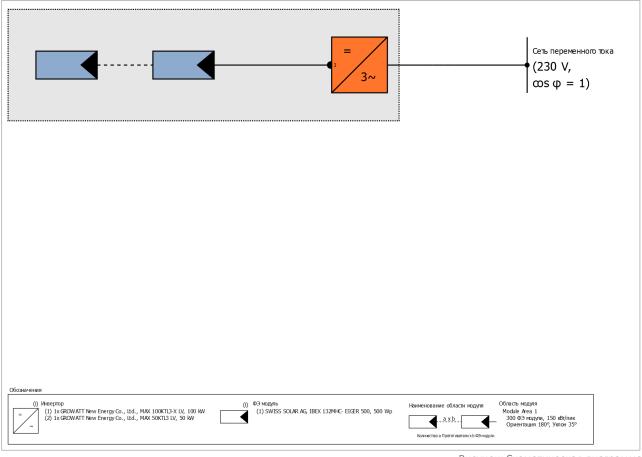


Рисунок: Схематическая диаграмма

Выработка

Выработка

Энергия ФЭ генератора (сеть переменного тока)	197 546 kWh
Питание сети	197 546 kWh
Понижающая регуляция в точке питания	0 kWh
Собственное энергопотребление	0,0 %
Доля солнечной энергии	0,0 %
Спец. Годовая выработка	1 316,64 kWh/кВт/пик
Коэффициент эффективности (КЭ)	86,2 %
Выбросы СО₂ устранены	92 823 кг / год

Настройка системы

Обзор

Системные данные

Тип системы	Подключенная к сети ФЭ система
Начало эксплуатации	02.02.2023
Климатические данные	
Размещение	Chisinau, MDA (1996 - 2015)
Разрешение по запросу данных	1 h
Применимая симуляционная модель:	
- Рассеянное излучение на горизонтальную плоскость	Hofmann
- Излучение на наклонную плоскость	Hay & Davies

Области модуля

1. Область модуля - Module Area 1

ФЭ генератор, 1. Область модуля - Module Area 1

Наименование	Module Area 1
ФЭ модули	300 x IBEX 132MHC- EIGER 500 (v1)
Производитель	SWISS SOLAR AG
Уклон	35 °
Ориентация	Юг 180 °
Тип установки	С возможностью установки - крыша
Поверхность ФЭ генератора	712,4 m²

Затенение, 1. Область модуля - Module Area 1

Затенение	0 %
-----------	-----

Деградация модуля, 1. Область модуля - Module Area 1

Остаточная мощность (выходн	ая) после 20 лет	100 %
-----------------------------	------------------	-------

Рисунок: Деградация модуля, 1. Область модуля - Module Area 1

Конфигурация инвертора

Конфигурация 1

конфинурации т	
Область модуля	Module Area 1
Инвертор 1	
Модель	MAX 100KTL3-X LV (v1)
Производитель	GROWATT New Energy Co., Ltd.
Количество	1
Размерный фактор	96 %
Конфигурация	TMM 1: 2 x 12
	TMM 2: 1 x 18

Результаты получены с применением математической модели расчетов компании Valentin Software GmbH (алгоритмы PV*SOL). Фактические значения выработки солнечной энергетической системы могут отличаться в зависимости от погодных условий, производительности модулей и инверторов, а также других факторов.

	TMM 3: 1 x 18
	TMM 4: 1 x 18
	TMM 5: 1 x 18
	TMM 6: 1 x 18
	TMM 7: 1 x 18
	TMM 8: 1 x 18
	TMM 9: 2 x 12
	TMM 10: 1 x 18
Инвертор 2	
Модель	MAX 50KTL3 LV (v1)
Производитель	GROWATT New Energy Co., Ltd.
Количество	1
Размерный фактор	108 %
Конфигурация	TMM 1: 1 x 18
	TMM 2: 1 x 18
	TMM 3: 1 x 18
	TMM 4: 1 x 18
	TMM 5: 1 x 18
	TMM 6: 1 x 18
	1101101 01 1 X

Сеть переменного тока

Сеть переменного тока

Количество фаз	3
Напряжение в сети (1-фазн.)	230 V
Коэффициент реактивной мощности (косинус фи)	+/- 1

Результаты симуляции

Итог Общая система

ФЭ система

Выходная мощность ФЭ генератора	150 кВт/пик
······	· · · · · · · · · · · · · · · · · · ·
Спец. Годовая выработка	1 316,64 kWh/кВт/пик
Коэффициент эффективности (КЭ)	86,2 %
Питание сети	197 546 kWh/Год
Входящая мощность сети за первый год (в т.ч. амортизация модуля)	197 546 kWh/Год
Потребление в режиме ожидания (Инвертор)	50 kWh/Год
Выбросы СО₂ устранены	92 823 кг / год

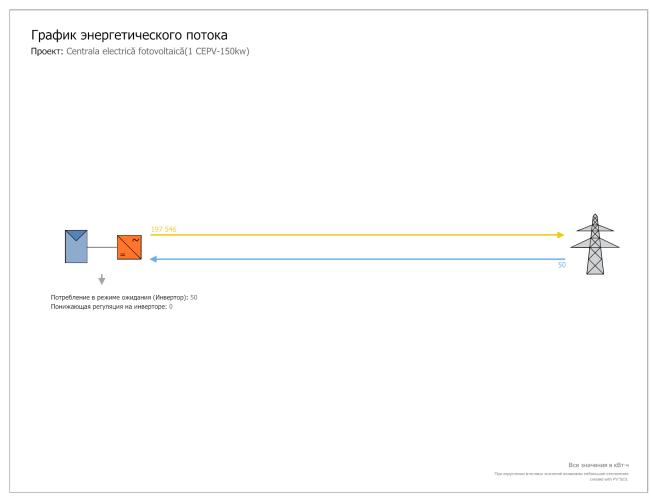


Рисунок: График энергетического потока

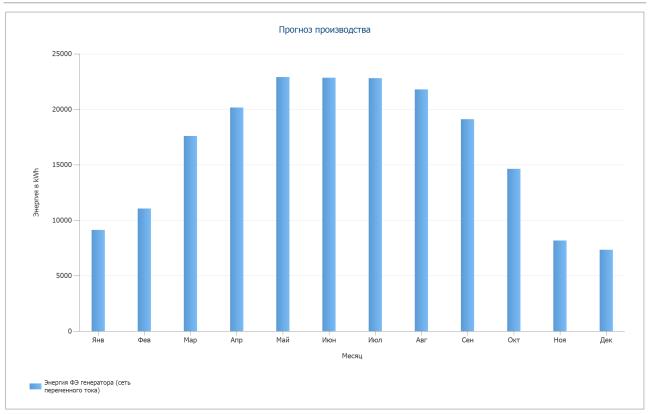


Рисунок: Прогноз производства

Результаты по области модуля

Module Area 1

Выходная мощность ФЭ генератора	150 кВт/пик
Поверхность ФЭ генератора	712,4 m²
Глобальная радиация на модуле	1526,9 kWh/m²
Энергия ФЭ генератора (сеть переменного тока)	197545,9 kWh/Год
Спец. Годовая выработка	1317 kWh/кВт/пик
Коэффициент эффективности (КЭ)	86,2 %

Энергетический баланс ФЭ системы

Энергетический баланс ФЭ системы

Энергетический баланс ФЭ системы			
Глобальная радиация - горизонтальная	1 337,71	kWh/m²	
Отклонение от стандартного спектра	-13,38	kWh/m²	-1,00 %
Отражение от земли (Albedo)	23,95	kWh/m²	1,81 %
Ориентация и уклон поверхности модуля	178,59	kWh/m²	13,25 %
Затенение	0,00	kWh/m²	0,00 %
Отражение на интерфейсе модуля	-65,03	kWh/m²	-4,26 %
Глобальная радиация на модуле	1 461,84	kWh/m²	
		kWh/m²	
	x 712,379		
	= 1 041 381,92	kWh	
Глобальная ФЭ радиация	1 041 381,92	kWh	
Загрязнение	0,00	kWh	0,00 %
Преобразование STC (номинальная производительность модуля 21,06 %)	-822 092,20	kWh	-78,94 %
Номинальная ФЭ энергия	219 289,72	kWh	
Производительность в условиях слабой освещенности	-5 548,19		-2,53 %
Отклонение от номинальной температуры модуля	-6 364,73	kWh	-2,98 %
Диоды	-1 036,88	kWh	-0,50 %
Несоответствие (информация производителя)	-4 126,80		-2,00 %
Несоответствие (конфигурация/затенение)	0,00	kWh	0,00 %
Проягиватель кабеля	0,00	kWh	0,00 %
ФЭ энергия (постоянного тока) без инверторной	202 213,12	kWh	
понижающей регуляции			
Пусковая мощность постоянного тока не достигнута	-25,36	kWh	-0,01 %
Понижающая регуляция за счет диапазона напряжений	0,00	kWh	0,00 %
TMM			
Понижающая регуляция за счет макс. силы постоянного	0,00	kWh	0,00 %
тока	0.00	Land	0.00.0/
Понижающая регуляция за счет макс. мощности постоянного тока	0,00	kWh	0,00 %
Понижающая регуляция за счет макс. мощности	-8,09	kWh	0,00 %
переменного тока/косинуса фи	-,		,,,,,,
Совпадение в ТММ	-316,53	kWh	-0,16 %
ФЭ энергия (постоянного тока)	201 863,14		,
	,		
Энергия на входе инвертора	201 863,14		
Входное напряжение отличается от номинального напряжения	-342,75	kWh	-0,17 %
Преобразование постоянного тока в переменный	-3 974,50	kWh	-1,97 %
Потребление в режиме ожидания (Инвертор)	-49,68		-0,03 %
Кабели переменного тока		kWh	0,00 %
ФЭ энергия (переменного тока) без учета использования	197 496,22		2,22,7
в режиме ожидания			
Энергия ФЭ генератора (сеть переменного тока)	197 545,90	kWh	
	,		

Рисунок: Движение начисленных средств (денежный остаток)

Технические паспорта

Технический паспорт ФЭ модуля

ФЭ модуль:	IBEX 132MHC- EIGER 500 ((v1)
------------	--------------------------	------

ФЭ МОДУЛЬ. IBEX 1321VINC- EIGER 300 (V1)		
Производитель	SWISS SOLAR AG	
Доступно	Да	
Электрические характеристики		
Тип ячеек	Микрокристаллический кремний	
Подходят только трансформаторные инверторы	Кол-во	
Число ячеек	132	
Количество обратных диодов	3	
Half-cell module	Да	
Механические данные		
Ширина	2094	mm
Высота	1134	
Глубина		mm
Ширина рамки		mm
Масса	26	
Tidota .		
Вольт-амперная характеристика в нормальном режиме		
испытаний		
Напряжение ТММ	40,62	
Сила тока ТММ	12,31	A
Номинальная выходная мощность	500	
Эффективность	21,06	%
Напряжение при разомкнутой цепи	48,83	V
Сила тока короткого замыкания	13,2	Α
Коэффициент заполнения	77,58	%
Теред стабилизацией увеличьте напряжение разомкнутой цепи	0	%
Характеристики вольт-амперной нагрузки (расчетная величина)		
Источник значений	Стандарт (Двухдиодная модель)	
Серия сопротивления Rs	1,9e-03	Ω
Параллельное сопротивление Rp	2,057	
Тараметр тока насыщения Cs1	237,6	A/K³
Тараметр тока насыщения Cs2	4,568e-03	,
Тараметр фотоэлектрического тока C1	1,244e-02	m²/V
Параметр фотоэлектрического тока С2	2,6e-06	
Фотоэлектрический ток	13,212	Α
Дальше		
Коэффициент напряжения	-123	mV/K
Коэффициент электричества	2,6	mA/K
Выходной коэффициент		%/K
Модификатор угла падения	95	
Максимальное сетевое напряжение	1500	V

Технический паспорт инвертора

Инвертор: MAX 100КTL3-X LV (v1)

Производитель	GROWATT New Energy Co., Ltd.		
Доступно	Да		
Электрические характеристики			
Номинальная выходная мощность постоянного тока	150 kW		
Выходная мощность переменного тока	100 kW		
Макс. Мощность постоянного тока	150 kW		
Максимальная мощность переменного тока	110 kVA		
Потребление в режиме ожидания	25 W		
Ночное потребление	1 W		
Мин. мощность подачи	195 W		
Макс. Входной ток	320 A		
Макс. Входное напряжение	1100 V		
Ном. Напряжение постоянного тока	600 V		
Количество фаз	3		
Количество входов постоянного тока	20		
С трансформатором	Кол-во		
Изменение эффективности, если входное напряжение	0,2 %/100V		
отклоняется от номинального напряжения			
Трекер ТММ			
Диапазон мощности < 20% от номинальной мощности	99,5 %		
Диапазон мощности > 20% от номинальной мощности	99,9 %		
Число устройств слежения за ТММ	10		
Макс. Входной ток	32 A		
Макс. входная мощность	16 kW		
Мин. Напряжение ТММ	180 V		
Макс. напряжение ТММ	1000 V		

Производитель	GROWATT New Energy Co., Ltd.
Доступно	Да
доступно	Да
Электрические характеристики	
Номинальная выходная мощность постоянного тока	65 kW
Выходная мощность переменного тока	50 kW
Макс. Мощность постоянного тока	65 kW
Максимальная мощность переменного тока	55,5 kVA
Потребление в режиме ожидания	25 W
Ночное потребление	1 W
Мин. мощность подачи	100 W
Макс. Входной ток	150 A
Макс. Входное напряжение	1100 V
Ном. Напряжение постоянного тока	585 V
Количество фаз	3
Количество входов постоянного тока	12
С трансформатором	Да
Изменение эффективности, если входное напряжение	0,2 %/100
отклоняется от номинального напряжения	
Трекер ТММ	
Диапазон мощности < 20% от номинальной мощности	99,5 %
Диапазон мощности > 20% от номинальной мощности	99,9 %
Число устройств слежения за ТММ	6
Макс. Входной ток	25 A
Макс. входная мощность	16 kW
Мин. Напряжение ТММ	200 V
Макс. напряжение ТММ	1000 V

Список планов и деталей

Электрическая схема

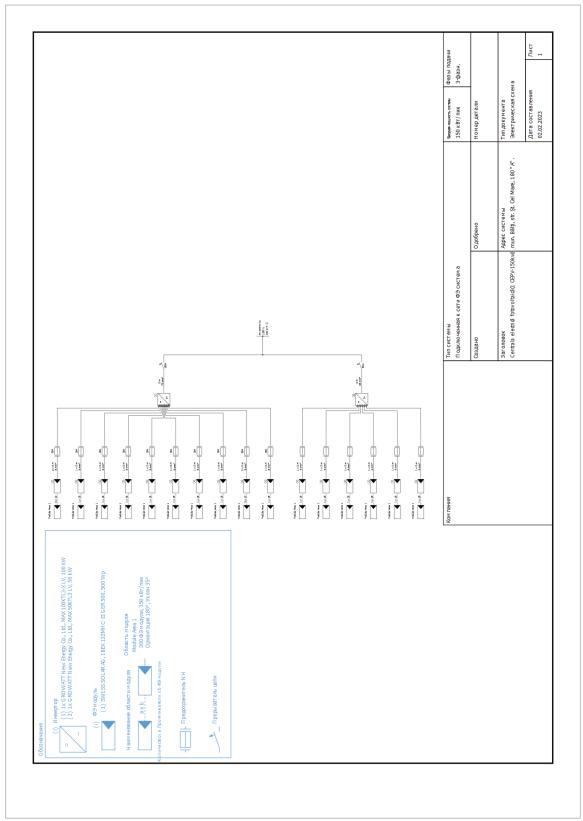


Рисунок: Электрическая схема

Список деталей

Список деталей

‡	Тип	Артикул изделия	Производитель	Наименование	Количество	Блок
L	ФЭ модуль		SWISS SOLAR AG	IBEX 132MHC- EIGER 500	300	Единица
2	Инвертор		GROWATT New Energy Co., Ltd.	MAX 100KTL3-X LV	1	Единица
3	Инвертор		GROWATT New Energy Co., Ltd.	MAX 50KTL3 LV	1	Единица
ļ	Компоненты			Прерыватель цепи 160A	1	Единица
	Компоненты			Предохранитель NH 25A	2	Единица
i	Компоненты			Предохранитель NH 16A	8	Единица
•	Компоненты			Прерыватель цепи 80A	1	Единица
	Компоненты			Предохранитель NH	6	Единица