
ELO REST API

ELO REST API

4

5

5

5

6

6

7

8

8

10

11

12

12

12

13

14

14

15

15

16

17

17

18

19

20

21
21

21

22

Table of contents

ELO REST API

Overview

Interactive UI

Specification

Scope

Design

CORS

Authentication

Backend apps authentication

"External" Browser apps - login/logout

"Internal" Browser apps - sharing the Web Client session

Search

Search "anywhere"

Search by keywording

Files

Get a folder

Get a document

Performance

Downloading a document

Listing files in a folder

Creating a folder

Uploading a new document using an URL

Uploading a new document in the browser

Uploading a new document *version*

Moving a file

Updating the short description

Getting or updating metadata

Metadata

Reading metadata/keywording

Updating metadata/keywording

Change mask

Change mask and metadata/keywording

Members
List members of a group

Get user

Add new user

2 ELO REST API

24

25

Set user's group memberships

Misc

Calling a registered function (IX)

Masks (technical name for metadata forms)

Get mask information

3 ELO REST API

ELO REST API

4 ELO REST API

Overview

Interactive UI

It is highly recommended to experiment with the interactive specification by opening the browser

at the following URL:

http(s)://<elo-server>/rest-<repo>/doc

You will see the list of endpoints and can try them out directly by sending requests and receiving

live responses.

Specification

The specification for the REST API is self generated and follows the OpenAPI 3 standard.

Sometimes it is useful to access the raw JSON specification, for example if used by some tools. This

raw JSON specification is available at:

http(s)://<elo-server>/rest-<repo>/v3/api-docs

5 ELO REST API

Scope

The goal of this API is not to cover all the IX's functionality. Rather, it is to offer a simple way to

perform common operations.

The API covers the following areas:

files

basic information

download/upload

metadata (also known as "keywording")

IX fields

map fields

child entries (for directories)

versions (for documents)

ACL (read-only)

basic search

by fulltext

by metadata

members

users

groups

system

masks

colors

registered functions (IX)

Design

Most endpoints follow a similar pattern:

GET /api/.../{id}

Gets an item.

Both id or guid can be used in the URL path.

POST /api/...

Adds a new item.

The returned value will be of the form {"id":..., "guid":..., "name":...}.

PATCH /api/...

Updates an item.

The id or guid must be present in the body.

DELETE /api/.../{id}

Deletes an item.

Both id or guid can be used in the URL path.

For every endpoint containing {id} in the URL, both id or guid can be used interchangeably.

Sometimes, where the IX internally allows it, the identifying "name" can be used too. This applies

for example for user names, mask names, color names...

•

◦

◦

◦

▪

▪

◦

◦

◦

•

◦

◦

•

◦

◦

•

◦

◦

◦

•

◦

◦

•

◦

◦

•

◦

◦

•

◦

◦

6 ELO REST API

CORS

If the web app is not hosted on the same Tomcat, setting up CORS will be necessary to enable

remote websites to access the API.

Instead of configuring CORS for the whole Tomcat, it can be set explicitly for the REST module.

In the config.properties, simply add:

Using the * wildcard is possible but should only be enabled during development/testing. It is highly

discouraged in production because of obvious security concerns.

allowedOrigins = https://example.com, https://another.net

7 ELO REST API

Authentication

Backend apps authentication

All API endpoints require authentication, this can be either done using:

Basic authentication with the ELO user name/password

a valid ticket in either of:

the query (adding &ticket=...)

a "ticket" header

a "ticket" cookie

"External" Browser apps - login/logout

Instead of providing authentication each time, it is also possible to login directly to establish a

session between the browser and the API.

Browser sessions are disabled by default. To enable them, edit the configuration located at:

<elo-install-path>/config/rest-.../<server-name>/config.properties

Update it with following values:

Then restart the REST API using the Tomcat Manager.

Note that for security reasons, allowSessions is not compatible with the "wildcard" origin

(allowedOrigins = *). If you want to enable browser sessions externally, you have to explicitly list

the allowed origins.

Once properly configured, users can login:

POST /login

This session follows the usual rules of the Tomcat. It typically expires after 10 minutes of inactivity.

•

•

◦

◦

◦

allowSessions = true

allowedOrigins = https://example.com, https://another.net

 {

 "username":"Alice",

 "password":"secret",

 "lang":"en"

 }

8 ELO REST API

The lang parameter specifies the language to connect with, which is the two-letter code of any of

the supported client languages. This influences translation keys and error messages.

To logout, invoke:

POST /logout

"Internal" Browser apps - sharing the Web Client session

If you invoke the API through https://.../ix-MyRepo/plugin/de.elo.ix.plugin.proxy/rest/

api/..., the session of the Web Client will be shared and authentication will be automatically

performed.

In other words, you do not have to provide credentials or call /login by using such URLs if the user

is already logged in using the Web Client (or another ELO web application).

Note that this solution is not compatible with cross origin use cases. This only works if the web app

is configured to run behind the IX Proxy Plugin, like "ELO Apps".

Alternatively, you could deploy a classic web app on the Tomcat, and edit the IX Proxy Plugin

configuration located at:

<elo-install-path>/config/ix-.../<server-name>/de.elo.ix.plugin.proxy.properties

There, you can add a forwarding URL to your web app:

yourapp=http(s)://any-valid-url

After restarting the IX, all requests to https://.../ix-MyRepo/plugin/de.elo.ix.plugin.proxy/

yourapp/... would be forwarded to your web app URL and calls to the REST API would share the

Web Client session.

9 ELO REST API

Search

Search "anywhere"

This example searches all documents and folders containing "elo" anywhere: the

name, the document's content or the associated metadata/keywording.

Request:

GET /api/search?words=elo

Response:

 [

 {

 "guid": "(25A7C0C1-DA8C-176C-50EC-778215E6D69C)",

 "id": 31,

 "name": "elo.profile",

 "type": 3,

 "isDir": true,

 "desc": "",

 "lock": "",

 "ownerName": "ELO Service",

 "access": "RWD-LP",

 "parentId": 30,

 "dateArchived": "2020-10-26T10:09:00Z",

 "dateCustom": null,

 "dateModified": "2020-10-26T09:09:44Z"

 },

 ...

 {

 "guid": "(C1F90D1D-2C4B-D03E-475E-3C8ADCB26AD4)",

 "id": 40,

 "name": "ELO Service",

 "type": 23,

 "isDir": true,

 "desc": "",

 "lock": "",

 "ownerName": "ELO Service",

 "access": "RWD-LP",

 "parentId": 28,

 "dateArchived": "2020-10-26T10:09:00Z",

 "dateCustom": null,

 "dateModified": "2020-11-12T16:14:02Z"

10 ELO REST API

It is possible to restrict this, for example by using one of the following:

GET /api/search?words=elo&where=TITLE

GET /api/search?words=elo&where=DOCUMENT

GET /api/search?words=elo&where=KEYWORDING

Please take into consideration that the response is fixed to at most 1000 results (without any

possibility to alter it). This implies that responses can be rather large for vague terms. It also is not

suited to walk through all the documents of a repository. It is best used with precise search terms.

Search by keywording

Search all documents of category ABC regarding contract XYZ.

POST /api/search/keywording

Like the previous search, it will return the list of found documents and folders.

Note that you currently cannot specify the mask you are looking for. This feature might come in a

future version. Also, in ELO, only "index fields" can be searched, not "map" fields.

 }

]

{

 "CATEGORY":"ABC",

 "CONTRACT_ID":"XYZ"

}

11 ELO REST API

Files

Get a folder

Gets all information about /Administration/ELOapps/Icons.

The following requests are equivalent:

GET /api/files?path=/Administration/ELOapps/Icons

GET /api/files/86

GET /api/files/(8615AC76-DBE4-4907-03E5-F974F6C9F13A)

The response contains all information about the folder:

Get a document

Gets all information about /Administration/ELOapps/Icons/tile-Add.ico.

The following requests are equivalent:

{

 "info": {

 "guid": "(8615AC76-DBE4-4907-03E5-F974F6C9F13A)",

 "id": 86,

 "name": "Icons",

 "type": 3,

 "isDir": true,

 "desc": "",

 "lock": "",

 "ownerName": "Administrator",

 "access": "RWD-LP",

 "parentId": 73,

 "dateArchived": "2020-10-26T10:09:00Z",

 "dateCustom": null,

 "dateModified": "2020-10-26T09:09:55Z"

 },

 "acl": [...],

 "children": [...],

 "keywording": {...},

 "versions": null,

 "content": null

}

12 ELO REST API

GET /api/files?path=/Administration/ELOapps/Icons/

GET /api/files/126

GET /api/files/(7E2739B6-3EE5-8296-7C35-C07500621A8A)

The response contains all information about the document:

Performance

In both previous examples, all the information about the document/directory is retrieved.

For folders, this includes the list of all child files, and for documents, this includes the list of

versions and basic information about the content.

Naturally, such an operation is more resource consuming than retrieving only what is actually

needed.

Instead of retrieving everything using:

GET /api/files/{id}

It is also possible to only get the subset of interest:

GET /api/files/{id}/acl

GET /api/files/{id}/children

{

 "info": {

 "guid": "(7E2739B6-3EE5-8296-7C35-C07500621A8A)",

 "id": 126,

 "name": "tile-Add.ico",

 "type": 284,

 "isDir": false,

 "desc": "",

 "lock": "",

 "ownerName": "ELO Service",

 "access": "RWDE-P",

 "parentId": 86,

 "dateArchived": "2020-10-26T10:09:00Z",

 "dateCustom": null,

 "dateModified": "2020-10-26T09:09:57Z"

 },

 "acl": [...],

 "children": [],

 "keywording": {...},

 "versions": [...],

 "content": {...}

}

13 ELO REST API

GET /api/files/{id}/content (*)

GET /api/files/{id}/info

GET /api/files/{id}/keywording

GET /api/files/{id}/versions

This reduces traffic and is more efficient. Like the other endpoinds, both id and guid can be used

interchangeably.

(*) Calling GET /api/files/{id}/content actually downloaded the document instead of

providing content metadata in the ELO 12 Beta Version. It was deprecated in REST API

v20.02 and might be replaced by the content metadata in ELO 21.

Downloading a document

This example downloads the "tile-Add.ico" icon previously listed.

The following requests are equivalent:

GET /api/files/126/download

GET /api/files/(7E2739B6-3EE5-8296-7C35-C07500621A8A)/download

Response:

<binary-data> of the tile-Add.ico file

In REST API prior to v20.02, GET /api/files/{id}/content should be used to download

the document.

Listing files in a folder

This example lists the files in the "/Administration/ELOapps/Icons" folder previously

obtained.

The following requests are equivalent:

GET /api/files/86/children

GET /api/files/(8615AC76-DBE4-4907-03E5-F974F6C9F13A)/children

Response:

[

 {

 "guid": "(7E2739B6-3EE5-8296-7C35-C07500621A8A)",

 "id": 126,

 "name": "tile-Add.ico",

 "type": 284,

 "isDir": false,

 "desc": "",

 "lock": "",

14 ELO REST API

Creating a folder

Request:

POST /api/files

Response:

Uploading a new document using an URL

The following example will upload the page https://www.wikipedia.org in ELO

Request:

 "ownerName": "ELO Service",

 "access": "RWDE-P"

 },

 ...

 {

 "guid": "(DE239939-F00C-69C2-9AF0-89C7E72D3519)",

 "id": 238,

 "name": "tile-WorldMap.ico",

 "type": 284,

 "isDir": false,

 "desc": "",

 "lock": "",

 "ownerName": "ELO Service",

 "access": "RWDE-P"

 }

]

{

"info": {

"name": "Example Folder",

"parentId": 123,

}

}

{

"id": 1234,

"guid":"(...)",

"name":"Example Folder"

}

15 ELO REST API

POST /api/files

Response:

Notes:

the filename extension determines the document type and icon in ELO

do not provide an id nor guid since it is a new file

many properties are read-only and setting them has no effect

the guid and name in the response are only in version 20+

Uploading a new document in the browser

This example shows a HTML snippet able to upload a document from the browser.

The following example assumes that the user is already authenticated. Please consult the chapter

Authentication for further information on how to achieve this in browser use cases.

{

"content": {

"filename": "index.html",

"url": "https://www.wikipedia.org"

},

"info": {

"name": "Wikipedia Homepage",

"parentId": 123,

}

}

{

"id": 1234,

"guid":"(...)",

"name":"Wikipedia Homepage"

}

•

•

•

•

<form id="sampleUpload">

<input type="text" name="name">

<input type="file" name="file">

<input type="text" name="versionComment">

<input type="submit">

</form>

<script>

formElem.onsubmit = async (e) => {

e.preventDefault();

16 ELO REST API

Uploading a new document version

Uploading a new version of an existing document can only be done using the POST /api/files/

{id-or-guid}/content endpoint and is similar to the previous examples.

Moving a file

This example moves the file 126 to the folder /Administration (having the id 2)

Moving a file to another folder is actually the same as updating its parentId.

Request:

PATCH /api/files/126/info

In this case, the parentId should be the id of the target parent folder and a guid is not allowed.

Updating the short description

Request:

PATCH /api/files/126/info

Here as well, the guid could be used instead.

var parentId = 123;

let response = await fetch('.../api/files/' + parentId, {

method: 'POST',

body: new FormData(formElem)

});

let result = await response.json();

alert("Uploaded document id: " + result.id);

};

</script>

{

"parentId": 2

}

{

"desc": "Here is an updated short description!"

}

17 ELO REST API

Getting or updating metadata

See Metadata

18 ELO REST API

Metadata

Reading metadata/keywording

Request:

GET /api/files/{id-or-guid}/keywording

Response:

Note that the metadata is always key/value strings. Even if the field is defined as number, date or

something else, the value is always handled as a string.

Updating metadata/keywording

Request:

PATCH /api/files/{id-or-guid}/keywording

This will only update the provided fields, and leave the others unchanged.

 {

 "maskId": 2,

 "maskNameOriginal": "E-mail",

 "fields": {

 "ELOOUTL1": "example@noreply",

 "ELOOUTL2": "something else...",

 ...

 },

 "map": {

 "FOO": "BAR"

 }

 }

 {

 "fields": {

 "ELOOUTL1":"pseudomail@noreply"

 },

 "map": {

 "FOO":"BAR"

 }

 }

19 ELO REST API

Note that metadata are always key/value strings. Even if the field is defined as a number, date or

something else, a string should always be provided.

Change mask

Request:

PATCH /api/files/{id-or-guid}/keywording

or

PATCH /api/files/{id-or-guid}/keywording

Change mask and metadata/keywording

Both operations can be combined into one.

Request:

PATCH /api/files/{id-or-guid}/keywording

Note that setting maskId or maskNameOriginal will not only update the mask (if necessary) but it will

also reset all other index fields. Therefore, if you want to just update a few fields without affecting

the others, omit maskId and maskNameOriginal in the request.

 {

 "maskNameOriginal": "E-Mail"

 }

 {

 "maskId": 2

 }

 {

 "maskNameOriginal": "E-Mail",

 "fields": {

 "ELOOUTL1":"pseudomail@noreply"

 },

 "map": {

 "FOO":"BAR"

 }

 }

20 ELO REST API

Members

List members of a group

The following requests are equivalent:

GET /api/members/groups/Administrators

GET /api/members/groups/(E10E1000-E100-E100-E100-E10E10E10E43)

GET /api/members/groups/9998

Response:

Get user

The following requests are equivalent:

GET /api/members/users/Alice

GET /api/members/users/(4357EA87-9744-B3A5-6911-4414A5160288)

GET /api/members/users/5

Response:

 {

 "guid": "(E10E1000-E100-E100-E100-E10E10E10E43)",

 "id": 9998,

 "name": "Administrators",

 "parentGroups": [],

 "childGroups": [],

 "users": [

 {

 "guid": "(E10E1000-E100-E100-E100-E10E10E10E40)",

 "id": 0,

 "name": "Administrator"

 },

 ...

],

 "rights": null

 }

 {

 "guid": "(4357EA87-9744-B3A5-6911-4414A5160288)",

 "id": 5,

 "name": "Alice",

 "password": null,

21 ELO REST API

Add new user

Request:

POST /api/members/users

Response:

Note that you can directly provide the groups the user should belong to. In order to do this, you

must provide the groups id to identify the groups in memberOf. Both guid and name are ignored in

this case.

 "change_password": null,

 "email": "alice@wonder.lands",

 "nologin": false,

 "online": false,

 "memberOf": [

 {

 "guid": "(E10E1000-E100-E100-E100-E10E10E10E43)",

 "id": 9998,

 "name": "Administrators"

 },

 ...

]

 }

 {

 "name": "Alice",

 "password": "secret",

 "change_password": "MUST_CHANGE",

 "email": "alice@wonder.lands",

 "memberOf": [

 {

 "id": 9998,

 "name": "Administrators"

 }

]

 }

{

 "guid": "(4357EA87-9744-B3A5-6911-4414A5160288)",

 "id": 5,

 "name": "Alice"

}

22 ELO REST API

You cannot set individual rights/permissions. It is good practice that users inherit rights from the

groups they are member of.

Set user's group memberships

The following request for Alice sets "Teamroom Users" as the only group she is a

member of.

Request:

PATCH /api/members/users

Either the id or guid of the user is required for this request.

Similar to when adding a user, you must provide the groups id to identify the groups in memberOf.

Both guid and name are ignored in this case.

 {

 "guid": "(4357EA87-9744-B3A5-6911-4414A5160288)",

 "id": 5,

 "name": "Alice",

 "memberOf": [

 {

 "guid": "(C0553F55-AEF0-0C9C-5166-78F28047D0FD)",

 "id": 2,

 "name": "Teamroom Creators"

 }

]

 }

23 ELO REST API

Misc

Calling a registered function (IX)

This request will call the registered function "RF_sol_function_ChangeColor" to change

the color of the ELO "Administration" folder to red.

Request:

POST /api/misc/functions/RF_sol_function_ChangeColor

Please refer to the business solution documentation for more information about the specific remote

functions available depending on your system and installed modules.

 {

 "objId": 2,

 "color": "red"

 }

24 ELO REST API

Masks (technical name for metadata forms)

Get mask information

The following requests are equivalent:

GET /api/system/masks/(E10E1000-E100-E100-E100-E10E10E10E32)

GET /api/system/masks/2

GET /api/system/masks/E-mail

Response:

The type is a internal constant referring to the field's type (text, number, date...).

 {

 "id": 2,

 "guid": "(E10E1000-E100-E100-E100-E10E10E10E32)",

 "originalName": "E-mail",

 "forDocs": true,

 "forFolders": false,

 "forSearch": true,

 "isUsed": true,

 "fields": [

 {

 "id": 0,

 "key": "ELOOUTL1",

 "type": 3000,

 "label": "From",

 "isRequired": false,

 "isHidden": false

 },

 ...

 {

 "id": 6,

 "key": "ELOOUTLREF",

 "type": 3000,

 "label": "Reference",

 "isRequired": false,

 "isHidden": false

 }

]

}

25 ELO REST API

Note that even if the field is defined as a number, date or something else, it is nevertheless always

handled as a string (of max length 255).

26 ELO REST API

		2022-05-03T10:32:02+0300
	Moldova
	MoldSign Signature

