

Type test report no. VR 6E 003e

Dielectric tests of diverter switch

		Product Approval TETP/LLD 02.03.2020
Type test for types:	Diverter switches VACUTAP [®] VRS / VRM / VF - single phase, two phase or three phase designed to the phase designed by the phase of the phase of the phase designed by the phase of the pha	RL / VRH / VRX with gn, ⊨to 300 kV.
Test specification:	IEC 60214-1:2014, sub-clause 5.2.8: "Dielectr	ic tests".
Classification:	Class II in compliance with IEC 60214-1:2014	, sub clause 5.2.8.3.
Test samples:	Diverter switches VACUTAP® VRM I 1301 – 72.5, S/N: 1734905 VACUTAP® VRM I 1301 – 123, S/N: 1734905 VACUTAP® VRM I 1301 – 300, S/N: 1734905 VACUTAP® VRM II 1002 – 72.5, S/N: 209536 VACUTAP® VRL III 1300 Y – 170, S/N: 17349 VACUTAP® VRL III 1300 Y – 245, S/N: 17349 VACUTAP® VRL III 1300 Y – 72.5, S/N: 21258 VACUTAP® VRS I 1301 – 72.5, S/N: 2122390	ia b c 35 06a 06b 888
Manufacturer:	Maschinenfabrik Reinhausen GmbH, Regenst	ourg, Germany.
Date of tests:	August 2016 to December 2016 & September	2019 to October 2019.
Place of tests:	Maschinenfabrik Reinhausen GmbH, Regenst	ourg, Germany.
Tests performed:		
Full wave lightning impulse tests (LI):	Impulse 1.2/50 µs: Each 3 applications perform negative polarity.	ned with positive and
Chopped wave lightning impulse tests (LIC):	Impulse 1.2/50/3 µs: Each 3 applications performed at the polarity.	ormed with positive and
Switching impulse tests (SI):	Impulse 250/2500 µs: Each 3 applications per negative polarity.	formed with positive and
Applied voltage tests (AV):	Performed with single-phase alternating voltage	ge (50 Hz / 60 s).
Measurement of partial discharges:	In compliance with IEC 60214-1:2014, sub-cla	use 5.2.8.9.
Tested insulation distances:	to earth,between diverter switch contacts in their fina	l open position.
Test results:	The requirements of IEC 60214-1:2014 were r - All test voltages were withstood without discharge did not exceed permissible limits.	met. harge. d the corresponding
This report contains 37 pages.		

i. V. Dr. Thomas Strof

[valid without signature]

Maschinenfabrik Reinhausen GmbH - PRODUCT APPROVAL -

Maschinenfabrik Reinhausen GmbH Falkensteinstraße 8 93059 Regensburg, Germany Phone +49 941 40 90-0 info@reinhausen.com www.reinhausen.com

Managing Directors: Dr. Nicolas Maier-Scheubeck Wilfried Breuer

F01106:20

Chairman of Supervisory Board: Hans-Jürgen Thaus Commercial register Regensburg HRB 3687 VAT reg. no.: DE133705195

Reinhausen Group

1. Test specification

The type tests were performed in accordance with IEC 60214-1:2014 "Tap-changers - Part 1: Performance requirements and test methods", sub-clause 5.2.8: "Dielectric tests".

2. Specification of the insulating distances of the diverter switch

2.1 Insulating distance "f" of the diverter switch

The insulating distance "f" specifies the insulation to earth. It is the distance between the live parts of the diverter switch, including the spring accumulator and the head of the diverter switch and ground. Types with highest voltage for equipment U_m equal to or higher than 170 kV are equipped with grading rings on this distance.

Three-phase diverter switches type VACUTAP[®] VRS / VRM / VRL / VRH are available from $U_m = 72.5 \text{ kV}$ up to 245 kV.

Two-phase diverter switches type VACUTAP[®] VRS / VRM / VRL / VRH and single-phase diverter switches type VACUTAP[®] VRS / VRM / VRL / VRH with two current paths for applications with enforced current splitting are available from $U_m = 72.5$ kV up to 362 kV.

Single-phase diverter switches type VACUTAP[®] VRS / VRM / VRL / VRH are available from $U_m = 72.5 \text{ kV}$ up to 420 kV. Single-phase diverter switches type VACUTAP[®] VRX for applications with variable shunt reactors are available from $U_m = 72.5 \text{ kV}$ up to 362 kV.

Diverter switches with three-phase design are classified to class I for use at the neutral point of windings. Diverter switches of single-phase and two-phase design are classified to class II for use at a position other than the neutral point of windings.

Figure 38a/b shows the dimensions of the insulating distances "f" of the diverter switches in function of U_m exemplary for VACUTAP[®] VRS / VRM / VRL / VRH. These distances are identical for all diverter switches type VACUTAP[®] VRS / VRM / VRL / VRH / VRX with the same U_m .

The type tests were performed according to the requirements for class II in compliance with IEC 60214-1:2014, sub clause 5.2.8.3. The requirements for class I are covered.

2.2 Insulating distance "a0" of the diverter switch

The insulating distance "a0" specifies the distance between diverter switch contacts in their final open position.

To protect this insulating distance from transient over-voltages, ZnO surge arresters are incorporated in the diverter switches.

3. Data of test samples

Test sample 1	
Type designation:	VACUTAP [®] VRM I 1301 – 72.5
Type characteristics:	Diverter switch
Serial number / IBASE:	1734905a / 546541064 and 547813653
Year of manufacture:	2016
Manufacturer:	Maschinenfabrik Reinhausen GmbH, Regensburg, Germany
Tests performed:	Insulating distance "f" / Partial discharges on "f"

Test sample 2

Type designation:	VACUTAP [®] VRM I 1301 – 123
Type characteristics:	Diverter switch
Serial number / IBASE:	1734905b / 547813653
Year of manufacture:	2016
Manufacturer:	Maschinenfabrik Reinhausen GmbH, Regensburg, Germany
Tests performed:	Insulating distance "f" / Partial discharges on "f"

Test sample 3

Type designation: Type characteristics: Serial number / IBASE: Year of manufacture: Manufacturer: Tests performed:

Test sample 4

Type designation: Type characteristics: Serial number / IBASE: Year of manufacture: Manufacturer: Tests performed:

Test sample 5

Type designation: Type characteristics: Serial number / IBASE: Year of manufacture: Manufacturer: Tests performed:

Test sample 6

Type designation: Type characteristics: Serial number / IBASE: Year of manufacture: Manufacturer: Tests performed:

Test sample 7

Type designation: Type characteristics: Serial number / IBASE: Year of manufacture: Manufacturer: Tests performed:

Test sample 8

Type designation: Type characteristics: Serial number / IBASE: Year of manufacture: Manufacturer: Tests performed: VACUTAP[®] VRM I 1301 – 300 Diverter switch 1734905c / 547813653 2016 Maschinenfabrik Reinhausen GmbH, Regensburg, Germany Insulating distance "f" / Partial discharges on "f"

VACUTAP[®] VRM II 1002 – 72.5 Diverter switch 2095365 / 708835167 2019 Maschinenfabrik Reinhausen GmbH, Regensburg, Germany Insulating distance "a0"

VACUTAP® VRL III 1300 Y – 170 Diverter switch 1734906a / 546541165 2016 Maschinenfabrik Reinhausen GmbH, Regensburg, Germany Insulating distance "f" / Partial discharges on "f"

VACUTAP[®] VRL III 1300 Y – 245 Diverter switch 1734906b / 547813653 2016 Maschinenfabrik Reinhausen GmbH, Regensburg, Germany Insulating distance "f" / Partial discharges on "f"

VACUTAP[®] VRL III 1300 Y – 72.5 Diverter switch 2125888 / 714818662 2019 Maschinenfabrik Reinhausen GmbH, Regensburg, Germany Insulating distance "a0"

VACUTAP[®] VRS I 1301 – 72.5 Diverter switch 2122390 / 714818591 2019 Maschinenfabrik Reinhausen GmbH, Regensburg, Germany Insulating distance "a0" Page 4 of 37 / VR 6E 003e

4. Scope of application

Diverter switches type VACUTAP[®] VR are available in the basic design variants VACUTAP[®] VRS, VACUTAP[®] VRM, VACUTAP[®] VRL, VACUTAP[®] VRH and VACUTAP[®] VRX.

The design of insulating distance "f" depends on the highest voltage for equipment U_m of the diverter switch and it does not depend on the basic design variant (VACUTAP[®] VRS, VACUTAP[®] VRM, VACUTAP[®] VRL, VACUTAP[®] VRH or VACUTAP[®] VRX), the number of phases and the number of sectors of the diverter switch.

Therefore, the rated withstand voltages and the partial discharges on insulating distance "f" were tested on various test samples with $U_m = 72.5$ kV up to 300 kV (test samples 1, 2, 3, 5 and 6).

The design of insulating distance "a0" does not depend on the highest voltage for equipment U_m and the basic design variant (VACUTAP[®] VRS, VACUTAP[®] VRM, VACUTAP[®] VRL, VACUTAP[®] VRH or VACUTAP[®] VRX), but it depends on the number of sectors of the diverter switch.

Therefore the rated withstand voltages and the protection levels between diverter switch contacts at their final open position were tested on various test samples with single sector design, two sector design and three sector design (test samples 4, 7 and 8).

The dielectric withstand capability does not depend on the maximum rated through-current.

Therefore this type test report is valid for diverter switches type VACUTAP[®] VR with following characteristics:

- Design variants: VRS, VRM, VRL, VRH or VRX
- Number of phases: 1, 2 or 3
- Number of sectors: 1, 2 or 3
- Highest voltage for equipment U_m : 72.5 kV up to 300 kV

5. Test conditions / Test arrangement

Place of tests:	Maschinenfabrik Reinhausen GmbH, Regensburg, Germany.							
Treatment before testing:	The test samples were vacuum dried in accordance with the instructions of the manufacturer.							
Test tanks oil filling:	Plexiglas tanks (22,000 liters and 3,500 liters) filled with transformer mineral oil according to specification IEC 60296 (Nynas Nytro Taurus & Nynas Nytro 4000X) at room temperature (see appendix 2, pictures 3 and 4). The breakdown strength of the transformer oil during the tests was between 55 kV / 2.5 mm and 82 kV / 2.5 mm							
Test setup:	The tests were performed with permanently installed measuring chains for alternating voltage tests and impulse voltage tests (see appendix 2 figures 39 & 40). The test samples were placed in the Plexiglas tes tanks and connected to test voltages (example see appendix 2, picture 4).							
Wirings and connections: See appendix 3, figures 41 to 46.								

6. Tests performed

6.1 Full wave lightning impulse test (LI)

Test standard:	IEC 60214-1:2014, sub-clause 5.2.8.5.
Impulse voltage generator:	Impulse generator (max. charging: 1800 kV), see appendix 2, picture 2.
Voltage waveform (T ₁ /T ₂):	1.2 / 50 μs.
Wirings and connections:	See appendix 3, figures 4146.
Test voltages (U _p):	See tables 18.
Oscillograms:	See figures 1a/b8a/b.
Number of applications:	Three applications with positive and three with negative polarity.

Note:

To protect the insulating distance "a0" from transient over-voltages, a ZnO surge arrester is incorporated in the diverter switch. As a result of the ZnO-wiring the voltage waveforms of lightning impulses (full wave / chopped wave) and the waveform of the switching impulse deviate from nominal waveforms. The waveforms shown in the oscillograms are typical for diverter switches equipped with ZnO surge arrester (see figures 6a/b...8a/b).

6.1.1 Insulating distance "f" (U_m = 72.5 kV)

Tested insulating	Test	Peak amplitude (U _p) in <i>kV</i>		Front time (Τ ₁) in <i>μ</i> s		Time to half-value (T ₂) in µs	
distance	no.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1		-350.2		1.229		51.96
	2	-350 350	-350.2	1.2	1.231	50	51.94
4	3		-350.1		1.230		51.98
1	4		350.7		1.238		51.99
	5		349.8		1.236		52.00
	6		350.0		1.235		51.97

Figures 1a/b: Oscillograms of full wave lightning impulse test (1.2/50 µs) on insulating distance "f" (U_m = 72.5 kV).

Tested insulating	Test	Peak amplitude (U _p) in <i>kV</i>		Front time (T ₁) in <i>µ</i> s		Time to half-value (T ₂) in μ s	
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1	-550 550	-550.0	1.2	1.230	50	51.98
	2		-550.0		1.227		52.00
4	3		-550.1		1.229		52.03
1	4		550.0		1.242		52.02
	5		550.3		1.242		52.03
	6		549.4		1.241		52.01

6.1.2 Insulating distance "f" (U_m = 123 kV)

Figures 2a/b: Oscillograms of full wave lightning impulse test (1.2/50 µs) on insulating distance "f" (Um = 123 kV).

Tested Test		Peak amplitude (U _p)		Front time (1)		lime to half-value (1 ₂)		
insulating	rest	in <i>kV</i>		in	in <i>µs</i>		in <i>µs</i>	
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested	
	1		-748.9		1.233		52.25	
	2	-750 750	-749.6	1.2	1.232	50	52.30	
4	3		-750.6		1.234		52.27	
I	4		749.1		1.243		52.36	
	5		750.9		1.245		52.33	
	6		749.6		1.246		52.34	

6.1.3 Insulating distance "f" ($U_m = 170 \text{ kV}$)

<u>Figures 3a/b</u>: Oscillograms of full wave lightning impulse test (1.2/50 μ s) on insulating distance "f" (U_m = 170 kV).

Tested insulating	Test	Peak amplitude (U _p) in <i>kV</i>		Front time (T ₁) in <i>µ</i> s		Time to half-value (Τ₂) in μs	
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1	-1050 1050	-1048	1.2	1.223	50	52.22
	2		-1050		1.222		52.18
4	3		-1050		1.222		52.20
I I	4		1052		1.228		52.30
	5		1050		1.227		52.23
	6		1050		1.228		52.25

6.1.4 Insulating distance "f" (U_m = 245 kV)

Figures 4a/b: Oscillograms of full wave lightning impulse test (1.2/50 µs) on insulating distance "f" (Um = 245 kV).

Tested Test		Peak amplitude (U _p)		Front time (T ₁)		Time to half-value (T_2)		
insulating	nesi	in <i>kV</i>		in	in <i>µs</i>		in <i>µs</i>	
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested	
	1		-1049		1.222		52.25	
	2	-1050	-1049	1.2	1.222	50	52.29	
4	3		-1050		1.221		52.31	
I	4	1050	1051		1.228		52.33	
	5		1050		1.227		52.33	
	6		1050		1.225		52.32	
Table 5: Test	results of	full wave lightnir	ng impulse test (1	.2/50 µs) on insul	ating distance "f"	(U _m = 300 kV).		

Front time (T₁)

Time to half-value (T₂)

6.1.5 Insulating distance "f" ($U_m = 300 \text{ kV}$)

Peak amplitude (Up)

<u>Figures 5a/b</u>: Oscillograms of full wave lightning impulse test (1.2/50 μ s) on insulating distance "f" (U_m = 300 kV).

Tested insulating distance	Test no.	Peak amplitude (U _p) in <i>kV</i>	Front time (Τ ₁) in <i>μs</i>	Time to half-value (T₂) in <i>μs</i>	
	1 2 3	-150	1.2	50	
au	4 5 6	150	1.2	50	

6.1.6 Insulating distance "a0" (single sector design)

Table 6: Test results of full wave lightning impulse test (1.2/50 µs) on insulating distance "a0".

Figures 6a/b: Oscillograms of full wave lightning impulse test (1.2/50 µs) on insulating distance "a0".

6.1.7 Insulating distance "a0" (two sector design)

Tested insulating distance	Test no.	Peak amplitude (U _p) in <i>kV</i>	Front time (T ₁) in <i>μs</i>	Time to half-value (T ₂) in μs
	1			
	2	-150		
20	3		1.0	50
au	4		1.2	
	5	150		
	6			

Table 7: Test results of full wave lightning impulse test (1.2/50 µs) on insulating distance "a0".

Figures 7a/b: Oscillograms of full wave lightning impulse test (1.2/50 µs) on insulating distance "a0".

Tested insulating distance	Test no.	Peak amplitude (U _P) in <i>kV</i>	Front time (Τ ₁) in <i>μs</i>	Time to half-value (T₂) in <i>μs</i>
-0	1 2 3	-150	4.0	50
a0	4 5 6	150	1.2	50

6.1.8 Insulating distance "a0" (three sector design)

Table 8: Test results of full wave lightning impulse test (1.2/50 µs) on insulating distance "a0".

Figures 8a/b: Oscillograms of full wave lightning impulse test (1.2/50 µs) on insulating distance "a0".

6.2 Chopped wave lightning impulse test (LIC)

Test standard:	IEC 60214-1:2014, sub-clause 5.2.8.6.
Impulse voltage generator:	Impulse generator (max. charging: 1800 kV), see appendix 2, picture 2.
Voltage waveform (T ₁ /T ₂ /T _c):	1.2 / 50 / 3 μs.
Wirings and connections:	See appendix 3, figures 4146.
Test voltages (U _p):	See tables 916.
Oscillograms:	See figures 9a/b16a/b.
Number of applications:	Three applications with positive and three with negative polarity.

Note:

To protect the insulating distance "a0" from transient over-voltages, a ZnO surge arrester is incorporated in the diverter switch. As a result of the ZnO-wiring the voltage waveforms of lightning impulses (full wave / chopped wave) and the waveform of the switching impulse deviate from nominal waveforms. The waveforms shown in the oscillograms are typical for diverter switches equipped with ZnO surge arrester (see figures 14a/b...16a/b).

6.2.1 Insulating distance "f" (U_m = 72.5 kV)

Tested insulating	Test	Peak amplitude (U _p) in <i>kV</i>		Front time (Τ ₁) in <i>μs</i>		Time to ch in	opping (T _c) <i>µs</i>
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1		-385.1	1.2	1.231	4	4.062
	2	-385	-385.0		1.231		4.069
f	3		-385.0		1.230		4.058
1	4		387.0		1.241		4.694
	5	385	386.9		1.237		3.969
	6		386.9		1.240		3.940

<u>Table 9:</u> Test results of chopped wave lightning impulse test $(1.2/50/3 \ \mu s)$ on insulating distance "f" (U_m = 72.5 kV).

Figures 9a/b: Oscillograms of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "f" (U_m = 72.5 kV).

Tested insulating	Test	Peak amp in	blitude (U _p) <i>kV</i>	Front ti in	me (Τ ₁) μs	Time to che in	opping (T _c) <i>µs</i>
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1	-605	-603.7	1.2	1.230	4	3.966
	2		-603.8		1.232		3.972
4	3		-603.9		1.232		3.962
1	4		604.4		1.244		4.144
	5	605	604.7		1.245		4.125
	6		604.8		1.247		4.067

6.2.2 Insulating distance "f" (U_m = 123 kV)

Table 10: Test results of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "f" (U_m = 123 kV).

Figures 10a/b: Oscillograms of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "f" (U_m = 123 kV).

Tested insulating	Test	Peak amplitude (U _p) in <i>kV</i>		Front time (Τ ₁) in <i>μ</i> s		Time to chopping (T _c) in μ s	
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1	-825	-823.0	1.2	1.237	4	3.835
	2		-823.2		1.239		3.845
f	3		-823.3		1.240		3.835
1	4		823.5		1.249		3.775
	5	825	823.7		1.251		3.762
	6		823.5		1.248		3.772

6.2.3 Insulating distance "f" (U_m = 170 kV)

Table 11: Test results of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "f" (U_m = 170 kV).

Tested insulating	Test	Peak amplitude (U _p) in <i>kV</i>		Front time (T ₁) in <i>µs</i>		Time to chopping (T _c) in μs	
distance	10.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1		-1152		1.227		3.835
	2	-1155	-1152		1.228		3.856
4	3		-1152	1.2	1.227	4	3.853
I	4		1155		1.231		3.892
	5	1155	1155		1.231		3.920
	6		1155		1.232		3.869

6.2.4 Insulating distance "f" ($U_m = 245 \text{ kV}$)

Table 12: Test results of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "f" (U_m = 245 kV).

Figures 12a/b: Oscillograms of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "f" (U_m = 245 kV).

Tested insulating	Test	Peak amp in	litude (U _p) <i>kV</i>	Front ti	me (T ₁) μs	Time to che	opping (T _c) μs
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1	-1155	-1151		1.226	4	3.845
	2		-1151	1.2	1.225		3.845
4	3		-1152		1.225		3.873
1	4		1155		1.232		4.460
	5	1155	1155		1.231		4.277
	6		1155		1.232		4.121

6.2.5 Insulating distance "f" (U_m = 300 kV)

Table 13: Test results of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "f" (U_m = 300 kV).

Tested insulating distance	Test no.	Peak amplitude (U _p) in <i>kV</i>	Front time (Τ ₁) in <i>μs</i>	Time to chopping (T _c) in μs
	1 2 3	-165	10	4
a0	4 5 6	165	1.2	4

6.2.6 Insulating distance "a0" (single sector design)

Table 14: Test results of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "a0".

Figures 14a/b: Oscillograms of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "a0".

6.2.7 Insulating dist	ance "a0" (two	sector design)
-----------------------	----------------	----------------

Tested insulating distance	Test no.	Peak amplitude (U _p) in <i>kV</i>	Front time (T ₁) in <i>μs</i>	Time to chopping (T _c) in μs
	1 2 3	-165	10	
a0	4 5 6	165	1.2	4

Table 15: Test results of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "a0".

Tested insulating distance	Test no.	Peak amplitude (U _p) in <i>kV</i>	Front time (Τ ₁) in <i>μs</i>	Time to chopping (T _c) in μs
	1 2 3	-165	10	4
a0	4 5 6	165	1.2	4

6.2.8 Insulating distance "a0" (three sector design)

Table 16: Test results of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "a0".

Figures 16a/b: Oscillograms of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "a0".

6.3 Switching impulse test (SI)

Test standard:	IEC 60214-1:2014, sub-clause 5.2.8.7.
Impulse voltage generator:	Impulse generator (max. charging: 1800 kV), see appendix 2, picture 2.
Voltage waveform (T _P /T ₂):	250 / 2500 μs.
Wirings and connections:	See appendix 3, figures 4146.
Test voltages (U _p):	See tables 1724.
Oscillograms:	See figures 17a/b24a/b.
Number of applications:	Three applications with positive and three with negative polarity.

Note:

To protect the insulating distance "a0" from transient over-voltages, a ZnO surge arrester is incorporated in the diverter switch. As a result of the ZnO-wiring the voltage waveforms of lightning impulses (full wave / chopped wave) and the waveform of the switching impulse deviate from nominal waveforms. The waveforms shown in the oscillograms are typical for diverter switches equipped with ZnO surge arrester (see figures 22a/b...24a/b).

6.3.1 Insulating distance "f" (U_m = 72.5 kV)¹

Tested insulating		Peak amplitude (U _P) in <i>kV</i>		Time to peak (T _P) in <i>µs</i>		Time to hal in	f-value (Τ₂) μs
distance	no.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1		-279.4		228.1		2667
	2	-280	-280.0		228.2		2667
f	3		-280.0	250	228.3	2500	2666
'	4		280.7	250	228.3	2500	2666
	5	280	280.1		228.4		2667
	6		280.2		228.4		2667

<u>Table 17:</u> Test results of switching impulse test (250/2500 μ s) on insulating distance "f" (U_m = 72.5 kV).

<u>Figures 17a/b:</u> Oscillograms of switching impulse test (250/2500 μ s) on insulating distance "f" (U_m = 72.5 kV).

¹ Not required by IEC 60214-1:2014.

Tested insulating Test		Peak amplitude (U _p) in <i>kV</i>		Time to peak (T _P) in <i>μ</i> s		Time to half-value (T ₂) in μs	
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1		-459.9	250	228.3	2500	2677
	2	-460	-460.0		226.5		2677
4	3		-460.1		226.8		2678
1	4		459.8		229.0		2679
	5	460	460.1		230.2		2679
	6		460.1		228.2		2680

6.3.2 Insulating distance "f" (U_m = 123 kV)

Table 18: Test results of switching impulse test (250/2500 µs) on insulating distance "f" (Um = 123 kV).

Figures 18a/b: Oscillograms of switching impulse test (250/2500 µs) on insulating distance "f" (U_m = 123 kV).

Table 19: Test results of switching impulse test (250/2500 µs) on insulating distance "f" (U_m = 170 kV).

Tested Test		Peak amp	itude (U_p) Time to peak (T_P)		Time to half-value (T_2)		
insulating	rest	in	kV	in	μs	in	μs
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1		-618.9		225.8		2677
	2	-620	-619.5		225.8		2678
f	3		-620.3	250	225.9	2500	2677
I I	4		619.1	250	226.6	2500	2681
	5	620	620.4		226.8		2680
	6		619.7		226.7		2683

6.3.3 Insulating distance "f" ($U_m = 170 \text{ kV}$)

Tested insulating		Peak amp in	litude (U _p) <i>kV</i>	Time to in	peak (T _P) <i>μs</i>	Time to hal in	lf-value (T₂) μs
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1		-848.9		238.2		2624
	2	-850	-849.8		238.1		2627
4	3		-849.9	250	238.2	2500	2635
1	4		850.2		238.0		2628
	5	850	850.6		238.3		2627
	6		849.7		238.1		2628

6.3.4 Insulating distance "f" (U_m = 245 kV)

Table 20: Test results of switching impulse test (250/2500 µs) on insulating distance "f" (U_m = 245 kV).

Figures 20a/b: Oscillograms of switching impulse test (250/2500 µs) on insulating distance "f" (U_m = 245 kV).

Tested Tes		Peak amp	litude (U _p)	Time to p	oeak (T _P)	Time to ha	f-value (T ₂)
insulating	rest	in	kV	in	μs	in	μs
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1		-849.2		237.8		2625
	2	-850	-850.2	250	236.6	- 2500	2626
4	3		-850.0		235.2		2627
1	4		850.9		241.8		2627
	5	850	850.2		236.7		2627
	6		850.2		236.7		2627
Table 21: Test	results o	f switching impuls	se test (250/2500	µs) on insulating	distance "f" (U _m =	300 kV).	

6.3.5 Insulating distance "f" (U_m = 300 kV)

Tested insulating distance	Test no.	Peak amplitude (U _p) in <i>kV</i>	Time to peak (T _P) in <i>μs</i>	Time to half-value (T₂) in <i>μs</i>
	1 2	-100		
a0	3 4 5 6	100	250	2500

6.3.6 Insulating distance "a0" (single sector design)

Table 22: Test results of switching impulse test (250/2500 µs) on insulating distance "a0".

Figures 22a/b: Oscillograms of switching impulse test (250/2500 µs) on insulating distance "a0".

6.3.7	Insulating	distance	"a0"	(two	sector	design)
-------	------------	----------	------	------	--------	--------	---

Tested insulating distance	Test no.	Peak amplitude (U _p) in <i>kV</i>	Time to peak (Τ _Ρ) in <i>μs</i>	Time to half-value (T ₂) in μs
	1			
	2	-100		2500
-0	3		250	
au	4		230	
	5	100		
	6			

Table 23: Test results of switching impulse test (250/2500 µs) on insulating distance "a0".

Tested insulating distance	Test no.	Peak amplitude (U _p) in <i>kV</i>	Time to peak (T _P) in <i>μs</i>	Time to half-value (T₂) in <i>μs</i>
	1 2 3	-100	250	2500
au	4 5 6	100	250	2300

6.3.8 Insulating distance "a0" (three sector design)

Table 24: Test results of switching impulse impulse test (250/2500 µs) on insulating distance "a0".

Figures 24a/b: Oscillograms of switching impulse test (250/2500 µs) on insulating distance "a0".

6.4 Applied voltage test (AV)

Test standard:	IEC 60214-1:2014, sub-clause 5.2.8.8.
Voltage generator:	Applied voltage generator (max. voltage 700 kV), see appendix 2, picture 1.
Voltage waveform:	Sine-shaped (frequency: 50 Hz).
Wirings and connections:	See appendix 3, figures 4146.
Test voltages (U _{r.m.s.}):	See tables 2532.
Oscillograms:	See figures 2532.
Test duration (t _D):	60 s.

6.4.1 Insulating distance "f" (U_m = 72.5 kV)

Tested Applied voltage (50 Hz) insulating in <i>kV</i>		age (50 Hz) <i>kV</i>	Test duration in s		
distance	Nominal	Tested	Nominal	Tested	
f	140	140	60	62	

<u>Table 25:</u> Test results of applied voltage test (50 Hz) on insulating distance "f" ($U_m = 72.5 \text{ kV}$).

6.4.2 Insulating distance "f" (U_m = 123 kV)

Tested insulating	Applied voltage (50 Hz) in <i>kV</i>		Test duration in <i>s</i>		
distance	Nominal	Tested	Nominal	Tested	
f	230	230	60	61	

<u>Table 26:</u> Test results of applied voltage test (50 Hz) on insulating distance "f" ($U_m = 123 \text{ kV}$).

<u>Figure 26:</u> Oscillogram of applied voltage test (50 Hz) on insulating distance "f" ($U_m = 123 \text{ kV}$).

6.4.3 Insulating distance "f" (U_m = 170 kV)

Tested insulating	Applied volt in	age (50 Hz) kV	Test duration in s		
distance	Nominal	Tested	Nominal	Tested	
f	325	325	60	62	

Table 27: Test results of applied voltage test (50 Hz) on insulating distance "f" (U_m = 170 kV).

<u>Figure 27:</u> Oscillogram of applied voltage test (50 Hz) on insulating distance "f" ($U_m = 170 \text{ kV}$).

6.4.4 Insulating distance "f" (U_m = 245 kV)

Tested insulating	Applied voltage (50 Hz) in <i>kV</i>		Test duration in s	
distance	Nominal	Tested	Nominal	Tested
f	460	460	60	67

Table 28: Test results of applied voltage test (50 Hz) on insulating distance "f" (U_m = 245 kV).

6.4.5 Insulating distance "f" (U_m = 300 kV)

Tested insulating distance	Applied voltage (50 Hz) in <i>kV</i>		Test duration in <i>s</i>	
	Nominal	Tested	Nominal	Tested
f	460	460	60	60

Table 29: Test results of applied voltage test (50 Hz) on insulating distance "f" (U_m = 300 kV).

Figure 29: Oscillogram of applied voltage test (50 Hz) on insulating distance "f" (U_m = 300 kV).

Page 23 of 37 / VR 6E 003e

Tested insulating	Applied voltage (50 Hz) in <i>kV</i>		Test duration in <i>s</i>	
distance	Nominal	Tested	Nominal	Tested
a0	20	20	60	62

6.4.6 Insulating distance "a0" (single sector design)

Table 30: Test results of applied voltage test (50 Hz) on insulating distance "a0".

6.4.7 Insulating distance "a0" (two sector design)

Tested insulating	Applied volt in	age (50 Hz) <i>kV</i>	Test duration in s	
distance	Nominal	Tested	Nominal	Tested
a0	20	20	60	61

Table 31: Test results of applied voltage test (50 Hz) on insulating distance "a0".

Figure 31: Oscillogram of applied voltage test (50 Hz) on insulating distance "a0".

Page 24 of 37 / VR 6E 003e

Tested insulating	Applied voltage (50 Hz) in <i>kV</i>		Test duration in s	
distance	Nominal	Tested	Nominal	Tested
a0	20	20	60	69

6.4.8 Insulating distance "a0" (three sector design)

Table 32: Test results of applied voltage test (50 Hz) on insulating distance "a0".

Figure 32: Oscillogram of applied voltage test (50 Hz) on insulating distance "a0".

6.5 Measurement of partial discharges

Test standard:	IEC 60214-1:2014, sub-clause 5.2.8.9.
Voltage generator:	Applied voltage generator (max. voltage 700 kV), see appendix 2, picture 1.
Voltage waveform:	Sine-shaped (frequency: 50 Hz).
Wirings and connections:	See appendix 3, figures 4446.
Test voltages / durations :	See tables 33a37a.
Oscillograms:	See figures 3337.
Test procedure:	- the voltage was switched on at a level not higher than 0.4 Um / $\sqrt{3}$;
	- the background PD level was measured and recorded;
	- the voltage was raised to 1.2 Um / $\sqrt{3}$ and held there for a minimum duration of 1 min;
	- the PD level was measured and recorded;
	- the voltage was raised to 1.58 Um / $\sqrt{3}$ and held there for a minimum duration of 5 min;
	- the PD level was measured and recorded;
	- the voltage was raised to the enhanced voltage 1.8 Um / $\sqrt{3}$ and held there for a duration of 60 s.
	- immediately after the test time, the voltage was reduced without interruption to 1.58 Um / $\sqrt{3}$;
	- the PD level was measured and recorded;
	- the voltage was held at 1.58 Um / $\sqrt{3}$ for a duration of at least 60 min;
	 the PD level was measured and recorded every 5 min during the 60 min period;
	- after the last PD measurement in the 60 min period, the voltage was reduced to 1.2 / $\sqrt{3}$ and held there for a minimum duration of 1 min;
	- the PD level was measured and recorded;
	- the voltage was reduced to 0.4 Um / $\sqrt{3}$;
	- the background PD level was measured and recorded;
	- the voltage was reduced to a level below 0.4 Um / $\sqrt{3}$;
	- the voltage was switched off.
	The partial discharge was continuously observed on at least one measuring channel for the entire duration test.
	$ \begin{array}{c} & & \\ & & $
	$0.4U_m/\sqrt{3} - 1.2U_m/\sqrt{3} 1.58U_m/\sqrt{3} 1.8U_m/\sqrt{3} 1.58U_m/\sqrt{3} 1.2U_m/\sqrt{3} 1.2U_m/\sqrt{3} $

Permissible tolerances according to IEC 60214-1:2014:

PD during test step D: < 50 pC PD during test step E: < 30 pC PD background level: < 10 pC

6.5.1 Insulation distance "f" ($U_m = 72.5 \text{ kV}$)

 Test steps according to test procedure as described in chapter 6.5

 Test of the step of the st

step	Nominal	Tested	Nominal	Tested	
(U _{start})	-	-	17	17	
А	1	1	50	50	
В	5	5	66	66	
С	1	1	75	75	
D	60	60	66	66	
Е	1	1	50	50	
(U _{stop})	-	-	17	17	

 $[\]label{eq:constraint} \frac{Table \ 33a:}{for \ insulation \ distance \ "f" \ (U_m = 72.5 \ kV).}$

<u>Figure 33:</u> Measurement of partial discharges at insulation distance "f" ($U_m = 72.5 \text{ kV}$).

Tested	PD background level in <i>pC</i>				PD at 1.58 Um / √3 during 60 min in <i>p</i> C		PD at 1.2 Um / √3 during 1 min in <i>p</i> C	
distance	Nominal	Maximum tested at begin of PD measurement	Maximum tested at end of PD measurement	Nominal	Maximum tested	Nominal	Maximum tested	
f	< 10	< 2	< 2	< 50	< 14	< 30	< 6	

<u>Table 33b:</u> Partial discharge test at insulation distance "f" ($U_m = 72.5 \text{ kV}$).

6.5.2 Insulation distance "f" ($U_m = 123 \text{ kV}$)

in chapter 6.5						
Test step	Duration in <i>min</i>		Test voltage in <i>kV</i>			
	Nominal	Tested	Nominal	Tested		
(U _{start})	-	-	28	28		
А	1	1	85	85		
В	5	5	112	112		
С	1	1	128	128		
D	60	60	112	112		
E	1	1	85	85		
(U _{stop})	-	-	28	28		

Test steps according to test procedure as described

Table 34a: Nominal and tested voltages and durations for insulation distance "f" ($U_m = 123 \text{ kV}$).

<u>Figure 34:</u> Measurement of partial discharges at insulation distance "f" ($U_m = 123 \text{ kV}$).

Tested		PD background level in <i>p</i> C			PD at 1.58 Um / √3 during 60 min in <i>p</i> C		PD at 1.2 Um / √3 during 1 min in <i>p</i> C	
distance	Nominal	Maximum tested at begin of PD measurement	Maximum tested at end of PD measurement	Nominal	Maximum tested	Nominal	Maximum tested	
f	< 10	< 2	< 2	< 50	< 2	< 30	< 2	

<u>Table 34b:</u> Partial discharge test at insulation distance "f" ($U_m = 123 \text{ kV}$).

6.5.3 Insulation distance "f" (U_m = 170 kV)

Test steps according to test procedure as described in chapter 6.5					
Test	Duration in <i>min</i>		Test voltage in <i>kV</i>		
step	Nominal	Tested	Nominal	Tested	
(U _{start})	-	-	39	39	
А	1	1	118	118	
В	5	5	155	155	
С	1	1	177	177	
D	60	60	155	155	
E	1 1		118	118	
(U _{stop})	-	-	39	39	

<u>Table 35a:</u> Nominal and tested voltages and durations for insulation distance "f" ($U_m = 170 \text{ kV}$).

<u>Figure 35:</u> Measurement of partial discharges at insulation distance "f" ($U_m = 170 \text{ kV}$).

Tested		PD background in <i>pC</i>	level	PD at dur	1.58 Um / √3 ing 60 min in <i>pC</i>	PD a du	t 1.2 Um / √3 ring 1 min in <i>pC</i>
distance	Nominal	Maximum tested at begin of PD measurement	Maximum tested at end of PD measurement	Nominal	Maximum tested	Nominal	Maximum tested
f	< 10	< 2	< 3	< 50	< 3	< 30	< 3

<u>Table 35b:</u> Partial discharge test at insulation distance "f" ($U_m = 170 \text{ kV}$).

6.5.4 Insulation distance "f" (U_m = 245 kV)

in chapte	er 6.5						
Test	Dura in <i>n</i>	tion nin	Test voltage in <i>kV</i>				
step	Nominal	Tested	Nominal	Tested			
(U _{start})	-	-	57	57			
А	1	1	170	170			
В	5	5	223	223			
С	1	1	255	255			
D	60	60	223	223			
E	1	1	170	170			
(U _{stop})	-	-	57	57			

Test steps according to test procedure as described

<u>Table 36a:</u> Nominal and tested voltages and durations for insulation distance "f" ($U_m = 245 \text{ kV}$).

<u>Figure 36:</u> Measurement of partial discharges at insulation distance "f" ($U_m = 245 \text{ kV}$).

Tested		PD background in <i>pC</i>	level	PD at dur	1.58 Um / √3 ing 60 min in <i>pC</i>	3 PD at 1.2 U during 1 r in <i>pC</i>	t 1.2 Um / √3 ring 1 min in <i>pC</i>
distance	Nominal	Maximum tested at begin of PD measurement	Maximum tested at end of PD measurement	Nominal	Maximum tested	Nominal	Maximum tested
f	< 10	< 2	< 2	< 50	< 2	< 30	< 2

<u>Table 36b:</u> Partial discharge test at insulation distance "f" ($U_m = 245 \text{ kV}$).

6.5.5 Insulation distance "f" (U_m = 300 kV)

in chapte	er 6.5						
Test	Dura in <i>n</i>	tion nin	Test voltage in <i>kV</i>				
step	Nominal	Tested	Nominal	Tested			
(U _{start})	-	-	69	69			
А	1	1	208	208			
В	5	5	274	274			
С	1	1	312	312			
D	60	60	274	274			

Test steps according to test procedure as described

Table 37a: Nominal and tested voltages and durations for insulation distance "f" (U_m = 300 kV).

1

208

69

208

69

Е

(U_{stop})

1

<u>Figure 37:</u> Measurement of partial discharges at insulation distance "f" ($U_m = 300 \text{ kV}$).

Tested		PD background in <i>pC</i>	level	PD at dur	1.58 Um / √3 ing 60 min in <i>pC</i>	PD at 1.2 Um during 1 mi in <i>pC</i> Nominal < 30	t 1.2 Um / √3 ring 1 min in <i>pC</i>
distance	Nominal	Maximum tested at begin of PD measurement	Maximum tested at end of PD measurement	Nominal	Maximum tested	Nominal	Maximum tested
f	< 10	< 2	< 2	< 50	< 2	< 30	< 2

<u>Table 37b:</u> Partial discharge test at insulation distance "f" ($U_m = 300 \text{ kV}$).

7. Test results

The requirements according to IEC 60214-1:2014 "Tap-changers - Part 1: Performance requirements and test methods", sub-clause 5.2.8: "Dielectric tests" were met.

The full wave lightning impulse tests (LI), the chopped wave lightning impulse tests (LIC), the switching impulse tests (SI) as well as the applied voltage tests (AV) were withstood without any discharge.

The confirmed withstand voltages for the insulating distance to earth (insulating distance "f") and for the insulating distance between diverter switch contacts in their final open position (insulating distance "a0") are shown in tables 38 and 39.

Highest voltage for equipment U _m	Full wave lightning impulse withstand voltage (LI)	Chopped wave lightning impulse withstand voltage (LIC)	Switching impulse withstand voltage (SI)	Applied voltage (AV)
	1.2 / 50 μs	1.2 / 50 / 3 μs	250 / 2500 μs	50 Hz / 60 s
in <i>kV</i> (r.m.s.)	in <i>kV</i> (peak)	in <i>kV</i> (peak)	in <i>kV</i> (peak)	in <i>kV</i> (r.m.s.)
72.5	350	385	280 ¹	140
123	550	605	460	230
170	750	825	620	325
245	1050	1155	850	460
300	1050	1155	850	460

Table 38: Confirmed withstand voltages for the insulating distance to earth (insulating distance "f").

Highest voltage for equipment U _m	Full wave lightning impulse withstand voltage (LI)	Chopped wave lightning impulse withstand voltage (LIC)	Switching impulse withstand voltage (SI)	Applied voltage (AV)
	1.2 / 50 μs	1.2 / 50 / 3 μs	250 / 2500 μs	50 Hz / 60 s
in <i>kV</i> (r.m.s.)	in <i>kV</i> (peak)	in <i>kV</i> (peak)	in <i>kV</i> (peak)	in <i>kV</i> (r.m.s.)
72.5 300	150	165	100	20

<u>Table 39:</u> Confirmed withstand voltages for the insulating distance between diverter switch contacts in their final open position (insulating distance "a0").

During the partial discharge (PD) measurements, no collapse of the test voltage and no continuously rising tendency occurred. The levels of partial discharges did not exceed the corresponding permissible limits. Details see table 40.

Highest voltage for equipment	PD background level	PD at 1.58 U _m / √3 during 60 min	PD at 1.2 U _m / √3 during 1 min
in <i>kV</i> (r.m.s.)	in <i>pC</i>	in <i>pC</i>	in pC
72.5 300	< 3	< 50	< 30

Table 40: Confirmed results of partial discharge measurements at insulation distance to earth (insulating distance "f").

¹ Not required by IEC 60214-1:2014.

Appendix 1: Dimension drawing

Figure 38a: Example of dimension drawing of on-load tap-changers type VACUTAP® VRS / VRM / VRL / VRH with single phase design , combined with tap selectors type RC / RD / RDE (page 1/2).

I INFLECTO		F				RΓ							βU							RUL			
	01 0121	-	72.5	123	170	245	300	362	420	72.5	123	170	245	300	362	420	72.5	123	170	245	300	362	42
	-	h	1838	1968	2098	2198	2350	2453	2572	1918	2048	2178	2278	2430	2533	2652	1958	2088	2218	2318	2470	2573	26
		i	1168	1298	1428	1528	1680	1783	1902	1168	1298	1428	1528	1680	1783	1902	1168	1298	1428	1528	1680	1783	19
		b	<u> </u>		202	425	FF (6722	(00			200	425	FF <i>t</i>	6723	(00)			202	425		6722	
		S	-	-	302	402	554	228	692	-	-	302	402	101	228	692	-	-	302	402	554	228	6
DIMENS	SIONS	X	-	-	Ø 620	Ø 620	Ø 620	Ø 695	Ø 695	-	-	Ø 620	Ø 620	Ø 620	Ø 695	Ø 695	-	-	Ø 620	Ø 620	Ø 620	Ø 695	ø
nm]	m]	y	-	-	Ø 56	Ø 56	Ø 56	Ø 100	Ø 100	-	-	Ø 56	Ø 56	Ø 56	Ø 100	Ø 100	-	-	Ø 56	Ø 56	Ø 56	Ø 100	ø
		k				670							750							790			
		n	<u> </u>			319							359							379			
		T				489							210							609			
OIL CONT	TENT [. ч .dm?]	160	180	200	220	240	260	280	160	180	200	220	240	260	280	160	180	200	220	240	260	
DISPLACE	EMENT (.dm³]	249	269	299	319	349	389	409	250	270	300	320	350	390	410	251	271	301	321	351	391	t
MAX. WE	IGHT (íkg)	358	364	377	380	386	393	398	363	369	382	385	391	398	403	365	371	384	387	393	400	
DIMENSIONS [mm]	SIONS n]	b s z x y k	-	-	302 191 Ø 620 Ø 56	576 402 191 Ø 620 Ø 56 670	554 191 Ø 620 Ø 56	573 228 Ø 695 Ø 100	692 228 Ø 695 Ø 100	-	-	302 191 Ø 620 Ø 56	576 402 191 Ø 620 Ø 56 750	554 191 Ø 620 Ø 56	573 228 Ø 695 Ø 100	692 228 Ø 695 Ø 100	-	-	302 191 Ø 620 Ø 56	576 402 191 Ø 620 Ø 56 790	554 191 Ø 620 Ø 56	573 228 Ø 695 Ø 100	ç
		n				319							359							379			
	[t				170							210							230			
	CNT C	q d=11	10.0	200	220	489	070	005	205	10.0	200	220	569	070	205	205	40.0	200	220	609	270	205	-
	MENT (lin.) Itemp	269	200	329	349	379	419	439	270	300	330	350	380	420	440	271	301	331	351	381	421	┝
MAX. WEI	IGHT (.kg]	367	373	386	390	395	402	407	372	378	391	395	400	407	412	374	380	393	397	402	409	Ī
	TAP® OR SIZE	Ð VI	RL /	VRH	1301	RC 245	300	362	420	72,5	123	170	RD 245	300	362	420	72,5	123	170	RDE 245	300	362	
SELECTO Um [kV]	-	<u> </u>	2141	2271	24.01	2501	2653	2756	2875	2221	0354	2481	2581	2733	2836	2955	2261	2391	2521	2621	2773	2876	ľ
SELECTO Um [kV]		n	2141	22/1	2401	2301	2000				2551									10.74	1983	2004	Ľ
SELECTO Um (kV)		i	1471	1601	1731	1831	1983	2086	2205	1471	2351 1601	1731	1831	1983	2086	2205	1471	1601	1731	1831		2000	L
SELECTO Um (kV)	-	n i b	1471	1601	1731	1831 728	1983	2086	2205	1471	1601	1731	1831 728	1983	2086	692	1471	1601	302	1831 728	55/	573	L
SELECTIC Um [kV]		n i b s z		-	302 191	2301 1831 728 402 191	2000 1983 554 191	2086 573 228	2205 692 228	-	2351 1601 - -	1731 302 191	1831 728 402 191	1983 554 191	2086 573 228	2205 692 228	-	-	1731 302 191	1831 728 402 191	554 191	573 228	F
SELECTIC Um (kV)	SIONS	n i b s z x			302 191 Ø 620	2301 1831 728 402 191 Ø 620	1983 554 191 Ø 620	2086 573 228 Ø 695	2205 692 228 Ø 695	1471 - - -	2351 1601 - - -	1731 302 191 Ø 620	1831 728 402 191 Ø 620	1983 554 191 Ø 620	2086 573 228 Ø 695	2205 692 228 Ø 695			1731 302 191 Ø 620	1831 728 402 191 Ø 620	554 191 Ø 620	2000 573 228 Ø 695	5
SELECTO Um (kV)	SIONS m]	n b s z x y		- - - -	302 191 Ø 620 Ø 56	2501 1831 728 402 191 Ø 620 Ø 56	2000 1983 554 191 Ø 620 Ø 56	2086 573 228 Ø 695 Ø 100	2205 692 228 Ø 695 Ø 100	1471 - - - -	2351 1601 - - - -	1731 302 191 Ø 620 Ø 56	1831 728 402 191 Ø 620 Ø 56	1983 554 191 Ø 620 Ø 56	2086 573 228 Ø 695 Ø 100	2205 692 228 Ø 695 Ø 100		- - - -	1731 302 191 Ø 620 Ø 56	1831 728 402 191 Ø 620 Ø 56	554 191 Ø 620 Ø 56	2000 573 228 Ø 695 Ø 100	
SELECTO Um (kV) DIMENS	SIONS m]	n b s z x y k		- - -	302 191 Ø 620 Ø 56	2301 1831 728 402 191 Ø 620 Ø 56 670	1983 554 191 Ø 620 Ø 56	2086 573 228 Ø 695 Ø 100	2205 692 228 Ø 695 Ø 100	1471 - - -	2351 1601 - - -	1731 302 191 Ø 620 Ø 56	1831 728 402 191 Ø 620 Ø 56 750	1983 554 191 Ø 620 Ø 56	2086 573 228 Ø 695 Ø 100	2205 692 228 Ø 695 Ø 100		1601 - - -	1731 302 191 Ø 620 Ø 56	1831 728 402 191 Ø 620 Ø 56 790	554 191 Ø 620 Ø 56	573 228 Ø 695 Ø 100	
DIMENS	SIONS m]	n i b s z x y k n t		- - - -	1731 302 191 Ø 620 Ø 56	2301 1831 728 402 191 Ø 620 Ø 56 670 319	1983 554 191 Ø 620 Ø 56	2086 573 228 Ø 695 Ø 100	2205 692 228 Ø 695 Ø 100	1471 - - -	2351 1601 - - -	1731 302 191 Ø 620 Ø 56	1831 728 402 191 Ø 620 Ø 56 750 359 210	1983 554 191 Ø 620 Ø 56	2086 573 228 Ø 695 Ø 100	2205 692 228 Ø 695 Ø 100			1731 302 191 Ø 620 Ø 56	1831 728 402 191 Ø 620 Ø 56 790 379 230	554 191 Ø 620 Ø 56	573 228 Ø 695 Ø 100	\$
DIMENS	SIONS m]	n i b s z x y k n t			302 191 Ø 620 Ø 56	2301 1831 728 402 191 Ø 620 Ø 56 670 319 170 489	1983 554 191 Ø 620 Ø 56	2086 573 228 Ø 695 Ø 100	2205 692 228 Ø 695 Ø 100	1471 - - -	- - - -	1731 302 191 Ø 620 Ø 56	1831 728 402 191 Ø 620 Ø 56 750 359 210 569	1983 554 191 Ø 620 Ø 56	2086 573 228 Ø 695 Ø 100	2205 692 228 Ø 695 Ø 100			1731 302 191 Ø 620 Ø 56	1831 728 402 191 Ø 620 Ø 56 790 379 230 609	554 191 Ø 620 Ø 56	573 228 Ø 695 Ø 100	5
DIMENS	SIONS m]	n i b s z x y k n t q dm ³]	- - - 210	- - - - 230	2401 1731 302 191 Ø 620 Ø 56 250	2301 1831 728 402 191 Ø 620 Ø 56 670 319 170 489 270	2005 1983 554 191 Ø 620 Ø 56 290	2086 573 228 Ø 695 Ø 100 310	2205 692 228 Ø 695 Ø 100 330	1471 - - - 210	2351 1601 - - - - 230	1731 302 191 Ø 620 Ø 56 250	1831 728 402 191 Ø 620 Ø 56 750 359 210 569 270	1983 554 191 Ø 620 Ø 56 290	2086 573 228 Ø 695 Ø 100 310	2205 692 228 Ø 695 Ø 100 330	1471 - - - 210	1601 - - - - 230	1731 302 191 Ø 620 Ø 56 250	1831 728 402 191 Ø 620 Ø 56 790 379 230 609 270	554 191 Ø 620 Ø 56 290	573 228 Ø 695 Ø 100 310	5
DIMENS DIMENS DIL CONT DISPLACE	SIONS m] TENT CI EMENT CI	n i b z z x y k n t dm ³]	- - - - 210 299	- - - - - 230 329	2401 1731 302 191 Ø 620 Ø 56 250 359	2301 1831 728 402 191 Ø 56 670 319 170 489 270 379	2005 1983 554 191 Ø 620 Ø 56 290 409	2086 573 228 Ø 695 Ø 100 310 449	2205 692 228 Ø 695 Ø 100 330 469	1471 - - - - 210 300	2351 1601 - - - - 230 330	1731 302 191 Ø 620 Ø 56 250 360	1831 728 402 191 Ø 520 Ø 56 750 359 210 569 270 380	1983 554 191 Ø 620 Ø 56 290 410	2086 573 228 Ø 695 Ø 100 310 450	2205 692 228 Ø 695 Ø 100 330 470	1471 - - - 210 301	1601 - - - - 230 331	1731 302 191 Ø 620 Ø 56 250 361	1831 728 402 191 Ø 56 790 379 230 609 270 381	554 191 Ø 620 Ø 56 290 411	2000 573 228 Ø 695 Ø 100 310 451	
DIMENS DIMENS DIMENS Cmm DISPLACE MAX. WEI	SIONS m] TENT CI EMENT CI IGHT C	n i b s z x y k n t q dm ³] dm ³]	210 299 377	2271 1601 - - - - 230 329 383	2401 1731 302 191 Ø 620 Ø 56 250 359 395	2501 1831 728 402 191 Ø 620 Ø 56 670 319 170 489 270 379 399	2005 1983 554 191 Ø 620 Ø 56 290 409 405	2086 573 228 Ø 695 Ø 100 310 449 412	2205 692 228 Ø 695 Ø 100 330 469 416	1471 - - - - 210 300 382	2351 1601 - - - - - 230 330 388	1731 302 191 Ø 620 Ø 56 250 360 400	1831 728 402 191 Ø 620 Ø 56 750 359 210 569 270 380 404	1983 554 191 Ø 620 Ø 56 290 410 410	2086 573 228 Ø 695 Ø 100 310 450 417	2205 692 228 Ø 695 Ø 100 330 470 421	1471 - - - - 210 301 384	1601 - - - - 230 331 390	1731 302 191 Ø 620 Ø 56 250 361 402	1831 728 402 191 Ø 620 Ø 56 790 379 230 609 270 381 406	554 191 Ø 620 Ø 56 290 411 412	2000 573 228 Ø 695 Ø 100 310 451 419	
DIMENS OIL CONT DISPLACE MAX. WEI	SIONS m] TENT CI EMENT CI IGHT C	n i b s z x y k n t q dm ³] kg]	210 299 377	- - - - - 230 329 383	250 302 191 Ø 620 Ø 56 250 359 395	250 1831 728 402 191 Ø 620 Ø 56 670 319 170 489 270 379 399	2000 1983 554 191 Ø 620 Ø 56 290 409 405	2086 573 228 Ø 695 Ø 100 310 449 412	2205 692 228 Ø 695 Ø 100 330 469 416	1471 - - - 210 300 382	2351 1601 - - - - - - - - - - - - - - - - - - -	1731 302 191 Ø 620 Ø 56 250 360 400	1831 728 402 191 Ø 620 Ø 56 750 359 210 569 270 380 404	1983 554 191 Ø 620 Ø 56 290 410 410	2086 573 228 Ø 695 Ø 100 310 450 417	2205 692 228 Ø 695 Ø 100 330 470 421	1471 - - - - 210 301 384	 230 331 390	1731 302 191 Ø 620 Ø 56 250 361 402	1831 728 402 191 Ø 620 Ø 56 790 379 230 609 230 609 270 381 406	554 191 Ø 620 Ø 56 290 411 412	573 228 Ø 695 Ø 100 310 451 419	
DIMENSI OIMENSI	TENT (IGHT (ION	n i b s z x y k n t q dm ³] (kg)	210 299 377	220 1601 - - - - - - - - - - - - - - - - - - -	250 302 191 Ø 620 Ø 56 250 359 395	2,501 1831 728 402 191 Ø 620 Ø 56 670 319 170 489 270 379 399	2000 1983 554 1911 Ø 620 Ø 56 0 409 405	2086 573 228 Ø 695 Ø 100 310 449 412	2205 692 228 Ø 695 Ø 100 330 469 415	1471 - - - - - - - - - - - - - - - - - - -	2351 1601 - - - - - 230 330 388	250 360 400	1831 728 402 191 Ø 620 Ø 56 750 210 569 270 380 404	1983 554 191 Ø 620 Ø 56 290 410 410	2086 573 228 Ø 695 Ø 100 310 450 417 ® V	2205 692 228 Ø 695 Ø 100 330 470 421	1471 - - - - 210 301 384	 - - - 230 331 390	1731 302 191 Ø 620 Ø 56 250 361 402	1831 728 402 191 Ø 620 Ø 56 790 379 230 609 270 381 406	554 191 Ø 620 Ø 56 290 411 412	573 228 Ø 695 Ø 100 310 451 419	
DIMENSI DIMENSI DIMENSI DIMENSI DIMENSI DIMENSI DIMENSI	SIONS m] TENT [] IGHT [] ION	n i b s z x y k n t q dm ³] [kg]	210 239 377	2271 1601 - - - - - - - - - - - - -	250 302 191 Ø 620 Ø 56 250 359 395	2,501 1831 728 402 191 Ø 620 Ø 56 670 319 170 489 270 379 399	2000 1983 5554 1911 Ø 620 Ø 56 290 409 405	2086 573 228 Ø 695 Ø 100 310 449 412 N-LC	2205 692 228 Ø 695 Ø 100 330 469 415	1471 - - - - - - - - - - - - - - - - - - -	230 330 388	302 191 Ø 620 Ø 56 250 360 400	1831 728 402 191 Ø 620 Ø 56 750 359 210 569 270 380 404	1983 554 191 Ø 620 Ø 56 290 410 410 410	2086 573 228 Ø 695 Ø 100 450 417 ® V KV	2205 692 228 Ø 695 Ø 100 330 470 421	1471 - - - - 210 301 384	- - - - - - - - - - - - - - - - - - -	1731 302 191 Ø 620 Ø 56 250 361 402	1831 728 402 191 Ø 620 Ø 56 790 3379 230 609 270 381 406	554 191 Ø 620 Ø 56 290 411 412 SERIAL N	573 228 Ø 695 Ø 100 451 419	
DIMENSI DIMENSI DISPLACE DIMENSI DISPLACE MAX. WEI NOTED	SIONS m] TENT (L EMENT (L IGHT (IGHT (n i b s z x y k n t q dm ³] [kg]	210 299 377	220 1601 - - - - - - - - - - - - -	250 302 191 Ø 620 Ø 56 250 359 395	2,501 1831 728 402 191 Ø 620 Ø 56 670 319 170 489 270 379 399	2000 1983 5554 191 Ø 620 Ø 56 290 409 405	2086 573 228 Ø 695 Ø 100 310 449 412 DN-LC	2205 692 228 Ø 695 Ø 100 409 416	1471 - - - - - - - - - - - - - - - - - - -	2351 1601 - - - - - - - - - - - - - - - - - - -	250 360 400	1831 728 402 191 Ø 560 750 359 210 569 270 380 404	1983 554 191 Ø 620 Ø 56 290 410 410 410	2086 573 228 Ø 695 Ø 100 450 417 ® V k V	2205 692 228 Ø 695 Ø 100 330 470 421	1471 - - - - 210 301 384	- - - - - - - - - - - - - - - - - - -	1731 302 191 Ø 620 Ø 56 250 361 402	1831 728 402 191 Ø 620 Ø 56 790 379 230 609 270 381 406	554 191 Ø 620 Ø 56 290 411 412 SERIAL N - - - - - - - - - - - - - - - - - - -	573 228 Ø 695 Ø 100 451 419	

Figure 38b: Example of dimension drawing of on-load tap-changers type VACUTAP® VRS / VRM / VRL / VRH with single phase design , combined with tap selectors type RC / RD / RDE (page 2/2).

Appendix 2: Schematic test circuits and test equipment

Figure 39: Schematic test circuit for lightning impulse tests (full / chopped wave), switching impulse test and applied voltage test.

Figure 40: Schematic test circuit for partial discharge measurement.

Page 35 of 37 / VR 6E 003e

Picture 1: Test equipment for applied voltage test.

Picture 2: Test equipment for impulse voltage tests.

Picture 3: Test setup for insulation distance "f".

Picture 4: Test setup for insulation distance "a0".

Page 36 of 37 / VR 6E 003e

Appendix 3: Wirings and connections

BLUE:Connection to groundRED:Connected to test voltageGREEN:No connection (floating)

Figure 41: Schematic sketch of connections for testing insulating distances "a0" (single sector design).

Figure 42: Schematic sketch of connections for testing insulating distances "a0" (two sector design).

Figure 43: Schematic sketch of connections for testing insulating distances "a0" (three sector design).

<u>Figure 44:</u> Schematic sketch of connections for testing insulating distances "f" ($U_m = 72.5 \text{ kV}$).

<u>Figure 45:</u> Schematic sketch of connections for testing insulating distances "f" ($U_m = 123 \text{ kV}$).

<u>Figure 46:</u> Schematic sketch of connections for testing insulating distances "f" ($U_m = 170...300 \text{ kV}$).