R-Tech
Rue de Mons 3 - B-4000 Liège - Belgium Tel.: +32 42247140 - Fax: +32 42242590 Member of Schréder Group

Thermal Test LED

General information

Subject : IZYLUM Size 2-40 LH351C - MW 75W-500mA - Nema - CLI (N\#16)
Asked by : SZÜGYI János Péter
Created on : 09/12/2019
Started on : 16/12/2019
Test number : D191135
Reference norm : IEC/EN 60598-1; 60598-2-3; 60598-2-5 Standards
Sample(s) : E190883
Folder : P-F19085

Test conditions

Luminaire: IZYLUM 2
Number of LED : 40
LED : Samsung LH351C
Driver : Meanwell 60~75W 0.5A 1-10V / 00-82-966
Number of driver(s) : 1
Driver current (mA) : 500
SPD : Izyhub full control fuse CLII 01-01-810
Additional components : Colosio Nema with short cut
Power Supply : 230 Volts 50Hz
Junction Temperature measurement method : Junction temperature measurement by base temperature measurement and electrical measurement. $T^{\circ} j=T^{\circ} b+R j b \times$ Pled

Conclusion

Informative$\Delta \mathrm{Ts}<80^{\circ} \mathrm{C}$ no risk of solder crack
Ta: $55^{\circ} \mathrm{C}$ limited by driver; according IEC 60598-2-3 and IEC 60598-2-5 (outdoor use only)
Ta: $55^{\circ} \mathrm{C}$ limited by driver; indoor use and UL standard
$\mathrm{Tq}: 45^{\circ} \mathrm{C}$ limited by driver; according IEC 62722-2-1
Tq given for 100 khrs of lifetime

Validated by:	Duplicate to : SZÜGYI János Péter, HEYMANS Tom, LÁMFALUSI Ferenc,	D191135
Maghe Laurent	HORVÁTH Csaba, BEDŐ Péter, BOS Peter	$1 / 3$

Test(s)

Name	Description	Result
Test @ 500mA		Informative

Test @ 500mA

Result(s)

	Tb1	Tb2(tp)	Tb3	Tc driver	Ta SPD	Ta cable
T° limite				$85^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$
Junction T°	$61,1{ }^{\circ} \mathrm{C}$	$61,1{ }^{\circ} \mathrm{C}$	$60,8{ }^{\circ} \mathrm{C}$			
Thermocouple T°	$56,9{ }^{\circ} \mathrm{C}$	$56,9{ }^{\circ} \mathrm{C}$	$56,6{ }^{\circ} \mathrm{C}$	$48,8{ }^{\circ} \mathrm{C}$	$36,3{ }^{\circ} \mathrm{C}$	$33,2{ }^{\circ} \mathrm{C}$
Room	$25,4{ }^{\circ} \mathrm{C}$					
E led	2,81V	2,81V	2,81V			
1 led	0,502A	0,502A	0,502A			
P led	1,41W	1,41W	1,41W			
Rth jonction-base	$3,0{ }^{\circ} \mathrm{C}$	$3,0{ }^{\circ} \mathrm{C}$	$3,0^{\circ} \mathrm{C}$			
Heating				23,4 K	10,9 K	7,8 K
Δ Ts	31,5 K	$31,5 \mathrm{~K}$	31,2 K			
Primary EM		Secondary EM driver 1				
U	229,9V	U	112,3V			
1	0,280A	1	0,502A			
P	62,1 W	P	56,3 W			
PF	0,965					
Efficiency	91\%					

Measurement equipment :

Keithley with thermocouples type K (E082)
Norma 4000 (E068)
APT (E135)

Quantities measured :

Qualification of the thermal limits and measurement of the electrical behavior of a luminaire according to PT-S-07

Uncertainties :

Statement of uncertainties ($K=2,95 \%$ of confidence level):
Temperature: $0,6{ }^{\circ} \mathrm{K}$
Voltage (AC): 0,33\%
Current (AC): 0,33 \%
Power (AC): 0,27\%
Voltage (DC): 0,3 \%
Current (DC): 0,3\%
Power (DC): 0,23\%
Anemometer: $\pm \mathbf{0 , 2 7} \mathrm{m} / \mathrm{s}$

Decision rules :

No pass/fail criteria applied on electrical measurements

Pass/fail criteria on thermal qualification
At the announced Ta, no component is above its maximum limit of operation reduced by the uncertainty on the temperature measurement: pass

At the announced Ta , at least 1 component is above its maximum limit of operation augmented by the uncertainty on the temperature measurement: fail

At the announced Ta, at least 1 component is at its maximum limit of operation \pm the uncertainty on the temperature measurement and no other component is above its maximum limit of operation augmented by the uncertainty on the temperature measurement: pass with remark

According to IEC 60598-2-3 and IEC 60598-2-5 Standards, the maximum limit of every component can be augmented by 10 K provided that the luminaire is intended for outdoor use only.

At the announced Tq, no component is above its selected performance limit of operation reduced by the uncertainty on the temperature measurement: pass

At the announced Tq , at least 1 component is above its selected performance limit of operation augmented by the uncertainty on the temperature measurement: fail

At the announced Tq, at least 1 component is at its selected performance limit of operation \pm the uncertainty on the temperature measurement and no other component is above its selected performance limit of operation augmented by the uncertainty on the temperature measurement: pass with remark

According to IEC 62722-2-1, the selected performance limit cannot be augmented by 10 K even if the luminaire is intended for outdoor use.

Any $\mathrm{Ta} / \mathrm{Tq}$ defined value will be rounded down to the nearest multiple of 5 .
End of test report :

