TESTING LABORATORY ВИПРОБУВАЛЬНА ЛАБОРАТОРІЯ Т3ОВ ВКФ «ЛІЗО»

201383 **ДСТУ ISO/IEC 17025** Атестат акредитації Nº 201383 Дійсний до 16 червня 2021 року

79035, Україна, м. Львів вул. М.Пимоненка, 3 тел.:(032) 294-82-87, e-mail: lablizo@ukr.net

Accreditation certificate Nº 201383 Expiry date: 16 June, 2021

79035, Ukraine, Lviv st. Pymonenka, 3 Tel. :(032) 294-82-87. e-mail: lablizo@ukr.net

Approved by The head of the **ЛАБОРАТОРІЯ** esting laboratory of "LIZO Ltd." D. R. Dovgun

TYPE TESTING REPORT № 11/21

Of the insulation piercing connectors PC 6-95 testing

Requirements: EN 50483:2009, the manufacturer's specifications.

The test methods: EN 50483:2009.

Product name:

Insulation piercing connector (IPC)

Model and type:

PC 6-95

Manufacturer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Customer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Reason:

Contract № 12-06-20 of 25.06.2020

Additional agreement №2 of 22.03.2021

Testing results:

Insulation piercing connectors PC 6-95 passed the tests by the parameters which were tested, satisfy the manufacturer's declared characteristics and

requirements of EN 50483:2009.

(the testing results are given at the additional testing reports NºNº 11/21-1 ... 11/21-12, which is the integral part of this testing report)

This testing report is valid only for the tested samples.

This testing report can't be reproduced partly, duplicated and distributed as an official document without permission of the testing laboratory.

List and numbers of the testing reports where the testing results are given

Test	Testing report
 Visual examination test and dimensional and material verification test (EN 50483-1:2009 Annex A, Table A.1 and clause 6) 	11/21-1
2. Test for permanent marking (EN 50483-1:2009 clause 9.2)	11/21-2
3. Dielectrical voltage test in water (EN 50483-4:2009 clause 8.1.3.1)	11/21-3
 Corrosion aging tests (EN 50483 - 4:2009 clause 8.1.5.1, 8.1.5.1.3.2 method 1, EN 50483-6:2009 clauses 8.4.1 and clause 8.4.2 method 1 	11/21-4
 Climatic aging test (EN 50483 - 4:2009 clause 8.1.5.2, 8.1.5.2.3.2 method 2, EN 50483-6:2009 clause 8.5.2) 	11/21-5
6. Test for mechanical damage of the main conductor (EN 50483-4:2009 clause 8.1.2.1)	11/21-6
7. Branch cable pull-out test (EN 50483-4:2009 clause 8.1.2.2)	11/21-7
8. Connector bolt tightening test (EN 50483-4:2009 clause 8.1.2.3)	11/21-8
9. Shear head function test (EN 50483-4:2009 clause 8.1.2.4)	11/21-9
10. Low temperature impact test (EN 50483-4:2009 clause 8.1.2.5)	11/21-10
11. Low temperature assembly test (EN 50483-4:2009 clause 8.1.4)	11/21-11
12. Electrical ageing test (EN 50483-4:2009 clause 8.1.6, EN 50483-5:2009)	11/21-12

IPC CHARACTERISTICS

Name:

Model and type:

Purpose:

Insulation piercing connector.

PC 6-95.

Purposed for aluminum and copper

conductors.

Technical characteristics

Class:

Main conductor cross-sections:

Branch conductor cross-sections:

The tightening torque of the bolt:

Batch number:

Installation temperature:

Weight:

Overall dimension (L / W / H):

A1.

 $(16 - 95) \text{ mm}^2$.

 $(6 - 35) \text{ mm}^2$.

 $(14 \pm 1,5)$ Nm.

06/20.

From -10 °C to +50 °C.

125 g.

 (37.2 ± 0.8) mm / (46.8 ± 1.0) mm / (77.0 ± 0.00)

1,5) mm.

Engineering data

Body:

Contact plate:

Sealants, cap:

Bolt, washers:

Shear head:

Polyamide resistant to UV, wet and

temperature difference.

Tinned copper.

Polymer resistant to UV, wet and temperature

difference.

Galvanized steel.

Zinc alloy.

The tests were performed by:

Deputy Head of the testing laboratory:

Engineer:

Engineer:

Engineer:

S. S. Lakhovskyi

O. O. Nepyivoda

D. S. Denys

A. S. Shevtsiv

ВИПРОБУВАЛЬНА ЛАБОРАТОРІЯ "ЛІЗО"

TESTING LABORATORY ВИПРОБУВАЛЬНА ЛАБОРАТОРІЯ Т3ОВ ВКФ «ЛІЗО»

ДСТУ ISO/IEC 17025

Атестат акредитації № 201383 Дійсний до 16 червня 2021 року

79035. Україна, м. Львів вул. М.Пимоненка, 3 тел.:(032) 294-82-87. e-mail: lablizo@ukr.net Accreditation certificate Nº 201383 Expiry date: 16 June, 2021

79035, Ukraine, Lviv st. Pymonenka, 3 Tel.: (032) 294-82-87, e-mail: lablizo@ukr.net

Approved by The Head of the testing laboratory of "LIZO Ltd."

D. R. Dovgun

TESTING REPORT № 11/21-1

Visual examination test, dimensional and material verification test of insulation piercing connectors PC 6-95

Requirements: EN 50483-1:2009 Annex A, Table A.1 and clause 6.

The test methods: EN 50483:2009.

Product name:

Insulation piercing connector (IPC)

Model and type:

PC 6-95

Manufacturer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Customer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Reason:

Contract № 12-06-20 of 25.06.2020

Additional agreement №2 of 22.03.2021

Testing results:

Insulation piercing connector PC 6-95 satisfy the manufacturer's declared characteristics and requirements of EN 50483-1:2009 Annex A,

Table A.1 and clause 6.

This testing report is valid only for the tested samples.

This testing report can't be reproduced partly, duplicated and distributed as an official document without permission of the testing laboratory.

PSamples' receiving date:

25.03.2021

Quantity of the tested samples:

1.

Identification numbers of the samples:

Nº13.

The testing dates:

25.03.2021.

The environmental conditions:

temperature:

21,6 °C;

air pressure:

97,3 kPa;

humidity:

64 %.

1. Tested samples:

Insulation piercing connectors:

Model and type:

PC 6-95.

Class:

A1.

Main conductor cross-sections:

 $(16 - 95) \text{ mm}^2$.

Branch conductor cross-sections:

 $(6 - 35) \text{ mm}^2$.

The tightening torque of the bolt:

 $(14 \pm 1,5)$ Nm.

Batch number:

06/20.

Installation temperature:

From -10 °C to +50 °C.

2. Testing procedure:

Verification is performed visually, by the method of measuring and material's determining.

3. Requirements:

IPCs shall be made of the materials, declared by the manufacturer, and to correspond with the dimensions from the drawings. Marking shall be marked in accordance with EN 50483-1:2009 clause 6.

4. Testing results:

During the visual inspection it was found that the samples were executed correctly, the surfaces of the products were smooth, without sharp edges.

Results of examinations of sizes, materials and information for marking are given in Table 1 – Table 3.

Table 1 – The materials, used in production of IPC PC 6-95

Nº	Component	Material	Correspondence with requirements
1	Body	Polyamide resistant to UV	Satisfy
2	Contact plates	Tinned copper	Satisfy
3	Sealants, cap	Polymer resistant to UV	Satisfy
4	Bolt	Galvanized steel	Satisfy
5	Washers	Galvanized steel	Satisfy
6	Shear head	Zinc alloy	Satisfy

Table 2 – Dimensions of the IPC PC 6-95

Nº	Dimension	Declared, mm	In fact, mm	Correspondence with requirements
4	Langth	(37.2 ± 0.8)	37,4	Satisfy
1_	Length	(46,8 ± 1,0)	47,0	Satisfy
2	Width		77.0	Satisfy
3	Height	$(77,0 \pm 1,5)$	11,0	Satisfy

Table 3 - Visual examination of the IPC PC 6-95

Nº	Controlled marking items	Factual marking	Correspondence with requirements
4	Manufacturer's trade mark or logo	FEMAN	Satisfy
1	Product code or reference	PC 6-95	Satisfy
3	Traceability code / batch number	06/20	Satisfy
4	The minimum and maximum conductor cross sections for which the unit is suitable Main conductor, mm ² : Branch conductor, mm ² :	16 – 95 6 – 35	Satisfy
5	Tightening torque or die reference, if applicable	14 Nm	Satisfy
6	Recycling code, if any	-	-

There are no defects found during the visual examination of IPC PC 6-95. Submitted testing sample was not used earlier and wasn't processed additionally before the testing. The connector corresponds with the dimensions from the drawings and is made from the materials declared by the manufacturer. The information about manufacturer, product type and reference, usage parameters are clear indicated at sample (Fig.1).

5. Conclusion:

Insulation piercing connectors PC 6-95 satisfy the manufacturer's declared characteristics and requirements of EN 50483-1:2009 Table A.1 and clause 6.

6. Pictures:

Fig.1 - Clamp's marking

випробувальна лабораторія "ЛІЗО"

Fig.2 – IPC during the dimension's measurement

7. Test equipment:

Nº	Type	Model	Latest calibration
1	Slide gauge	ШЦ-1 №0701295	05.04.2020

The tests were performed by:

Deputy Head of the testing laboratory:

Engineer:

S. S. Lakhovskyi

O. O. Nepyivoda

TESTING LABORATORY of the "LIZO Ltd." ВИПРОБУВАЛЬНА ЛАБОРАТОРІЯ ТзОВ ВКФ «ЛІЗО»

ДСТУ ISO/IEC 17025

Атестат акредитації Nº 201383 Дійсний до 16 червня 2021 року

79035, Україна, м. Львів вул. М.Пимоненка, 3 тел.:(032) 294-82-87. e-mail: lablizo@ukr.net Accreditation certificate Nº 201383 Expiry date: 16 June, 2021

79035, Ukraine, Lviv st. Pymonenka, 3 Tel.: (032) 294-82-87 e-mail: lablizo@ukr.net

ВИПРОБУВАЛЬН **ААБОРАТОРІЯ**

Approved by The head of the testing laboratory of "LIZO Ltd."

D. R. Dovgun

TESTING REPORT № 11/21-2

Test for permanent marking of insulation piercing connectors PC 6-95

Requirements: EN 50483-1:2009 clause 9.2.4.

The test methods: EN 50483-1:2009 clause 9.2.

Product name:

Insulation piercing connector (IPC)

Model and type:

PC 6-95

Manufacturer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Customer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Reason:

Contract № 12-06-20 of 25.06.2020

Additional agreement №2 of 22.03.2021

Testing results:

The insulation piercing connectors PC 6-95 passed the test for marking resistance, satisfy

manufacturer's declared characteristics and requirements of EN 50483-1:2009 clause 9.2.

This testing report is valid only for the tested samples. This testing report can't be reproduced partly, duplicated and distributed as an official document without permission of the testing laboratory. Samples' receiving date:

25.03.2021

Quantity of the tested samples:

Z.

Identification numbers of the samples:

№13, №14.

The testing dates:

25.03.2021.

The environmental conditions:

temperature:

21,6 °C;

air pressure:

97,3 kPa;

humidity:

64 %.

1. Tested samples:

Insulation piercing connectors:

Model and type:

PC 6-95.

Class:

A1.

Main conductor cross-sections:

 $(16 - 95) \text{ mm}^2$.

Branch conductor cross-sections:

 $(6-35) \text{ mm}^2$.

The tightening torque of the bolt:

 $(14 \pm 1,5)$ Nm.

Batch number:

06/20.

Installation temperature:

From -10 °C to +50 °C.

2. Testing procedure:

The tests were performed in accordance with EN 50483-1:2009 clause 9.2.

The tests were performed at two samples of the IPC. The marking of the connector was rubbed by hand for 15 s with a piece of cloth soaked by water and another 15 s with a piece of cloth soaked by petroleum spirit.

3. Requirements:

The marking shall remain clear and allow the IPC to be easily identified.

4. Testing results:

Since the marking of the IPC is embossed, cast by casting, stability tests have not been carried out. The IPC marking is clear and allows easy identification the IPC (Fig.1).

5. Conclusion:

Marking of the insulation piercing connectors PC 6-95 is clear, allow the IPC to be easily identified, and satisfy requirements of EN 50483-1:2009 clause 9.2.

6. Pictures:

Fig.1 - The IPC after testing

The tests were performed by:

deputy head of the testing laboratory:

engineer:

S. S. Lakhovskyi

O. O. Nepyivoda

TESTING LABORATORY ВИПРОБУВАЛЬНА ЛАБОРАТОРІЯ ТзОВ ВКФ «ЛІЗО»

201383 **ДСТУ ISO/IEC 17025** Атестат акредитації Nº 201383 Дійсний до 16 червня 2021 року

79035, Україна, м. Львів вул. М.Пимоненка, 3 тел.:(032) 294-82-87, e-mail: lablizo@ukr.net

Accreditation certificate Nº 201383 Expiry date: 16 June, 2021

79035, Ukraine, Lviv st. Pymonenka, 3 Tel.: (032) 294-82-87 e-mail: lablizo@ukr.net

Approved by The head of the ВИПРОБУВАЛЬН testing laboratory of "LIZO Ltd." **ААБОРАТОРІЯ** D. R. Dovgun

TESTING REPORT № 11/21-3

Dielectrical voltage test in water of the insulation piercing connectors PC 6-95

Requirements: EN 50483-4:2009 clause 8.1.3.1.4. The test methods: EN 50483-4:2009 clause 8.1.3.1.

Product name:

Insulation piercing connector (IPC)

Model and type:

PC 6-95

Manufacturer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Customer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Reason:

Contract № 12-06-20 of 25.06.2020

Additional agreement №2 of 22.03.2021

Testing results:

The insulation piercing connectors PC 6-95 passed the dielectrical voltage test in water with high voltage 4 kV and satisfy the manufacturer's declared characteristics and requirements of EN 50483-4:2009 clause 8.1.3.1.

This testing report is valid only for the tested samples.

This testing report can't be reproduced partly, duplicated and distributed as an official document without permission of the testing laboratory.

Samples' receiving date:

Quantity of the tested samples:

Identification numbers of the samples:

The testing dates:

The environmental conditions:

temperature: air pressure: humidity:

25.03.2021

4

№15, №16, №17, №18.

29.03.2021.

20,8 °C; 97,6 kPa;

66 %.

1. Tested samples:

Insulation piercing connectors:

Model and type:

Class:

Main conductor cross-sections:

Branch conductor cross-sections: The tightening torque of the bolt:

Batch number:

Installation temperature:

PC 6-95.

A1.

 $(16 - 95) \text{ mm}^2$. $(6 - 35) \text{ mm}^2$.

 $(14 \pm 1,5)$ Nm.

06/20.

From -10 °C to +50 °C.

The main conductors:

Type:

Conductor cross-section:

Conductor diameter:

Number of strands:

Shape:

Conductor material: Insulation thickness:

Insulation material:

Manufacturer / country:

Standard:

AsXSn 4x95

95 mm²

11,2 mm

19 Round

Aluminum

1.7 mm

XLPE PJSC «Yuzhcable works» /

Ukraine

HD626:S1

AsXSn 4x16

16 mm² 4,7 mm

7

Round Aluminum 1,2 mm **XLPE**

PJSC «Yuzhcable works» /

Ukraine HD626:S1

The branch conductors:

Type:

ПВ-16 6 mm²

Conductor cross-section: Conductor diameter:

2,75 mm

Number of strands:

1

Shape:

Round Copper

Conductor material: Insulation thickness:

1,0 mm **PVC**

Insulation material: Manufacturer / country:

PJSC «Yuzhcable works» /

Ukraine

Standard:

IEC 60227-1:2007

2. Testing procedure:

The tests were performed in accordance with EN 50483-4:2009 clause 8.1.3.1.

Two samples of IPC are tested in each of the following conductors' cross-sections combinations of main and branch conductors: max - min and min - min.

IPC is installed at the core in accordance with manufacturer's installation instruction. The bolt is tightened to the minimum torque 12,5 Nm indicated by the manufacturer. Any changes in orientation of the core are absent in zone 10 cm from the IPC.

The connectors assembled at the cores (assemblies) are put into the tank with water into

the deep (30 - 40) cm from the connector to water surface.

After IPCs stay in tank under water during 30 min the testing voltage 4 kV is applied between the main core conductor and the metallic electrode, immersed into the water, during 60 s. The voltage is applied with the speed approximately 1 kV/s in accordance with EN 50483-1:2009 clause 9.1.7.

3. Requirements:

No flashovers or breakdowns of the core or IPCs should occur after testing by high voltage 4 kV during 60 s. The maximum leakage current should not exceed (10 ± 0,5) mA in accordance with EN 50483-1: 2009 clause 9.1.5.

4. Testing results:

Table 1 - Testing results

Nº	Identification number of	Conductors: main - branch	The tightening torque of the bolt, Nm	Leakage current at voltage 4 kV, mA	Flashovers, breakdowns
	IPC (mm² - mm²)		Boit, iiii	0.0	Absent
	15	min – min		0.0	Absent
1	16	16 16 – 6	12,5	1.0	Absent
2 17 18	17 max – min		- 34	1,0	Absent
	18	95 – 6		1,0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

5. Conclusion:

The insulation piercing connectors PC 6-95 have passed the dielectrical voltage test in water at high voltage 4 kV and satisfy the manufacturer declared characteristics and requirements of EN 50483-4:2009 clause 8.1.3.1.

6. Pictures:

Fig.1 – IPC during the testing

7. Test equipment:

Nº	Type	Model	Latest calibration date
1	Ruler 1m	VaGo-Tools №003	05.04.2020
2	Torque wrench	DG2-030 №DG2-030-07000584	05.04.2020
3	High voltage set	ЛІЗО №001	Don't need calibration
4	Voltmeter	E365-1 №913751	08.04.2020
5	Milliamperemeter	E377 №777768	08.04.2020
6	Stopwatch	СОС пр-2б-2-010 №2284	24.04.2020

The tests were performed by:

deputy head of the testing laboratory:

engineer:

S. S. Lakhovskyi

A. S. Shevtsiv

TESTING LABORATORY of the "LIZO Ltd." ВИПРОБУВАЛЬНА ЛАБОРАТОРІЯ ТзОВ ВКФ «ЛІЗО»

201383 **ДСТУ ISO/IEC 17025** Атестат акредитації Nº 201383 Дійсний до 16 червня 2021 року

79035, Україна, м. Львів вул. М.Пимоненка, 3 тел.:(032) 294-82-87, e-mail: lablizo@ukr.net Accreditation certificate Nº 201383 Expiry date: 16 June, 2021

79035, Ukraine, Lviv st. Pymonenka, 3 Tel.: (032) 294-82-87, e-mail: lablizo@ukr.net

KOMEPU ВИПРОБУВАЛЬНА **NAGOPATOPIA**

Approved by The Head of the testing laboratory of "LIZO Ltd."

D. R. Dovgun

TESTING REPORT № 11/21-4

Corrosion aging tests of insulation piercing connectors PC 6-95

Requirements: EN 50483-4:2009 clause 8.1.5.1.4.

The test methods: EN 50483-4:2009 clause 8.1.5.1, 8.1.5.1.3.2 method 1,

EN 50483-6:2009 clause 8.4.1 and clause 8.4.2 method 1.

Product name:

Insulation piercing connector (IPC)

Model and type:

PC 6-95

Manufacturer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Customer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Reason:

Contract № 12-06-20 of 25.06.2020

Additional agreement №2 of 22.03.2021

Testing results:

The insulation piercing connectors PC 6-95 have passed the corrosion aging tests and satisfy the manufacturer's declared characteristics and requirements of EN 50483-4:2009 clause 8.1.5.1,

8.1.5.1.3.2 method 1.

This testing report can't be reproduced partly, duplicated and distributed as an official document without permission of the testing laboratory. This testing report is valid only for the tested samples.

Samples' receiving date:

25.03.2021

Quantity of the tested samples:

2. №19, №20.

Identification numbers of the samples:

The testing dates:

26.03.2020 - 21.05.2021.

The environmental conditions:

(16 - 24) °C;

temperature: air pressure:

(96 - 101) kPa; (45 - 75) %.

humidity:

1. Tested samples:

Insulation piercing connectors:

Model and type:

PC 6-95.

Class:

A1.

Main conductor cross-sections:

 $(16 - 95) \text{ mm}^2$.

Branch conductor cross-sections: The tightening torque of the bolt:

 $(6 - 35) \text{ mm}^2$. $(14 \pm 1,5)$ Nm.

Batch number:

06/20.

Installation temperature:

From -10 °C to +50 °C.

The main conductors:

Type:

AsXSn 4x16

Conductor cross-section:

16 mm²

Conductor diameter:

4.7 mm

Number of strands:

Shape:

Round

Conductor material: Insulation thickness: Aluminum

Insulation material:

1.2 mm

Manufacturer / country:

XLPE PJSC «Yuzhcable works» /

Ukraine

Standard:

HD626:S1

The branch conductors:

Type:

ПВ-16

Conductor cross-section:

6 mm²

Conductor diameter:

2,75 mm

Number of strands:

Shape:

Round

Conductor material:

Copper 1.0 mm

Insulation thickness: Insulation material:

PVC

Manufacturer / country:

PJSC «Yuzhcable works» /

Ukraine

Standard:

IEC 60227-1:2007

2. Testing procedure:

The tests are performed in accordance with EN 50483-4:2009 clause 8.1.5.1, 8.1.5.1.3.2 method 1.

Two samples of IPCs are tested in each of the following conductors' cross-sections combinations of main and branch conductors: min - min.

The IPC is placed at the middle of the main core of length (0,5-1,5) m. The bolt of the IPC

is tightened with minimum torque 12,5 Nm specified by the manufacturer.

The tests are performed in 4 cycles of 14 days. The 14-day cycle consists of 7 days of continuously stay at salt fog chamber and of 7 days of continuously stay at chamber with higher temperature and humidity atmosphere saturated by sulphur dioxide (SO₂) (Fig.1 - Fig.2) in accordance with EN 50483-6:2009 clause 8.4.1 and clause 8.4.2.

2.1. Climatic aging test in the salt fog chamber

The testing equipment and the testing procedure are corresponded with the requirements of EN 60068-2-11:1999.

Dispersion of the salt fog are controlled during the tests by two prefabricated manifolds with area 80 cm^2 of each. The fog gathered in each manifold with speed (1-2) ml/hour with average time of dispersion not less than 16 hours.

The brine, which is used for testing, has weight-part concentration (5 \pm 2) %. The pH of the

brine is within the normal range of 6,5 to 7,2.

Compressed air without impurities of dust and oils with maintaining pressure (120 \pm 50) kPa is used to generate the fog. The air is warmed and moistened before feeding to the pulverizer by passing through the heated to 40 °C water.

The temperature in the testing chamber is maintained (35 \pm 2) $^{\circ}$ C.

2.2. Climatic aging test in chamber with higher temperature and humidity atmosphere saturated by sulfur dioxide (SO2)

The testing equipment and the testing procedure satisfy requirements of EN ISO 3231. $(2\pm0,2)$ litres of distilled water are filled into the chamber before each cycle.

Sulphur dioxide in chamber with concentration 0,0667 % is made with the help of the

reaction of sodium pyrosulfate (Na₂S₂O₅) and sulfamic acid (HSO₃ NH₂).

The temperature in the chamber is maintained (40 \pm 3) 0 C during 8 hours. Then chamber is opened and temperature is falling to the environmental temperature during 16 hours.

3. Requirements:

At visual control, there shall be no significant traces of rust (over 10 % of the open surface of metal parts of the samples).

The sample's identification marking shall be legible when examined with normal or

corrected vision without magnification.

No deterioration of the main parts of the connectors shall occur which would impair their

normal function. It shall be able to remove IPCs with a torque below or equal to the manufacturer's specified maximum torque 15,5 Nm.

4. Testing results:

The rust traces not exceed 10 % of the open surface of metal parts of the samples.

The samples' identification marking were legible when examined with normal or corrected vision without magnification.

There are no deteriorations of the main parts of the IPCs, which would impair their normal function.

The IPCs removal were realized with torque less than maximum manufacturer's specified torque 15,5 Nm.

Table 1 – Testing results when removing the IPCs after corrosion tests

Nº	Identification number of IPC	Conductors: main – branch	Torque of disassembling when removing the IPCs,	Testing result
	(Hill 7 Hill 7	(11111 7 11111)	9.64	Satisfy
1	19	min – min 16 – 6	11.06	Satisfy
1	20	10 - 0	11,00	

5. Conclusion:

Insulation piercing connectors PC 6-95 after stay in the salt fog chamber and in the chamber with higher temperature and humidity atmosphere saturated by sulphur dioxide passed the corrosion aging tests and satisfy manufacturer's declared characteristics and EN 50483-4:2009 clause 8.1.5.1, 8.1.5.1.3.2 method 1.

6. Pictures:

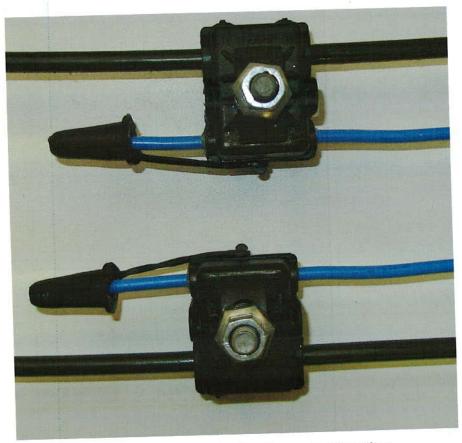


Fig.1 – IPCs after the fourth cycle of testing

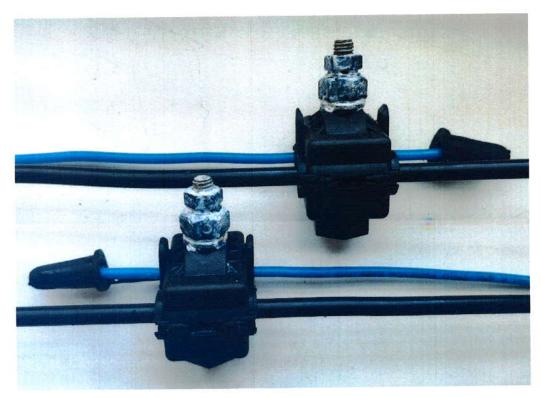


Fig.2 - IPCs after the testing

7. Test equipment:

Nº	Туре	Model	Latest calibration date
1	Ruler 1m	VaGo-Tools №003	05.04.2020
2	Torque wrench	DG2-030 №DG2-030-07000584	05.04.2020
3	Stopwatch	СОС пр-2б-2-010 №2284	24.04.2020
4	Salt fog chamber	ЛІЗО №001	Don't need calibration
5	Measurement and control device with resistive temperature transducer	PT 0102 №14-558 TCП-1388 №15-201	08.04.2020
6	pH-meter	РН-009 інв№00133	Calibrated before using
7	Working standard pH	PH 4,01±0,01	15.06.2020
8	Working standard pH	PH 7,00±0,01	15.06.2020
9	Chamber with higher temperature and humidity atmosphere saturated by sulfur dioxide	ЛІЗО №001	Don't need calibration
10	Measurement and control device with resistive temperature transducer	PT 0102 №14-557 TCП-1388 №15-201	08.04.2020
11	Tensile test machine, factory №001	ЛІЗО №001	Don't need calibration
12	Load cell	FB 50K №0032	06.04.2020

The tests were performed by:

Deputy Head of the testing laboratory:

Engineer:

O. O. Nepyivoda

S. S. Lakhovskyi

Engineer:

D. S. Denys

Engineer:

A. S. Shevtsiv

ВИПРОБУВАЛЬНА ЛАБОРАТОРІЯ "ЛІЗО"

Page **5** of **5**

ВИПРОБУВАЛЬНА ЛАБОРАТОРІЯ TESTING LABORATORY of the "LIZO Ltd."

201383 ДСТУ ISO/IEC 17025 Атестат акредитації № 201383 Дійсний до 16 червня 2021 року

79035, Україна, м. Львів вул. М.Пимоненка, 3 тел.:(032) 294-82-87, e-mail: lablizo@ukr.net Accreditation certificate

№ 201383

Expiry date:

16 June, 2021

79035, Ukraine, Lviv st. Pymonenka, 3 Tel.: (032) 294-82-87, e-mail: lablizo@ukr.net

Approved by
The head of the
esting laboratory of "LIZO Ltd."

D. R. Dovgun 25

TESTING REPORT № 11/21-5

Climatic aging test (UV-radiation) of insulation piercing connectors PC 6-95

Requirements: EN 50483-4:2009 clauses 8.1.5.2.4, 8.1.5.2.4.1, 8.1.5.2.4.3.

The test methods: EN 50483-4:2009 clauses 8.1.5.2, 8.1.5.2.3.2 method 2,

EN 50483-6:2009 clause 8.5.2.

Product name:

Insulation piercing connector (IPC)

Model and type:

PC 6-95

Manufacturer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Customer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Reason:

Contract № 12-06-20 of 25.06.2020

Additional agreement №2 of 22.03.2021

Testing results:

The insulation piercing connectors PC 6-95 have passed the climatic aging test (UV-radiation).

Connectors satisfy the manufacturer's declared

characteristics and requirements of

EN 50483-4:2009 clauses 8.1.5.2, 8.1.5.2.3.2

method 2.

The testing results are valid for the tested samples only.

This testing report can't be reproduced partly, duplicated and distributed as an official document without permission of the testing laboratory.

Samples' receiving date:

Quantity of the tested samples:

Identification numbers of the samples:

The testing dates:

The environmental conditions:

temperature: air pressure:

(16 - 24) °C; (96 - 101) kPa; (45 - 75) %.

№21, №22, №23, №24.

26.03.2020 - 21.05.2021.

25.03.2021

4

humidity:

1. Tested samples:

Insulation piercing connectors:

Model and type: Class:

Main conductor cross-sections: Branch conductor cross-sections:

The tightening torque of the bolt:

Batch number:

Installation temperature:

PC 6-95.

A1.

 $(16 - 95) \text{ mm}^2$. $(6 - 35) \text{ mm}^2$.

 (14 ± 1.5) Nm.

06/20.

From -10 °C to +50 °C.

The main conductors:

Type:

Conductor cross-section:

Conductor diameter:

Number of strands:

Shape:

Conductor material: Insulation thickness:

Insulation material:

Manufacturer / country:

Standard:

AsXSn 4x95

95 mm² 11,2 mm

19

Round

Aluminum 1.7 mm

XLPE

PJSC «Yuzhcable works» /

Ukraine

HD626:S1

AsXSn 4x16

16 mm² 4,7 mm

7 Round Aluminum

1.2 mm **XLPE**

PJSC «Yuzhcable works» /

Ukraine HD626:S1

The branch conductors:

Type:

ПВ-16

Conductor cross-section: Conductor diameter:

6 mm² 2,75 mm

Number of strands:

1

Shape:

Round

Conductor material: Insulation thickness: Copper 1,0 mm

Insulation material: Manufacturer / country: **PVC** PJSC «Yuzhcable works» /

Ukraine

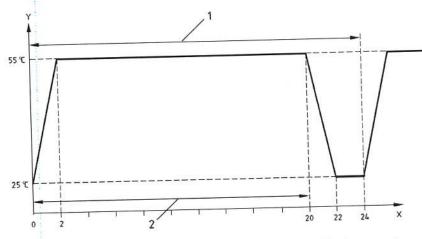
Standard:

IEC 60227-1:2007

2. Testing procedure:

2.1. Climatic aging test (UV-radiation)

The tests were performed in accordance with EN 50483-4:2009 clause 8.1.5.2, 8.1.5.2.3.2 method 2.


Two samples of IPC are tested in each of the following conductors' cross-sections combinations of main and branch conductors: min – min and max – min. IPC is installed at the core in accordance with manufacturer's installation instruction. The IPC bolt is tightened to the minimum torque - 12,5 Nm indicated by the manufacturer. Any changes in orientation of the core are absent in zone 10 cm from the IPC. Samples were tested for climatic aging in the solar radiation simulation chamber (Fig.2).

Testing chamber ensured radiation 1,120 kW/m 2 ± 10 % in the measuring plane with the spectral distribution according to Table 1. Radiation was irradiated by the cylindrical lamp with xenon arc, with power 1 kW which was situated vertically at the center of the chamber. The IPCs samples were situated at the lamp center plane at the distance from the lamp center, which ensures the indicated power (1,120 kW/m 2 ± 10 %). The radiation was controlled by the radiometer in the range of (300- 400) nm at the beginning of each cycle. Radiated power value was set 4,3 mW/cm 2 by the lamp electrical current change in case of necessity.

56 cycles with 24 hours durability were performed. Each cycle includes 20 hours of radiation and 4 hours with radiation power off with temperature modes in accordance with Fig.1. The temperature was measured by the shielded from the heat source thermometer in the plane which was situated 50 mm lower from the radiation measurement plane, at the middle of the distance from the sample to the chamber wall.

Table 1 – Spectral energy distribution and the tolerance

Nº	Spectral range	Ultraviolet	Ultraviolet A		Visible light		Infrared radiation
1	Wavelength	0,28 nm -	0,32 nm - 0,40 nm	0,40 nm - 0,52 nm	0,52 nm - 0.64 nm	0,64 nm - 0,78 nm	0,78 nm - 3,0 nm
	Radiation power	0,32 nm 5 W/m ²	63 W/m ²	200 W/m ²	186 W/m ²	174 W/m ²	492 W/m²
3	Tolerance	± 35 %	± 25 %	±10 %	± 10 %	± 10 %	± 10 %

- 1. 1 cycle;
- 2. radiation period (20 hours);

- Y = temperature axis;
- X = time axis in hours.

Fig.1 – Temperature – Radiation – Time dependence

2.2. Dielectrical voltage test in air after the climatic aging test (UV-radiation)

The tests were performed in accordance with EN 50483-4:2009 clause 8.1.3.1.3.2.

After the climatic aging test, the connectors, assembled together with core in the assemblies, are put into the tank and covered by (1-2) cm of metallic balls with (1,3-1,7) mm diameter.

After IPCs stay in tank under balls during 60 s the testing voltage 4 kV is applied between the main core conductor and the metallic balls during 60 s. The voltage is applied with the speed approximately 1 kV/s in accordance with EN 50483-1:2009 clause 9.1.7.

2.3. Dielectrical voltage test in water after the dielectrical voltage test in air

The tests were performed in accordance with EN 50483-4:2009 clause 8.1.3.1.3.1.

After dielectrical voltage test in air, the connectors assembled are put into the tank with

water into the deep (30 - 40) cm from the connector to water surface.

After IPCs stay in tank under water during 30 min the testing voltage 1 kV is applied between the main core conductor and the metallic electrode, immersed into the water, during 60 s. The voltage is applied with the speed approximately 1 kV/s in accordance with EN 50483-1:2009 clause 9.1.7.

3. Requirements:

There shall be no degradation of the main parts, which will influence to the samples characteristics.

The sample's identification marking should be legible when examined with normal and corrected vision.

No flashover or breakdown of the core or IPC shall occur after testing by high voltage 4 kV during 60 s in air. The maximum leakage current shall not exceed (10 ± 0.5) mA in accordance with EN 50483-1:2009 clause 9.1.5.

No flashover or breakdown of the core or IPC shall occur after tasting by high voltage 1 kV during 60 s in water. The maximum leakage current shall not exceed (10 ± 0.5) mA in accordance with EN 50483-1:2009 clause 9.1.5.

4. Testing results:

4.1. Testing results of climatic aging test (UV-radiation)

Insulation piercing connectors PC 6-95 have no any damages, which would influenc the samples characteristics after the climatic aging test (UV-radiation).

The samples' identification markings are legible when examined with normal and corrected vision.

4.2. Testing results for the dielectrical voltage test in air after the climatic aging test (UV-radiation)

Table 2 - Testing results for the dielectrical voltage test in air

Nº	Identification number of IPC	Conductors: main – branch (mm² – mm²)	Leakage current at voltage 4 kV with duration 60 s, mA
1	21	min – min	0,0
	21	16 – 6	0,0
	22		0.0
2	23	max – min	0.0
	24	95 – 6	0,0

4.3. Testing results for the dielectrical voltage test in water after the dielectrical voltage test in air

Table 3 – Testing results for the dielectrical voltage test in water

Nº	Identification number of IPC	Conductors: main – branch (mm² – mm²)	Leakage current at voltage 1 kV with duration 60 s, mA
21	min – min	1,0	
1	22	16 – 6	1,0
	22	max – min	2,0
2	23		3.0
	24	95 – 6	3,0

5. Conclusion:

All samples of the insulation piercing connectors PC 6-95 have passed the dielectrical voltage test in air at high voltage 4 kV during 60 s and the dielectrical voltage test in water at high voltage 1 kV during 60 s after the climatic aging test (UV-radiation), satisfy the manufacturer declared characteristics and requirements of EN 50483-4:2009 clauses 8.1.5.2, 8.1.5.2.3.2 method 2.

6. Pictures:

Fig.2 - IPC during the testing in the solar radiation simulation chamber

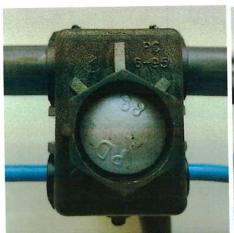


Fig.3 – Visibility of the IPC marking after the climatic aging test

7. Test equipment:

Nº	Type	Model	Latest calibration date
4	Ruler 1m	VaGo-Tools №003	05.04.2020
2	Torque wrench	DT-030S2 №17000067	05.04.2020
3	Stopwatch Stopwatch	СОС пр-2б-2-010 №2284	24.04.2020
4	Solar radiation simulation chamber	лізо №001	Don't need calibration
5	Measurement and control device with resistive temperature transducer	PT-0102 №14-513 TCП-1388 №14-026	08.04.2020
6	UV radiometer	TEH3OP-31 №P028/2014	31.03.2020
7	High voltage set	ЛІЗО №001	Don't need calibration
8	Voltmeter	E365-1 №913751	08.04.2020
9	Milliamperemeter	E377 №777768	08.04.2020

The tests were performed by:

Deputy Head of the testing laboratory:

Engineer:

Engineer:

Engineer:

S. S. Lakhovskyi

O. O. Nepyivoda

D. S. Denys

A. S. Shevtsiv

випробувальна лабораторія "Л**130**"

ВИПРОБУВАЛЬНА ЛАБОРАТОРІЯ TESTING LABORATORY of the "LIZO Ltd."

201383 ДСТУ ISO/IEC 17025 Атестат акредитації № 201383 Дійсний до 16 червня 2021 року

79035, Україна, м. Львів вул. М.Пимоненка, 3 тел.:(032) 294-82-87, e-mail: lablizo@ukr.net Accreditation certificate № 201383 Expiry date: 16 June, 2021

79035, Ukraine, Lviv st. Pymonenka, 3 Tel. :(032) 294-82-87, e-mail: lablizo@ukr.net

Арргoved by
The Head of the

Aльораторія

"AI30"

"AI

TESTING REPORT № 11/21-6

Test for mechanical damage of the main conductor of insulation piercing connectors PC 6-95

Requirements: EN 50483-4:2009 clause 8.1.2.2.4.

The test methods: EN 50483-4:2009 clause 8.1.2.1.

Product name:

Insulation piercing connector (IPC)

Model and type:

PC 6-95

Manufacturer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Customer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Reason:

Contract № 12-06-20 of 25.06.2020

Additional agreement №2 of 22.03.2021

Testing results:

The insulation piercing connectors PC 6-95 passed the test for mechanical damage of the main conductor and satisfies manufacturer's declared characteristics and requirement of EN 50483-4:2009

clause 8.1.2.1.

The testing results are valid for the tested samples only.

This testing report can't be reproduced partly, duplicated and distributed as an official document without permission of the testing laboratory.

Samples' receiving date:

Quantity of the tested samples:

Identification numbers of the samples:

The testing dates:

The environmental conditions:

temperature: air pressure: humidity: 25.03.2021

6.

Nº25, Nº26, Nº27, Nº28, Nº29, Nº30.

29.03.2021.

20,8 °C; 97,2 kPa;

55 %.

1. Tested samples:

Insulation piercing connectors:

Model and type:

Class:

Main conductor cross-sections: Branch conductor cross-sections:

The tightening torque of the bolt:

Batch number:

Installation temperature:

PC 6-95.

A1.

 $(16 - 95) \text{ mm}^2$. $(6 - 35) \text{ mm}^2$. $(14 \pm 1,5) \text{ Nm}$.

06/20.

From -10 °C to +50 °C.

The main conductors:

Type:

Conductor cross-section:

Conductor diameter:

Number of strands:

Shape:

Conductor material:

Insulation thickness: Insulation material:

Manufacturer / country:

Standard:

AsXSn 4x95

95 mm² 11,2 mm

11,2 mm 19

Round

Aluminum

1,7 mm XLPE

YLPE
PJSC «Yuzhcable works» /

Ukraine

HD626:S1

AsXSn 4x16

16 mm²

7

Round Aluminum 1,2 mm

XLPE

PJSC «Yuzhcable works» /

Ukraine HD626:S1

The branch conductors:

Type:

Conductor cross-section:

Conductor diameter: Number of strands:

Shape:

Snape: Conductor material:

Insulation thickness: Insulation material:

Manufacturer / country:

er un un un de la companya de la com

Standard:

AsXSn 4x35

35 mm²

6,9 mm

7

Round Aluminum

1,3 mm XLPE

PJSC «Yuzhcable works» /

Ukraine

HD626:S1

ПВ-16

6 mm²

2,75 mm

1

Round Copper 1,0 mm

1,0 mn

PJSC «Yuzhcable works» /

Ukraine

IEC 60227-1:2007

2. Testing procedure:

The tests are performed in accordance with EN 50483-4:2009 clause 8.1.2.1.

Two samples of IPCs are tested in each of the following conductors' cross-sections combinations of main and branch conductors: max-max, min – min and min – max.

The main core is inserted to the tensile machine as showed at Fig.1. Tensile load 10 % of MBL of the conductor is applied to it. The length of the main core is between 0,5 m to 1,5 m (EN 50483-4:2009 clause 8.1.2.1.2).

IPCs' samples are installed in accordance with manufacturer's installation instruction. The IPC bolt is tightened to the maximum torque 15,5 Nm indicated by the manufacturer. The tensile test load is applied to the main conductor until it reached values from Table 1 and maintained during 60 s.

Table 1 – Tensile test load applied to the main conductor

Nο	System type	Conductor	Tensile test load
4	Self supporting	Aluminium (16 mm² to 25 mm²)	1200 N or 40 % MBL of the cable whichever is the greater
1	Sell supporting	Aluminium (> 25 mm²)	80 % MBL of the cable

3. Requirements:

Main conductor shall sustain the tensile test load for 60 s without breaking or any damages that would prevent the correct function of the cable.

4. Testing results:

Table 2 - Testing results

Nº	Identifica- tion number of IPC	Conductors: main - branch (mm² - mm²)	The tightening torque of the bolt, Nm	MBL of the main conductor, kN	Tensile test load for 60s, kN	Breaking or damages of the conductor									
			Doit, Tim	97209-		Absent									
1	25	max – max	15,5	14,60	11,68	Absent									
	26	95 – 35		80	87			Absent							
2	27	min – min	15.5	2,45	1,20	Absent									
	2	28	16 – 6	15,5	10,0	10,0	=1.15								
3	29	min – may	min – max	500 W	0.45	1.20	Absent								
	200000		15,5	15,5	15,5	15,5	15,5	15,5	15,5	15,5	15,5	15,5	15,5	15,5 2,45	1,20
20	30	16 – 35													

5. Conclusion:

The main conductors at which IPCs PC 6-95 were installed and to which the tensile test load were applied, have passed the test for mechanical damage of the main conductor and satisfies requirement of EN 50483-4:2009 clause 8.1.2.1.

6. Pictures:

Fig.1 – IPCs in the test

7. Test equipment:

Nº	Туре	Model	Latest calibration date
Mō	Ruler 1m	VaGo-Tools №003	05.04.2020
2	Torque wrench	DT-030S2 №17000067	05.04.2020
2	Stopwatch	СОС пр-2б-2-010 №2284	24.04.2020
4	Tensile test machine, factory №001	ЛІЗО №001	Don't need calibration
-	Load cell	FB 50K №0032	06.04.2020
0	Load Cell		

The tests were performed by:

Deputy Head of the testing laboratory:

Engineer:

S. S. Lakhovskyi

D. S. Denys

ВИПРОБУВАЛЬНА ЛАБОРАТОРІЯ TESTING LABORATORY of the "LIZO Ltd."

201383 ДСТУ ISO/IEC 17025 Атестат акредитації № 201383 Дійсний до 16 червня 2021 року

79035, Україна, м. Львів вул. М.Пимоненка, 3 тел.:(032) 294-82-87, e-mail: lablizo@ukr.net Accreditation certificate
Nº 201383
Expiry date:
16 June, 2021

79035, Ukraine, Lviv st. Pymonenka, 3 Tel.:(032) 294-82-87, e-mail: lablizo@ukr.net

Approved by
The head of the
testing laboratory of "LIZO Ltd."

D. R. Dovgun

TESTING REPORT № 11/21-7

Branch cable pull-out test of insulation piercing connectors PC 6-95

Requirements: EN 50483-4:2009 clause 8.1.2.2.4.

The test methods: EN 50483-4:2009 clause 8.1.2.2.

Product name:

Insulation piercing connector (IPC)

Model and type:

PC 6-95

Manufacturer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Customer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Reason:

Contract № 12-06-20 of 25.06.2020

Additional agreement №2 of 22.03.2021

Testing results:

Insulation piercing connectors PC 6-95 passed the branch cable pull-out test, satisfies manufacturer's declared characteristics and requirements of

EN 50483-4:2009 clause 8.1.2.2.

The testing results are valid for the tested samples only.

This testing report can't be reproduced partly, duplicated and distributed as an official document without permission of the testing laboratory.

Samples' receiving date:

Quantity of the tested samples:

Identification numbers of the samples:

The testing dates:

The environmental conditions:

temperature: air pressure: humidity:

25.03.2021

Nº31, Nº32, Nº33, Nº34.

02.04.2021.

21,6 °C; 96,8 kPa;

62 %

1. Tested samples:

Insulation piercing connectors:

Model and type:

Class:

Main conductor cross-sections:

Branch conductor cross-sections: The tightening torque of the bolt:

Batch number:

Installation temperature:

PC 6-95.

A1.

 $(16 - 95) \text{ mm}^2$. $(6 - 35) \text{ mm}^2$.

 (14 ± 1.5) Nm.

06/20.

From -10 °C to +50 °C.

The main conductors:

Type:

AsXSn 4x95

Conductor cross-section:

95 mm² 11,2 mm

Conductor diameter: Number of strands:

19

Shape:

Round

Conductor material: Insulation thickness: Aluminum 1.7 mm

Insulation material:

XLPE

Manufacturer / country:

PJSC «Yuzhcable works» /

Ukraine

Standard:

HD626:S1

16 mm² 4,7 mm

AsXSn 4x16

7

Round Aluminum 1,2 mm

XLPE

PJSC «Yuzhcable works» /

Ukraine HD626:S1

The branch conductors:

Type:

ПВ-16

Conductor cross-section:

 6 mm^2 2.75 mm

Conductor diameter: Number of strands:

Shape:

Round

Conductor material:

Copper 1.0 mm

Insulation thickness:

PVC

Insulation material:

Manufacturer / country:

PJSC «Yuzhcable works» /

Ukraine

Standard:

IEC 60227-1:2007

2. Testing procedure:

The tests are performed in accordance with EN 50483-4:2009 clause 8.1.2.2.

Two samples of IPC are tested in each of the following conductors' cross-sections combinations of main and branch conductors: max – min, min – min.

IPC is inserted into the tensile machine as showed at Fig.1 in accordance with manufacturer's installation instruction. The branch core length is between 0,2 m to 0,5 m (EN 50483-4:2009 clause 8.1.2.2.2).

The IPC bolt is tightened to the maximum torque 15,5 Nm indicated by the manufacturer. The mark is made near the IPC at the branch cable, which will permit to measure its slippage. The tensile load is applied approximately axially between the branch conductor and opposing main conductor with the rate between 100 N/min to 500 N/min. This load is 10 % of the MBL of the branch conductor and is maintained for 60 s.

3. Requirements:

Branch core slippage shall not exceed 3 mm. The cores shall maintain the test load for 60 s without breaking or any damages that would prevent the correct function of the cable.

4. Testing results:

MBL determination of the $\Pi B-1$ 6. Three samples of the conductor were broken at tensile machine. Load applied with speed 50 N/s.

Calculated value of MBL of the conductor is 90% of intermediate value of last three breakes.

Nº	№ of the conductor sample	Conductor cross-section, mm²	Breaking load of the conductor, kN	Mean value of breaking load of the conductor, kN	MBL of the conductor, kN
1	1	6	1,30		20027EP
2	2		1,42	1,36	1,22
3	3		1,35		

Table 1: MBL of the cable ΠΒ-1 6

Table 2 - Testing results

Nº	Identifica- tion number of IPC	Conductors: main – branch (mm² – mm²)	The testing load: 60 s, 10 % of the MBL, kN	Branch conductor slippage, mm	Breaking or damages of the conductors
1		max – min 95 – 6		0	Absent
	31		0,12	0	Absent
	32			0	Absent
2	33	min – min	0,12	0	Absent
	34	16 – 6		U	7 1000110

5. Conclusion:

There was no slippage of the branch conductors during the testing of the IPCs PC 6-95. The cores maintained the test load for 60 s without breaking or any damages that would prevent the correct function of the cable.

Insulation piercing connectors PC 6-95 passed the branch cable pull-out test and satisfies requirements of EN 50483-4:2009 clause 8.1.2.2.

випробувальна лабораторія "ЛІЗО"

6. Pictures:

Fig.1 – IPC in the test

7. Test equipment:

Type	Model	Latest calibration date
	VaGo-Tools №003	05.04.2020
	DT-030S2 №17000067	05.04.2020
	СОС пр-2б-2-010 №2284	24.04.2020
STATE OF THE STATE	ЛІЗО №001	Don't need calibration
	FB 50K №0032	06.04.2020
(No. 2014-2014)	ШЦ-1 №0701295	05.04.2020
	Type Ruler 1m Torque wrench Stopwatch Tensile test machine, factory №001 Load cell Slide gage	Ruler 1m VaGo-Tools №003 Torque wrench DT-030S2 №17000067 Stopwatch COC пр-2б-2-010 №2284 Tensile test machine, factory №001 ЛІЗО №001 Load cell FB 50K №0032

The tests were performed by:

Deputy Head of the testing laboratory:

Engineer:

S. S. Lakhovskyi

A. S. Shevtsiv

випробувальна лабораторія "ЛІЗО"

ВИПРОБУВАЛЬНА ЛАБОРАТОРІЯ TESTING LABORATORY of the "LIZO Ltd."

201383 ДСТУ ISO/IEC 17025 Атестат акредитації № 201383 Дійсний до 16 червня 2021 року

79035, Україна, м. Львів вул. М.Пимоненка, 3 тел.:(032) 294-82-87, e-mail: lablizo@ukr.net Accreditation certificate
Nº 201383
Expiry date:
16 June, 2021

79035, Ukraine, Lviv st. Pymonenka, 3 Tel. :(032) 294-82-87, e-mail: lablizo@ukr.net

обранована в пробрана в пробрана

Approved by
The head of the
esting laboratory of "LIZO Ltd."

D. R. Dovgun

TESTING REPORT № 11/21-8

Connector bolt tightening test for insulation piercing connectors PC 6-95

Requirements: EN 50483-4:2009 clause 8.1.2.3.4.

The test methods: EN 50483-4:2009 clause 8.1.2.3.

Product name:

Insulation piercing connector (IPC)

Model and type:

PC 6-95

Manufacturer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Customer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Reason:

Contract № 12-06-20 of 25.06.2020

Additional agreement №2 of 22.03.2021

Testing results:

Insulation piercing connectors PC 6-95 have passed the connector bolt tightening test, satisfies manufacturer's declared characteristics and

requirements of EN 50483-4:2009 clause 8.1.2.3.

The testing results are valid for the tested samples only.

This testing report can't be reproduced partly, duplicated and distributed as an official document without permission of the testing laboratory.

Samples' receiving date:

Quantity of the tested samples:

Identification numbers of the samples:

The testing dates:

The environmental conditions:

temperature: air pressure: humidity:

25.03.2021

6

Nº35, Nº36, Nº37, Nº38, Nº39, Nº40.

02.04.2021.

21,6 °C; 97,1 kPa; 73 %.

1. Tested samples:

Insulation piercing connectors:

Model and type:

Class:

Main conductor cross-sections: Branch conductor cross-sections:

The tightening torque of the bolt:

Batch number:

Installation temperature:

PC 6-95.

A1.

 $(16 - 95) \text{ mm}^2$. $(6 - 35) \text{ mm}^2$. $(14 \pm 1,5)$ Nm.

06/20.

From -10 °C to +50 °C.

The main conductors:

Type:

Conductor cross-section:

Conductor diameter:

Number of strands:

Shape:

Conductor material: Insulation thickness:

Insulation material:

Manufacturer / country:

Standard:

AsXSn 4x95

95 mm² 11.2 mm

19

Round

Aluminum 1,7 mm

XLPE

PJSC «Yuzhcable works» /

Ukraine

HD626:S1

AsXSn 4x16

16 mm² 4,7 mm

7

Round Aluminum 1.2 mm

XLPE

PJSC «Yuzhcable works» /

Ukraine HD626:S1

The branch conductors:

Type:

Conductor cross-section: Conductor diameter:

Number of strands:

Shape:

Conductor material: Insulation thickness:

Insulation material: Manufacturer / country:

Standard:

AsXSn 4x35

35 mm²

6.9 mm

Round

Aluminum 1,3 mm

XLPE

PJSC «Yuzhcable works» /

Ukraine

HD626:S1

ПВ-16

6 mm² 2.75 mm

1

Round Copper 1.0 mm

PVC

PJSC «Yuzhcable works» /

Ukraine

IEC 60227-1:2007

2. Testing procedure:

The tests are performed in accordance with EN 50483-4:2009 clause 8.1.2.3.

Two samples of IPCs are tested in each of the following conductors' cross-sections combinations of main and branch conductors: max – max, min – min and min – max.

The connector is installed at the main core, which is tensioned previously to 20 % of MBL of the core.

The connectors are installed as shown at Fig. 1 and tightened with torque 18,6 Nm which is 20 % greater than maximum torque (15,5 Nm) specified by the manufacturer.

3. Requirements:

The connector shall be undamaged.

4. Testing results:

Table 1 - Testing results

Nº	Identifica- tion number of IPC	Conductors: main – branch (mm² – mm²)	MBL of the main conductor, kN	Tensile load of the main core 20 % of the MBL, kN	The tightening torque of the connector's bolt, Nm	Breaking or damaging of the IPC	
		35 max – max 36 95 – 35	KIN	9	40.0	Absent	
1			14,60	2,92	18,6	Absent	
1				7.0		Absent	
	37	min – min 16 – 6	2.45	0.49	18,6	Absent	
2	38		2,45	2,45	2,45	0,10	
						Absent	
3	39	min – max	2,45	0,49	18,6	Absent	
	40	16 – 35	2,,,,,		6 – 35		

5. Conclusion:

Insulation piercing connectors PC 6-95 have no any damages after applying of the torque 18,6 Nm to the connectors' bolts. This torque is 20 % greater than maximum torque specified by the manufacturer (15,5 Nm). IPC PC 6-95 satisfy requirements of EN 50483-4:2009 clause 8.1.2.3.

6. Pictures:

Fig.1 – IPC in the test

7. Test equipment:

Nº	Туре	Model	Latest calibration date	
4	Torque wrench	DT-030S2 №17000067	05.04.2020	
2	Tensile test machine, factory №001	ЛІЗО №001	Don't need calibration	
2	Load cell	FB 50K №0032	06.04.2020	

The tests were performed by:

Deputy Head of the testing laboratory:

Engineer:

S. S. Lakhovskyi

O. O. Nepyivoda

ВИПРОБУВАЛЬНА ЛАБОРАТОРІЯ TESTING LABORATORY of the "LIZO Ltd."

201383 ДСТУ ISO/IEC 17025 Атестат акредитації № 201383 Дійсний до 16 червня 2021 року

79035, Україна, м. Львів вул. М.Пимоненка, 3 тел.:(032) 294-82-87, e-mail: lablizo@ukr.net Accreditation certificate
Nº 201383
Expiry date:
16 June, 2021

79035, Ukraine, Lviv st. Pymonenka, 3 Tel.: (032) 294-82-87, e-mail: lablizo@ukr.net

Approved by
The head of the

RHITPOGYBAALHA

AABOPATOPUS

"N130"

"N130"

"A130"

"A13

TESTING REPORT № 11/21-9

Shear head function test of insulation piercing connector PC 6-95

Requirements: EN 50483-4:2009 clause 8.1.2.4.4.

The test methods: EN 50483-4:2009 clause 8.1.2.4.

Product name:

Insulation piercing connector (IPC)

Model and type:

PC 6-95

Manufacturer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Customer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Reason:

Contract № 12-06-20 of 25.06.2020

Additional agreement №2 of 22.03.2021

Testing results:

The insulation piercing connectors PC 6-95 passed the shear head function test, satisfies the manufacturer's declared characteristics and requirements of EN 50483-4:2009 clause 8.1.2.4.

The testing results are valid for the tested samples only.

This testing report can't be reproduced partly, duplicated and distributed as an official document without permission of the testing laboratory.

Samples' receiving date:

Quantity of the tested samples:

Identification numbers of the samples:

The testing dates:

The environmental conditions:

temperature: air pressure:

humidity:

25.03.2021

24.

№41 ... №64. 14.04.2021.

(23,8 - 24,6) °C;

97,5 kPa;

(63 - 71) %.

1. Tested samples:

Insulation piercing connectors:

Model and type:

Class:

Main conductor cross-sections: Branch conductor cross-sections:

The tightening torque of the bolt:

Batch number:

Installation temperature:

PC 6-95.

A1.

 $(16 - 95) \text{ mm}^2$. $(6 - 35) \text{ mm}^2$.

 $(14 \pm 1,5)$ Nm.

06/20.

From -10 °C to +50 °C.

The main conductors:

Type:

Conductor cross-section:

Conductor diameter:

Number of strands:

Shape:

Conductor material: Insulation thickness:

Insulation material:

Manufacturer / country:

Round

19

95 mm²

11,2 mm

Aluminum 1,7 mm

AsXSn 4x95

XLPE

PJSC «Yuzhcable works» /

Ukraine

Standard:

HD626:S1

AsXSn 4x16

16 mm² 4,7 mm

Round Aluminum 1,2 mm **XLPE**

PJSC «Yuzhcable works» /

Ukraine HD626:S1

The branch conductors:

Type:

Conductor cross-section:

Conductor diameter: Number of strands:

Shape:

Conductor material:

Insulation thickness: Insulation material:

Manufacturer / country:

Standard:

AsXSn 4x35

35 mm² 6,9 mm

Round Aluminum 1,3 mm

XLPE

PJSC «Yuzhcable works» /

Ukraine

HD626:S1

ΠB-1 6

6 mm²

2.75 mm

1

Round Copper 1.0 mm

PVC

PJSC «Yuzhcable works» /

Ukraine

IEC 60227-1:2007

2. Testing procedure:

The tests are performed in accordance with EN 50483-4:2009 clause 8.1.2.4.

Six samples of IPC are tested in each of the following conductors' cross-sections combinations of main and branch conductors: min – min, max – max.

The tests are performed for each of the testing temperatures:

- minimum temperature: -10 °C (± 3 °C);
- maximum temperature: 50 °C (± 3 °C).

Prepared assemblies are placed in the chamber with controlled temperature until they reach the testing temperature. The testing temperature is maintained in the chamber during 15 minutes. The shear head is tightened in accordance with the manufacturer's installation instruction. Value of the tightening torque is registered by the electronic torque wrench (Fig.1, Fig.2).

3. Requirements:

For each of the testing temperatures and cross-section combinations, the torque, at which the shear head is sheared, should be within the tolerances of the manufacturer's specified torque range $(14 \pm 1,5)$ Nm.

4. Testing results:

Table 1 - Testing results

Nº	Identifica- tion number of IPC	Conductors: main - branch (mm² - mm²)	Environmental temperature the assembly preliminary equalizing, °C	IPC shear heads tightening torque value, Nm	Testing results
	41			14,12	Satisfy
	42			15,14	Satisfy
	43		3.6	14,16	Satisfy
1	44		-10	14,97	Satisfy
	45			13,95	Satisfy
	46			13,68	Satisfy
	47	min – min		15,14	Satisfy
	48	16 – 6		15,03	Satisfy
	49	+		15,15	Satisfy
2	50	-	50	14,15	Satisfy
_	51			15,10	Satisfy
	52	_		14,67	Satisfy
	53			13,54	Satisfy
	54	-		15,06	Satisfy
	55	-		14,16	Satisfy
3	56	-	-10	15,02	Satisfy
		-		13,68	Satisfy
	57 58	4		14,36	Satisfy
		max – max		14,33	Satisfy
	59	95 – 35		13,03	Satisfy
	60	-		14,86	Satisfy
4	61		50	15,30	Satisfy
	62			14,80	Satisfy
	63			14,30	Satisfy
	64			,	

5. Conclusion:

The insulation piercing connectors PC 6-95 passed the shear head function test within the bounds of the manufacturer indicated tightening torque (14 \pm 1,5) Nm under low temperature -10 $^{\circ}$ C (\pm 3 $^{\circ}$ C) and under high temperature 50 $^{\circ}$ C (\pm 3 $^{\circ}$ C). The insulation piercing connectors PC 6-95 satisfy the manufacturer's declared characteristics and requirements of EN 50483-4:2009 clause 8.1.2.4.

6. Pictures:

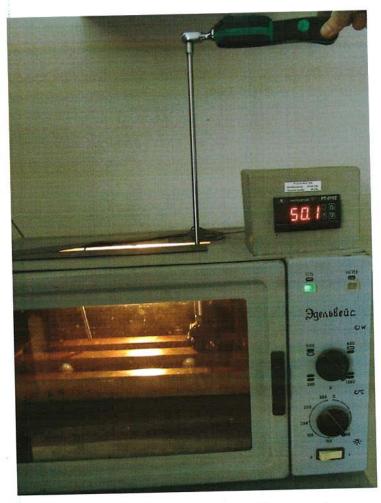


Fig.1 – Testing under maximal temperature

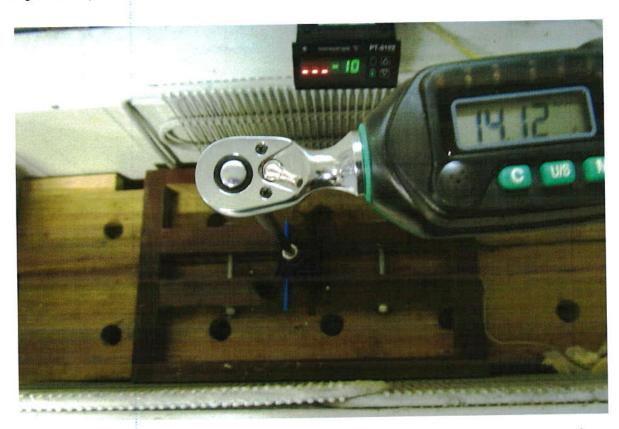


Fig.2 - Testing under minimal temperature

7. Test equipment:

Nº	Туре	Model	Latest calibration date		
1	Torque wrench	DT-030S2 №17000067	07.04.2021		
2	Cold chamber	ЛІЗО № 001	Don't need calibration		
3	Temperature measurement and control device with resistive temperature transducer	PT-0102 №14-571 TCΠ-0287 №14-039	08.04.2021		
4	Electrical chamber (heat chamber)	Едельвейс №0298	Don't need calibration		
5	Temperature measurement and control device with resistive temperature transducer	PT-0102 №15-398 TCΠ-0287 №15-009	08.04.2021		

The tests were performed by:

Deputy Head of the testing laboratory:

Engineer:

S. S. Lakhovskyi

D. S. Denys

ВИПРОБУВАЛЬНА ЛАБОРАТОРІЯ TESTING LABORATORY of the "LIZO Ltd."

201383 ДСТУ ISO/IEC 17025 Атестат акредитації № 201383 Дійсний до 16 червня 2021 року

79035, Україна, м. Львів вул. М.Пимоненка, 3 тел.:(032) 294-82-87, e-mail: lablizo@ukr.net Accreditation certificate
Nº 201383
Expiry date:
16 June, 2021

79035, Ukraine, Lviv st. Pymonenka, 3 Tel.: (032) 294-82-87, e-mail: lablizo@ukr.net

випробувальна дабо в 130 года на пробувальна в 130 года на пробувальна дабо в 130 года на пробувальна в 130 года на пробувать на предста на пробувать на предста на предста на пробувать на предста на предста на пр

Approved by
The Head of the
testing laboratory of "LIZO Ltd."

D. R. Dovgun

TESTING REPORT № 11/21-10

Low temperature impact test of insulation piercing connectors PC 6-95

Requirements: EN 50483-4:2009 clause 8.1.2.5.4.

The test methods: EN 50483-4:2009 clause 8.1.2.5.

Product name:

Insulation piercing connector (IPC)

Model and type:

PC 6-95

Manufacturer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Customer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Reason:

Contract № 12-06-20 of 25.06.2020

Additional agreement №2 of 22.03.2021

Testing results:

Insulation piercing connectors PC 6-95 passed low temperature impact test, satisfy the manufacturer's declared characteristics and requirements of

EN 50483-4:2009 clause 8.1.2.5.

The testing results are valid for the tested samples only.

This testing report can't be reproduced partly, duplicated and distributed as an official document without permission of the testing laboratory.

Samples' receiving date:

Quantity of the tested samples:

Identification numbers of the samples:

The testing dates:

The environmental conditions:

temperature: air pressure: humidity:

25.03.2021

Nº65, Nº66, Nº67, Nº68.

19.04.2021.

21,6 °C; 96,8 kPa;

65 %.

1. Tested samples:

Insulation piercing connectors:

Model and type:

Class:

Main conductor cross-sections: Branch conductor cross-sections:

The tightening torque of the bolt:

Batch number:

Installation temperature:

PC 6-95.

A1.

 $(16 - 95) \text{ mm}^2$. $(6 - 35) \text{ mm}^2$.

 $(14 \pm 1,5)$ Nm.

06/20.

From -10 °C to +50 °C.

The main conductors:

Type:

AsXSn 4x95

Conductor cross-section:

95 mm² 11,2 mm

Conductor diameter:

19

Number of strands: Shape:

Round

Conductor material:

Aluminum

Insulation thickness:

1.7 mm

Insulation material:

XLPE

Manufacturer / country:

PJSC «Yuzhcable works» /

Ukraine

Standard:

HD626:S1

The branch conductors:

Type:

AsXSn 4x35

Conductor cross-section:

35 mm² 6,9 mm

Conductor diameter: Number of strands:

Shape:

Conductor material: Insulation thickness: Round Aluminum 1.3 mm

Insulation material:

XLPE

PJSC «Yuzhcable works» /

Manufacturer / country:

Ukraine

Ukraine

PVC

ПВ-16

6 mm²

1

2,75 mm

Round

Copper

1.0 mm

Standard:

HD626:S1

IEC 60227-1:2007

PJSC «Yuzhcable works» /

2. Testing procedure:

The tests are performed in accordance with EN 50483-4:2009 clause 8.1.2.5. Two samples of IPCs are tested in each of the following conductors' cross-sections combinations of main and branch conductors: max – min and max – max.

Assemblies are placed in the cold chamber with controlled temperature until they reached the testing temperature -10 °C (± 3 °C).

The assemblies are removed from the cold chamber by turns and are tested for impact from top and from side with help of the impact test device shown at Fig.1.

The testing samples of the IPCs are placed between the metallic plane and anvil 50 mm in diameter with a spherical contact radius of 300 mm and mass 100 g. The impacts are dashed to anvil with the help of cylindrical weight 900 g falling freely through 200 mm.

3. Requirements:

No damage should occur which would affect the correct function of the connector.

4. Testing results:

Table 1 – Testing results

Nº	Identifica- tion number of IPC	Conductors: main – branch (mm² – mm²)	The samples temperature during the testing, °C	Damages
	A CONTRACTOR OF THE CONTRACTOR	max – min	7.0	Absent
1			-10	Absent
•	66	65 max – min 66 95 – 6		Absent
5000	67	max - max	-10	
2	68	95 – 35	-10	Absent

5. Conclusion:

Insulation piercing connectors PC 6-95 have no any damages which would impede the correct function of the connectors after the low temperature -10 °C (± 3 °C) impact test. Connectors have passed the tests and satisfy the manufacturer's declared characteristics and requirements of EN 50483-4:2009 clause 8.1.2.5.

6. Pictures:

Fig.1 – IPCs during the testing

7. Test equipment:

Nº	Туре	Model	Latest calibration dat		
4	Ruler 1m	VaGo-Tools №003	08.04.2021		
2	Torque wrench	DT-030S2 №17000067	07.04.2021		
3	Cold chamber	ЛІЗО № 001	Don't need calibration		
4	Temperature measurement and control device with resistive temperature transducer	PT-0102 №14-571 TCΠ-0287 №14-039	08.04.2021		
5	Impact device	ЛІЗО №001	Don't need calibration		

The tests were performed by:

Deputy Head of the testing laboratory:

Engineer:

S. S. Lakhovskyi

O. O. Nepyivoda

201383 ДСТУ ISO/IEC 17025 Атестат акредитації № 201383 Дійсний до 16 червня 2021 року

79035, Україна, м. Львів вул. М.Пимоненка, 3 тел.:(032) 294-82-87, e-mail: lablizo@ukr.net Accreditation certificate № 201383 Expiry date: 16 June, 2021

79035, Ukraine, Lviv st. Pymonenka, 3 Tel.: (032) 294-82-87, e-mail: lablizo@ukr.net

Approved by
The Head of the

SHITPOSYBAALHA

AAGOPATOPIS

"AI30"

"AI3

TESTING REPORT № 11/21-11

Low temperature assembly test of insulation piercing connectors PC 6-95

Requirements: EN 50483-4:2009 clause 8.1.4.4.

The test methods: EN 50483-4:2009 clause 8.1.4.

Product name:

Insulation piercing connector (IPC)

Model and type:

PC 6-95

Manufacturer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Customer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Reason:

Contract № 12-06-20 of 25.06.2020

Additional agreement №2 of 22.03.2021

Testing results:

The assemblies of the insulation piercing

connectors PC 6-95 passed the test for stability of the electrical contact between conductors under low temperature, satisfy manufacturer's declared

characteristics and requirements of

EN 50483-4:2009 clause 8.1.4.

The testing results are valid for the tested samples only.

This testing report can't be reproduced partly, duplicated and distributed as an official document without permission of the testing laboratory.

Samples' receiving date:

25.03.2021

Quantity of the tested samples:

Identification numbers of the samples:

Nº69, Nº70, Nº71, Nº72, Nº73, Nº74.

The testing dates:

14.04.2021.

The environmental conditions:

21,8 °C;

temperature: air pressure:

96,8 kPa;

humidity:

71 %

1. Tested samples:

Insulation piercing connectors:

Model and type:

PC 6-95.

Class:

A1.

Main conductor cross-sections:

 $(16 - 95) \text{ mm}^2$.

Branch conductor cross-sections:

 $(6 - 35) \text{ mm}^2$. (14 ± 1.5) Nm.

The tightening torque of the bolt: Batch number:

06/20.

Installation temperature:

From -10 °C to +50 °C.

The main conductors:

Type:

AsXSn 4x95

AsXSn 4x16

Conductor cross-section:

95 mm² 11,2 mm

16 mm² 4.7 mm

Conductor diameter: Number of strands:

19

Shape:

Round

Round

Conductor material:

Aluminum

Aluminum 1.2 mm

Insulation thickness:

1.7 mm **XLPE**

XLPE

Insulation material: Manufacturer / country:

PJSC «Yuzhcable works» /

PJSC «Yuzhcable works» / Ukraine

Standard:

HD626:S1

Ukraine

HD626:S1

ПВ-16

 6 mm^2

Round

Copper

1.0 mm

1

2,75 mm

The branch conductors:

Type:

AsXSn 4x35

Conductor cross-section:

35 mm²

Conductor diameter: Number of strands:

6,9 mm

7

Conductor material: Insulation thickness: Round Aluminum

Shape:

1,3 mm

Insulation material:

XLPE

PVC

Manufacturer / country:

PJSC «Yuzhcable works» /

PJSC «Yuzhcable works» / Ukraine

Ukraine

HD626:S1

IEC 60227-1:2007

2. Testing procedure:

The tests are performed in accordance with EN 50483-4:2009 clause 8.1.4.

Two samples of IPCs are tested in each of the following conductors' cross-sections combinations of main and branch conductors: max – max, min – max and max – min.

The conductors and IPCs are cooled to the testing temperature -10 °C (± 3 °C) before the tests.

The connector's bolt is tightened with the help of electronic torque wrench before the stable electrical contact occurrence between the conductors, which is fixed with the help of ohmmeter after the assembly of the conductors and connectors achieved the temperature $-10~^{\circ}\text{C}$ ($\pm~3~^{\circ}\text{C}$). We are fixing the tightening torque of the connector's bolt at which stable electrical contact is obtained (Fig.1).

3. Requirements:

Stable electrical contact should be achieved between the conductors under the low temperature -10 $^{\circ}$ C (± 3 $^{\circ}$ C) with connector's nut tightening torque less or equal to 70 % of the minimum tightening torque declared by the manufacturer (12,5 Nm), notably 8,75 Nm.

4. Testing results:

Table 1 – Testing results

Nº	Identifica- tion number of IPC	Conductors: main - branch (mm² - mm²)	The sample's temperature during the testing, ⁰ C	The tightening torque of the connector's bolt at which stable electrical contact between conductors was achieved, Nm	Testing result
	69 max – m	may may	27.65	4,38	Satisfy
1			-10	4,15	Satisfy
	70	95 – 35		4,50	Satisfy
2	71	min – max	-10		Satisfy
2	72	16 - 35		4,15	
	73	max - min	1.6	6,58	Satisfy
3	74	95 – 6	-10	5,07	Satisfy

5. Conclusion:

The assemblies of the insulation piercing connectors PC 6-95 passed the test for stability of the electrical contact between conductors under low temperature -10 °C (± 3 °C) with connector's bolt tightening torque less or equal to 70 % of the minimum tightening torque declared by the manufacturer (12,5 Nm), satisfies requirements of EN 50483-4:2009 clause 8.1.4.

6. Pictures:

Fig.1 – IPC during the test

7. Test equipment:

Nº	Туре	Model	Latest calibration date
1	Torque wrench	DT-030S2 №17000067	07.04.2021
2	Cold chamber	ЛІЗО № 001	Don't need calibration
3	Temperature measurement and control device with resistive temperature transducer	РТ-0102 №14-571 ТСП-0287 №14-039	08.04.2021
4	Multimeter	Topex №11602228	Don't need calibration

The tests were performed by:

Deputy Head of the testing laboratory:

Engineer:

S. S. Lakhovskyi

A. S. Shevtsiv

ВИПРОБУВАЛЬНА ЛАБОРАТОРІЯ "ЛІЗО"

ВИПРОБУВАЛЬНА ЛАБОРАТОРІЯ TESTING LABORATORY of the "LIZO Ltd."

201383 ДСТУ ISO/IEC 17025 Атестат акредитації № 201383 Дійсний до 16 червня 2021 року

79035, Україна, м. Львів вул. М.Пимоненка, 3 тел.:(032) 294-82-87, e-mail: lablizo@ukr.net Accreditation certificate
№ 201383
Expiry date:
16 June, 2021

79035, Ukraine, Lviv st. Pymonenka, 3 Tel. :(032) 294-82-87, e-mail: lablizo@ukr.net

обо комерция обор выпробувальна обор выпробувальная обор выпробувальный обор

Approved by
The head of the
testing laboratory of "LIZO Ltd."

D. R. Dovgun 2021

TESTING REPORT № 11/21-12

Electrical ageing test of insulation piercing connectors PC 6-95

Requirements: EN 50483-5:2009 clause 8.6.

The test methods: EN 50483-4:2009 clause 8.1.6 and EN 50483-5:2009.

Product name:

Insulation piercing connector (IPC)

Model and type:

PC 6-95

Manufacturer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Customer:

"FEMAN" D.O.O

Vihorska 1, 35000 Jagodina, Serbia

Reason:

Contract № 12-06-20 of 25.06.2020

Additional agreement №2 of 22.03.2021

Testing results:

Insulation piercing connectors PC 6-95 have passed the electrical ageing test, satisfies manufacturer's declared characteristics and requirements of

EN 50483-5:2009.

The testing results are valid for the tested samples only.

This testing report can't be reproduced partly, duplicated and distributed as an official document without permission of the testing laboratory.

Samples' receiving date:

Quantity of the tested samples:

Identification numbers of the samples:

The testing dates:

The environmental conditions:

temperature: air pressure:

humidity:

25.03.2021

12.

Nº1 ... №12.

25.03.2021 - 30.04.2021.

(16 - 24) °C;

(96 - 101) kPa;

(45 - 75) %.

1. Tested samples:

Insulation piercing connectors:

Model and type:

Class:

Main conductor cross-sections:

Branch conductor cross-sections: The tightening torque of the bolt:

Batch number:

Installation temperature:

PC 6-95.

A1.

 $(16 - 95) \text{ mm}^2$.

 $(6 - 35) \text{ mm}^2$. $(14 \pm 1,5)$ Nm.

06/20.

From -10 °C to +50 °C.

The main conductors:

Type:

AsXSn 4x95

95 mm²

Conductor diameter: Number of strands:

Conductor cross-section:

11.2 mm

19

Shape:

Conductor material:

Insulation thickness:

Insulation material:

Manufacturer / country:

Round

Aluminum

1.7 mm

XLPE

PJSC «Yuzhcable works» /

Ukraine

HD626:S1

AsXSn 4x16

16 mm²

4,7 mm

7

Round

Aluminum

1,2 mm

XLPE

PJSC «Yuzhcable works» /

Ukraine

HD626:S1

The branch conductors:

Type:

Conductor cross-section:

Conductor diameter:

Shape:

Standard:

Conductor material:

Insulation thickness:

Insulation material:

7 Number of strands:

1.3 mm

AsXSn 4x35

Manufacturer / country:

Round Aluminum

35 mm²

6,9 mm

XLPE

PJSC «Yuzhcable works» /

Ukraine

HD626:S1 Standard:

ПВ-16

6 mm²

2.75 mm

1

Round Copper 1,0 mm

PVC

PJSC «Yuzhcable works» /

Ukraine

IEC 60227-1:2007

2. Testing procedure:

The tests are performed in accordance with EN 50483-5:2009.

Two circuits (Fig.2) are mounted with main and branch conductors for the following conductors' cross-sections combinations: max – max and min – min.

The conducting paths lengths and configuration are chosen in accordance with Fig.1 and Table 1 of EN 50483-5:2009 and specified in Table 1.

Table 1 – The conducting paths lengths

	The conducting paths lengths, mm										
Nº	1	l _k	Ira	l _{rb}	d						
10000	la	150	350	350	800						
1	200	150		10.450028	600						
2	150	150	300	300	000						

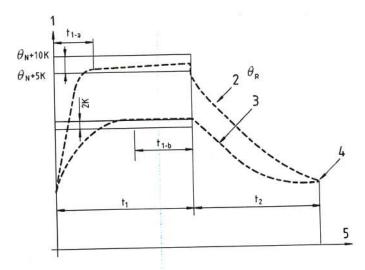
The circuit is made by welding of the conductors, which insures uniform distribution of the electrical current in the measurement points.

The dimensional stabilization of the insulating sheath of the conductors is performed in the heat chamber during 1 hour under temperature 30 °C higher than rated temperature of the conductor, before conductors' welding.

IPCs are installed in accordance with manufacturer's installation instructions with nut tightening torque 12,5 Nm, which is minimal tightening torque specified by the manufacturer. Tightening is provided in accordance with EN 50483-1:2009 clause 9.1.8, speed of tightening complied to EN 50483-1:2009 clause 9.1.10.

The temperature of the reference conductors and the connectors is measured by the resistive temperature transducer in accordance with EN 50483-5:2009 clause 5.4.1.

The electrical resistance of the IPCs and the reference conductors are measured between two adjacent measurement points (points of the potential balancing) under the direct current. Measurements are performed by volt-ammeter method. The resistance is calculated by division of the voltage drop to the direct current value which is not more than 10 % of the heat cycle current value. Direct current and voltage drop measurement is performed with the precision of measurements within the range \pm 0,2 %.


1000 heat cycles are needed.

Measurements of the temperature and resistance valuation are made for the next cycles:

- 0 (before the heat cycle), only valuation of the resistance;
- 200, before short circuit;
- 200, after short circuit;
- 250;
- else after each 75 cycles (14 measurements in sum).

Temperature measurement and resistance valuation are provided for the reference conductors and all IPCs. The results are documented. Maximum temperatures of the reference conductors and of each IPC are fixed immediately before or after the heat cycle.

The resistance of each IPC of the circuit is measured before the first heat cycle. The purpose of the first heat cycle is to determine the reference conductor temperature for its application in subsequent cycles and to identify the median temperature connector. The curve of a heat cycle is shown at Fig.1.

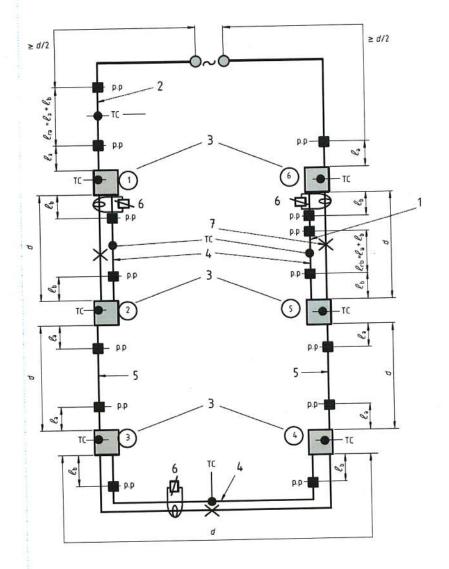

- temperature axis;
- 2. temperature of the reference conductor θ_R ;
- median temperature of the connector;
- temperature ≤ 35 °C for connectors and reference conductor;
- 5. time axis.

Fig.1 - First heat cycle

The resistance calculations for the testing loop connectors are performed after 200 cycles of heating and cooling. Then six short-circuits are applied for each connector from the testing loop. The short-circuit test is performed by short impulses. The duration of each impulse is ($t_{sc} \pm 0,15$) s. The testing loop is cooled to the temperature ≤ 35 °C after each impulse. The short-circuit current I_{sc} depends of the testing loop conductor with smaller cross-section.

The measurements results evaluation and the calculation of the following parameters are performed after 1000 cycles of heating-cooling:

- the initial scatter δ , between six initial values of resistances R_j , calculated before the first heat cycle;
- the mean scatter β , between the six values of resistance R_j , averaged over the last 11 measurement intervals;
- ratio λ of the resistances, calculated for heat cycles to the resistances, calculated for initial cycle;
- the resistance stability, calculated for last 11 measurements;
- the maximum temperature $\theta_{j max}$ on each connector;
- the stability of the connector's temperature $\Delta\theta_{j}$;

A- cross section of the conductor (mm²); d- length of the conductor between IPC's; $d \ge 80\sqrt{A}$ or 500 mm minimum; p.p.- potential point; TC- thermocouple.

- Reference conductor A₂R₂ with insulation between equalizers;
- 2. Reference conductor A_1R_1 with insulation between equalizers;
- 3. IPCs;
- 4. Conductor A₂R₂ with insulation between equalizers;
- 5. Conductor A_1R_1 with insulation between equalizers;
- 6. Resistance adapter;
- 7. Switcher.

Fig.2 - Testing loop

3. Requirements:

Table 2 – Test requirements

Nº	Parameter	Maximum value
4	Initial scatter δ	0,3
2	Mean scatter β	0,3
2	Assessment of resistance stability	15 %
4	Resistance factor ratio λ	2,0
5	Temperature stability $\Delta\theta_{j}$	$\overline{\Delta\theta_j} - 10 \ \Delta\theta_j \overline{\Delta\theta_j} + 10$
6	Maximum temperature θ_j of each connector	θ_R
0	Maximum temperature of a case of	CONTRACTION OF THE TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABL

ВИПРОБУВАЛЬНА ЛАБОРАТОРІЯ "ЛІЗО"

4. Testing results:

4.1. Connectors testing results in circuit with conductors combination (max - max) $95 \text{ mm}^2 - 35 \text{ mm}^2$

Table 3 – Medium value, stability and ratio of the connectors' resistances *

		IPC	Nº1	IPC	Nº2	IPC	Nº3	IPC	Nº4	IPC	Nº5	IPC №6	
Nº	Cycle	Resis- tance, мΩ	Resis- tance ratio, λ	Resis- tance, мΩ	Resis- tance ratio, λ	Resis- tance, μΩ	Resis- tance ratio, λ						
1	0	42,1	-	35,8	-	46,7	•	37,5		46,5		38,8	
2	200	54,9	1,30	45,3	1,26	62,0	1,33	43,8	1,17	59,2	1,27	51,1	1,32
3	200	52,2	1,24	45,2	1,26	60,1	1,29	43,5	1,16	61,1	1,31	49,9	1,29
4	250	54,1	1,28	47.5	1,33	65,6	1,40	45,0	1,20	61,8	1,33	53,7	1,38
	325	55,5	1,32	48,0	1,34	67,5	1,45	45,0	1,20	63,2	1,36	54,9	1,41
5		58,3	1,38	49.3	1,38	70,3	1,51	46,0	1,23	64,6	1,39	56,3	1,45
6	400 475	59,5	1,41	50.6	1,41	71,7	1,53	45,6	1,22	64,7	1,39	57,2	1,47
7	77.00	60.0	1,42	50,4	1,41	71,9	1.54	46.2	1,23	65,8	1,42	59,5	1,53
8	550	60,0	1,45	51,7	1,44	73.6	1,57	47,7	1,27	68,0	1,46	61,3	1,58
9	625	2000191900	1,45	51,7	1,44	72,2	1,55	45.3	1,21	66,8	1,44	62,1	1,60
10	700	60,9	1,45	52,2	1,46	73,7	1,58	46,0	1,23	67,5	1,45	62,0	1,60
11	775	61,3	Vi41262233	52,8	1,48	74,0	1.58	47,1	1,26	68,2	1,47	61,6	1,59
12	850	61,3	1,46	-	1,40	74,2	1,59	47,5	1,27	67,4	1,45	60,9	1,57
13	925	61,0	1,45	53,7		75,6	1,62	49,2	1,31	68.8	1,48	61,0	1,57
14	1000	62,0	1,47	54,5	1,52	75,0	1,02	75,2	1,01	00,0			
15	Mean resistan- ces value	59,5		51,1		71,8		46,4	_	66,1	-	59,1	
16	Resistan- ce stability	13,4 %	-	13,7 %	1	13,8 %		9,2 %		10,7 %		14,2 %	

^{*} Value of the connectors resistance indicated for temperature 20 °C.

Thermal profile: $I_N = 400 \text{ A}$, $I_B = 200 \text{ A}$, $t_{1-a} = 11 \text{ min}$, $t_{1-b} = 11 \text{ min}$, $t_2 = 10 \text{ min}$, I = 30 A. SC test: $I_{sc} = 4196 \text{ A}$, $t_{sc} = 1.0 \text{ s}$.

Table 4 - Maximum temperature and temperature stability of the connectors

	Cirolo	Main conductor	Branch	IPC I	Vº1	IPC I	Nº2	IPC I	\ º3	IPC I	Nº4	IPC I	Nº5	IPC I	Nº6	In circuit
Nº	Cycle	T (°C)	T (°C)	T (°C)	Δθϳ	T (°C)	Δθj	T (°C)	Δθϳ	T (°C)	Δθj	T (°C)	Δθϳ	T (°C)	Δθϳ	T (°C)
1	1	98.0	98,0	66,0	-	63,2	-	68,0	-	63,0	-	67,0	22 ·	66,0	•	18,8
2	200	98,0	99.0	66,4	31,6	63,8	34,2	68,1	29,9	63,3	34,7	67,3	30,7	65,4	32,6	21,6
3	200	97,0	98.0	66,8	30,2	63,6	33,4	68,0	29,0	63,4	33,6	67,3	29,7	65,5	31,5	21,4
(55.0)	- 7000000		99.0	66,7	31,3	64,2	33.8	68,7	29,3	64,0	34,0	67,3	30,7	65,6	32,4	21,5
4	250	98,0	99,0	67,0	32,0	64.5	34,5	69.8	29,2	64,0	35,0	67,5	31,5	66,0	33,0	21,6
5	325	99,0		66.8	30.8	64,7	32,9	70.0	27,6	64.0	33,6	68,2	29,4	66,5	31,1	21,6
6	400	97,6	99,0	-		65.2	32,8	71,0	27,0	64.0	34.0	68.4	29,6	67,0	31,0	22,0
7	475	98,0	98,0	67,0	31,0	-		71,0	27,0	64.0	34.0	68.0	30,0	66,0	32,0	20,6
8	550	98,0	98,0	67,5	30,5	65,9	32,1	U.S. 05403551	(0.000)	7000	33.6	68.1	29,9	66.8	31,2	21,8
9	625	98,0	98,0	67,9	30,1	65,8	32,2	70,8	27,2	64,4			29,5	66,0	31,5	20,2
10	700	97,5	97,0	68,0	29,5	66,0	31,5	71,0	26,5	64,0	33,5	68,0		-	-	19,8
11	775	98,0	98,0	68,0	30,0	66,0	32,0	71,0	27,0	63,0	35,0	68,0	30,0	66,0	32,0	-
12	850	97,0	97,0	67,9	29,1	66,2	30,8	71,8	25,2	63,0	34,0	68,6	28,4	67,2	29,8	19,5
13	925	97,5	97,0	67,8	29,7	66,5	31,0	72,0	25,5	63,8	33,7	68,5	29,0	67,5	30,0	19,9
0.00	1000	98.0	98.0	68,0	30,0	66,3	31,7	72,1	25,9	63,8	34,2	68,7	29,3	67,2	30,8	20,0
14	Max.	99.0	99,0	68,00	-	66,50	-	72,10	-	64,40	-	68,70	.50	67,50	-	22,00
16	A 0	-	3-8	10.73	30,4	-	32,3	94	27,0	-	34,1	- TROES	29,8		- 31,3 Pac	- ge 6 of 9

4.2. Connectors testing results in circuit with conductors combination (min – min) 16 mm² – 6 mm²

Table 5 - Medium value, stability and ratio of the connectors' resistances *

		IPC	Nº1	IPC	Nº2	IPC	Nº3	IPC	Nº4	IPC	Nº5	IPC №6	
Nº	Cycle	Resis- tance, мΩ	Resis- tance ratio, λ	Resis- tance, мΩ	Resis- tance ratio, λ	Resis- tance, μΩ	Resis- tance ratio, λ						
1	0	68,9	-	63,2	-	59,9	-	60,2		62,4	100	74,4	-
2	200	85,2	1,24	74,5	1,18	71,5	1,19	68,9	1,15	72,1	1,16	89,9	1,21
3	200	80,8	1,17	69,2	1,09	67,7	1,13	71,1	1,18	67,6	1,08	85,5	1,15
4	250	87,3	1,27	75,3	1,19	72,8	1,22	75,9	1,26	69,2	1,11	90,0	1,21
5	325	90,9	1,32	78,4	1,24	75,1	1,25	77,9	1,29	71,2	1,14	88,3	1,19
6	400	93,4	1,35	79,4	1.26	77,4	1,29	81,0	1,35	72,0	1,15	89,8	1,21
7	475	93,5	1,36	79,9	1,27	80,5	1,34	83,9	1,39	74,9	1,20	94,5	1,27
8	550	97,1	1,41	80.7	1,28	79,1	1,32	83,7	1,39	73,4	1,18	93,1	1,25
9	625	98,1	1,42	78,4	1,24	80.6	1,35	85,6	1,42	76,1	1,22	91,8	1,23
10	700	98,6	1,43	84.4	1,34	84.2	1,41	86,0	1,43	77,5	1,24	92,9	1,25
	775	97,2	1,41	82.0	1,30	81,9	1,37	85,0	1,41	76,5	1,23	95,7	1,29
11	850	98,1	1,42	80,5	1,27	80,3	1,34	85,3	1,42	75,3	1,21	95,6	1,28
	925	98.4	1,43	83,1	1,32	82.0	1,37	85,9	1,43	74,4	1,19	95,9	1,29
13	1000	100.4	1,46	83,3	1,32	82,8	1,38	85,1	1,41	76,0	1,22	96,0	1,29
15	Mean resistan- ces value	95,7	.,,,,,	80,5		79,7	_	83,2		74,2	-	93,1	
16	Resistan- ce stability	13,7 %		11,2 %		14,3 %		12,1 %		11,2 %		8,3 %	

^{*} Value of the connectors resistance indicated for temperature 20 °C.

Thermal profile: I_N = 135 A, I_B = 80 A, t_{1-a} = 10 min, t_{1-b} = 11 min, t_2 = 10 min, I = 11 A. SC test: I_{SC} = 828 A, t_{SC} = 1,0 s.

Table 6 - Maximum temperature and temperature stability of the connectors

No	Cyala	Main conductor	Branch conductor	IPC №1		IPC №2		IPC №3		IPC №4		IPC №5		IPC №6		In circuit
Nº	Cycle	T (°C)	T (°C)	T (°C)	Δθϳ	T (°C)	Δθϳ	T (°C)	Δθј	T (°C)	Δθϳ	T (°C)	Δθј	T (°C)	Δθj	T (°C)
1	1	98,0	80,0	49.0	-	46,0	-	44,0		47,0		43,6	.#.	49,0	-	19,8
2	200	99,3	81,2	50,3	49,0	47,2	52,1	44,6	54,7	47,6	51,7	44,0	55,3	49,8	49,5	21,0
3	200	99,0	77,0	49,0	50,0	46,5	52,5	44,0	55,0	47,5	51,5	43,8	55,2	49,0	50,0	21,2
770	250	98.0	77,0	49.2	48.8	46,5	51,5	44,3	53,7	48,0	50,0	44,0	54,0	49,3	48,7	21,4
4	325	99,0	75,0	49.0	50.0	46.3	52,7	44,6	54,4	47,8	51,2	45,0	54,0	49,8	49,2	21,0
5	- ST	98,0	78,0	49.0	49.0	46.6	51,4	45,0	53,0	48,0	50,0	45,0	53,0	50,0	48,0	21,4
6	400	100.0	79.0	49.6	50.4	47.0	53,0	44,5	55,5	48,0	52,0	45,0	55,0	49,9	50,1	21,6
7		99,8	78,0	50.0	49.8	47,2	52,6	45,0	54,8	48,0	51,8	45,0	54,8	50,0	49,8	20,3
8	550 625	97.0	76,0	50,2	46,8	47.5	49.5	45,0	52,0	48,0	49,0	45,0	52,0	50,5	46,5	20,8
10	700	98,1	76,0	50.0	48.1	47.9	50,2	45,3	52,8	47,8	50,3	44,6	53,5	51,0	47,1	21,4
	775	98.0	77.0	50,5	47,5	48.0	50,0	45,0	53,0	48,0	50,0	44,0	54,0	51,2	46,8	20,8
11	850	97,0	75.0	50.9	46.1	48,0	49,0	45,7	51,3	48,6	48,4	44,8	52,2	51,8	45,2	20,4
12	925	98.8	85.0	51,0	47.8	47,3	51,5	46,0	52,8	49,0	49,8	44,9	53,9	52,0	46,8	20,5
14	1000	99,0	80.0	51,0	48,0	48,0	51,0	46,4	52,6	49,0	50,0	45,0	54,0	52,0	47,0	20,0
15	May	100,0	85,0	51,0	-	48,0	-	46,4	-	49,0	-	45,0	•	52,0	<u> </u>	21,60
16	Δθ,	-		(2)	48,4	2	51,1	-	53,3	-	50,2	250	53,7	-	47,7	-

Table 7 - Testing results

	9	Res			
Nº	Parameter	Circuit 1 (max – max)	Circuit 2 (min – min)	Accepted value	
1	Initial scatter δ	0,186	0,145	≤ 0,3	
2	Mean scatter β	0,260	0,162	≤ 0,3	
3	Assessment of resistance stability	Table 3	Table 5	≤ 15 %	
4	Resistance factor ratio λ	Table 3	Table 5	≤ 2,0	
5	Temperature stability $\Delta \theta_j$	Table 4	Table 6	$\overline{\Delta\theta_j} - 10 \ \Delta\theta_j \overline{\Delta\theta_j} + 10$	
6	Maximum temperature θ_j of each connector	Table 4	Table 6	θ_R	

5. Conclusion:

At the basis of comparison of the calculated parameters with maximum accessible parameters after 1000 cycles of heating-cooling all tested samples of IPCs PC 6-95 passed the test and satisfies requirements for class A in accordance with EN 50483-5:2009.

6. Pictures:

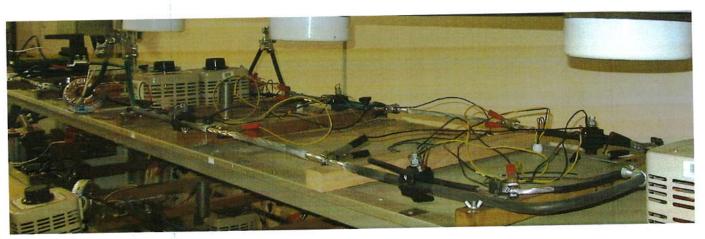


Fig.3 - IPCs in circuit with conductors' combination max - max during the testing

Fig.4 - IPCs in circuit with conductors' combination min - min during the testing

7. Test equipment:

Nº	Туре	Model	Latest calibration date		
1	Ruler 1m	VaGo-Tools №003	05.04.2020		
2	Torque wrench	DT-030S2 №17000067	05.04.2020		
3	Stopwatch	СОС пр-2б-2-010 №2284	24.04.2020		
4	Millivoltmeter	M2016 №7824	08.04.2020		
5	Voltmeter	M2007 №12341	08.04.2020		
6	Amperemeter	Э514 №45541	08.04.2020		
7	Heat chamber	ILKA №20200113	Don't need calibration		
8	Measurement and control device with resistive temperature transducer	PT-0102 №14-070 TCΠ-0287 №14-352, №14-355	08.04.2020		
9	Source of current	PГ-53C-M2 №001	Don't need calibration		
10	Measurement and control device with resistive temperature transducer	PT-0102 №16-005 TCΠ-0287 №№ 16-001, 16-002, 16-004, 16-005, 16-006, 16-007, 16-008, 16-009	07.04.2020		
11	Measurement and control device with resistive temperature transducer	РТ-0102 №16-286 ТСП-0287 №14-027	08.04.2020		
12	Shunt	75ШСМОМЗ №375802	27.09.2016		
13	Panel for electrical ageing test	ЛІЗО №002	Don't need calibration		
14	Source of current	PГ-53C №001	Don't need calibration		
15	Measurement and control device with resistive temperature transducer	PT-0102 №17-004 TCП-0287 №№ 16-010, 16-011, 16-012, 16-013, 16-014, 16-016, 16-017, 16-018	06.04.2020		
16	Measurement and control device with resistive temperature transducer	PT-0102 №16-287 TCП-0287 №14-025	08.04.2020p		
17	Shunt	75ШСМ №035109	04.01.2017		
18	Panel for electrical ageing test	ЛІЗО №001	Don't need calibration		
19	Source of current for short-circuit testing	ЛІЗО №001	Don't need calibration		

The tests were performed by:

Deputy Head of the testing laboratory:

Engineer:

Engineer:

Engineer:

_ S. S. Lakhovskyi

O. O. Nepyivoda

D. S. Denys

A. S. Shevtsiv

випробувальна лабораторія "ЛІЗО"