Type test report no. VR 6E 003e

Dielectric tests of diverter switch

Type test for types:

Test specification:
Classification:
Test samples:

Manufacturer:
Date of tests:
Place of tests:

Tests performed:

Full wave lightning impulse tests (LI):
Chopped wave lightning impulse tests (LIC):
Switching impulse tests
(SI):
Applied voltage tests (AV):
Measurement of partial discharges:
Tested insulation distances:

Test results:

Test results:

Diverter switches VACUTAP ${ }^{\circledR}$ VRS / VRM / VRL / VRH / VRX with

- single phase, two phase or three phase design,
- highest voltage for equipment $U_{m} 72.5 \mathrm{kV}$ up to 300 kV .

IEC 60214-1:2014, sub-clause 5.2.8: "Dielectric tests".
Class II in compliance with IEC 60214-1:2014, sub clause 5.2.8.3.
Diverter switches
VACUTAP ${ }^{\circledR}$ VRM I 1301 - 72.5, S/N: 1734905a
VACUTAP ${ }^{\circledR}$ VRM I 1301 - 123, S/N: 1734905b
VACUTAP ${ }^{\circledR}$ VRM I 1301 - 300, S/N: 1734905c
VACUTAP ${ }^{\circledR}$ VRM II 1002 - 72.5, S/N: 2095365
VACUTAP ${ }^{\circledR}$ VRL III 1300 Y - 170, S/N: 1734906a
VACUTAP ${ }^{\circledR}$ VRL III 1300 Y - 245, S/N: 1734906b
VACUTAP ${ }^{\circledR}$ VRL III 1300 Y - 72.5, S/N: 2125888
VACUTAP ${ }^{\circledR}$ VRS I 1301 - 72.5, S/N: 2122390
Maschinenfabrik Reinhausen GmbH, Regensburg, Germany.
August 2016 to December 2016 \& September 2019 to October 2019.
Maschinenfabrik Reinhausen GmbH, Regensburg, Germany.

Impulse 1.2/50 $\mu \mathrm{s}$: Each 3 applications performed with positive and negative polarity.
Impulse $1.2 / 50 / 3 \mu \mathrm{~s}$: Each 3 applications performed with positive and negative polarity.
Impulse $250 / 2500 \mu \mathrm{~s}$: Each 3 applications performed with positive and negative polarity.
Performed with single-phase alternating voltage ($50 \mathrm{~Hz} / 60 \mathrm{~s}$).
In compliance with IEC 60214-1:2014, sub-clause 5.2.8.9.

- to earth,
- between diverter switch contacts in their final open position.

The requirements of IEC 60214-1:2014 were met.

- All test voltages were withstood without discharge.
- The levels of partial discharge did not exceed the corresponding permissible limits.

This report contains 37 pages.
i. V. Dr. Thomas Strof [valid without signature]

Maschinenfabrik Reinhausen GmbH

- PRODUCT APPROVAL -

1. Test specification

The type tests were performed in accordance with IEC 60214-1:2014 "Tap-changers - Part 1: Performance requirements and test methods", sub-clause 5.2.8: "Dielectric tests".

2. Specification of the insulating distances of the diverter switch

2.1 Insulating distance " f " of the diverter switch

The insulating distance " f " specifies the insulation to earth. It is the distance between the live parts of the diverter switch, including the spring accumulator and the head of the diverter switch and ground. Types with highest voltage for equipment U_{m} equal to or higher than 170 kV are equipped with grading rings on this distance.

Three-phase diverter switches type VACUTAP ${ }^{\circledR}$ VRS / VRM / VRL / VRH are available from $U_{m}=72.5 \mathrm{kV}$ up to 245 kV .

Two-phase diverter switches type VACUTAP ${ }^{\circledR}$ VRS / VRM / VRL / VRH and single-phase diverter switches type VACUTAP ${ }^{\circledR}$ VRS / VRM / VRL / VRH with two current paths for applications with enforced current splitting are available from $U_{m}=72.5 \mathrm{kV}$ up to 362 kV .

Single-phase diverter switches type VACUTAP ${ }^{\circledR}$ VRS / VRM / VRL / VRH are available from $U_{m}=72.5 \mathrm{kV}$ up to 420 kV . Single-phase diverter switches type VACUTAP ${ }^{\circledR}$ VRX for applications with variable shunt reactors are available from $\mathrm{U}_{\mathrm{m}}=72.5 \mathrm{kV}$ up to 362 kV .
Diverter switches with three-phase design are classified to class I for use at the neutral point of windings. Diverter switches of single-phase and two-phase design are classified to class II for use at a position other than the neutral point of windings.
Figure $38 \mathrm{a} / \mathrm{b}$ shows the dimensions of the insulating distances " f " of the diverter switches in function of U_{m} exemplary for VACUTAP ${ }^{\circledR}$ VRS / VRM / VRL / VRH. These distances are identical for all diverter switches type VACUTAP ${ }^{\circledR}$ VRS / VRM / VRL / VRH / VRX with the same U_{m}.

The type tests were performed according to the requirements for class II in compliance with IEC 60214-1:2014, sub clause 5.2.8.3. The requirements for class I are covered.

2.2 Insulating distance "a0" of the diverter switch

The insulating distance "a0" specifies the distance between diverter switch contacts in their final open position.

To protect this insulating distance from transient over-voltages, ZnO surge arresters are incorporated in the diverter switches.

3. Data of test samples

Test sample 1

Type designation:
Type characteristics:
Serial number / IBASE:
Year of manufacture:
Manufacturer:
Tests performed:

VACUTAP ${ }^{\circledR}$ VRM I 1301-72.5
Diverter switch
1734905a / 546541064 and 547813653
2016
Maschinenfabrik Reinhausen GmbH, Regensburg, Germany
Insulating distance „f" / Partial discharges on "f"

VACUTAP ${ }^{\circledR}$ VRM I 1301-123
Diverter switch
1734905b / 547813653
2016
Maschinenfabrik Reinhausen GmbH, Regensburg, Germany
Insulating distance „f" / Partial discharges on "f"

Test sample 3

Type designation:
Type characteristics:
Serial number / IBASE:
Year of manufacture:
Manufacturer:
Tests performed:

Test sample 4

Type designation:
Type characteristics:
Serial number / IBASE:
Year of manufacture:
Manufacturer:
Tests performed:

Test sample 5

Type designation:
Type characteristics:
Serial number / IBASE:
Year of manufacture:
Manufacturer:
Tests performed:

Test sample 6

Type designation:
Type characteristics:
Serial number / IBASE:
Year of manufacture:
Manufacturer:
Tests performed:

Test sample 7

Type designation:
Type characteristics:
Serial number / IBASE:
Year of manufacture:
Manufacturer:
Tests performed:

Test sample 8

Type designation:
Type characteristics:
Serial number / IBASE:
Year of manufacture:
Manufacturer:
Tests performed:

VACUTAP ${ }^{\circledR}$ VRM I 1301 - 300
Diverter switch
1734905c / 547813653
2016
Maschinenfabrik Reinhausen GmbH, Regensburg, Germany Insulating distance „f" / Partial discharges on "f"

VACUTAP ${ }^{\circledR}$ VRM II 1002 - 72.5
Diverter switch
2095365 / 708835167
2019
Maschinenfabrik Reinhausen GmbH, Regensburg, Germany Insulating distance „a0"

VACUTAP ${ }^{\circledR}$ VRL III 1300 Y - 170
Diverter switch
1734906a / 546541165
2016
Maschinenfabrik Reinhausen GmbH, Regensburg, Germany Insulating distance „f" / Partial discharges on "f"

VACUTAP ${ }^{\circledR}$ VRL III 1300 Y - 245
Diverter switch
1734906b / 547813653
2016
Maschinenfabrik Reinhausen GmbH, Regensburg, Germany Insulating distance „f" / Partial discharges on "f"

VACUTAP ${ }^{\circledR}$ VRL III 1300 Y - 72.5
Diverter switch
2125888 / 714818662
2019
Maschinenfabrik Reinhausen GmbH, Regensburg, Germany
Insulating distance „a0"

VACUTAP ${ }^{\circledR}$ VRS I 1301-72.5
Diverter switch
2122390 / 714818591
2019
Maschinenfabrik Reinhausen GmbH, Regensburg, Germany
Insulating distance „a0"

4. Scope of application

Diverter switches type VACUTAP ${ }^{\circledR}$ VR are available in the basic design variants VACUTAP ${ }^{\circledR}$ VRS, VACUTAP ${ }^{\circledR}$ VRM, VACUTAP ${ }^{\circledR}$ VRL, VACUTAP ${ }^{\circledR}$ VRH and VACUTAP ${ }^{\circledR}$ VRX.

The design of insulating distance " f " depends on the highest voltage for equipment U_{m} of the diverter switch and it does not depend on the basic design variant (VACUTAP ${ }^{\circledR}$ VRS, VACUTAP ${ }^{\circledR}$ VRM, VACUTAP ${ }^{\circledR} V R L$, VACUTAP ${ }^{\circledR} V R H$ or VACUTAP ${ }^{\circledR} V R X$), the number of phases and the number of sectors of the diverter switch.
Therefore, the rated withstand voltages and the partial discharges on insulating distance " f " were tested on various test samples with $U_{m}=72.5 \mathrm{kV}$ up to 300 kV (test samples 1, 2, 3, 5 and 6).
The design of insulating distance "a0" does not depend on the highest voltage for equipment U_{m} and the basic design variant (VACUTAP ${ }^{\circledR}$ VRS, VACUTAP ${ }^{\circledR}$ VRM, VACUTAP ${ }^{\circledR}$ VRL, VACUTAP ${ }^{\circledR}$ VRH or VACUTAP ${ }^{\circledR} \mathrm{VRX}$), but it depends on the number of sectors of the diverter switch.
Therefore the rated withstand voltages and the protection levels between diverter switch contacts at their final open position were tested on various test samples with single sector design, two sector design and three sector design (test samples 4, 7 and 8).
The dielectric withstand capability does not depend on the maximum rated through-current.
Therefore this type test report is valid for diverter switches type VACUTAP ${ }^{\circledR}$ VR with following characteristics:

- Design variants: VRS, VRM, VRL, VRH or VRX
- Number of phases: 1, 2 or 3
- Number of sectors: 1, 2 or 3
- Highest voltage for equipment U_{m} : 72.5 kV up to 300 kV

5. Test conditions / Test arrangement

Place of tests:
Treatment before testing:

Test setup:

Wirings and connections:

Test tanks oil filling: Plexiglas tanks (22,000 liters and 3,500 liters) filled with transformer mineral oil according to specification IEC 60296 (Nynas Nytro Taurus \& Nynas Nytro 4000X) at room temperature (see appendix 2, pictures 3 and 4).
The breakdown strength of the transformer oil during the tests was between $55 \mathrm{kV} / 2.5 \mathrm{~mm}$ and $82 \mathrm{kV} / 2.5 \mathrm{~mm}$.
Maschinenfabrik Reinhausen GmbH, Regensburg, Germany.
The test samples were vacuum dried in accordance with the instructions of the manufacturer.

The tests were performed with permanently installed measuring chains for alternating voltage tests and impulse voltage tests (see appendix 2 , figures 39 \& 40). The test samples were placed in the Plexiglas test tanks and connected to test voltages (example see appendix 2, picture 4).

See appendix 3 , figures 41 to 46 .

6. Tests performed

6.1 Full wave lightning impulse test (LI)

Test standard:
Impulse voltage generator:
Voltage waveform ($\mathrm{T}_{1} / \mathrm{T}_{2}$):
Wirings and connections:
Test voltages $\left(\mathrm{U}_{\mathrm{p}}\right)$:
Oscillograms:
Number of applications:

IEC 60214-1:2014, sub-clause 5.2.8.5.
Impulse generator (max. charging: 1800 kV), see appendix 2, picture 2.
1.2 / $50 \mu \mathrm{~s}$.

See appendix 3 , figures $41 \ldots 46$.
See tables $1 . . .8$.
See figures 1a/b...8a/b.
Three applications with positive and three with negative polarity.

Note:
To protect the insulating distance "a0" from transient over-voltages, a ZnO surge arrester is incorporated in the diverter switch. As a result of the ZnO -wiring the voltage waveforms of lightning impulses (full wave / chopped wave) and the waveform of the switching impulse deviate from nominal waveforms. The waveforms shown in the oscillograms are typical for diverter switches equipped with ZnO surge arrester (see figures $6 \mathrm{a} / \mathrm{b} . . .8 \mathrm{a} / \mathrm{b}$).

6.1.1 Insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=\mathbf{7 2 . 5} \mathrm{kV}$)

Tested insulating distance	Test no.	Peak amplitude $\left(\mathrm{U}_{\mathrm{p}}\right)$ in $k V$		Front time (T_{1}) in $\mu \mathrm{s}$		Time to half-value $\left(\mathrm{T}_{2}\right)$ in $\mu \mathrm{s}$	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
f	1	-350	-350.2	1.2	1.229	50	51.96
	2		-350.2		1.231		51.94
	3		-350.1		1.230		51.98
	4	350	350.7		1.238		51.99
	5		349.8		1.236		52.00
	6		350.0		1.235		51.97

Table 1: Test results of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance " f " $\left(U_{m}=72.5 \mathrm{kV}\right)$.

Figures $1 \mathrm{a} / \mathrm{b}$: Oscillograms of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=72.5 \mathrm{kV}\right)$.

6.1.2 Insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=123 \mathrm{kV}$)

Tested insulating distance	Test no.	Peak amplitude $\left(\mathrm{U}_{\mathrm{p}}\right)$ in $k V$		Front time (T_{1}) in $\mu \mathrm{s}$		Time to half-value $\left(\mathrm{T}_{2}\right)$ in $\mu \mathrm{s}$	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
f	1	-550	-550.0	1.2	1.230	50	51.98
	2		-550.0		1.227		52.00
	3		-550.1		1.229		52.03
	4	550	550.0		1.242		52.02
	5		550.3		1.242		52.03
	6		549.4		1.241		52.01

Table 2: Test results of full wave lightning impulse test ($1.2 / 50 \mu \mathrm{~s}$) on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=123 \mathrm{kV}\right)$.

Figures $2 a / b$: Oscillograms of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=123 \mathrm{kV}$).

6.1.3 Insulating distance "f" ($\mathrm{U}_{\mathrm{m}}=170 \mathrm{kV}$)

Tested insulating distance	Test no.	Peak amplitude $\left(\mathrm{U}_{\mathrm{p}}\right)$ in $k V$		$\begin{aligned} & \text { Front time }\left(\mathrm{T}_{1}\right) \\ & \text { in } \mu \mathrm{s} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Time to half-value }\left(\mathrm{T}_{2}\right) \\ & \text { in } \mu \mathrm{s} \\ & \hline \end{aligned}$	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
f	1	-750	-748.9	1.2	1.233	50	52.25
	2		-749.6		1.232		52.30
	3		-750.6		1.234		52.27
	4	750	749.1		1.243		52.36
	5		750.9		1.245		52.33
	6		749.6		1.246		52.34

Table 3: Test results of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=170 \mathrm{kV}\right)$.

Figures 3a/b: Oscillograms of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=170 \mathrm{kV}\right)$.

6.1.4 Insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=\mathbf{2 4 5} \mathrm{kV}$)

Tested insulating distance	Test no.	Peak amplitude $\left(\mathrm{U}_{\mathrm{p}}\right)$ in $k V$		Front time (T_{1}) in $\mu \mathrm{s}$		Time to half-value $\left(\mathrm{T}_{2}\right)$ in $\mu \mathrm{s}$	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
f	1	-1050	-1048	1.2	1.223	50	52.22
	2		-1050		1.222		52.18
	3		-1050		1.222		52.20
	4	1050	1052		1.228		52.30
	5		1050		1.227		52.23
	6		1050		1.228		52.25

Table 4: Test results of full wave lightning impulse test ($1.2 / 50 \mu \mathrm{~s}$) on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=245 \mathrm{kV}\right)$.

Figures $4 \mathrm{a} / \mathrm{b}$: Oscillograms of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=245 \mathrm{kV}$).

6.1.5 Insulating distance "f" ($\mathrm{U}_{\mathrm{m}}=\mathbf{3 0 0} \mathrm{kV}$)

Tested insulating distance	$\begin{aligned} & \text { Test } \\ & \text { no. } \end{aligned}$	Peak amplitude $\left(U_{p}\right)$ in $k V$		$\begin{aligned} & \text { Front time }\left(\mathrm{T}_{1}\right) \\ & \text { in } \mu \mathrm{s} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Time to half-value }\left(\mathrm{T}_{2}\right) \\ & \text { in } \mu \mathrm{s} \end{aligned}$	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
f	1	-1050	-1049	1.2	1.222	50	52.25
	2		-1049		1.222		52.29
	3		-1050		1.221		52.31
	4	1050	1051		1.228		52.33
	5		1050		1.227		52.33
	6		1050		1.225		52.32

Table 5: Test results of full wave lightning impulse test (1.2/50 $\mu \mathrm{s}$) on insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=300 \mathrm{kV}$).

Figures $5 \mathrm{a} / \mathrm{b}$: Oscillograms of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=300 \mathrm{kV}\right)$.

6.1.6 Insulating distance "a0" (single sector design)

Tested insulating distance	Test no.	Peak amplitude (U_{p}) in $k V$	Front time $\left(T_{1}\right)$ in $\mu \mathrm{s}$	Time to half-value $\left(\mathrm{T}_{2}\right)$ in $\mu \mathrm{s}$
a0	1	-150	1.2	50
	2			
	3			
	4	150		
	5			
	6			

Table 6: Test results of full wave lightning impulse test (1.2/50 $\mu \mathrm{s}$) on insulating distance "a0".

Figures $6 \mathrm{a} / \mathrm{b}$: Oscillograms of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance " a 0 ".

6.1.7 Insulating distance "a0" (two sector design)

Tested insulating distance	Test no.	Peak amplitude (U_{p}) in $k V$	$\begin{aligned} & \text { Front time }\left(\mathrm{T}_{1}\right) \\ & \quad \text { in } \mu \mathrm{s} \end{aligned}$	Time to half-value $\left(\mathrm{T}_{2}\right)$ in $\mu \mathrm{s}$
a0	1	-150	1.2	50
	2			
	3			
	4	150		
	5			
	6			

Table 7: Test results of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance "a0".

Figures $7 \mathrm{a} / \mathrm{b}$: Oscillograms of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance " aO ".

6.1.8 Insulating distance "a0" (three sector design)

Tested insulating distance	Test no.	Peak amplitude (U_{p}) in $k V$	$\begin{aligned} & \text { Front time }\left(\mathrm{T}_{1}\right) \\ & \quad \text { in } \mu \mathrm{s} \end{aligned}$	Time to half-value $\left(\mathrm{T}_{2}\right)$ in $\mu \mathrm{s}$
a0	1	-150	1.2	50
	2			
	3			
	4	150		
	5			
	6			

Table 8: Test results of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance "a0".

Figures $8 \mathrm{a} / \mathrm{b}$: Oscillograms of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance "a0".

6.2 Chopped wave lightning impulse test (LIC)

Test standard:
Impulse voltage generator:
Voltage waveform ($\mathrm{T}_{1} / \mathrm{T}_{2} / \mathrm{T}_{\mathrm{c}}$):
Wirings and connections:
Test voltages $\left(\mathrm{U}_{\mathrm{p}}\right)$:
Oscillograms:
Number of applications:

IEC 60214-1:2014, sub-clause 5.2.8.6.
Impulse generator (max. charging: 1800 kV), see appendix 2 , picture 2 .
1.2 / $50 / 3 \mu \mathrm{~s}$.

See appendix 3, figures 41... 46 .
See tables 9... 16 .
See figures $9 \mathrm{a} / \mathrm{b} . . .16 \mathrm{a} / \mathrm{b}$.
Three applications with positive and three with negative polarity.

Note:
To protect the insulating distance "a0" from transient over-voltages, a ZnO surge arrester is incorporated in the diverter switch. As a result of the ZnO -wiring the voltage waveforms of lightning impulses (full wave / chopped wave) and the waveform of the switching impulse deviate from nominal waveforms. The waveforms shown in the oscillograms are typical for diverter switches equipped with ZnO surge arrester (see figures $14 \mathrm{a} / \mathrm{b} \ldots 16 \mathrm{a} / \mathrm{b}$).

6.2.1 Insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=\mathbf{7 2 . 5} \mathrm{kV}$)

Tested insulating distance	Test no.	Peak amplitude $\left(\mathrm{U}_{\mathrm{p}}\right)$ in $k V$		Front time $\left(T_{1}\right)$in $\mu \mathrm{s}$		Time to chopping (T_{c}) in $\mu \mathrm{s}$	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
f	1	-385	-385.1	1.2	1.231	4	4.062
	2		-385.0		1.231		4.069
	3		-385.0		1.230		4.058
	4	385	387.0		1.241		4.694
	5		386.9		1.237		3.969
	6		386.9		1.240		3.940

Table 9: Test results of chopped wave lightning impulse test ($1.2 / 50 / 3 \mu \mathrm{~s}$) on insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=72.5 \mathrm{kV}$).

Figures 9a/b: Oscillograms of chopped wave lightning impulse test $(1.2 / 50 / 3 \mu \mathrm{~s})$ on insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=72.5 \mathrm{kV}$).

6.2.2 Insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=123 \mathrm{kV}$)

Tested insulating	Test	Peak	$\mathrm{e}\left(\mathrm{U}_{\mathrm{p}}\right)$			Time to	$\mathrm{gg}\left(\mathrm{~T}_{\mathrm{c}}\right)$
distance		Nominal	Tested	Nominal	Tested	Nominal	Tested
f	1	-605	-603.7	1.2	1.230	4	3.966
	2		-603.8		1.232		3.972
	3		-603.9		1.232		3.962
	4	605	604.4		1.244		4.144
	5		604.7		1.245		4.125
	6		604.8		1.247		4.067

Table 10: Test results of chopped wave lightning impulse test $(1.2 / 50 / 3 \mu \mathrm{~s})$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=123 \mathrm{kV}\right)$.

Figures 10a/b: Oscillograms of chopped wave lightning impulse test (1.2/50/3 $\mu \mathrm{s}$) on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=123 \mathrm{kV}\right)$.

6.2.3 Insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=170 \mathrm{kV}$)

Tested insulating distance	Test no.	Peak amplitude $\left(U_{p}\right)$in $k V$		$\begin{aligned} & \text { Front time }\left(\mathrm{T}_{1}\right) \\ & \text { in } \mu \mathrm{s} \\ & \hline \end{aligned}$		Time to chopping (T_{c}) in $\mu \mathrm{s}$	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
f	1	-825	-823.0	1.2	1.237	4	3.835
	2		-823.2		1.239		3.845
	3		-823.3		1.240		3.835
	4	825	823.5		1.249		3.775
	5		823.7		1.251		3.762
	6		823.5		1.248		3.772

Table 11: Test results of chopped wave lightning impulse test $(1.2 / 50 / 3 \mu \mathrm{~s})$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=170 \mathrm{kV}\right)$.

Figures 11a/b: Oscillograms of chopped wave lightning impulse test $(1.2 / 50 / 3 \mu \mathrm{~s})$ on insulating distance "f" $\left(\mathrm{U}_{\mathrm{m}}=170 \mathrm{kV}\right)$.

6.2.4 Insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=\mathbf{2 4 5} \mathrm{kV}$)

Tested insulating distance	$\begin{aligned} & \text { Test } \\ & \text { no. } \end{aligned}$	Peak amplitude (U_{p}) in $k V$		$\begin{aligned} & \text { Front time }\left(\mathrm{T}_{1}\right) \\ & \text { in } \mu \mathrm{s} \\ & \hline \end{aligned}$		Time to chopping (T_{c})\qquad	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
f	1	-1155	-1152	1.2	1.227	4	3.835
	2		-1152		1.228		3.856
	3		-1152		1.227		3.853
	4	1155	1155		1.231		3.892
	5		1155		1.231		3.920
	6		1155		1.232		3.869

Table 12: Test results of chopped wave lightning impulse test ($1.2 / 50 / 3 \mu \mathrm{~s}$) on insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=245 \mathrm{kV}$).

Figures 12a/b: Oscillograms of chopped wave lightning impulse test (1.2/50/3 $\mu \mathrm{s})$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=245 \mathrm{kV}\right)$.

6.2.5 Insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=\mathbf{3 0 0} \mathrm{kV}$)

Tested insulating distance	$\begin{aligned} & \text { Test } \\ & \text { no. } \end{aligned}$	Peak amplitude $\left(U_{p}\right)$ in $k V$		$\begin{aligned} & \text { Front time }\left(\mathrm{T}_{1}\right) \\ & \text { in } \mu \mathrm{s} \\ & \hline \end{aligned}$		Time to chopping (T_{c}) in $\mu \mathrm{s}$	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
f	1	-1155	-1151	1.2	1.226	4	3.845
	2		-1151		1.225		3.845
	3		-1152		1.225		3.873
	4	1155	1155		1.232		4.460
	5		1155		1.231		4.277
	6		1155		1.232		4.121

Table 13: Test results of chopped wave lightning impulse test $(1.2 / 50 / 3 \mu s)$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=300 \mathrm{kV}\right)$.

Figures 13a/b: Oscillograms of chopped wave lightning impulse test $(1.2 / 50 / 3 \mu \mathrm{~s})$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=300 \mathrm{kV}\right)$.

6.2.6 Insulating distance "a0" (single sector design)

Tested insulating distance	Test no.	Peak amplitude $\left(U_{p}\right)$ in $k V$	Front time $\left(T_{1}\right)$ in $\mu \mathrm{s}$	Time to chopping $\left(T_{C}\right)$ in $\mu \mathrm{s}$
a0	1	-165	1.2	4
	2			
	3			
	4	165		
	5			
	6			

Table 14: Test results of chopped wave lightning impulse test $(1.2 / 50 / 3 \mu \mathrm{~s})$ on insulating distance "a0".

Figures 14a/b: Oscillograms of chopped wave lightning impulse test (1.2/50/3 $\mu \mathrm{s}$) on insulating distance "a0".

6.2.7 Insulating distance "a0" (two sector design)

Tested insulating distance	Test no.	Peak amplitude $\left(U_{p}\right)$ in $k V$	Front time $\left(T_{1}\right)$ in $\mu \mathrm{s}$	Time to chopping (T_{C}) in $\mu \mathrm{s}$
a0	1	-165	1.2	4
	2			
	3			
	4	165		
	5			
	6			

Table 15: Test results of chopped wave lightning impulse test $(1.2 / 50 / 3 \mu \mathrm{~s})$ on insulating distance " $\mathrm{a0}$ ".

Figures $15 \mathrm{a} / \mathrm{b}$: Oscillograms of chopped wave lightning impulse test (1.2/50/3 $\mu \mathrm{s}$) on insulating distance " aO ".

6.2.8 Insulating distance "a0" (three sector design)

Tested insulating distance	$\begin{aligned} & \text { Test } \\ & \text { no. } \end{aligned}$	Peak amplitude (U_{p}) in $k V$	Front time (T_{1}) in $\mu \mathrm{s}$	Time to chopping (T_{c}) in $\mu \mathrm{s}$
a0	1	-165	1.2	4
	2			
	3			
	4	165		
	5			
	6			

Table 16: Test results of chopped wave lightning impulse test $(1.2 / 50 / 3 \mu \mathrm{~s})$ on insulating distance "a0".

Figures 16a/b: Oscillograms of chopped wave lightning impulse test (1.2/50/3 $\mu \mathrm{s}$) on insulating distance "a0".

6.3 Switching impulse test (SI)

Test standard:
Impulse voltage generator:
Voltage waveform $\left(\mathrm{T}_{\mathrm{P}} / \mathrm{T}_{2}\right)$:
Wirings and connections:
Test voltages $\left(\mathrm{U}_{\mathrm{p}}\right)$:
Oscillograms:
Number of applications:

IEC 60214-1:2014, sub-clause 5.2.8.7.
Impulse generator (max. charging: 1800 kV), see appendix 2 , picture 2 .
$250 / 2500 \mu \mathrm{~s}$.
See appendix 3, figures 41... 46 .
See tables 17... 24.
See figures 17a/b...24a/b.
Three applications with positive and three with negative polarity.

Note:
To protect the insulating distance "a0" from transient over-voltages, a ZnO surge arrester is incorporated in the diverter switch. As a result of the ZnO -wiring the voltage waveforms of lightning impulses (full wave / chopped wave) and the waveform of the switching impulse deviate from nominal waveforms. The waveforms shown in the oscillograms are typical for diverter switches equipped with ZnO surge arrester (see figures 22a/b...24a/b).

6.3.1 Insulating distance "f" $\left(\mathrm{U}_{\mathrm{m}}=\mathbf{7 2 . 5} \mathrm{kV}\right)^{\mathbf{1}}$

Tested insulating distance	Test no.	Peak amplitude $\left(\mathrm{U}_{\mathrm{p}}\right)$ in $k V$		$\begin{aligned} & \text { Time to peak (} \left.T_{P}\right) \\ & \text { in } \mu \mathrm{s} \\ & \hline \end{aligned}$		Time to half-value $\left(\mathrm{T}_{2}\right)$ in $\mu \mathrm{s}$	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
f	1	-280	-279.4	250	228.1	2500	2667
	2		-280.0		228.2		2667
	3		-280.0		228.3		2666
	4	280	280.7		228.3		2666
	5		280.1		228.4		2667
	6		280.2		228.4		2667

Table 17: Test results of switching impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=72.5 \mathrm{kV}$).

Figures $17 \mathrm{a} / \mathrm{b}$: Oscillograms of switching impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=72.5 \mathrm{kV}\right)$.
${ }^{1}$ Not required by IEC 60214-1:2014.

6.3.2 Insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=123 \mathrm{kV}$)

Tested insulating distance	Test no.	Peak amplitude $\left(\mathrm{U}_{\mathrm{p}}\right)$ in $k V$		$\begin{aligned} & \text { Time to peak }\left(T_{P}\right) \\ & \text { in } \mu \mathrm{s} \end{aligned}$		Time to half-value $\left(\mathrm{T}_{2}\right)$ in $\mu \mathrm{s}$	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
f	1	-460	-459.9	250	228.3	2500	2677
	2		-460.0		226.5		2677
	3		-460.1		226.8		2678
	4	460	459.8		229.0		2679
	5		460.1		230.2		2679
	6		460.1		228.2		2680

Table 18: Test results of switching impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=123 \mathrm{kV}\right)$.

Figures 18a/b: Oscillograms of switching impulse test (250/2500 $\mu \mathrm{s}$) on insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=123 \mathrm{kV}$).

6.3.3 Insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=170 \mathrm{kV}$)

Tested insulating distance	Test no.	Peak amplitude $\left(\mathrm{U}_{\mathrm{p}}\right)$ in $k V$		Time to peak (T_{P}) in $\mu \mathrm{s}$		Time to half-value $\left(\mathrm{T}_{2}\right)$in $\mu \mathrm{s}$	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
f	1	-620	-618.9	250	225.8	2500	2677
	2		-619.5		225.8		2678
	3		-620.3		225.9		2677
	4	620	619.1		226.6		2681
	5		620.4		226.8		2680
	6		619.7		226.7		2683

Table 19: Test results of switching impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=170 \mathrm{kV}\right)$.

Figures 19a/b: Oscillograms of switching impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=170 \mathrm{kV}\right)$.

6.3.4 Insulating distance "f" ($\mathrm{U}_{\mathrm{m}}=\mathbf{2 4 5} \mathrm{kV}$)

Tested insulating	Test	Peak	$\bar{e}\left(U_{p}\right)$		$\left(T_{P}\right)$	Time to	$\text { ue }\left(T_{2}\right)$
distance		Nominal	Tested	Nominal	Tested	Nominal	Tested
f	1	-850	-848.9	250	238.2	2500	2624
	2		-849.8		238.1		2627
	3		-849.9		238.2		2635
	4	850	850.2		238.0		2628
	5		850.6		238.3		2627
	6		849.7		238.1		2628

Table 20: Test results of switching impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=245 \mathrm{kV}\right)$.

Figures $20 \mathrm{a} / \mathrm{b}$: Oscillograms of switching impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=245 \mathrm{kV}\right)$.

6.3.5 Insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=\mathbf{3 0 0} \mathrm{kV}$)

Tested insulating distance	Test no.	Peak amplitude $\left(\mathrm{U}_{\mathrm{p}}\right)$ in $k V$		Time to peak (T_{P}) in $\mu \mathrm{s}$		Time to half-value $\left(\mathrm{T}_{2}\right)$in $\mu \mathrm{s}$	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
f	1	-850	-849.2	250	237.8	2500	2625
	2		-850.2		236.6		2626
	3		-850.0		235.2		2627
	4	850	850.9		241.8		2627
	5		850.2		236.7		2627
	6		850.2		236.7		2627

Table 21: Test results of switching impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=300 \mathrm{kV}\right)$.

Figures 21a/b: Oscillograms of switching impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance " f " $\left(U_{m}=300 \mathrm{kV}\right)$.

6.3.6 Insulating distance "a0" (single sector design)

Tested insulating distance	$\begin{aligned} & \text { Test } \\ & \text { no. } \end{aligned}$	Peak amplitude (U_{p}) in $k V$	$\begin{aligned} & \text { Time to peak }\left(T_{P}\right) \\ & \text { in } \mu \mathrm{s} \end{aligned}$	Time to half-value $\left(\mathrm{T}_{2}\right)$ in $\mu \mathrm{s}$
a0	1	-100	250	2500
	2			
	3			
	4	100		
	5			
	6			

Table 22: Test results of switching impulse test (250/2500 $\mu \mathrm{s}$) on insulating distance "a0".

Figures $22 \mathrm{a} / \mathrm{b}$: Oscillograms of switching impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance "a0".

6.3.7 Insulating distance "a0" (two sector design)

Tested insulating distance	$\begin{aligned} & \text { Test } \\ & \text { no. } \end{aligned}$	Peak amplitude (U_{p}) in $k V$	$\begin{aligned} & \text { Time to peak }\left(T_{P}\right) \\ & \text { in } \mu \mathrm{s} \end{aligned}$	Time to half-value $\left(\mathrm{T}_{2}\right)$ in $\mu \mathrm{s}$
a0	1	-100	250	2500
	2			
	3			
	4	100		
	5			
	6			

Table 23: Test results of switching impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance " aO ".

Figures 23a/b: Oscillograms of switching impulse test ($250 / 2500 \mu \mathrm{~s}$) on insulating distance "a0".

6.3.8 Insulating distance "a0" (three sector design)

Tested insulating distance	Test no.	Peak amplitude (U_{p}) in $k V$	```Time to peak (TP) in }\mu\textrm{s```	Time to half-value $\left(\mathrm{T}_{2}\right)$ in $\mu \mathrm{s}$
a0	1	-100	250	2500
	2			
	3			
	4	100		
	5			
	6			

Table 24: Test results of switching impulse impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance "a0".

Figures 24a/b: Oscillograms of switching impulse test ($250 / 2500 \mu \mathrm{~s}$) on insulating distance "a0".

Page 20 of 37 / VR 6E 003e

6.4 Applied voltage test (AV)

Test standard:
Voltage generator:
Voltage waveform:
Wirings and connections:
Test voltages (Ur.m.s.):
Oscillograms:
Test duration (t ${ }^{\text {D }}$:

IEC 60214-1:2014, sub-clause 5.2.8.8.
Applied voltage generator (max. voltage 700 kV), see appendix 2, picture 1.
Sine-shaped (frequency: 50 Hz).
See appendix 3, figures 41... 46 .
See tables 25... 32 .
See figures $25 \ldots 32$.
60 s .

6.4.1 Insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=\mathbf{7 2 . 5} \mathrm{kV}\right.$)

Tested insulating distance	Applied voltage (50 Hz) in $k V$		Test duration in s	
	Nominal	Tested	Nominal	Tested
f	140	140	60	62

Table 25: Test results of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=72.5 \mathrm{kV}$).

Figure 25: Oscillogram of applied voltage test (50 Hz) on insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=72.5 \mathrm{kV}$).

6.4.2 Insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=123 \mathrm{kV}$)

Tested insulating distance	$\begin{aligned} & \text { Applied voltage }(50 \mathrm{~Hz}) \\ & \text { in } k V \end{aligned}$		Test duration in s	
	Nominal	Tested	Nominal	Tested
f	230	230	60	61

Table 26: Test results of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=123 \mathrm{kV}$).

Figure 26: Oscillogram of applied voltage test (50 Hz) on insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=123 \mathrm{kV}$).

6.4.3 Insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=170 \mathrm{kV}$)

Tested insulating distance	Applied voltage (50 Hz) in $k V$		Test duration in s	
	Nominal	Tested	Nominal	Tested
f	325	325	60	62

Table 27: Test results of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=170 \mathrm{kV}$).

Figure 27: Oscillogram of applied voltage test (50 Hz) on insulating distance "f" ($\mathrm{U}_{\mathrm{m}}=170 \mathrm{kV}$).

6.4.4 Insulating distance "f" ($\mathrm{U}_{\mathrm{m}}=\mathbf{2 4 5} \mathrm{kV}$)

Tested insulating distance	Applied voltage (50 Hz) in $k V$		Test duration in s	
	Nominal	Tested	Nominal	Tested
f	460	460	60	67

Table 28: Test results of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance " f " $\left(\mathrm{U}_{\mathrm{m}}=245 \mathrm{kV}\right)$.

Figure 28: Oscillogram of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=245 \mathrm{kV}$).

6.4.5 Insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=300 \mathrm{kV}$)

Tested insulating distance	Applied voltage (50 Hz) in $k V$		Test duration in s	
	Nominal	Tested	Nominal	Tested
f	460	460	60	60

Table 29: Test results of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance " f " ($\mathrm{U}_{\mathrm{m}}=300 \mathrm{kV}$).

Figure 29: Oscillogram of applied voltage test (50 Hz) on insulating distance " f " ($U_{m}=300 \mathrm{kV}$).

6.4.6 Insulating distance "a0" (single sector design)

Tested insulating distance	Applied voltage $(50 \mathrm{~Hz})$ in $k V$		Test duration in s	
	Nominal	Tested	Nominal	Tested
$\mathrm{a0}$	20	20	60	62

Table 30: Test results of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance "a0".

Figure 30: Oscillogram of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance "a0".

6.4.7 Insulating distance "a0" (two sector design)

Tested insulating distance	Applied voltage (50 Hz) in $k V$		Test duration in s	
	Nominal	Tested	Nominal	Tested
$\mathrm{a0}$	20	20	60	61

Table 31: Test results of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance "a0".

Figure 31: Oscillogram of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance "a0".

Page 24 of 37 / VR 6E 003e

6.4.8 Insulating distance "a0" (three sector design)

Tested insulating distance	Applied voltage $(50 \mathrm{~Hz})$ in $k V$		Test duration in s	
	Nominal	Tested	Nominal	Tested
$\mathrm{a0}$	20	20	60	69

Table 32: Test results of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance "a0".

Figure 32: Oscillogram of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance "a0".

6.5 Measurement of partial discharges

Test standard:
Voltage generator:
Voltage waveform:
Wirings and connections:
Test voltages / durations:
Oscillograms:
Test procedure:

Permissible tolerances according to
IEC 60214-1:2014:

IEC 60214-1:2014, sub-clause 5.2.8.9.
Applied voltage generator (max. voltage 700 kV), see appendix 2 , picture 1.
Sine-shaped (frequency: 50 Hz).
See appendix 3, figures 44... 46.
See tables 33a...37a.
See figures 33... 37 .

- the voltage was switched on at a level not higher than $0.4 \mathrm{Um} / \sqrt{ } 3$;
- the background PD level was measured and recorded;
- the voltage was raised to $1.2 \mathrm{Um} / \sqrt{ } 3$ and held there for a minimum duration of 1 min ;
- the PD level was measured and recorded;
- the voltage was raised to $1.58 \mathrm{Um} / \sqrt{ } 3$ and held there for a minimum duration of 5 min ;
- the PD level was measured and recorded;
- the voltage was raised to the enhanced voltage $1.8 \mathrm{Um} / \sqrt{ } 3$ and held there for a duration of 60 s .
- immediately after the test time, the voltage was reduced without interruption to $1.58 \mathrm{Um} / \sqrt{ } 3$;
- the PD level was measured and recorded;
- the voltage was held at $1.58 \mathrm{Um} / \sqrt{ } 3$ for a duration of at least 60 min ;
- the PD level was measured and recorded every 5 min during the 60 min period;
- after the last PD measurement in the 60 min period, the voltage was reduced to $1.2 / \sqrt{ } 3$ and held there for a minimum duration of 1 min ;
- the PD level was measured and recorded;
- the voltage was reduced to $0.4 \mathrm{Um} / \sqrt{ } 3$;
- the background PD level was measured and recorded;
- the voltage was reduced to a level below $0.4 \mathrm{Um} / \sqrt{ } 3$;
- the voltage was switched off.

The partial discharge was continuously observed on at least one measuring channel for the entire duration test.

PD during test step D: <50 pC
$P D$ during test step $E:<30$ pC
PD background level: < 10 pC

6.5.1 Insulation distance " f " $\left(\mathrm{U}_{\mathrm{m}}=72.5 \mathrm{kV}\right)$

Test steps according to test procedure as described in chapter 6.5				
Test step	Duration in min		Test voltage in $k V$	
	Nominal	Tested	Nominal	Tested
$\left(U_{\text {start }}\right)$	-	-	17	17
A	1	1	50	50
B	5	5	66	66
C	1	1	75	75
D	60	60	66	66
E	1	1	50	50
$\left(U_{\text {stop }}\right)$	-	-	17	17

Table 33a: Nominal and tested voltages and durations for insulation distance "f" ($\mathrm{U}_{\mathrm{m}}=72.5 \mathrm{kV}$).

Figure 33: Measurement of partial discharges at insulation distance " f " ($U_{m}=72.5 \mathrm{kV}$).

Tested insulation distance	PD background level in $p C$			```PD at 1.58 Um / \sqrt{}{3} during 60 min in pC```		```PD at 1.2 Um / \sqrt{}{3} during 1 min in pC```	
	Nominal	Maximum tested at begin of PD measurement	Maximum tested at end of PD measurement	Nominal	Maximum tested	Nominal	Maximum tested
f	<10	<2	<2	<50	< 14	<30	<6

Table 33b: Partial discharge test at insulation distance "f" $\left(U_{m}=72.5 \mathrm{kV}\right)$.

6.5.2 Insulation distance " f " ($\mathrm{U}_{\mathrm{m}}=123 \mathrm{kV}$)

Test steps according to test procedure as described in chapter 6.5				
Test step	Duration in min		Test voltage in $k V$	
	Nominal	Tested	Nominal	Tested
$\left(U_{\text {start }}\right)$	-	-	28	28
A	1	1	85	85
B	5	5	112	112
C	1	1	128	128
D	60	60	112	112
E	1	1	85	85
$\left(U_{\text {stop }}\right)$	-	-	28	28

Table 34a: Nominal and tested voltages and durations for insulation distance " f " ($\mathrm{U}_{\mathrm{m}}=123 \mathrm{kV}$).

Figure 34: Measurement of partial discharges at insulation distance "f" ($\left.\mathrm{U}_{\mathrm{m}}=123 \mathrm{kV}\right)$.

Tested insulation distance	PD background level in $p C$			PD at $1.58 \mathrm{Um} / \sqrt{ } 3$ during 60 min in $p C$		PD at $1.2 \mathrm{Um} / \sqrt{ } 3$ during 1 min in $p C$	
	Nominal	Maximum tested at begin of PD measurement	Maximum tested at end of $P D$ measurement	Nominal	Maximum tested	Nominal	
Maximum tested							
f	<10	<2	<2	<50	<2	<30	

Table 34b: Partial discharge test at insulation distance " f " ($\mathrm{U}_{\mathrm{m}}=123 \mathrm{kV}$).

6.5.3 Insulation distance " f " ($\mathrm{U}_{\mathrm{m}}=170 \mathrm{kV}$)

Figure 35: Measurement of partial discharges at insulation distance " f " $\left(\mathrm{U}_{\mathrm{m}}=170 \mathrm{kV}\right)$.

Tested insulation distance	PD background level in $p C$		PD at $1.58 \mathrm{Um} / \sqrt{ } 3$ during 60 min in $p C$		PD at 1.2 Um $/ \sqrt{ } 3$ during 1 min in $p C$	
	Nominal	Maximum tested at begin of PD measurement	Maximum tested at end of PD measurement	Nominal	Maximum tested	NominalMaximum tested
f	<10	<2	<3	<50	<3	<30

Table 35b: Partial discharge test at insulation distance "f" $\left(U_{m}=170 \mathrm{kV}\right)$.

Test steps according to test procedure as described in chapter 6.5				
Test step	Duration in min		Test voltage in $k V$	
	Nominal	Tested	Nominal	Tested
$\left(U_{\text {start }}\right)$	-	-	39	39
A	1	1	118	118
B	5	5	155	155
C	1	1	177	177
D	60	60	155	155
E	1	1	118	118
$\left(U_{\text {stop }}\right)$	-	-	39	39

Table 35a: Nominal and tested voltages and durations for insulation distance " f " ($\mathrm{U}_{\mathrm{m}}=170 \mathrm{kV}$).

6.5.4 Insulation distance " f " ($U_{m}=245 \mathrm{kV}$)

Test steps according to test procedure as described in chapter 6.5				
Test step	Duration in min		Test voltage in kV	
	Nominal	Tested	Nominal	Tested
$\left(U_{\text {start }}\right)$	-	-	57	57
A	1	1	170	170
B	5	5	223	223
C	1	1	255	255
D	60	60	223	223
E	1	1	170	170
$\left(U_{\text {stop }}\right)$	-	-	57	57

Table 36a: Nominal and tested voltages and durations for insulation distance "f" ($\mathrm{U}_{\mathrm{m}}=245 \mathrm{kV}$).

Figure 36: Measurement of partial discharges at insulation distance "f" ($\mathrm{U}_{\mathrm{m}}=245 \mathrm{kV}$).

Tested insulation distance	PD background level in $p C$			PD at $1.58 \mathrm{Um} / \sqrt{ } 3$ during 60 min in $p C$		PD at $1.2 \mathrm{Um} / \sqrt{ } 3$ during 1 min in $p C$	
	Nominal	Maximum tested at begin of PD measurement	Maximum tested at end of PD measurement	Nominal	Maximum tested	NominalMaximum tested	
f	<10	<2	<2	<50	<2	<30	

Table 36b: Partial discharge test at insulation distance " f " $\left(\mathrm{U}_{\mathrm{m}}=245 \mathrm{kV}\right)$.

6.5.5 Insulation distance " f " ($\mathrm{U}_{\mathrm{m}}=300 \mathrm{kV}$)

Figure 37: Measurement of partial discharges at insulation distance "f" $\left(\mathrm{U}_{\mathrm{m}}=300 \mathrm{kV}\right)$.

Tested insulation distance	PD background level			PD at $1.58 \mathrm{Um} / \sqrt{ } 3$ during 60 min in $p C$		PD at $1.2 \mathrm{Um} / \sqrt{ } 3$ during 1 min in $p C$	
	Nominal	Maximum tested at begin of PD measurement	Maximum tested at end of PD measurement	Nominal	Maximum tested	NominalMaximum tested	
f	<10	<2	<2	<50	<2	<30	

Table 37b: Partial discharge test at insulation distance " f " $\left(\mathrm{U}_{\mathrm{m}}=300 \mathrm{kV}\right)$.

7. Test results

The requirements according to IEC 60214-1:2014 "Tap-changers - Part 1: Performance requirements and test methods", sub-clause 5.2.8: "Dielectric tests" were met.

The full wave lightning impulse tests (LI), the chopped wave lightning impulse tests (LIC), the switching impulse tests (SI) as well as the applied voltage tests (AV) were withstood without any discharge.

The confirmed withstand voltages for the insulating distance to earth (insulating distance " f ") and for the insulating distance between diverter switch contacts in their final open position (insulating distance "a0") are shown in tables 38 and 39.

Highest voltage for equipment U_{m}	Full wave lightning impulse withstand voltage (LI) in $k V$ (r.m.s.)	Chopped wave in $k V$ (peak)	Chightning impulse withstand voltage (LIC)	Switching impulse withstand voltage (SI)
72.5	350	Applied voltage (AV) in $k V$ (peak)	$250 / 2500 \mu \mathrm{~s}$ in $k V$ (peak)	$50 \mathrm{~Hz} / 60 \mathrm{~s}$ in $k V$ (r.m.s.)
123	550	385	280^{1}	140
170	750	605	460	230
245	1050	825	620	325
300	1050	1155	850	460

Table 38: Confirmed withstand voltages for the insulating distance to earth (insulating distance " f ").

Highest voltage for equipment U_{m}	Full wave lightning impulse withstand voltage (LI)	Chopped wave lightning impulse withstand voltage (LIC)	Switching impulse withstand voltage (SI)	Applied voltage (AV)
in $k V$ (r.m.s.)	$1.2 / 50 \mu \mathrm{~s}$ in $k V$ (peak)	$1.2 / 50 / 3 \mu \mathrm{~s}$ in $k V(p e a k)$	$250 / 2500 \mu \mathrm{~s}$ in $k V$ (peak)	$50 \mathrm{~Hz} / 60 \mathrm{~s}$ in $k V$ (r.m.s.)
$72.5 \ldots 300$	150	165	100	20

Table 39: Confirmed withstand voltages for the insulating distance between diverter switch contacts in their final open position (insulating distance "a0").

During the partial discharge (PD) measurements, no collapse of the test voltage and no continuously rising tendency occurred. The levels of partial discharges did not exceed the corresponding permissible limits. Details see table 40.

Highest voltage for equipment U_{m} in $k V$ (r.m.s.)	PD background level	PD at $1.58 U_{\mathrm{m}} / \sqrt{3}$ during 60 min in $p C$	PD at $1.2 \mathrm{U}_{\mathrm{m}} / \sqrt{3}$ during 1 min in $p C$
$72.5 \ldots 300$	<3	<50	<30

Table 40: \quad Confirmed results of partial discharge measurements at insulation distance to earth (insulating distance " f ").

[^0]
Appendix 1: Dimension drawing

Figure 38a: Example of dimension drawing of on-load tap-changers type VACUTAP® VRS / VRM / VRL / VRH with single phase design, combined with tap selectors type RC / RD / RDE (page 1/2).
© MASCHINENFABRIK REINHAUSEN GMBH 2016
THE REPRODUCTION, DISTRIBUTION AND UTLIZATION OF THIS DOCUMENT AS WELL AS THE COMMUNICATION OF ITS CONTENTS TO OTHERS WITHOUT EXPRESS AUTHORIZATION IS

	DATE	NAME	DOCUMENT NO.	
DFTR.	21.10 .2016	BUTERUS	SEO 514288700000	
CHKD.	26.10 .2016	WREDE	CHANGE NO.	SCALE
STAND	26102016	PRODASTSCHUK	1077332	-

VACUTAP® VRS

VACUTAP® VRL / VRH 1301

Figure 38b: Example of dimension drawing of on-load tap-changers type VACUTAP ${ }^{\circledR}$ VRS / VRM / VRL / VRH with single phase design , combined with tap selectors type RC / RD / RDE (page 2/2).

Appendix 2: Schematic test circuits and test equipment

Figure 39: Schematic test circuit for lightning impulse tests (full / chopped wave), switching impulse test and applied voltage test.

[^1]

Picture 1: Test equipment for applied voltage test.

Picture 3: Test setup for insulation distance " f ".

Picture 2: Test equipment for impulse voltage tests.

Picture 4: Test setup for insulation distance " aO ".

Appendix 3: Wirings and connections

BLUE: Connection to ground RED: Connected to test voltage GREEN: No connection (floating)

Figure 41: Schematic sketch of connections for testing insulating distances "a0" (single sector design).

BLUE: Connection to ground RED: Connected to test voltage GREEN: No connection (floating)

Figure 42: Schematic sketch of connections for testing insulating distances "a0" (two sector design).

BLUE: Connection to ground RED: Connected to test voltage GREEN: No connection (floating)

Figure 43: Schematic sketch of connections for testing insulating distances "a0" (three sector design).

BLUE: Connection to ground RED: Connected to test voltage

Figure 44: Schematic sketch of connections for testing insulating distances "f" ($\left.U_{m}=72.5 \mathrm{kV}\right)$.

Figure 45: Schematic sketch of connections for testing insulating distances "f" $\left(U_{m}=123 \mathrm{kV}\right)$.

BLUE: Connection to ground RED: Connected to test voltage

Figure 46: Schematic sketch of connections for testing insulating distances "f" ($\mathrm{U}_{\mathrm{m}}=170 \ldots 300 \mathrm{kV}$).

[^0]: ${ }^{1}$ Not required by IEC 60214-1:2014.

[^1]: Figure 40: Schematic test circuit for partial discharge measurement.

