

ASTA TYPE TEST CERTIFICATE OF COMPLETE TYPE TESTS

Project No:	G105348906	Certificate No:	ASTA-TYPE-0002377		
Applicant:	Zhejiang Jiangshan Transformer Co., Ltd. No.84, Hushan Road, Jiangshan, Zhejiang Province, China				
Apparatus:	A three-phase, 66/ 52.8 MVA, ONAF/ ONAN (100%/ 80%), (132±8×1.25%)/ 33/ 11 kV, 50 Hz, Category II, YNyn0+d, oil transformer. The high voltage winding has 17 taps and the principal tap is tap 9B. The transformer is fitted with a MR on-load tap changer.				
Manufactured By:	Zhejiang Jiangshan Transformer Co., Ltd. No. 84, Hushan Road, Jiangshan, Zhejiang Province, China				
Test Report No:	B230035				
Designation:	SFZ-66000/132				

The apparatus which is representative of the designation, supplied drawings and photographs has been evaluated in accordance with:

IEC 60076-1: 2011 Clauses 11.1.2.1 i), 11.1.2.2 a) to e), 11.1.3 11.1.3 e), 11.1.4 e), 11.1.4 l), 11.2 to 11.10, and 12	d), 11.12
IEC 60076-2: 2011 Clauses 6 and 7	
IEC 60076-3: 2013+A1: 2018 Clauses 9, 10, 11.2, 11.3, 12, 13.2, 13.3 an	d 13.4
IEC 60076-5: 2006 Clause 4.2	
IEC 60076-10: 2016 Clauses 11 and 12	

and the STL Guide to IEC 60076 Issue 8.0, 1st June 2022, where applicable

The results are shown in the record of tests attached hereto. The values obtained and the general performance is considered to comply with the above Standard(s) and to justify the ratings assigned by the manufacturer as stated on the ratings page(s) of this Certificate. This Certificate applies only to the apparatus tested. Responsibility for conformity of any apparatus having the same or other designations rests with the Manufacturer.

C. Mirch- Louis

11th April 2023

C Diack-Evans Certification Engineer

R W Hayward Certification Officer

Date

Certificate No: ASTA-TYPE-0002377

Conditions of use:

ASTA Type Certificates, verification of test is issued by Intertek for the exclusive use of the party applying for the Certificate. Intertek assumes no liability to any parties other than those with which it has an agreement and then only in accordance with the agreed Terms and Conditions.

The Applicant is authorised to copy or distribute Certificates and Test Reports provided the entire contents are included, or Certificate Front Sheets accompanied by any associated pages on which are stated the assigned rated characteristics and no part is obscured or illegible. Permission must be obtained from Intertek before any other kind of reproduction is made.

The holder of a Certificate may claim in Trade Journals, Catalogues, Technical Articles etc., and without the prior approval of Intertek that the product identified in a Certificate is Certified.

To minimise the possibility of any misunderstanding such claims must clearly identify the product(s) certified or approved, the ratings verified and the Standard against which certification/approval has been made.

Any other use of the Intertek or ASTA brand must first be approved in writing by Intertek. Test results and ratings verified by testing included in the Certificate and related Test Reports shall relate specifically to the sample(s) tested.

Authenticity:

Authenticity of any ASTA document can be confirmed by contacting the Intertek ASTA Certification Office at the following address:

Intertek Testing & Certification Ltd., Centre Court, Meridian Business Park, Leicester, LE19 1WD, United Kingdom. Email: asta@intertek.com

Certificate No: ASTA-TYPE-0002377

Verification of a transformer

Characteristic verified	Clause/ Subclause	Verified tests and ratings	
Rated voltages, U _r IEC 60076-1		132/ 33/ 11 kV	
No-load loss	IEC 60076-1	26484 W at 90 % rated voltage	
and	Clause 11.1.3 e)	54045 W at 110 % rated voltage	
No-load current		0.06 %	at 90 % rated voltage
		0.41%	at 110 % rated voltage
Rated power, S _r	IEC 60076-2 Clause 7	66/ 52	2.8 MVA, ONAF/ ONAN
Rated insulation level	IEC 60076-3	HV:	<i>U</i> _m 145/ LI 650/ LIC 715/ AC 275 kV
	Clauses 9, 10, 11.2, 11.3, 12, 13.2, 13.3 and 13.4	HVN:	<i>U</i> _m 52/ LI 250/ AC 95 kV
		LV:	<i>U</i> _m 36/ LI 170/ LIC 187/ AC 70 kV
		LVN:	<i>U</i> _m 36/ LI 170/ AC 70 kV
Ability to withstand short-circuit IEC 60076-5 Clause 4.2		Verifie	ed
Sound pressure level for the transformer @ 1.0 m under no- load current and rated voltage, ONAN		65 dB(A), Guaranteed 70 dB(A)	
Sound power level for the transformer @ 1.0 m under no- load current and rated voltage, ONAN	IEC 60076-10 Clause 12	86 dB(A), Guaranteed 88 dB(A)	
Sound pressure level for the transformer @ 0.3 m under no- load current and rated voltage, ONAN	IEC 60076-10 Clause 11	67 dB(A), Guaranteed 70 dB(A)	
Sound power level for the transformer @ 0.3 m under no- load current and rated voltage, ONAN	IEC 60076-10 Clause 12	86 dB(A), Guaranteed 88 dB(A)	
Sound pressure level for the transformer @ 2.0 m under no- load current and rated voltage, ONAF	IEC 60076-10 Clause 11	66 dB(A), Guaranteed 70 dB(A)

Certificate No: ASTA-TYPE-0002377

Verification of a transformer (continued)

Sound power level for the		
transformer @ 2.0 m under no-	IEC 60076-10	P(A) = P(A)
load current and rated voltage,	Clause 12	88 dB(A), Guaranteed 90 dB(A)
ONAF		

Certificate No: ASTA-TYPE-0002377

Certificate Contents:

The following documents are attached to and form part of this certificate:

Documents:	Number of pages
Test report no. B230035 dated 23 March 2023	109
Drawings	11

Certificate Revision Amendment Table

Certificate Number	Issue Date	Amendment
ASTA-TYPE-0002377	See page 1	Initial Issue

APPARATUS TESTED:	A three-phase, 66/ 52.8 MVA, ONAF/ ONAN (100%/ 80%), (132±8×1.25%)/ 33/ 11 kV, 50 Hz, Category II, YNyn0+d, oil transformer. The high voltage winding has 17 taps and the principal tap is tap 9B. The transformer is fitted with a MR on-load tap changer.		
STANDARD:	IEC 60076-1: 2011	Clauses 11.1.2.1 i), 11.1.2.2 a) to e), 11.1.3 d), 11.1.3 e), 11.1.4 e), 11.1.4 l), 11.2 to 11.10, 11.12 and 12	
	IEC 60076-2: 2011 IEC 60076-3: 2013+A1: 2018	Clauses 6 and 7 Clauses 9, 10, 11.2, 11.3, 12,	
	IEC 60076-5: 2006 IEC 60076-10: 2016 and the STL Guide to IEC 6007 applicable.	13.2, 13.3 and 13.4 Clause 4.2 Clauses 11 and 12 ⁄6 Issue 8.0, 1 st June 2022, where	
MANUFACTURER:	Zhejiang Jiangshan Transforme No.84, Hushan Road, Jiangsha	er Co., Ltd. In, Zhejiang Province, China	
TESTING LABORATORY:	Shenyang Transformer Institute Co., Ltd. Transformer Laboratory, No. 18, Hushitai South Street, Shenbei New Area, Shenyang, Liaoning, China		
APPROVED BY:	Stephen Yu, ASTA Observer, Intertek China		
Issue Date:	23 March 2023		

CONTENTS

Record of proving tests:	Pages 1 to 71
Diagram numbers:	Pages 72 to 74, Figures 1 to 3
Oscillogram numbers:	Pages 75 to 98 Impulse oscillograms: B230035-L001 to L044 FRA oscillograms: B230035-FRA01 to FRA20 Short-circuit oscillograms: B230035-S01-1 to 3, B230035-S02-1 to 3 and B230035-S03-1 to 3.
Photographs:	Pages 99 to 109
Drawings:	11 drawings

Photographs: The following photographs are included in this document.

Photograph no:	Description
P001	Measurement of winding resistance after the short-circuit withstand test
P002	Measurement of voltage ratio and check of phase displacement after the short- circuit withstand tests
P003	Measurement of short-circuit impedance and load loss for HV to LV after the short-circuit withstand tests
P004	Measurement of no-load loss and current after the short-circuit withstand tests
P005	Measurement of dissipation factor (tan δ) of the insulation system capacitances after the short-circuit withstand tests
P006	Temperature rise type test arrangement in ONAN condition
P007	Temperature rise type test arrangement in ONAF condition
P008	Chopped wave lightning impulse test for LV line terminal after the short-circuit withstand tests
P009	Full wave lightning impulse test for LV neutral terminal after the short-circuit withstand tests
P010	Chopped wave lightning impulse test for HV line terminal after the short-circuit withstand tests
P011	Full wave lightning impulse test for HV neutral terminal after the short-circuit withstand tests
P012	Line terminal AC withstand voltage test (LTAC) after the short-circuit withstand tests
P013	Applied voltage test for HV windings after the short-circuit withstand tests
P014	Induced voltage test with partial discharge measurement (IVPD) after the short- circuit withstand tests
P015	Short-circuit withstand tests arrangement for HV to LV view 1
P016	Short-circuit withstand tests arrangement for HV to LV view 2
P017	Transformer internal HV winding side view before the short-circuit withstand tests
P018	Transformer internal LV winding side view before the short-circuit withstand tests
P019	Transformer internal HV winding side view after the short-circuit withstand tests
P020	Transformer internal LV winding side view after the short-circuit withstand tests

CONTENTS (continued)

Photograph no:	Description
P021	Infra-red external hot spot scan in ONAN condition
P022	Infra-red external hot spot scan in ONAF condition

CONTENTS (continued)

Schedule of drawings: The following drawings were supplied by the client / manufacturer.

	Issue Status			
Drawing number	Revision Date		Description	
1.710.2930.02	-	2022/12/5	SFZ-66000/132 Power transformer with OLTC	
1.710.2930.2MP	-	2022/12/5	SFZ-66000/132 Nameplate	
5.700.2930.2	-	2022/12/5	SFZ-66000/132 Active part insulation	
5.517.2930.11	-	2022/12/5	SFZ-66000/132 HV LEAD CABLE	
5.517.2930.12	-	2022/12/5	SFZ-66000/132 LV LEAD CABLE	
5.641.2930.2	-	2022/12/5	SFZ-66000/132 Core assembly	
6.600.2930.10	-	2022/12/5	SFZ-66000/132 LV. Winding	
6.600.2930.11	-	2022/12/5	SFZ-66000/132 HV coil	
6.600.2930.11-1	-	2022/12/5	SFZ-66000/132 HV coil	
6.600.2930.12	-	2022/12/5	SFZ-66000/132 W. winding	
6.600.2930.13	-	2022/12/5	SFZ-66000/132 Voltage regulating Winding	

All of the above drawings were supplied by the manufacturer and the manufacturer guaranteed that the apparatus submitted for tests was manufactured in accordance with the drawings. The ASTA Observer verified that the drawings adequately represented the apparatus tested. The manufacturer is responsible for the correctness of the drawings and the technical data presented.

APPARATUS TESTED

A three-phase, 66/ 52.8 MVA, ONAF/ ONAN (100%/ 80%), (132±8×1.25%)/ 33/ 11 kV, 50 Hz, Category II, YNyn0+d, oil transformer. The high voltage winding has 17 taps and the principal tap is tap 9B. The transformer is fitted with a MR on-load tap changer.

TRANSFORMER DETAILS

Manufacturer		: Zhejiang Jiangshan Transformer Co., Ltd.			
Rating		: 66/ 52.8 MVA, ONAF/ ONAN			
Rated voltage ratio		: 132/ 33/ 11 kV			
Manu	ufacturer's serial no.	: 28136	6122110	01	
Prod	uct type	: Three	-phase p	power transformer	
Тарр	ing	: ± 8 st	eps of 1.	25 %, (17 tap positions)	
Conr	nection symbol	: YNyn	0+d		
Ratir	ng plate impedance (75°C)	: 14.30	% for H	V to LV on tap 9B	
Cooli	ing	: ONAF	-/ ONAN		
Dielectric properties		: HV HVN LV LVN	:	U _m 145 / LI 650 / LIC 715 / AC 275 kV U _m 52 / LI 250 / AC 95 kV U _m 36 / LI 170 / LIC 187/ AC 70 kV U _m 36 / LI 170/ AC 70 kV	
Oil m	ass	: 19800 kg			
Total	mass	: 86500 kg			
Date	of manufacture	: February 2023			
Wind	lings	: Circular			
Wind	ling material	: Wire (Copper)			
Insul	ation system	: Karamay I-30 °C			
On-load tap changer - Manufacturer - Model number - Serial number - Rated motor voltage - Rated control voltage		: MR : VVSIII400Y-76-10193W : 2499425 : 415 V/ 50 Hz : 240 V/ 50 Hz			
Fans	:	71			
 Manufacturer Model number Rated voltage Rated speed Phase Air volume Total pressure 		: 2nejiang EKG Technology Joint Stock Cp., Ltd : DBF-7.3Q10 : 415 V/ 50 Hz : 580 rpm : 3 : 11800 m ³ /h : 65 Pa			

APPARATUS TESTED (continued)

TRANSFORMER DETAILS

The nominal tapping ratios are detailed below. Tap 9B is the principal tap.

Тар	Rated HV	Rated HV	Rated LV	Rated LV	Rated TV	Rated TV
	Voltage	Current	Voltage	Current	Voltage	Current
Number	V	A @ 66MVA	V	A @66MVA	V	A @22MVA
1	145200	262.4		<u> </u>		
2	143550	265.5				
3	141900	268.5				
4	140250	271.7				
5	138600	274.9				
6	136950	278.2				
7	135300	281.6				
8	133650	285.1				
9B	132000	288.7	33000	1154.7	11000	1154.7
10	130350	292.3				
11	128700	296.1				
12	127050	299.9				
13	125400	303.9				
14	123750	307.9				
15	122100	312.1				
16	120450	316.4				
17	118800	320.8				

HV : High voltage winding

LV : Low voltage winding

TV : Tertiary voltage winding

The transformer was fitted with current transformers on the HV and LV windings. For detailed ratings refer to the tests of the ratio and polarity of the built-in current transformers.

The transformer was fitted with two accessible connections for the insulation separating the core and frame and / or frame and tank.

CLIENT

Zhejiang Jiangshan Transformer Co., Ltd. No. 84, Hushan Road, Jiangshan, Zhejiang Province, China

DATE OF RECEIPT OF APPARATUS

17 February 2023

ORDER NUMBER

QNS230208003

MANUFACTURER

Zhejiang Jiangshan Transformer Co., Ltd. No. 84, Hushan Road, Jiangshan, Zhejiang Province, China

WITNESSES OF THE TESTS:

Name	Organisation		
Mr. Stephen Yu	– ASTA Observer, Intertek China		
Mr. Xu Huajun	– Zhejiang Jiangshan Transformer Co., Ltd.		

LABORATORY

The tests were carried out at:

Shenyang Transformer Institute Co., Ltd. Transformer Laboratory No. 18, Hushitai South Street, Shenbei New Area, Shenyang, Liaoning, China

The laboratory accreditation details are:

This Laboratory is recognized by Intertek ASTA for Conformity Assessment to BS EN / ISO / IEC 17025:2017 and Regulations for ASTA Recognized Laboratories, Agreement No. 2019-RTL-L2-319

SCHEDULE OF TESTS

The transformer was tested in accordance with the following standards:

IEC 60076-1: 2011 Clauses 11.1.2.1 i), 11.1.2.2 a) to e), 11.1.3 d), 11.1.3 e), 11.1.4 e), 11.1.4 l), 11.2 to 11.10, 11.12 and 12 IEC 60076-2: 2011 Clauses 6 and 7 IEC 60076-3: 2013+A1: 2018 Clauses 9, 10, 11.2, 11.3, 12, 13.2, 13.3 and 13.4 IEC 60076-5: 2006 Clause 4.2 IEC 60076-10: 2016 Clauses 11 and 12 and the STL Guide to IEC 60076 Issue 8.0, 1st June 2022, where applicable.

Test	Standard	Clause No.	Page no.				
Routine tests							
Measurement of winding resistance	IEC 60076-1	Clause 11.2	18 and 19				
Measurement of voltage ratio and check of phase displacement	IEC 60076-1	Clause 11.3	20				
Measurement of short-circuit impedance and load loss	IEC 60076-1	Clause 11.4	21 and 22				
Measurement of no-load loss and current at rated voltage	IEC 60076-1	Clause 11.5	23				
Tests on on-load tap changers	IEC 60076-1	Clause 11.7	26				
Leak testing with pressure for liquid-immersed transformers (tightness test)	IEC 60076-1	Clause 11.8	26				
Check of the ratio and polarity of built-in current transformers	IEC 60076-1	Clause 11.1.2.1 i)	27 and 28				
Check of core and frame insulation for liquid immersed transformers with core or frame insulation	IEC 60076-1	Clause 11.12	29				
Insulation of auxiliary wiring (AuxW)	IEC 60076-3	Clause 9	58				
Line terminal AC withstand voltage test (LTAC)	IEC 60076-3	Clause 12	57				
Applied voltage test (AV)	IEC 60076-3	Clause 10	58				
Induced voltage withstand test (IVW)	IEC 60076-3	Clause 11.2	59				
Induced voltage test with partial discharge measurement (IVPD)	IEC 60076-3	Clause 11.3	60				
Determination of capacitances windings-to- earth and between windings	IEC 60076-1	Clause 11.1.2.2 a)	30				
Measurement of d.c. insulation resistance between each winding to earth and between windings	IEC 60076-1	Clause 11.1.2.2 b)	29				

SCHEDULE OF TESTS(continued)

Test	Standard	Clause No.	Page no.				
Routine tests (continued)							
Measurement of dissipation factor (tan δ) of the insulation system capacitances	IEC 60076-1	Clause 11.1.2.2 c)	31				
Measurement of dissolved gasses in dielectric liquid	IEC 60076-1	Clause 11.1.2.2 d)	32				
Measurement of no-load loss and current at 90 % and 110 % of rated voltage	IEC 60076-1	Clause 11.1.2.2 e)	24 and 25				
Type tests		l					
Temperature rise type test	IEC 60076-2	Clauses 6 and 7	34 to 39				
Determination of sound level	IEC 60076- 10	Clauses 11 and 12	40 to 48				
Measurement of the power taken by the fan and liquid pump motors	IEC 60076-1	Clause 11.1.3 d)	33				
Measurement of no-load loss and current at 90 % and 110 % of rated voltage	IEC 60076-1	Clause 11.1.3 e)	24 and 25				
Full wave lightning impulse test (LI)	IEC 60076-3	Clause 13.2	Refer to special test				
Special tests							
Short-circuit withstand test	IEC 60076-5	Clause 4.2	49 to 52 and 61				
Chopped wave lightning impulse test (LIC)	IEC 60076-3	Clause 13.3	53 and 55				
Lightning impulse test on a neutral terminal (LIN)	IEC 60076-3	Clause 13.4	54 and 56				
Determination of transient voltage transfer characteristics	IEC 60076-1	Clause 11.1.4 e)	62				
Measurement of zero-sequence impedance(s) on three-phase transformers	IEC 60076-1	Clause 11.6	63				
Vacuum deflection test for liquid immersed transformers	IEC 60076-1	Clause 11.9	64				
Pressure deflection test for liquid immersed transformers	IEC 60076-1	Clause 11.10	65				
Measurement of frequency response (Frequency Response Analysis or FRA)	IEC 60076-1	Clause 11.1.4 l)	66				
Electromagnetic compatibility (EMC) – RIV	IEC 60076-1	Clause 12	67				
Measurement of the no-load voltage and current characteristics	-	-	68				

SCHEDULE OF TESTS(continued)

Test	Standard	Clause No.	Page no.
Special tests (continued)			
Measurement of the harmonics of the no-load current at 100 % rated voltage	-	-	69
Transition resistance measurement on on-load tap-changers	-	-	70
Measurement of the long-time no-load voltage test			70
Determination of capacitances and dissipation factor (tan δ) of the bushings	-	-	71

GENERAL TEST CONDITIONS

General

1. All tests were performed on transformer Serial no. 2813612211001. See Schedule of Tests, Pages 8 and 9.

Routine tests and general special tests

- For all routine tests except the dielectric tests the transformer was supplied from a sinusoidal three-phase 50 Hz supply.
 For the applied voltage test, the transformer was supplied from a sinusoidal 50 Hz single-phase supply before and after the short-circuit withstand tests.
 For induced voltage withstand test (IVW) and induced voltage test with partial discharge measurement (IVPD), the transformer was supplied from a sinusoidal 200 Hz supply before and after the short-circuit withstand tests.
- 3. The HV winding resistances were measured using a Jinyuan winding analyser d.c. bridge model JYR (40E) at 10 A before and after the short-circuit withstand tests.

The LV winding resistances were measured using a Jinyuan winding analyser d.c. bridge model JYR (40E) at 40 A before and after the short-circuit withstand tests.

- 4. The voltage ratio and check of phase displacement were measured using a Baoding Jinyuan Electrical turns ratio meter model JYT before and after the short-circuit withstand tests.
- The d.c. insulation resistances of the transformer were measured before and after the shortcircuit withstand tests at 5000 V d.c. for the HV and LV windings, using a METREL HV insulation tester, Model MI 2077.
- 6. The measurement of the dissipation factor (tan δ) of the insulation system capacitances and determination of capacitances windings-to-earth and between windings were measured using a Jinan fanhua automatic insulation diagnosis and analysing tester, model AI-6000K at 10 kV / 50 Hz before and after the short-circuit withstand tests.
- 7. For the load loss tests, the power, voltages and currents were measured using an Acculoss measurement system ALMS 4100 before and after the short-circuit withstand tests.

For the load loss test the transformer's HV winding was energised with the LV winding shortcircuited such that at least 50 % of rated current flowed in the HV winding.

The short circuit impedance and the load loss were calculated for a reference temperature of 75° C.

8. For the no-load loss tests, the power, voltages and currents were measured using an Acculoss measurement system ALMS 4100 before and after the short-circuit withstand tests.

For the no-load loss test the transformer's LV winding was energised at rated voltage with the HV windings open circuit in accordance with clause 11.5 of IEC 60076-1.

- 9. The transformer oil temperatures were measured via PT resistance temperature detectors placed in the top oil pocket and outlet od the radiator before and after short-circuit withstand tests.
- 10. All PT resistance temperature detectors measurements were made using a Shengyi Data logger Model No. SWSN before and after short-circuit withstand tests.

Routine tests (Continued)

11. In accordance with clause 7.2.3 of IEC 60076-3 and clause 4.2.7.4 of IEC 60076-5 the dielectric tests were performed in the following sequences before and after the short-circuit withstand tests:

Test Order	Before short circuit tests	After short circuit tests
1)	Applied voltage test (AV)	Chopped wave lightning impulse test
		for the line terminals (LIC) and
		lightning impulse test for the neutral
		terminals (LIN)
2)	Line terminal AC withstand test	Line terminal AC withstand test (LTAC)
	(LTAC)	
3)	Induced voltage withstand test (IVW)	Applied voltage test (AV)
4)	Induced voltage test with partial	Induced voltage withstand test (IVW)
	discharge measurement (IVPD)	
5)	-	Induced voltage test with partial
		discharge measurement (IVPD)

Temperature rise type test

- 12. The temperature rise test was performed on tap 17 applying the total losses of tap 17 and the tapping current of tap 17.
- 13. The temperature rise test was performed after the short-circuit withstand tests.
- 14. The load loss, no-load loss and d.c. resistance measurements were used to calculate the total power required for the temperature rise test. The temperature rise results were calculated at the 75°C reference temperature.
- 15. The transformer was tested in accordance with clause 7.3 of IEC 60076-2 using the shortcircuit method.

The test was performed in ONAF followed by ONAN condition:

The test was performed in two parts as follows:

a) Total loss injection-

The transformer HV winding was subjected to a test voltage sufficient to supply total losses with the LV windings short-circuited together. The test power was maintained until the increase in top oil temperature was below 1 K per hour for a period of 3 hours. The corrections of clause 7.13 of IEC 60076-2 were used in determining the top oil and average oil temperature rises

- b) Rated current injection for the HV and LV windings-At the completion of part a), the test current was reduced to rated current for 1 hour followed by rapid disconnection of the test supply and the d.c. resistance of the windings were measured to determine their maximum temperatures using the change of resistance method for HV and LV windings. The corrections of clause 7.13 of IEC 60076-2 were used in determining the top oil, average oil and winding temperature rises.
- 16. An Acculoss measurement system ALMS 4100 was used to measure the currents, voltages and power.
- 17. The HV (B-N) and LV (b-n) winding resistances were measured using a d.c. resistance bridge before and during the hot resistance shutdown.

Temperature rise (Continued)

- 18. Two PT resistance temperature detectors were placed in the top oil pockets of the transformer.
- 19. The top and bottom radiators outlets temperatures were measured with PT resistance temperature detectors 2 inlets and 4 outlet points of the radiator banks.
- 20. The ambient temperature was the average of 6 T type thermocouples placed in oil pots each with approximately a 2 hours' time constant. The oil pots were positioned round the transformer located at about half the transformer's height and about 2 m from the transformer in ONAN condition and at about 0.5 m from the intake of the coolers of the transformer in ONAF condition.
- 21. All temperature measurements were made using an Acculoss measurement system ALMS 4100.
- 22. The top oil temperature (θ_0) was determined from the average of the top oil pocket temperatures as per clause 7.4.1.
- 23. The bottom oil temperature (θ_b) was determined from the average of the bottom oil outlet temperatures of the radiator banks as per clause 7.4.2.
- 24. The average oil temperature was determined using clause 7.4.2.: $\theta_{OM} = (\theta_O + \theta_b)/2$.
- 25. There was a total of 8 sets of fans, and during the test the fans were energized at rated voltage in ONAF condition and turned off in ONAN condition

Determination of sound level

- 26. The sound pressure level was measured in accordance with clause 11 of IEC 60076-10.
- 27. The determination of sound power level was sound pressure method, the sound level tests were performed by point-by-point procedure with the transformer at normal ambient condition, and the sound pressure measurement was executed with the total sound level as specified by the client.
- 28. The sound pressure level tests were performed with the transformer in a room dimensioned 60.2 m wide 42.4 m deep by 38 m high, rectangular shaped industrial room. The transformer was positioned in the test room as shown in Figure 2.
- 29. Measurements were made using a Type 1 calibrated sound level meter complying with IEC 61672-1 and IEC 61672-2 and calibrated in accordance with clause 5.2 of ISO 3746 as follows:

Sound level meter Hangzhou Aihua Type AWA6228, Serial no. 00322954 and associated Calibrator model type AWA6021A, Serial no. 1012336 were used for the tests.

The sound level calibrator meter was used before and after the test.

- 30. The sound level meter was hand-held for all sound level measurements. The operator stood to the side of the meter for each measurement.
- 31. Before and after the sound pressure level tests, the A-weighted sound level pressure level of the background noise was measured at 10 measuring positions around the prescribed contour at one third and two thirds height of the transformer's principal radiating surface.

Determination of sound level (continued)

- 32. The transformer sound pressure level was measured under no-load conditions with the LV winding supplied at rated volts from a sinusoidal 50 Hz three-phase supply with the HV windings open circuit in accordance with clause 4.2 of IEC 60076-10.
- 33. The sound pressure level was measured around the prescribed contour at a distance of 1.0 m and 0.3 m in ONAN condition and 2.0 m in ONAF condition from the transformer's principal radiating surface at one third and two thirds height of the transformer's principal radiating surface.
- 34. The average sound pressure level and power level were calculated from the measured sound pressure levels in accordance with clauses 11 and 12 of IEC 60076-10.
- 35. There was a total of 8 sets of fans, and during the test the fans were energized at rated voltage in ONAF condition and turned off in ONAN condition

Chopped wave lightning impulse test for the line terminals and lightning impulse test for the neutral terminals (LIC and LIN)

- 36. The chopped wave lightning impulse test for the line terminals was conducted on the HV line terminals on taps 1, 9B and 17 and the LV line terminal of the transformer in accordance with clause 13.3 of IEC 60076-3.
- 37. The full wave lightning impulse test for the neutral terminal was conducted on the HV neutral terminal by direct application of the lightning impulse in accordance with clause 13.4 of IEC 60076-3.
- 38. The HV line terminals of the transformer were tested at LI 650 / LIC 715 kV. The LV line terminals of the transformer were tested at LI 170 / LIC 187 kV. The HV neutral terminal of the transformer was tested at LI 250 kV. The LV neutral terminal of the transformer was tested at LI 170 kV.
- 39. For all tests the transformer frame and core were solidly earthed.
- 40. A full sequence of tests in accordance with clause 13.3 of IEC 60076-3 for the chopped wave lightning impulse and clause 13.4 for the lightning impulse test on a neutral terminal in accordance with IEC 60076-3 was conducted on the transformer under test.
- 41. The chopped wave lightning impulse tests for the line terminals were applied to one HV line terminal at a time with the HV neutral terminal connected to earth via a current shunt, and with the other winding terminals connected together and to earth.
- 42. The chopped wave lightning impulse tests for the line terminals were applied to one LV line terminal at a time with the LV neutral terminal connected to earth via a current shunt, and with the other winding terminals connected together and to earth.
- 43. The lightning impulse tests for the neutral terminals were applied to the HV neutral terminal with the HV line terminals connected together to earth via a current shunt, and with the other winding terminals connected together and to earth.
- 44. The lightning impulse tests for the neutral terminals were applied to the LV neutral terminal with the LV line terminals connected together to earth via a current shunt, and with the other winding terminals connected together and to earth.
- 45. Fault detection was by comparison of the oscillographic voltage and current traces between the reference reduced level test and the full level tests.

Induced voltage withstand test (IVW)

- 46. The induced voltage withstand test (IVW) was performed in accordance with clause 11.2 of IEC 60076-3 before and after the short-circuit withstand tests.
- 47. The low voltage windings of the transformer were energised from a three-phase 200 Hz supply. The HV and LV neutral terminal was earthed directly.

Induced voltage test with partial discharge measurement (IVPD)

- 48. The induced voltage test with partial discharge measurement (IVPD) was performed in accordance with clause 11.3 of IEC 60076-3 before and after the short-circuit withstand tests at the client's request as special tests.
- 49. The low voltage windings of the transformer were energised from a three-phase 200 Hz supply. The HV and LV neutral terminal was earthed directly. The test voltage sequence was applied in accordance with Figure 1 of IEC 60076-3.
- 50. The tests were monitored using the HV bushing test taps by a Baoding Tianwei multi-channel partial discharge analysing tester, model no. TWPD-2B before and after the short-circuit withstand tests.

Short-circuit withstand tests

- 51. Interpretation of IEC 60076-5 was taken from the STL Guide to IEC 60076 issue 8.0, 1st June 2022.
- 52. An Acculoss measurement system ALMS 4100 was used in a three-phase circuit before the short-circuit withstand tests to determine short-circuit impedance and X/R ratio. These values were used in the calculation of short-circuit currents.
- 53. In accordance with clause 4.1.2 of IEC 60076-5 the short-circuit impedance of the transformer was calculated at the reference temperature of 75°C.
- 54. The theoretical short-circuit currents were calculated based on the impedance of the transformer and the system impedance, which was calculated for a short-circuit apparent power of 10000 MVA at U_{sys} 132 kV (U_{sys} .132 kV was declared by the client, 10000 MVA refer to Table 2 of IEC 60076-5).
- 55. For the short-circuit tests, single-phase tests were performed. The transformer's HV winding was energized from a two-phase 50 Hz test supply. The pre-short-circuit method was used with the LV windings short-circuited together. Nine consecutive short-circuit tests of nominal 0.25 s duration were performed in accordance with clause 4.2.5 of IEC 60076-5. See Figure 1 for the test circuit arrangement.

*Remark: The short-circuit withstand tests were performed single-phase due to the limitations of the laboratory test equipment.

- 56. The reactance of the transformer was measured using a precision LCR analyser model AI6600B before the start of test and after each short-circuit withstand test.
- 57. For the short-circuit withstand tests, an earth fault detection device consisting of a current shunt between the tank of the transformer and the test station earth was used. The earth current was also monitored oscillographically.

Inspection

58. The transformer was detanked and the windings and core inspected after the repeat routine tests and the lightning impulse test.

Transformer Serial no. 2813612211001

Measurement of winding resistance

HV winding	Phase	Before short-circuit tests	After short-circuit tests
Tap 1	A-N	0.4757 Ω	0.4694 Ω
	B-N	0.4818 Ω	0.4752 Ω
	C-N	0.4792 Ω	0.4728 Ω
	Average	0.4789 Ω	0.4725 Ω
Tap 2	A-N	0.4689 Ω	0.4627 Ω
	B-N	0.4750 Ω	0.4685 Ω
	C-N	0.4724 Ω	0.4661 Ω
	Average	0.4721 Ω	0.4658 Ω
Тар 3	A-N	0.4621 Ω	0.4560 Ω
	B-N	0.4682 Ω	0.4618 Ω
	C-N	0.4656 Ω	0.4594 Ω
	Average	0.4653 Ω	0.4591 Ω
Tap 4	A-N	0.4553 Ω	0.4493 Ω
	B-N	0.4613 Ω	0.4551 Ω
	C-N	0.4587 Ω	0.4527 Ω
	Average	0.4584 Ω	0.4524 Ω
Тар 5	A-N	0.4486 Ω	0.4426 Ω
	B-N	0.4546 Ω	0.4484 Ω
	C-N	0.4519 Ω	0.4459 Ω
	Average	0.4518 Ω	0.4456 Ω
Тар 6	A-N	0.4418 Ω	0.4359 Ω
	B-N	0.4477 Ω	0.4416 Ω
	C-N	0.4451 Ω	0.4392 Ω
	Average	0.4449 Ω	0.4389 Ω
Tap 7	A-N	0.4350 Ω	0.4292 Ω
	B-N	0.4409 Ω	0.4349 Ω
	C-N	0.4383 Ω	0.4324 Ω
	Average	0.4381 Ω	0.4322 Ω
Tap 8	A-N	0.4283 Ω	0.4225 Ω
	B-N	0.4341 Ω	0.4282 Ω
	C-N	0.4315 Ω	0.4257 Ω
	Average	0.4313 Ω	0.4255 Ω
Tap 9B	A-N	0.4204 Ω	0.4147 Ω
	B-N	0.4261 Ω	0.4203 Ω
	C-N	0.4226 Ω	0.4168 Ω
	Average	0.4230 Ω	0.4172 Ω
Тар 10	A-N	0.4279 Ω	0.4221 Ω
	B-N	0.4343 Ω	0.4284 Ω
	C-N	0.4317 Ω	0.4259 Ω
	Average	0.4313 Ω	0.4255 Ω

Transformer Serial no. 2813612211001

Measurement of winding resistance (continued)

HV winding	Phase	Before short-circuit tests	After short-circuit tests
Тар 11	A-N	0.4204 Ω	0.4288 Ω
	B-N	0.4261 Ω	0.4351 Ω
	C-N	0.4226 Ω	0.4326 Ω
	Average	0.4230 Ω	0.4322 Ω
Тар 12	A-N	0.4415 Ω	0.4355 Ω
	B-N	0.4478 Ω	0.4418 Ω
	C-N	0.4453 Ω	0.4394 Ω
	Average	0.4449 Ω	0.4389 Ω
Тар 13	A-N	0.4484 Ω	0.4422 Ω
	B-N	0.4546 Ω	0.4484 Ω
	C-N	0.4521 Ω	0.4460 Ω
	Average	0.4517 Ω	0.4455 Ω
Tap 14	A-N	0.4552 Ω	0.4489 Ω
	B-N	0.4614 Ω	0.4552 Ω
	C-N	0.4589 Ω	0.4527 Ω
	Average	0.4585 Ω	0.4532 Ω
Tap 15	A-N	0.4620 Ω	0.4558 Ω
	B-N	0.4681 Ω	0.4618 Ω
	C-N	0.4656 Ω	0.4594 Ω
	Average	0.4652 Ω	0.4590 Ω
Tap 16	A-N	0.4689 Ω	0.4625 Ω
	B-N	0.4749 Ω	0.4685 Ω
	C-N	0.4725 Ω	0.4661 Ω
	Average	0.4721Ω	0.4657 Ω
Tap 17	A-N	0.4759 Ω	0.4693 Ω
	B-N	0.4817 Ω	0.4753 Ω
	C-N	0.4793 Ω	0.4729 Ω
	Average	0.4790 Ω	0.4725 Ω

LV winding	Phase	Before short-circuit tests	After short-circuit tests
	a-n	0.02041 Ω	0.02015 Ω
	b-n	0.02042 Ω	0.02017 Ω
	c-n	0.02045 Ω	0.02019 Ω
	Average	0.02043 Ω	0.02017 Ω
Temperature-	Average oil	16.5 °C	13.8 °C
Date of Tests:		23 February 2023	26 February 2023

Photograph no.: P001

TEST RESULTS

Transformer Serial no. 2813612211001

Measurement of HV to LV voltage ratio and check of phase displacement

Тар	Rated	Nominal	Difference	e from nomi	nal ratio	Difference from nominal ratio		
No.	Primary	Ratio*	before short-circuit tests (%) after short-circuit tests (%)		s (%)			
	Voltage		AB-ab	BC-bc	CA-ca	AB-ab	BC-bc	CA-ca
1	145200	4.4000	0.23	0.25	0.25	0.24	0.25	0.26
2	143550	4.3500	0.21	0.23	0.23	0.20	0.23	0.24
3	141900	4.3000	0.19	0.21	0.23	0.21	0.22	0.24
4	140250	4.2500	0.16	0.19	0.21	0.18	0.20	0.22
5	138600	4.2000	0.14	0.17	0.19	0.15	0.18	0.19
6	136950	4.1500	0.14	0.14	0.17	0.15	0.16	0.18
7	135300	4.1000	0.12	0.15	0.17	0.14	0.16	0.18
8	133650	4.0500	0.10	0.12	0.15	0.08	0.10	0.13
9B	132000	4.0000	0.07	0.10	0.13	0.08	0.09	0.14
10	130350	3.9500	0.08	0.08	0.13	0.08	0.09	0.13
11	128700	3.9000	0.05	0.08	0.10	0.06	0.09	0.11
12	127050	3.8500	0.03	0.05	0.08	0.04	0.05	.09
13	125400	3.8000	0.03	0.03	0.08	0.03	0.03	0.09
14	123750	3.7500	0.00	0.00	0.05	0.01	0.00	0.06
15	122100	3.7000	-0.03	0.00	0.05	-0.03	0.01	0.04
16	120450	3.6500	-0.03	-0.03	0.03	-0.02	-0.02	0.04
17	118800	3.6000	-0.06	-0.06	0.00	-0.05	-0.05	0.01
Date o	f Tests:	1	22 Februa	ary 2023		26 Februa	ary 2023	

*The rated voltage of the LV winding was 33000 V

The HV-LV of the transformer connection symbol was verified to be connected as YNyn0.

Photograph no.: P002

Transformer Serial no. 2813612211001

Measurement of short-circuit impedance and load loss Tap 1, HV to LV windings

Тар 1	Before short-circuit tests	After short-circuit tests
Average line voltage	11069 V	11604 V
Average line current	134.83 A	141.23 A
Total power	60304 W	65390 W
Average oil temperature	14.8°C	13.8 °C
Reference temperature	75 °C	75 °C
Load loss at reference temperature @ 66 MVA	262176 W	260266 W
Impedance at reference temperature @ 66 MVA	47.40 Ω	47.44 Ω
Percent impedance at reference temperature @ 66 MVA	14.84 %	14.85 %
X/R ratio at reference temperature	37.34	37.65
Date of Tests:	24 February 2023	28 February 2023
Measurement of short-circuit impedance	e and load loss Tap 9B, HV to	o LV windings
Measurement of short-circuit impedance Tap 9B	e and load loss Tap 9B, HV to Before short-circuit tests	After short-circuit tests
Measurement of short-circuit impedance Tap 9B Average line voltage	e and load loss Tap 9B, HV to Before short-circuit tests 9993 V	After short-circuit tests
Measurement of short-circuit impedance Tap 9B Average line voltage Average line current	e and load loss Tap 9B, HV to Before short-circuit tests 9993 V 152.80 A	After short-circuit tests 10722 V 163.57 A
Measurement of short-circuit impedance Tap 9B Average line voltage Average line current Total power	e and load loss Tap 9B, HV to Before short-circuit tests 9993 V 152.80 A 63711 W	After short-circuit tests 10722 V 163.57 A 72680 W
Measurement of short-circuit impedance Tap 9B Average line voltage Average line current Total power Average oil temperature	e and load loss Tap 9B, HV to Before short-circuit tests 9993 V 152.80 A 63711 W 14.8 °C	After short-circuit tests 10722 V 163.57 A 72680 W 13.8 °C
Measurement of short-circuit impedance Tap 9B Average line voltage Average line current Total power Average oil temperature Reference temperature	e and load loss Tap 9B, HV to Before short-circuit tests 9993 V 152.80 A 63711 W 14.8 °C 75 °C	LV windings After short-circuit tests 10722 V 163.57 A 72680 W 13.8 °C 75 °C
Measurement of short-circuit impedance Tap 9B Average line voltage Average line current Total power Average oil temperature Reference temperature Load loss at reference temperature @ 66 MVA	e and load loss Tap 9B, HV to Before short-circuit tests 9993 V 152.80 A 63711 W 14.8 °C 75 °C 264270 W	After short-circuit tests 10722 V 163.57 A 72680 W 13.8 °C 75 °C 263711 W
Measurement of short-circuit impedance Tap 9B Average line voltage Average line current Total power Average oil temperature Reference temperature Load loss at reference temperature @ 66 MVA Impedance at reference temperature @ 66 MVA	e and load loss Tap 9B, HV to Before short-circuit tests 9993 V 152.80 A 63711 W 14.8 °C 75 °C 264270 W 37.76 Ω	After short-circuit tests 10722 V 163.57 A 72680 W 13.8 °C 75 °C 263711 W 37.85 Ω
Measurement of short-circuit impedance Tap 9B Average line voltage Average line current Total power Average oil temperature Reference temperature Load loss at reference temperature @ 66 MVA Impedance at reference temperature @ 66 MVA Percent impedance at reference temperature @ 66 MVA	e and load loss Tap 9B, HV to Before short-circuit tests 9993 V 152.80 A 63711 W 14.8 °C 75 °C 264270 W 37.76 Ω 14.30 %	After short-circuit tests 10722 V 163.57 A 72680 W 13.8 °C 75 °C 263711 W 37.85 Ω 14.34 %
Measurement of short-circuit impedance Tap 9B Average line voltage Average line current Total power Average oil temperature Reference temperature Load loss at reference temperature @ 66 MVA Impedance at reference temperature @ 66 MVA Percent impedance at reference temperature @ 66 MVA X/R ratio at reference temperature	e and load loss Tap 9B, HV to Before short-circuit tests 9993 V 152.80 A 63711 W 14.8 °C 75 °C 264270 W 37.76 Ω 14.30 % 35.71	After short-circuit tests 10722 V 163.57 A 72680 W 13.8 °C 75 °C 263711 W 37.85 Ω 14.34 % 35.87

Transformer Serial no. 2813612211001

Measurement of short-circuit impedance and load loss Tap 17, HV to LV windings

Тар 17	Before short-circuit tests	After short-circuit tests
Average line voltage	38961 V	9045 V
Average line current	165.93 A	167.28 A
Total power	72815 W	73500 W
Average oil temperature	14.8°C	13.8 °C
Reference temperature	75 °C	75 °C
Load loss at reference temperature @ 66 MVA	318464 W	317317 W
Impedance at reference temperature @ 66 MVA	31.18 Ω	31.22 Ω
Percent impedance at reference Temperature @ 66 MVA	14.58 %	14.60 %
X/R ratio at reference temperature	30.20	30.35
Date of Tests:	24 February 2023	28 February 2023

Photograph no.: P003

Transformer Serial no. 2813612211001

Measurement of no-load loss and current at 100 % rated voltage

		Before short-circuit tests		After short-circuit tests		
		U' mean scaled	U rms	U' mean scaled	U rms	
		rms		rms		
Line voltage	a-b	19217 V	19261 V	19232 V	19251 V	
	b-c	19004 V	19042 V	18958 V	19004 V	
	c-a	18977 V	18960 V	18962 V	18964 V	
	Average	19066 V	19088 V	19051 V	19073 V	
Line current	а	1.46 A	1	1.44 A	I	
	b	1.07 A		1.03 A		
	С	1.52 A		1.50 A		
	Average	1.35 A = 0.12 % of rated <i>I</i> _r @ 66		1.32 A = 0.11 % of rated I_{Γ} @ 66		
		MVA		MVA		
Total power	P _m	36727 W		37195 W		
Total power	Po	36685 W		37152 W		
Ambient condi	tions					
Ambient air temperature		14.4 °C		13.0 °C		
Oil average temperature		14.8 °C		13.8 °C		
Relative humidity		32 %		44 %		
Date of Tests:		24 February 202	3	28 February 2023		

Transformer Serial no. 2813612211001

Measurement of no-load loss and current at 90 % rated voltage

L						
		Before short-circuit tests		After short-circuit tests		
		U' mean scaled	U rms	U' mean scaled	U rms	
		rms		rms		
Line voltage	a-b	17289 V	17317 V	17330 V	17311 V	
	b-c	17067 V	17103 V	17072 V	17114 V	
	c-a	17105 V	17053 V	17070 V	17056 V	
	Average	17154 V	17158 V	17157 V	17160 V	
Line current	а	0.80 A	•	0.77 A		
	b	0.56 A		0.49 A		
	С	0.84 A		0.89 A		
	Average	0.73 A = 0.06 % of rated <i>I</i> _r @ 66		0.72 A = 0.06 % of rated <i>I</i> _r @ 66		
		MVA		MVA		
Total power	Pm	26490 W		26680 W	26680 W	
Total power	Po	26484 W		26675 W		
Ambient condi	tions					
Ambient air temperature		14.4 °C		13.0 °C		
Oil average temperature		14.8 °C		13.8 °C		
Relative humidity		32 %		44 %		
Date of Tests:		24 February 202	3	28 February 2023		

Transformer Serial no. 2813612211001

Measurement of no-load loss and current at 110 % rated voltage

		Before short-circuit tests		After short-circuit tests		
		U' mean scaled	U rms	U' mean scaled	U rms	
		rms		rms		
Line voltage	a-b	21103 V	21009 V	21182 V	20980 V	
	b-c	20973 V	20843 V	20919 V	20814 V	
	c-a	20795 V	20651 V	20776 V	20622 V	
	Average	20957 V	20834 V	20959 V	20805 V	
Line current	а	4.96 A		4.93 A		
	b	4.07 A		4.04 A		
	С	5.05 A		5.03 A		
	Average	4.69 A = 0.41 % of rated <i>I</i> _r @ 66		4.67 A = 0.41 % of rated <i>I</i> _r @ 66		
		MVA		MVA		
Total power	Pm	53730 W		54250 W		
Total power	Po	54045 W		54649 W		
Ambient condit	tions					
Ambient air temperature		14.4 °C		13.0 °C		
Oil average temperature		14.8 °C		13.8 °C		
Relative humidity		32 %		44 %		
Date of Tests:		24 February 202	3	28 February 2023		

Photograph no.: P004

Transformer Serial no. 2813612211001

Tests on on-load tap changers

The transformer was fitted with a MR 17 step type VVSIII400Y-76-10193W.

The control voltage of the tap-changer was 240 V/ 50 Hz.

The motor voltage of the tap-changer was 415 V/ 50 Hz.

The tap-changer was subjected to the following four sequences before and after the short-circuit withstand tests at 50 Hz.

The results are:

Sequence	Description	Result
a)	With the transformer de-energized, 8 complete cycles of operation were performed with the control circuit and motor energized at rated voltage	Passed
b)	With the transformer de-energized, 1 complete cycle of operation was performed with the control circuit and motor energized at 85% of rated voltage	Passed
c)	With the transformer energized at rated voltage, 1 complete cycle of operation was performed with the control circuit and motor energized at of rated voltage	Passed
d)	With the LV winding short-circuited and the HV winding energized with rated current flowing through the tapped winding, 10 cycles of tap changer operation were completed from tap 7 to 11. Tap 9B is the principal tap.	Passed

Date of Tests: 24 February and 28 February 2023

Leak testing with pressure for liquid immersed transformers (tightness test)

A pressure of 30 kPa over the normal liquid pressure was applied from the top oil tank with the transformer equipped with all bushings and radiator banks maintained for a period of 24 hours. After the test, there was no evidence of oil leakage.

Date of Tests: 02 to 03 March 2023

Transformer Serial no. 2813612211001

Check of the ratio and polarity of built-in current transformers

The transformer was fitted with the following built-in current transformers. The ratio and polarity were measured before and after the short-circuit withstand tests and the results are shown below:

Phase Code	Code	e Terminal	Terminal Current		Accuracy	Burden	Ra	itio	Polarity
		connection	n ratio d	class	VA	Before short- circuit	After short- circuit	Before /after short- circuit	
А	LRB-	1S1-1S2	400/1	5P20	20	400/0.988	400/0.990	Verified	
	132	2S1-2S2	400/1	5P20	20	400/0.989	400/0.986	Verified	
		3S1-3S2	400/1	5P20	20	400/0.986	400/0.992	Verified	
		4S1-4S2	400/1	0.2	10	400/0.989	400/0.985	Verified	
В	LRB-	1S1-1S2	400/1	5P20	20	400/1.012	400/1.005	Verified	
	132	2S1-2S2	400/1	5P20	20	400/0.987	400/0.984	Verified	
		3S1-3S2	400/1	5P20	20	400/1.008	400/1.002	Verified	
		4S1-4S2	400/1	0.2	10	400/1.010	400/1.007	Verified	
		5S1-5S2	400/2	0.2	10	400/2.009	400/2.013	Verified	
С	LRB-	1S1-1S2	400/1	5P20	20	400/0.986	400/0.991	Verified	
	132	2S1-2S2	400/1	5P20	20	400/0.989	400/0.993	Verified	
	3S1-3S2	400/1	5P20	20	400/1.002	400/1.006	Verified		
		4S1-4S2	400/1	0.2	10	400/1.006	400/0.997	Verified	
N	LRB-	1S1-1S2	400/1	5P20	20	400/0.987	400/1.011	Verified	
	72.5	2S1-2S2	400/1	5P20	20	400/0.989	400/0.984	Verified	
а	LRB-33	1S1-1S2	1600/1	5P20	20	1600/1.004	1600/1.013	Verified	
	LRB-33	2S1-2S2	1600/1	5P20	20	1600/1.008	1600/1.011	Verified	
	LRB-33	3S1-3S2	1600/1	5P20	20	1600/1.005	1600/0.993	Verified	
	LRB-33	4S1-4S2	1600/1	0.2	10	1600/1.007	1600/1.002	Verified	
b	LRB-33	1S1-1S2	1600/1	5P20	20	1600/1.009	1600/1.008	Verified	
	LRB-33	2S1-2S2	1600/1	5P20	20	1600/0.992	1600/0.989	Verified	
	LRB-33	3S1-3S2	1600/1	5P20	20	1600/0.991	1600/0.988	Verified	
	LRB-33	4S1-4S2	1600/1	0.2	10	1600/1.010	1600/0.997	Verified	

Transformer Serial no. 2813612211001

Check of the ratio and polarity of built-in current transformers (continued)

The transformer was fitted with the following built-in current transformers. The ratio and polarity were measured before and after the short-circuit withstand tests and the results are shown below:

Phase	Code Terminal Current Accuracy Burder		Burden	Ra	Polarity			
		connection	ratio	class	lass VA	Before short- circuit	After short- circuit	Before /after short- circuit
с	LRB-33	1S1-1S2	1600/1	5P20	20	1600/0.988	1600/0.984	Verified
	LRB-33	2S1-2S2	1600/1	5P20	20	1600/0.990	1600/0.986	Verified
	LRB-33	3S1-3S2	1600/1	5P20	20	1600/0.986	1600/1.006	Verified
	LRB-33	4S1-4S2	1600/1	0.2	10	1600/1.011	1600/1.015	Verified

Date of Tests: 22 and 27 February 2023

Transformer Serial no. 2813612211001

Measurement of d.c. insulation resistance between each winding to earth and between windings and check of core and frame insulation for liquid immersed transformers with core or frame insulation

The d.c. insulation resistances of the transformer were measured before and after the short-circuit withstand tests at 5000 V d.c.

The check of core and frame insulation for liquid immersed transformers with core or frame insulation were measured before and after the short-circuit withstand tests at 2500 V d.c.

Condition		Before s	short-circuit tests After short-circuit tests			ests	
		15 s	60 s	600 s	15 s	60 s	600 s
HV to LV, TV and Earth	MΩ	23300	28300	54800	30400	36800	75600
LV to HV, TV and Earth	MΩ	20100	26100	62400	33400	41100	96900
TV to HV, LV and Earth	MΩ	68800	71600	110000	87500	93800	131000
HV, LV to TV and Earth	MΩ	19900	24300	44300	30700	40400	69500
HV, LV and TV to Earth	MΩ	27900	38100	55000	36100	46400	74600
HV to LV	MΩ	-	42500	-	-	66000	-
LV to TV	MΩ	-	102000	-	-	157000	-
HV to TV	MΩ	-	79100	-	-	109000	-
Frame to Core and Earth	MΩ	-	16200	-	-	22300	-
Core to Frame and Earth	MΩ	-	14800	-	-	22000	-
Core to Frame	MΩ	-	18600	-	-	29000	-
Environment conditions				I	1	1	
Ambient air temperature		18.0 °C			13.5 °C		
Average oil temperature		18.3 °C		13.8 °C			
Relative humidity		43 %			43 %		
Atmospheric pressure		1011 hPa			1012 hPa		
Date of Tests:		22 February 2023 27 February 2023					

The results were:

HV : High voltage winding

LV : Low voltage winding

TV : Tertiary voltage winding

Date of tests: 22 February to 17 March 2023

Transformer Serial no. 2813612211001

Determination of capacitances windings-to-earth and between windings

The insulation system capacitances were measured at 10 kV 50 Hz before and after the short-circuit withstand tests. These measurements were made during the dielectric dissipation factor test.

Condition	Before short-circuit tests	After short-circuit tests				
	pF	pF				
HV to LV, TV and Earth	12480	12440				
LV to HV, TV and Earth	12440	12470				
TV to HV, LV and Earth	4823	4814				
HV, LV to TV and Earth	15100	15140				
HV, LV and TV to Earth	11460	11500				
HV to LV	4908	4885				
HV to TV	4187	4150				
Environment conditions						
Ambient air temperature	18.2 °C	13.5 °C				
Average oil temperature	18.0 °C	13.8 °C				
Relative humidity	35 %	31 %				
Atmospheric pressure	1001 hPa	1012 hPa				
Date of Tests:	22 February 2023	27 February 2023				

Transformer Serial no. 2813612211001

Measurement of dissipation factor (tan δ) of the insulation system capacitances

The dielectric dissipation factor of the transformer was measured before and after the short-circuit withstand tests at 10 kV, 50 Hz.

Condition	Before short-circuit tests	After short circuit tests
	Tan δ (%)	Tan δ (%)
HV to LV, TV and Earth	0.277	0.291
LV to HV, TV and Earth	0.270	0.287
TV to HV, LV and Earth	0.247	0.265
HV, LV to TV and Earth	0.272	0.286
HV, LV and TV to Earth	0.263	0.270
HV to LV	0.268	0.286
HV to TV	0.276	0.299
Environment conditions		
Ambient air temperature	18.2 °C	13.5 °C
Average oil temperature	18.0 °C	13.8 °C
Relative humidity	35 %	31 %
Atmospheric pressure	1001 hPa	1012 hPa
Date of Tests:	22 February 2023	27 February 2023

Photograph no.: P005
Transformer Serial no. 2813612211001

Measurement of dissolved gasses in dielectric liquid

During various stages of the testing process, oil samples were taken from the bottom of the main tank for electrical and chemical analysis. The results were:

Quantity	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7
Tan δ at 90 °C (%)	0.13	-	-	-	-	-	-
Electric strength (kV)	59.9	-	-	-	-	-	-
Water content (mg/L)	8.0	-	-	-	-	-	-
DGA (µL/L)				1	1		
Σсн	0.26	0.28	0.32	0.59	0.64	0.69	0.74
H ₂	0.00	0.00	0.73	1.52	1.55	1.59	1.66
СО	1.95	2.26	2.39	3.92	4.24	5.61	6.14
CO ₂	98.75	108.8	136.1	211.6	228.7	240.1	276.3
CH ₄	0.26	0.28	0.32	0.46	0.52	0.56	0.60
C ₂ H ₄	0	0	0	0.13	0.12	0.13	0.14
C ₂ H ₆	0	0	0	0	0	0	0
C ₂ H ₂	0	0	0	0	0	0	0
-	Before all the tests	Before short- circuit tests	After short- circuit tests	After dielectric tests	After ONAN temperatu re rise test	After ONAF temperatu re rise test	After long term no load loss test
Date of sample	21 Feb. 2023	24 Feb. 2023	25 Feb. 2023	01 Mar. 2023	02 Mar. 2023	03 Mar. 2023	04 Mar. 2023

Transformer Serial No. 22X015

Measurement of the power taken by the fan and liquid pump motors

The ratings of the fans were 415 V, 50 Hz, 3 phases. There were a total 8 sets of fans. The power taken by the fans was measured as follows:

Product	Туре	Series No.	Rated power	Measured		
				Average line	Average line	Power loss
				Voltage	Current	
			W	V	А	W
Fans	DBF- 7.3Q10	2301- 2207261204-03	420	418.2	1.33	532
		2301- 2204270101-19		418.2	1.39	543
		2301- 2207261204-02		418.3	1.29	506
		2301- 2207261204-05		418.2	1.31	530
		2301- 2207261204-01		418.3	1.28	516
		2301- 2207261204-06		418.2	1.29	506
		2301- 2207261204-04		418.3	1.30	531
		2301- 2204270101-20		418.1	1.35	545

Date of Tests: 15 March 2023

Transformer Serial no. 2813612211001

Temperature rise type test

Total rated losses of the transformer for temperature-rise test at reference temperature 75°C in ONAN condition

Supply to the HV winding and short-circuit of the LV winding.

The total losses were equal to the sum of the load loss at reference temperature on tap 17 plus the noload loss at rated voltage in ONAN condition.

Test	Measured value
Load loss @ 75°C	203093 W
No-load loss	37152 W
Total loss @ 75°C	240235 W
Tapped current on Tap 17	256.6 A

a) Top oil temperature-rise

Average injected power during last hour of the test	= 240517 W
Total rated losses	= 240235 W
Average ambient temperature during last hour of total rated losses	= 14.6 °C
Top oil temperature during last hour of total rated losses, θ_0	= 59.9 °C
Top oil temperature rise during last hour of total rated losses	= 45.3 K
Average bottom oil temperature during last hour of total rated losses, θ_b	= 31.0 °C
Average oil temperature during last hour of total rated losses, θ_{OM}	= 45.4 °C
Average oil temperature rise during last hour of total rated losses	= 30.8 K

Corrected top oil temperature rise $\Delta \theta_0 = 45.3 \text{ x} (240235 / 240517)^{0.9} = 45.2 \text{ K}$

Corrected average oil temperature rise $\Delta \theta_{\text{OM}} = 30.8 \text{ x} (240235 / 240517)^{0.9} = 30.8 \text{ K}$

Top oil temperature rise: 45.2 K

Guaranteed limit: 60 K

Transformer Serial no. 2813612211001

Temperature rise type test (Continued)

External hot spot analysis

At the end of the injection of total losses an infrared scan was made on the transformer using a FLIR T840.

Hot spot location was on LV b phase turret.

Measured temperature:	64.0 °C
External ambient:	14.6 °C
Hot spot rise:	49.4 K

Photograph no.: P021

b) Winding temperature rise for the HV and LV windings

Average HV current during last hour of the test Rated HV current	= 256.6 A = 256.6 A
Temperatures extrapolated back to time of switch off,	
HV winding temperature	= 66.9 °C
LV winding temperature	= 75.1 °C
Average oil temperature at switch off	= 44.5 °C

Winding temperature rises above average oil temperature at switch offHV winding= 66.9 - 44.5 = 22.4 KLV winding= 75.1 - 44.5 = 30.5 K

Corrected winding temperature rise above average oil temperature:

Δθ _W HV	= 22.4 x (256.6/ 256.6) ^{1.6} = 22.4 K
Δθ _w LV	= 30.5 x (256.6/ 256.6) ^{1.6} = 30.5 K

Corrected average oil temperature rise during last hour of the test to Part a) = 30.8 K

HV winding temperature rise = 22.4 + 30.8 = 53.2 K LV winding temperature rise = 30.5 + 30.8 = 61.3 K

Guaranteed limit: 65 K

Transformer Serial no. 2813612211001

Temperature rise type test (Continued)

Summary of temperature rise test:

Top oil Temperature rise:	45.2 K	Limit 60 K
HV winding Temperature rise:	53.2 K	Limit 65 K
LV winding Temperature rise:	61.3 K	Limit 65 K

Result: The transformer satisfied the requirements of the standard in ONAN condition.

Photograph no.: P006

Date of Tests: 01 to 02 March 2023

Transformer Serial no. 2813612211001

Temperature rise type test

Total rated losses of the transformer for temperature rise test at reference temperature 75°C in ONAF condition

Supply to the HV winding and short-circuit of the LV winding.

The total losses were equal to the sum of the load loss at reference temperature on tap 17 plus the no load loss at rated voltage in ONAF condition.

Test	Measured value
Load loss @ 75°C	317317 W
No load loss	37152 W
Total loss @ 75°C	354469 W
Tapped current on Tap 17	320.8 A

a) Top oil temperature-rise

Average injected power during last hour of the test Total rated losses	= 350000 W = 354469 W
Average ambient temperature during last hour of total rated losses	= 16.9 °C
Top oil temperature during last hour of total rated losses, θ_0	= 59.1 °C
Top oil temperature rise during last hour of total rated losses	= 42.2 K
Average bottom oil temperature during last hour of total rated losses, θ_{b}	= 28.2 °C
Average oil temperature during last hour of total rated losses, θ_{OM}	= 43.6 °C
Average oil temperature rise during last hour of total rated losses	= 26.7 K

Corrected top oil temperature rise $\Delta \theta_0 = 42.2 \text{ x} (354469 / 350000)^{0.9} = 42.6 \text{ K}$

Corrected average oil temperature rise $\Delta \theta_{\text{OM}} = 26.7 \text{ x} (354469 / 350000)^{0.9} = 27.0 \text{ K}$

Top oil temperature rise: 42.6 K

Guaranteed limit: 60 K

Transformer Serial no. 2813612211001

Temperature rise type test (Continued)

External hot spot analysis

At the end of the injection of total losses an infrared scan was made on the transformer using a FLIR T840.

Hot spot location was on LV a phase turret.

Measured temperature:	68.0 °C
External ambient:	16.9°C
Hot spot rise:	51.1 K

Photograph no.: P022

b) Winding temperature rise for the HV and LV windings

Average HV current during last hour of the test Rated HV current	= 320.8 A = 320.8 A
Temperatures extrapolated back to time of switch off,	
HV winding temperature	= 71.0 °C
LV winding temperature	= 79.5 °C
Average oil temperature at switch off	= 42.4 °C

Winding temperature rises above average oil temperature at switch offHV winding= 71.0 - 42.4 = 28.6 KLV winding= 79.5 - 42.4 = 37.1 K

Corrected winding temperature rise above average oil temperature:

Δθ _W HV	= 28.6 x (320.8/ 320.8) ^{1.6} = 28.6 K
Δθ _W LV	= 37.1 x (320.8/ 320.8) ^{1.6} = 37.1 K

Corrected average oil temperature-rise during last hour of the test to Part a) = 27.0 K

HV winding temperature rise = 28.6 + 27.0 = 55.6 K LV winding temperature rise = 37.1 + 27.0 = 64.1 K

Guaranteed limit: 65 K

Transformer Serial no. 2813612211001

Temperature rise type test (Continued)

Summary of temperature-rise test:

Top oil Temperature rise:	42.6 K	Limit 60 K
HV winding Temperature rise:	55.6 K	Limit 65 K
LV winding Temperature rise:	64.1 K	Limit 65 K

Result: The transformer satisfied the requirements of the standard in ONAF condition.

Photograph no.: P007

Date of Tests: 02 March 2023

Transformer Serial no. 2813612211001

Determination of sound level at no-load excitation of the transformer- @ 1.0 m in ONAN condition

Test set up conditions

Height of transformer principal radiating surface	4.00 m
(including 0.9 m height test platform)	4.00 m
Sound level measurements made at	
1/3 height	1.93 m
2/3 height	2.97 m
Transformer length	7.62 m
Transformer width	5.31 m
Prescribed contour perimeter, <i>I</i> m	25.1 m
Measuring distance from prescribed contour	1.0 m
Distance between measuring points	0.96 m
Number of measurement points	30
Measurement point No. 1	HV A phase bushing, numbered anticlockwise
Environmental conditions	
Temperature	17.5 °C
Relative humidity	46 %
Atmospheric pressure	1011 hPa
Date of Tests:	03 March 2023

Evaluation of sound level under rated current and short-circuit voltage conditions		
Transformer rated power, S _r 52.8 MVA		
Reference power, S _p	1 MVA	
$L_{WA, Ir} = 39 + 18\log(S_{r}/S_{p})$	70	
Guaranteed sound power level	88	
Guaranteed – $L_{WA,Ir}$ 18 dB(A) > 10 dB(A)		

As $L_{WA, Ir}$ was more than 10 dB(A) below the guaranteed sound power level then the load current sound level measurements were not required.

Sound level measurements were performed in no-load conditions before the temperature rise test.

RECORD OF PROVING TESTS Laboratory Ref. No: B230035

TEST RESULTS

Transformer Serial no. 2813612211001

Determination of sound level at no-load excitation of the transformer- @ 1.0 m in ONAN condition (continued)

	Background Pressure Level - (<i>L_{bgAi})</i> dB(A)			
Test no.	Before the so	ound level test	After the sound level test	
	1/3 Height	2/3 Height	1/3 Height	2/3 Height
1	33.8	31.2	31.4	31.9
2	31.5	31.8	31.7	32.0
3	31.6	30.9	31.9	31.2
4	31.5	31.8	31.7	32.0
5	31.2	30.9	31.5	31.2
6	31.0	31.1	31.4	31.6
7	31.4	31.5	31.6	31.8
8	31.0	31.2	31.2	31.7
9	31.0	31.5	31.5	31.4
10	31.7	31.9	31.6	32.0
Average	31.5 (LbaA)	31.6 (1	baA)

	Sound Pressure Level		Sound Pressure Level		Sound Pressure Level	
Position no.	(L _{pAi})	(<i>L_{pAi}</i>) dB(A)		(<i>L_{pAi}</i>) dB(A)		
	1/3 Height	2/3 Height		1/3 Height	2/3 Height	
1	61.9	63.8	16	65.4	63.6	
2	65.9	66.0	17	63.4	64.5	
3	65.0	63.2	18	64.2	63.9	
4	64.5	63.5	19	62.2	63.2	
5	64.8	62.4	20	64.7	64.2	
6	63.6	63.6	21	68.9	69.0	
7	65.8	64.4	22	70.1	70.5	
8	63.4	63.5	23	71.0	71.2	
9	63.8	64.5	24	65.4	64.5	
10	65.2	66.2	25	63.8	62.9	
11	64.8	65.2	26	64.2	64.0	
12	65.4	64.2	27	63.8	64.0	
13	67.8	68.3	28	64.3	64.6	
14	68.2	67.2	29	65.0	64.9	
15	63.5	64.2	30	64.5	65.7	
Average	65.7 (<i>LpA0</i>)					

Transformer Serial no. 2813612211001

Determination of sound level at no-load excitation of the transformer- @ 1.0 m in ONAN condition (continued)

Calculation of sound pressure level and sound power level

Sound pressure level (LpA0)	65.7 dB(A)
Background (<i>LbgA</i>) before test	31.5 dB(A)
Background (<i>LbgA</i>) after test	31.6 dB(A)
Test acceptance	Results are valid as per Table 1 of IEC 60076-10
Prescribed contour perimeter	<i>L</i> _m = 28.9 m
Measurement surface	S = 118.49 m ²
Test chamber	$S_{\rm V} = 12902 {\rm m}^2$
	$A = \sum \alpha_i S_{Vi} = 2580.4 \text{ m}^2$
	A/S= 21.78 (>1)
	K = 10log (1+4/21.78) = 0.7 dB(A)

Guaranteed sound pressure under no-load conditions @ 1.0 m: 70 dB(A)

 $L_{pA} = 10lg(10^{0.1 L_{pA0}} - 10^{0.1 L_{bgA}}) - K = 65 dB(A)$

Guaranteed sound power limit under no-load conditions: 88 dB(A)

$$L_{WA} = \overline{L_{pA}} + 10 \lg \frac{S}{S_0} = 86 dB(A)$$

Date of Tests: 03 March 2023

Transformer Serial no. 2813612211001

Determination of sound level at no-load excitation of the transformer- @ 0.3 m in ONAN condition

Test set up conditions

Height of transformer principal radiating surface (including 0.9 m beight test platform)	4 00 m
Sound level measurements made at	
1/3 height	1.93 m
2/3 height	2.97 m
Transformer length	7.62 m
Transformer width	5.31 m
Prescribed contour perimeter, <i>I</i> m	23.5 m
Measuring distance from prescribed contour	0.3 m
Distance between measuring points	0.98 m
Number of measurement points	24
Measurement point No. 1	HV A phase bushing, numbered anticlockwise
Environmental conditions	
Temperature	17.5 °C
Relative humidity	46 %
Atmospheric pressure	1011 hPa
Date of Tests:	03 March 2023

Evaluation of sound level under rated current and short-circuit voltage conditions		
Transformer rated power, S _r 52.8 MVA		
Reference power, S _p	1 MVA	
$L_{WA, Ir} = 39 + 18\log(S_{r}/S_{p})$	70	
Guaranteed sound power level	88	
Guaranteed – $L_{WA,Ir}$ 18 dB(A) > 10 dB(A)		

As $L_{WA, Ir}$ was more than 10 dB(A) below the guaranteed sound power level then the load current sound level measurements were not required.

Sound level measurements were performed in no-load conditions before the temperature rise test.

RECORD OF PROVING TESTS Laboratory Ref. No: B230035

TEST RESULTS

Transformer Serial no. 2813612211001

Determination of sound level at no-load excitation of the transformer- @ 0.3 m in ONAN condition (continued)

	Background Pressure Level - (<i>L_{bgAi})</i> dB(A)			
Test no.	Before the so	ound level test	After the sound level test	
	1/3 Height	2/3 Height	1/3 Height	2/3 Height
1	33.8	31.0	31.5	32.4
2	31.6	31.9	31.5	31.7
3	31.5	30.8	31.2	31.0
4	30.6	31.4	30.9	31.2
5	32.1	31.3	31.9	31.4
6	30.9	31.6	31.0	31.7
7	30.1	31.3	30.5	31.2
8	31.4	31.6	31.2	31.5
9	31.0	30.6	31.2	30.8
10	30.9	32.1	30.8	32.0
Average	31.4 (LbaA)	31.4 (1	baA)

Sound Pressure Level			Sound Pressure Level		
Position no.	(<i>L_{pAi})</i> dB(A)		Position no.	(<i>L_{pAi})</i> dB(A)	
	1/3 Height	2/3 Height		1/3 Height	2/3 Height
1	63.2	65.7	13	65.7	63.0
2	64.0	61.2	14	64.5	61.8
3	64.5	62.1	15	67.5	65.6
4	64.4	66.2	16	66.9	65.2
5	66.8	61.4	17	65.6	65.1
6	67.9	67.2	18	62.6	62.4
7	71.2	73.7	19	63.2	63.4
8	71.5	72.2	20	61.9	62.4
9	71.0	72.0	21	68.2	70.0
10	71.1	70.8	22	71.2	70.4
11	69.3	70.0	23	65.4	64.3
12	65.7	63.5	24	63.5	63.6
Average	67.7 (LpA0)				

Transformer Serial no. 2813612211001

Determination of sound level at no-load excitation of the transformer- @ 0.3 m in ONAN condition (continued)

Calculation of sound pressure level and sound power level

Sound pressure level (LpA0)	67.7 dB(A)
Background (<i>LbgA</i>) before test	31.4 dB(A)
Background (<i>LbgA</i>) after test	31.4 dB(A)
Test acceptance	Results are valid as per Table 1 of IEC 60076-10
Prescribed contour perimeter	<i>L</i> _m = 23.5 m
Measurement surface	S = 79.9 m ²
Test chamber	$S_{\rm V} = 12902 {\rm m}^2$
	$A = \sum \alpha_i S_{\text{Vi}} = 2580.4 \text{ m}^2$
	A/S= 32.30 (>1)
	K = 10log (1+4/ 32.30) = 0.5 dB(A)

Guaranteed sound pressure under no-load conditions @ 0.3 m: 70 dB(A)

 $L_{pA} = 10lg(10^{0.1 L_{pA0}} - 10^{0.1 L_{bgA}}) - K = 67 dB(A)$

Guaranteed sound power limit under no-load conditions: 88 dB(A)

$$L_{WA} = \overline{L_{pA}} + 10 \lg \frac{S}{S_0} = 86 dB(A)$$

Date of Tests: 03 March 2023

Transformer Serial no. 2813612211001

Determination of sound level at no-load excitation of the transformer- @ 2.0 m in ONAF condition

Test set up conditions

Height of transformer principal radiating surface	4.00 m
(including 0.5 in height test platform)	
Sound level measurements made at	
1/3 height	1.93 m
2/3 height	2.97 m
Transformer length	7.62 m
Transformer width	5.31 m
Prescribed contour perimeter, <i>I</i> m	36.5 m
Measuring distance from prescribed contour	2.0 m
Distance between measuring points	0.99 m
Number of measurement points	37
Measurement point No. 1	HV A phase bushing, numbered anticlockwise
Environmental conditions	
Temperature	17.5 °C
Relative humidity	46 %
Atmospheric pressure	1011 hPa
Date of Tests:	03 March 2023

Evaluation of sound level under rated current and short-circuit voltage conditions				
Transformer rated power, S _r	66 MVA			
Reference power, S _p	1 MVA			
$L_{WA, Ir} = 39 + 18\log(S_{r}/S_{p})$	72			
Guaranteed sound power level	90			
Guaranteed – $L_{WA, Ir}$ 18 dB(A) > 10 dB(A)				

As $L_{WA, Ir}$ was more than 10 dB(A) below the guaranteed sound power level then the load current sound level measurements were not required.

Sound level measurements were performed in no-load conditions before the temperature rise test.

Transformer Serial no. 2813612211001

Determination of sound level at no-load excitation of the transformer- @ 2.0 m in ONAF condition (continued)

	Background Pressure Level - <i>(L_{bgAi})</i> dB(A)				
Test no.	Before the sound level test		After the sour	nd level test	
	1/3 Height	2/3 Height	1/3 Height	2/3 Height	
1	32.5	31.5	32.4	31.6	
2	32.8	33.0	32.7	32.9	
3	32.4	31.8	32.6	32.0	
4	30.8	31.5	32.4	32.1	
5	32.0	32.4	31.9	32.0	
6	32.6	32.8	32.1	32.2	
7	31.9	32.3	31.9	32.3	
8	31.8	32.5	32.2	32.0	
9	32.4	32.7	32.2	32.4	
10	33.0	32.8	32.6	32.7	
Average	32.3 (LbaA)	32.3 (1	baA)	

	Sound Pres	ssure Level		Sound Pressure Level		
Position no.	(<i>L_{pAi}</i>) dB(A)		Position no.	(L _{pAi}) c	IB(A)	
	1/3 Height	2/3 Height		1/3 Height	2/3 Height	
1	68.1	66.4	20	67.8	68.5	
2	67.1	66.5	21	68.4	68.6	
3	65.9	66.5	22	67.9	68.4	
4	66.8	67.0	23	65.4	65.6	
5	66.6	65.0	24	66.0	66.2	
6	65.8	66.5	25	65.2	65.4	
7	71.4	72.3	26	65.8	65.9	
8	67.0	68.2	27	66.2	66.0	
9	66.5	65.0	28	65.8	65.7	
10	68.7	68.8	29	65.8	65.9	
11	66.9	69.8	30	66.0	66.2	
12	66.1	65.6	31	66.2	66.4	
13	66.3	65.4	32	67.8	67.5	
14	66.2	67.2	33	67.9	68.0	
15	68.6	67.6	34	68.2	68.0	
16	67.1	67.4	35	66.5	67.0	
17	66.5	66.3	36	65.7	66.8	
18	69.5	66.1	37	67.2	66.5	
19	68.3	66.3	-	-	-	
Average	67.2 (LpA0)					

Transformer Serial no. 2813612211001

Determination of sound level at no-load excitation of the transformer- @ 2.0 m in ONAF condition (continued)

Calculation of sound pressure level and sound power level

Sound pressure level (LpA0)	67.2 dB(A)
Background (<i>LbgA</i>) before test	32.3 dB(A)
Background (<i>LbgA</i>) after test	32.3 dB(A)
Test acceptance	Results are valid as per Table 1 of IEC 60076-10
Prescribed contour perimeter	<i>L</i> _m = 36.5 m
Measurement surface	$S = 162.2 \text{ m}^2$
Test chamber	$S_{\rm V} = 12902 {\rm m}^2$
	$A = \sum \alpha_i S_{Vi} = 2580.4 \text{ m}^2$
	A/S= 13.86 (>1)
	K = 10log (1+4/ 13.86) = 1.1 dB(A)

Guaranteed sound pressure under no-load conditions @ 2.0 m: 70 dB(A)

 $L_{pA} = 10 lg(10^{0.1 L_{pA0}} - 10^{0.1 L_{bgA}}) - K = 66 dB(A)$

Guaranteed sound power limit under no-load conditions: 90 dB(A)

$$L_{WA} = \overline{L_{pA}} + 10 \lg \frac{S}{S_0} = 88 dB(A)$$

Date of Tests: 03 March 2023

Transformer Serial no. 2813612211001

Short-circuit withstand tests HV to LV windings, supply A-BC single-phase tests

Tapping voltage	-V	145200/ 33	145200/ 33000		
Тар		1			
Transformer HV impedance at 75 °C	-Ω/phase	47.40			
X/R ratio at 75°C		37.34			
Theoretical short-circuit phase currents:					
Asymmetrical peak - HV winding	-A	4350			
Average symmetrical - HV winding	-A	1706			
Asymmetrical peak - LV winding	-kA	19.14			
Average symmetrical - LV winding	-kA	7.51			
Peak factor		2.55			
Test no.	B230035-	S02-1	S02-2	S02-3	
Single-phase test supply connection		A-BC	A-BC	A-BC	
Applied 2 phase HV line voltage during short-circuit tests	-kV	113.4	109.3	108.9	
Duration	-S	0.25	0.25	0.25	
Asymmetrical peak HV winding phase current	-A	4557	4436	4511	
Symmetrical HV winding phase current	-A	1629	1579	1600	
Asymmetrical peak LV winding phase current	-kA	19.66	18.73	18.44	
Symmetrical LV winding phase current	-kA	7.07	6.79	6.78	
Percent change in reactance (%)	- A phase	0.01	0.01	0.02	
	- B phase	0.02	0.03	0.03	
	- C phase	0.01	-0.13	0.03	
Date of Tests: 24 March 2023					

Transformer Serial no. 2813612211001

Short-circuit withstand tests HV to LV windings, supply B-AC single-phase tests

Tapping voltage	-V	132000/ 33000		
Тар		9B	_	
Transformer HV impedance at 75 °C	-Ω/phase	37.76		
X/R ratio at 75°C		35.71		
Theoretical short-circuit phase currents:				
Asymmetrical peak - HV winding	-A	4922		
Average symmetrical - HV winding	-A	1930		
Asymmetrical peak - LV winding	-kA	19.69		
Average symmetrical - LV winding	-kA	7.72		
Peak factor		2.55		
Test no.	B230035-	S02-1	S02-2	S02-3
Single-phase test supply connection		B-AC	B-AC	B-AC
Applied 2 phase HV line voltage during short-circuit tests	-kV	102.4	102.1	101.9
Duration	-S	0.25	0.25	0.25
Asymmetrical peak HV winding phase current	-A	4904	4925	4914
Symmetrical HV winding phase current	-A	1792	1794	1795
Asymmetrical peak LV winding phase current	-kA	19.23	19.23	19.26
Symmetrical LV winding phase current	-kA	7.11	7.12	7.11
Percent change in reactance (%)	- A phase	0.03	0.01	0.02
	- B phase	0.13	0.16	0.16
	- C phase	-0.14	-0.16	-0.27
Date of Tests: 24 March 2023				

Transformer Serial no. 2813612211001

Short-circuit withstand tests HV to LV windings, supply C-AB single-phase tests

Tapping voltage	-V	118800/ 33000		
Тар		17		
Transformer HV impedance at 75 °C	-Ω/phase	31.18		
X/R ratio at 75°C		30.20		
Theoretical short-circuit phase currents:				
Asymmetrical peak - HV winding	-A	5314		
Average symmetrical - HV winding	-A	2084		
Asymmetrical peak - LV winding	-kA	19.13		
Average symmetrical - LV winding	-kA	7.50		
Peak factor		2.55		
Test no.	B230035-	S03-1	S03-2	S03-3
Single-phase test supply connection		C-AB	C-AB	C-AB
Applied 2 phase HV line voltage during short-circuit tests	-kV	91.1	89.6	89.5
Duration	-S	0.25	0.25	0.25
Asymmetrical peak HV winding phase current	-A	5447	5391	5380
Symmetrical HV winding phase current	-A	1985	1960	1962
Asymmetrical peak LV winding phase current	-kA	18.75	18.50	18.45
Symmetrical LV winding phase current	-kA	6.86	6.81	6.82
Percent change in reactance (%)	- A phase	-0.10	0.02	0.02
	- B phase	0.19	0.19	0.19
	- C phase	-0.39	-0.49	-0.39
Date of Tests: 24 March 2023				

Transformer Serial no. 2813612211001

After test B230035-S03-3 the reactance was re-measured on the relevant taps, as indicated below:

Тар	Phase	Change in reactance %	Note: The maximum allowable percentage
	A	0.03	circular concentric coils with wire in
1	В	0.03	accordance with clause 4.2.7.4 a) 5) of IEC
	С	-0.13	
	A	0.01	
9B	В	0.21	At the completion of the tests the maximum
	С	-0.22	change of the reactance measured was -0.39 %.
	A	0.02	
17	В	0.10	
	С	-0.39	

Photograph nos.: P015 to P020

Transformer Serial no. 2813612211001

Chopped wave lightning impulse test (LIC) on the LV line terminals

Chopped wave lightning impulse at LI 170/ LIC 187 kV on the LV winding. Standard lightning impulse wave shape: $1.2 \pm 30 \% / 50 \pm 20 \% \mu s$ negative impulses. Chopped impulse wave, chopped between 3 µs and 6 µs.

Terminal	Osc.	Type of Impulse	Test Voltage	Wave shape (µs)		Result	
tested	B230035-		kV	T1 [*]	T ₂	Tc	
	L001	1 reduced level full wave	-88.9	1.41	54.3	-	
	L002	1 full level full wave	-169.2	1.41	5.4	-	
с	L003	1 full level chopped wave	-185.8	1.41	-	3.6	Desert
	L004	1 full level chopped wave	-187.1	1.41	-	3.5	Passed
	L005	1 full level full wave	-170.1	1.41	54.0	-	
	L006	1 full level full wave	-170.1	1.41	54.6	-	
	L007	1 reduced level full wave	-88.7	1.42	55.7	-	
	L008	1 full level full wave	-169.9	1.43	55.5	-	
b	L009	1 full level chopped wave	-186.5	1.43	-	3.8	
	L010	1 full level chopped wave	-187.9	1.43	-	3.8	Passed
	L011	1 full level full wave	-170.1	1.43	55.4	-	
	L012	1 full level full wave	-168.5	1.42	55.4	-	
	L013	1 reduced level full wave	-90.7	1.43	55.6	-	
	L014	1 full level full wave	-169.0	1.43	55.3	-	
а	L015	1 full level chopped wave	-187.6	1.43	-	3.7	Passed
	L016	1 full level chopped wave	-187.2	1.44	-	3.8	
	L017	1 full level full wave	-168.8	1.43	55.1	-	
	L018	1 full level full wave	-169.8	1.43	55.0	-	

Chopped wave lightning impulse test (LIC) on the LV line terminals

Ambient conditions	
Temperature	13.9 °C
Relative humidity	29 %
Atmospheric pressure	1009 hPa
Date of Tests:	27 February 2023

There were no flashovers, punctures or voltage collapses, and there was satisfactory agreement between the reference impulse and those recorded at the full test voltage.

Result: The LV winding of the transformer passed the test with chopped wave lightning test (LIC) and complied with the requirements of clause 13.3 of the IEC 60076-3.

Transformer Serial no. 2813612211001

Lightning impulse test on a neutral terminal on the LV neutral terminal (LIN)

Full wave lightning impulse at LI 170 kV on the LV neutral terminal. Standard lightning impulse wave shape: $1.2 \pm 30 \% / 50 \pm 20 \% \mu$ s negative impulses The front time up to maximum of 13 µs

Terminal	Osc.	Type of Impulse	Test	ype of Impulse Test Wave shape (µs			(µs)	s) Result
tested	B230035		kV	т ₁	T ₂	т _с	-	
n	L019	1 reduced level full wave	-88.6	1.67	44.3	-		
	L020	1 full level full wave	-168.4	1.67	43.8	-	Passed	
	L021	1 full level full wave	-169.6	1.68	43.8	-		
	L022	1 full level full wave	-170.0	1.67	43.9	-		
Date of Tests: 27 February 2023								

The ambient conditions during the lightning impulse tests on LV neutral terminal were:

Ambient conditions	
Ambient air temperature	13.9 °C
Relative humidity	29 %
Atmospheric pressure	1009 hPa

There were no flashovers, punctures or voltage collapses, and there was satisfactory agreement between the reference impulse and those recorded at the full test voltage.

Result: The HV neutral terminal of the transformer passed the lightning impulse tests and complied with the requirements of clause 13.4 of the IEC 60076-3.

Transformer Serial no. 2813612211001

Chopped wave lightning impulse test (LIC) on the HV line terminals

Chopped wave lightning impulse at LI 650/ LIC 715 kV on the HV winding. Standard lightning impulse wave shape: $1.2 \pm 30 \% / 50 \pm 20 \% \mu s$ negative impulses. Chopped impulse wave, chopped between 3 µs and 6 µs.

Terminal	Osc.	Type of Impulse	of Impulse Test Voltage		shape (µs)	Result
tested	B230035-		kV	T ₁	T ₂	Tc	
	L023	1 reduced level full wave	-352.3	1.51	48.0	-	
в	L024	1 full level full wave	-647.8	1.51	48.2	-	
В	L025	1 full level chopped wave	-713.0	1.51	-	3.8	
Tap 9B	L026	1 full level chopped wave	-715.7	1.52	-	3.8	Passed
	L027	1 full level full wave	-650.7	1.52	48.3	-	
	L028	1 full level full wave	-650.8	1.53	48.4	-	
	L029	1 reduced level full wave	-353.1	1.51	46.1	-	
	L030	1 full level full wave	-652.4	1.55	46.4	-	
	L031	1 full level chopped wave	-718.0	1.55	-	4.0	
Tap17	L032	1 full level chopped wave	-717.5	1.55	-	3.7	Passed
	L033	1 full level full wave	-651.6	1.55	46.5	-	
	L034	1 full level full wave	-651.9	1.55	46.5	-	
	L035	1 reduced level full wave	-350.4	1.52	49.2	-	
А	L036	1 full level full wave	-647.1	.152	49.5	-	
	L037	1 full level chopped wave	-714.6	1.53	-	3.9	Passed
Tap 1	L038	1 full level chopped wave	-715.7	1.53	-	3.5	
	L039	1 full level full wave	-652.6	1.53	49.7	-	
	L040	1 full level full wave	-652.6	1.53	49.6	-	1

Ambient conditions	
Temperature	13.9 °C
Relative humidity	29 %
Atmospheric pressure	1009 hPa
Date of Tests:	27 February 2023

There were no flashovers, punctures or voltage collapses, and there was satisfactory agreement between the reference impulse and those recorded at the full test voltage.

Result: The HV winding of the transformer passed the test with chopped wave lightning test (LIC) and complied with the requirements of clause 13.3 of the IEC 60076-3.

Transformer Serial no. 2813612211001

Lightning impulse test on a neutral terminal on the HV neutral terminal (LIN)

Full wave lightning impulse at LI 250 kV on the HV neutral terminal. Standard lightning impulse wave shape: $1.2 \pm 30 \% / 50 \pm 20 \% \mu$ s negative impulses The front time up to maximum of 13 µs

Terminal	Osc.	Type of Impulse	Test	Wave	Result				
tested	B230035		kV	T ₁	T ₂	T _c	-		
	L041	1 reduced level full wave	-158.2	3.07	42.5	-			
N	L042	1 full level full wave	-248.6	3.05	42.5	-	Passed		
	L043	1 full level full wave	-252.3	3.07	42.5	-			
	L044	1 full level full wave	-251.6	3.07	42.6	-			
Date of Te	Date of Tests: 27 February 2023								

The ambient conditions during the lightning impulse tests on HV neutral terminal were:

Ambient conditions	
Ambient air temperature	13.9 °C
Relative humidity	29 %
Atmospheric pressure	1009 hPa

There were no flashovers, punctures or voltage collapses, and there was satisfactory agreement between the reference impulse and those recorded at the full test voltage.

Result: The HV neutral terminal of the transformer passed the lightning impulse tests and complied with the requirements of clause 13.4 of the IEC 60076-3.

Transformer Serial No. 2813612211001

Line terminal AC withstand voltage test (LTAC)

The line terminal AC withstand voltage test (LTAC) of the transformer was performed on tap 3 with a single-phase supply, 200 Hz from the LV winding with HV winding one phase open and the other two phases connected together left open and the neutral was connected to earth before and after short circuit tests.

Applied volta	ge (kV)	Inducted voltage (kV)		Test	Duration	Result
				frequency		
Terminal	Voltage	Terminal	Voltage			
an	41.6	A	275	200 Hz	30 s	Passed
bn	41.6	В	275	200 Hz	30 s	Passed
cn	41.6	С	275	200 Hz	30 s	Passed

Ambient conditions during Line terminal AC withstand voltage test (LTAC) were:

Ambient conditions	Before short-circuit tests	After short-circuit tests
Ambient air temperature	14.8 °C	13.8 °C
Relative humidity	32 %	36 %
Atmospheric pressure	1004 hPa	1009 hPa
Date of Tests:	24 February 2023	28 February 2023

RECORD OF PROVING TESTS Laboratory Ref. No: B230035

TEST RESULTS

Transformer Serial no. 2813612211001

Applied voltage test (AV)

The HV winding satisfactorily withstood 95 kV (PK $/\sqrt{2}$) before and after the short-circuit withstand tests, applied for 60 s between the HV terminals and the LV, TV terminals connected together with the tank and connected to earth.

The LV winding satisfactorily withstood 70 kV (PK $/\sqrt{2}$) before and after the short-circuit withstand tests, applied for 60 s between the LV terminals and the HV, TV terminals connected together with the tank and connected to earth.

The TV winding satisfactorily withstood 28 kV (PK $/\sqrt{2}$) before and after the short-circuit withstand tests, applied for 60 s between the TV terminals and the HV, LV terminals connected together with the tank and connected to earth.

Ambient conditions	Before short-circuit tests	After short-circuit tests
Ambient air temperature	14.8 °C	13.8 °C
Relative humidity	32 %	36 %
Atmospheric pressure	1004 hPa	1009 hPa
Date of Tests:	24 February 2023	28 February 2023

Ambient conditions during the applied voltage test (AV) were:

Photograph no.: P013

Insulation of auxiliary wiring (AuxW)

The auxiliary wiring and the control circuitry of the transformer withstood 2 kV a,c, applied for 60 s between the auxiliary wiring and the control circuitry terminals connected together and the tank.

The wiring for the built-in current transformers secondary windings withstood 2.5 kV AC applied for 60 s between the wiring and the tank.

The ambient conditions during the insulation of auxiliary wiring (AuxW) were:

Ambient conditions	Before short-circuit tests	After short-circuit tests
Ambient air temperature	1/ 8 °C	12 Q °C
	14.0 0	13.0 0
Pelative humidity	32 %	36 %
Relative numbury	32 70	30 70
Atmospheric pressure	1004 bPa	1009 hPa
Autosphene pressure	1004 111 4	1005 11 4
Date of Tests:	24 February 2023	28 February 2023
Date of Tests.	24 T CDTUATY 2020	201 051001 y 2020

Transformer Serial no. 2813612211001

Induced voltage withstand test (IVW)

The test voltage was applied to LV winding with the HV winding open-circuited, and de-energized tap changer was in tap 9B, the tests were carried out before and after the short-circuit withstand tests.

Line voltage applied to LV winding (kV r.m.s.)	Induced voltage in HV winding (kV r.m.s.)	Induced factor	Frequency (Hz)	Duration (s)	Result
66	264	2	200	30	Withstood

Ambient conditions during the induced voltage withstand test were:

Ambient conditions	Before short-circuit test	After short-circuit test
Ambient air temperature	14.8 °C	13.8 °C
Relative humidity	32 %	36 %
Atmospheric pressure	1004 hPa	1009 hPa
Date of Tests:	24 February 2023	28 February 2023

Transformer Serial no. 2813612211001

Induced voltage test with partial discharge measurement (IVPD) before and after the shortcircuit withstand tests.

The LV winding of the transformer was energized from a three-phase, 200 Hz.

The HV winding was set on tap 9B with the neutral terminal earthed.

The partial discharges were monitored on the HV bushings continuously throughout the test.

	Test Voltage			F	artial D	ischaro	e Meas	uremer	nt
Specified	Winding '	Voltage(kV)				(p	, C)		
Voltage	HV	LV	Test	Before	e short-	circuit	After	short-c	ircuit
	(phase to	(phase to	Duration		tests			tests	
	earth)	earth)	Duration	A	В	С	Α	В	С
0.4 <i>U</i> r/√3	30.5	7.6	-	9	10	11	20	20	20
1.2 <i>U</i> _r /√3	91.5	22.9	1 min	12	15	15	20	30	50
1.58 <i>U</i> r/√3	120.4	30.1	5 min	20	25	20	30	40	50
1.8 <i>U</i> r/√3	137.2	34.3	30 s	-	-	-	-	-	-
			5 min	25	30	35	40	60	110
			10 min	25	30	35	50	60	110
			15 min	25	30	35	40	60	110
			20 min	25	40	35	40	60	110
			25 min	25	40	40	40	60	110
1.58 <i>U</i> r/√3	120.4	30.1	30 min	30	40	40	40	60	110
			35 min	30	40	40	40	60	110
			40 min	30	40	45	40	60	110
			45 min	30	40	45	40	60	110
			50 min	30	40	45	40	60	110
			55 min	30	50	45	40	60	110
			60 min	30	50	45	40	60	110
1.2 <i>U</i> r/√3	91.5	22.9	5 min	20	30	40	20	20	90
0.4 <i>U</i> _r /√3	30.5	7.6	-	9	15	15	20	20	90

Ambient conditions	Before short-circuit	After short-circuit
	tests	tests
Ambient air temperature	14.8 °C	13.8 °C
Relative humidity	32 %	36 %
Atmospheric pressure	1004 hPa	1009 hPa
Date of Tests:	24 February 2023	28 February 2023

Result: The test was successful. There was no collapse of the test voltage and the PD levels recorded during the PD measurement voltage period did not exceed 250 pC. The PD level measured at a level of $1.2U_r/\sqrt{3}$ after the PD measurement voltage period did not exceed 100 pC.

Transformer Serial no. 2813612211001

Inspection

Following the completion of all tests the transformer was de-tanked and examined.

There was no visible damage to the structural integrity, the windings or the core.

Therefore, the transformer complied with the requirements of IEC 60076-5 clause 4.2.7.4 a) 3).

Date of final Inspection: 17 March 2023

Summary Clause 4.2.7.4.a) of IEC 60076-5

Transformer Category II

- 1. The results of the short-circuit withstand tests and the measurements and other checks during the tests did not reveal any faults.
- 2. The dielectric tests and the other routine tests were successfully repeated.
- 3. The inspection was satisfactory.
- 4. There were no traces of any electrical discharge.
- 5. The maximum change in reactance as a result of the short-circuit withstand tests did not exceed the specified limit.

Result: The transformer passed the short-circuit withstand tests.

Transformer Serial No. 2813612211001

Determination of transient voltage transfer characteristics

A low voltage impulse was applied between phase A of the HV terminal and neutral, and phase a of LV winding terminals and neutral were measured.

Applied voltage terminal	Applied voltage V	Test terminals	Resistance between a and n	Test voltage
				V
A-N	100	a-n	50 Ω	1.589
Tap 9B		a-n	100 Ω	2.934
		a-n	200 Ω	5.281
		a-n	300 Ω	7.005
		a-n	400 Ω	8.388
		a-n	800 Ω	12.320
		a-n	Open circuit	20.410

Date of Tests: 16 March 2023

Transformer Serial no. 2813612211001

Measurement of zero-sequence impedance on three-phase transformer

Test supply terminals	N – ABC	N – ABC	abc-n	abc-n
Short-circuit terminals	-	abc-n	-	
Open-circuit terminals	abc-n	-	N – ABC	N – ABC
Test Voltage, U	2137.0 V	795.6 V	229.6 V	90.4 V
Test Current, I	107.82 A	113.77 A	103.86 A	114.95 A
Тар	9B	9B	9B	9B
Test Current / phase	35.94 A	37.92 A	34.62 A	38.82 A
Z ₀ = 3 U/I	59.460 Ω	20.987 Ω	6.633Ω	2.360Ω
Ambient air temperature		12.2 °C		
Oil average temperature		12.3 °C		

Photograph no.: P019

Date of Tests: 13 March 2023

Transformer Serial No. 2813612211001

Vacuum deflection test for liquid immersed transformers

13 reference measuring points were selected as close as possible to the points on the tank where the maximum deflection under vacuum was expected, taking into account the expected deflection. Refer to Figure 3 for detail. The distances from the reference points to the tank wall in a direction approximately normal to the tank were measured and recorded.

A vacuum pressure (absolute pressure ≤ 0.133 kPa) as specified by the client was applied to the transformer for 30 min with the radiator banks and the distances between the reference points and the tank wall measured again. The maximum difference between these measurements and the 1st measurements was the deflection under vacuum. The vacuum was then reduced back to the originally established level and a 3rd measurement of the distances was taken. The maximum difference between these measurements deflection.

Measure point	The value before test (mm)	The value during test (mm)	The value after the test (mm)	Elastic deformation value	Permanent deflection (mm)
D01	300	211	300	(mm) 11	· ,
FUI	300	511	300	11	0
P02	286	300	286	14	0
P03	272	288	272	16	0
P04	302	309	302	7	0
P05	245	253	245	8	0
P06	294	304	294	10	0
P07	296	308	296	12	0
P08	319	330	319	11	0
P09	503	511	503	8	0
P10	491	500	491	9	0
P11	256	265	256	9	0
P12	262	270	262	8	0
P13	270	279	270	9	0

The selected measuring points and the measurements are shown in the following table.

Result: No visible deformation of the flanges, no weld or stiffener cracks and the permanent deflection after the vacuum was released was not more than 1 mm. The transformer complied with the requirement of the standard.

Date of Tests: 17 March 2023

Transformer Serial No. 2813612211001

Pressure deflection test for liquid immersed transformers

The transformer was fully assembled with radiator banks, tank welded and conservator, and filled with oil, the pressure was applied by compress air.

13 reference measuring points were selected as close as possible to the points on the tank where the maximum deflection under pressure was expected, taking into account the expected deflection. Refer to Figure 3 for detail. The distances from the reference points to the tank wall in a direction approximately normal to the tank were measured and recorded.

A pressure of 65 kPa over the normal operational pressure as specified by the client was applied, and the distances between the reference points and the tank wall measured again. The maximum difference between these measurements and the 1st measurements was the deflection under pressure. The pressure was then released, after being held at the required level for 30 minutes and a 3rd measurement of the distances was taken. The maximum difference between these measurements and the 1st measurement deflection.

Measure point	The value	The value	The value	Elastic	Permanent
	before test	during test	after the test	deformation	deflection
	(mm)	(mm)	(mm)	value (mm)	(mm)
P01	265	261	265	4	0
P02	254	250	253	4	1
P03	241	237	240	4	1
P04	246	243	245	3	1
P05	267	264	266	3	1
P06	227	225	227	2	0
P07	239	236	238	3	1
P08	254	249	254	5	0
P09	270	268	269	2	1
P10	213	212	213	1	0
P11	254	252	254	2	0
P12	242	240	241	2	1
P13	256	255	256	1	0

The selected measuring points and the measurements are shown in the following table.

Result: No visible deformation of the flanges, no weld or stiffener cracks, no oil leaks, and the permanent deflection after the pressure was released was not more than 1 mm. The transformer complied with the requirements of the standard.

Date of Tests: 16 March 2023

Transformer Serial no. 2813612211001

Measurement of frequency response (Frequency Response Analysis or FRA)

A frequency response analysis (FRA) was made on the transformer on each winding by a MEGGER sweep frequency response analyzer, model No. FRAX-99.

The results are reported for information only as they are a signature of the transformer windings and are not classified as a rating.

Terminals Tested	Test condition		FRA Oscillogram No.		
	Тар	Short circuited	Open circuited	Before short- circuit tests	After short-circuit tests
A-N	1	-	Other terminals	B230035-FRA01	B230035-FRA11
B-N	1	-	Other terminals	B230035-FRA02	B230035-FRA12
C-N	1	-	Other terminals	B230035-FRA03	B230035-FRA13
A-N	9B		Other terminals	B230035-FRA04	B230035-FRA14
B-N	9B		Other terminals	B230035-FRA05	B230035-FRA15
C-N	9B		Other terminals	B230035-FRA06	B230035-FRA16
a-b	-	-	Other terminals	B230035-FRA07	B230035-FRA17
b-c	-	-	Other terminals	B230035-FRA08	B230035-FRA18
с-а	-	-	Other terminals	B230035-FRA09	B230035-FRA19
wc-wa			Other terminals	B230035-FRA10	B230035-FRA20

Date of Test: 24 February and 15 March 2023

Transformer Serial no. 2813612211001

Electromagnetic compatibility (EMC) – RIV

The transformer was in a clean condition, and the HV terminal was shielded to prevent spurious discharges.

The measuring frequency was to 1.0 MHz.

The rated voltage $U_{\rm m}$ = 145 kV

The voltage applied on the HV terminal, and HV terminals A, B and C on tap 1 were measured separated.

Required value	HV Test voltage kV	Test value (dB)		
		Α	В	С
1.1 Um/√3	92.09	53.0	52.0	52.0

The ambient conditions during the test were:

Ambient air temperature	17.5 °C
Relative humidity	37 %
Atmospheric pressure	1004 hPa

Date of tests:04 March 2023
Transformer Serial no. 2813612211001

Measurement of the no-load voltage and current characteristics

Required value	Applied average mean voltage (kV)	Measured average current (A)
0.5 <i>U</i> r	9.530	0.315
0.6 <i>U</i> r	11.434	0.373
0.7 <i>U</i> r	13.337	0.442
0.8 <i>U</i> r	15.251	0.539
0.9 <i>U</i> r	17.145	0.720
0.95 <i>U</i> r	18.111	0.929
1.0 <i>U</i> r	19.057	1.324
1.05 <i>U</i> r	20.000	2.233
1.1 <i>U</i> r	20.959	4.667
1.15 <i>U</i> r	21.922	9.963

Date of Tests: 03 March 2023

Transformer Serial no. 2813612211001

Measurement of the harmonics of the no load current at 100 % rated voltage

Series	I _a (% H01)	I _b (% Н01)	I _C (% H01)
1	100.00	100.00	100.00
2	0.31	1.05	0.41
3	16.81	32.42	7.99
4	0.23	0.74	0.30
5	34.55	35.40	30.03
6	0.23	0.68	0.17
7	17.38	17.18	14.92
8	0.10	0.32	0.17
9	0.89	3.25	1.48
10	0.11	0.27	0.15
11	3.33	3.52	3.14
12	0.21	0.27	0.19
13	1.72	1.90	1.72
14	0.12	0.14	0.20
15	0.19	0.07	0.32
16	0.17	0.16	0.10
17	0.77	0.77	0.66
18	0.06	0.16	0.12
19	0.78	0.68	0.49
20	0.07	0.20	0.12

Dates of Tests: 28 February 2023

Transformer Serial no. 2813612211001

Transition resistance measurement on on-load tap-changers

The transformer was fitted with a 17 step MR tap-changer type VVSIII400Y-76-10193W.

The transition resistances were measured phase by phase by a Baoding Jindyuan on-load tap-changer tester model no. JYK-I with the tap-changer switched from tap 5 to tap 6 and from tap 6 to tap 5. The results are as shown below:

Tap change	Transition duration (ms)		Transition resistance (Ω)			
direction	Phase A	Phase B	Phase C	Phase A	Phase B	Phase C
5 to 6	59.0	59.0	59.0	1.8	1.8	1.8
6 to 5	73.2	73.2	73.2	1.9	1.9	1.9

Dates of Tests: 22 February 2023

Measurement of the long-time no-load voltage test

The test was performed by applying 1.1 times rated voltage as per clause 11.5 of IEC 60076-1 and maintained for 12 hours and then the DGA test (refer to the Measurement of dissolved gasses in dielectric liquid test) was performed.

Date of Tests: 03 to 04 March 2023

Transformer Serial No. 2813612211001

Determination of capacitances and dissipation factor (tan δ) of the bushings

Condition	Capacitances	Dissipation factor
	pF	Tan δ (%)
Neutral N	391.2	0.306
Phase A	308.5	0.281
Phase B	311.0	0.279
Phase C	307.9	0.269
Environment conditions		
Ambient air temperature	16.5 °C	
Average oil temperature	16.9 °C	
Relative humidity	38 %	
Atmospheric pressure	1014 hPa	
Date of Tests:	23 February 2023	

Figure 1

 $0.02 \, \text{s/div}$

ASTA

Page 75 of 109

B230035-S01-1

0.02s/div

ASTA

Page 76 of 109

B230035-S01-2

B230035-S01-3

ASTA

Page 77 of 109

B230035-S02-1

B230035-S02-2

B230035-S02-3

0.02s/div

B230035-S03-1

ГA

AS1

B230035-S03-3

Terrelationses LI: Phase N tap 1 (B230035L43) No: 64625 0037	BH-600086h LI: Phase N tap 1 (B230035-L44) No: 64626 1000 000
B230035-L043	B230035-L044

B230035-FRA03

Date of tests: 22 February to 17 March 2023

B230035-FRA20

Photo No.: P001

ASTA Page 107 of 109

ASTA

carried out before the main body assembly, that is, the low, high and voltage regulating colls shall be assembled tagether according to this drawing. Be taght, and the high part encossion by the constraint, and the comparison shall be assembled as required. Is alseed, paul the high voltage cal and straighten it and, and then wrap the insulation for fall on each side. A cal insert instance and straighten it and, and then wrap the insulation for fall on each side. If the high voltage cal can be and straighten it and, and the transmission for fall on each side. If a fast instance and and straighten it and, and the transmission for fall on each side. If is testened with high strained can be and the actual siluation, and the comings are equipped with openings. It is testened with high strainedge belt. If is testened with high strainedge belt. In the appendence of particular dual be straigered more than two gears' distunce into core, the tightness can be adjusted according to the 0.1 poper cylinder	Schematic diagram of pallet placement	33 E040103 White cloth band 0.1×16 1 0.xxs. white anoth band S 32 E040104 High shrinkage insulation strip 0.28×25 1 LDMS ligh shrinks fishling tight S 31 BBT.123.1203 corrupated cardboard x Kax R20×66 x60 3 0.023 0.069	30 8T.760.3005.1 Backing board 700×170 4 15 paperboard 100/40^2.14 8.56 29 5.711.2930.24 Iron yoke insulation 3 3.96 11.88 28 8T.751.3008.5 Daberboard 3008×963 6 1 5.48 20.88	27 8T.123.3018.6 Stay strip 960 72 7 7 7 7 7 7 7 7 23 23 23 23 23 23 25 6 1 100/00/03 3.57 21.42	25 8T.751.3008.5 paperboard 3121×963 6 1 paperboard 3.61 21.66 74 8.123.2930.22 Stav strin 14.4 2 2.0.48 69.12	23 8.090.2930.24 Supporting board 1 30.Laminated wood -3 14.2 <th12.2< th=""> <th12.2< th=""> 14.2<th>ZZ OCCURATION Software <th< th=""><th>zv zv zv zv zv v.zv lo.go <thl>lo.go <thlo.go< th=""> <thlo.go< th=""></thlo.go<></thlo.go<></thl></th><th>18 0.1.12.3.010.24 STAP SUX1 12 3<th>16 81.7513008.5 paperboard 4025×950 6 1 paperboard 100/00 4.59 27.54 1c 8173 2030 31 C122 x 210 C122 x 210<th>12 0.12.2.2.2.0.2.1 31.49 51119 14 51.759.3002.1 Angle ring 1264×1390×5 3 Sulfate pulp 2.04 6.12 23 51.759.3005.7 Lanuelsing Andrewoon VERNAM 0</th><th>12 5T.759.3002.4 Antiangular ring 1138×1250×5 3 Sulfate pulp 1.9 5.7</th><th>11 51.711.3005.7 Iron yoke insulation 1008x1206x15x60x45 6 3.63 21.78 10 57.759.3007.1 Annole ning of \$x1716x5 3 5.11.21 7.08 5.71</th><th>9 51.759.3002.1 Angle ring 958×1078×5 3 Sulfate pulp 1.53 4.59</th><th>8 8.090.2930.23 Auxiliary platen 1 40 Laminated wood -3 14.2 14.2 14.2 7 8.959.2930.21 Press nail base 28 75 round steel 0235 0.1 2.8</th><th>6 C02011242 Blackened thin nut M42 28 GB/T 6172.1 0.252 7.056</th><th>5 81.900.3006.2 Press nail M42×160 28 1.6 44.8 4 8.090.2930.21 Pressboard 1 60.1 minimited wood 3 230.5 230.5</th><th>3 51.759.2570.60 Corner Ring 728×926×5 (6) Sulfate pulp 20</th><th>z Distriction v zion <thzion< th=""> <thzion< th=""> zion <thz< th=""><th>NO. Code Name QTY Material Each Total F</th><th>SFZ-66000/132 5.700.2930</th><th>Market Back date Statution Date Active Date Date</th><th>theder 2253 Mentuper 2022/12/5 Active part insulation Zhejjang Jiangshan Transform Auditer 26,2,26 Date 2022/12/5 Active part insulation Zhejjang Jiangshan Transform</th></thz<></thzion<></thzion<></th></th></th></th<></th></th12.2<></th12.2<>	ZZ OCCURATION Software Software <th< th=""><th>zv zv zv zv zv v.zv lo.go <thl>lo.go <thlo.go< th=""> <thlo.go< th=""></thlo.go<></thlo.go<></thl></th><th>18 0.1.12.3.010.24 STAP SUX1 12 3<th>16 81.7513008.5 paperboard 4025×950 6 1 paperboard 100/00 4.59 27.54 1c 8173 2030 31 C122 x 210 C122 x 210<th>12 0.12.2.2.2.0.2.1 31.49 51119 14 51.759.3002.1 Angle ring 1264×1390×5 3 Sulfate pulp 2.04 6.12 23 51.759.3005.7 Lanuelsing Andrewoon VERNAM 0</th><th>12 5T.759.3002.4 Antiangular ring 1138×1250×5 3 Sulfate pulp 1.9 5.7</th><th>11 51.711.3005.7 Iron yoke insulation 1008x1206x15x60x45 6 3.63 21.78 10 57.759.3007.1 Annole ning of \$x1716x5 3 5.11.21 7.08 5.71</th><th>9 51.759.3002.1 Angle ring 958×1078×5 3 Sulfate pulp 1.53 4.59</th><th>8 8.090.2930.23 Auxiliary platen 1 40 Laminated wood -3 14.2 14.2 14.2 7 8.959.2930.21 Press nail base 28 75 round steel 0235 0.1 2.8</th><th>6 C02011242 Blackened thin nut M42 28 GB/T 6172.1 0.252 7.056</th><th>5 81.900.3006.2 Press nail M42×160 28 1.6 44.8 4 8.090.2930.21 Pressboard 1 60.1 minimited wood 3 230.5 230.5</th><th>3 51.759.2570.60 Corner Ring 728×926×5 (6) Sulfate pulp 20</th><th>z Distriction v zion <thzion< th=""> <thzion< th=""> zion <thz< th=""><th>NO. Code Name QTY Material Each Total F</th><th>SFZ-66000/132 5.700.2930</th><th>Market Back date Statution Date Active Date Date</th><th>theder 2253 Mentuper 2022/12/5 Active part insulation Zhejjang Jiangshan Transform Auditer 26,2,26 Date 2022/12/5 Active part insulation Zhejjang Jiangshan Transform</th></thz<></thzion<></thzion<></th></th></th></th<>	zv zv zv zv zv v.zv lo.go lo.go <thl>lo.go <thlo.go< th=""> <thlo.go< th=""></thlo.go<></thlo.go<></thl>	18 0.1.12.3.010.24 STAP SUX1 12 3 <th>16 81.7513008.5 paperboard 4025×950 6 1 paperboard 100/00 4.59 27.54 1c 8173 2030 31 C122 x 210 C122 x 210<th>12 0.12.2.2.2.0.2.1 31.49 51119 14 51.759.3002.1 Angle ring 1264×1390×5 3 Sulfate pulp 2.04 6.12 23 51.759.3005.7 Lanuelsing Andrewoon VERNAM 0</th><th>12 5T.759.3002.4 Antiangular ring 1138×1250×5 3 Sulfate pulp 1.9 5.7</th><th>11 51.711.3005.7 Iron yoke insulation 1008x1206x15x60x45 6 3.63 21.78 10 57.759.3007.1 Annole ning of \$x1716x5 3 5.11.21 7.08 5.71</th><th>9 51.759.3002.1 Angle ring 958×1078×5 3 Sulfate pulp 1.53 4.59</th><th>8 8.090.2930.23 Auxiliary platen 1 40 Laminated wood -3 14.2 14.2 14.2 7 8.959.2930.21 Press nail base 28 75 round steel 0235 0.1 2.8</th><th>6 C02011242 Blackened thin nut M42 28 GB/T 6172.1 0.252 7.056</th><th>5 81.900.3006.2 Press nail M42×160 28 1.6 44.8 4 8.090.2930.21 Pressboard 1 60.1 minimited wood 3 230.5 230.5</th><th>3 51.759.2570.60 Corner Ring 728×926×5 (6) Sulfate pulp 20</th><th>z Distriction v zion <thzion< th=""> <thzion< th=""> zion <thz< th=""><th>NO. Code Name QTY Material Each Total F</th><th>SFZ-66000/132 5.700.2930</th><th>Market Back date Statution Date Active Date Date</th><th>theder 2253 Mentuper 2022/12/5 Active part insulation Zhejjang Jiangshan Transform Auditer 26,2,26 Date 2022/12/5 Active part insulation Zhejjang Jiangshan Transform</th></thz<></thzion<></thzion<></th></th>	16 81.7513008.5 paperboard 4025×950 6 1 paperboard 100/00 4.59 27.54 1c 8173 2030 31 C122 x 210 C122 x 210 <th>12 0.12.2.2.2.0.2.1 31.49 51119 14 51.759.3002.1 Angle ring 1264×1390×5 3 Sulfate pulp 2.04 6.12 23 51.759.3005.7 Lanuelsing Andrewoon VERNAM 0</th> <th>12 5T.759.3002.4 Antiangular ring 1138×1250×5 3 Sulfate pulp 1.9 5.7</th> <th>11 51.711.3005.7 Iron yoke insulation 1008x1206x15x60x45 6 3.63 21.78 10 57.759.3007.1 Annole ning of \$x1716x5 3 5.11.21 7.08 5.71</th> <th>9 51.759.3002.1 Angle ring 958×1078×5 3 Sulfate pulp 1.53 4.59</th> <th>8 8.090.2930.23 Auxiliary platen 1 40 Laminated wood -3 14.2 14.2 14.2 7 8.959.2930.21 Press nail base 28 75 round steel 0235 0.1 2.8</th> <th>6 C02011242 Blackened thin nut M42 28 GB/T 6172.1 0.252 7.056</th> <th>5 81.900.3006.2 Press nail M42×160 28 1.6 44.8 4 8.090.2930.21 Pressboard 1 60.1 minimited wood 3 230.5 230.5</th> <th>3 51.759.2570.60 Corner Ring 728×926×5 (6) Sulfate pulp 20</th> <th>z Distriction v zion <thzion< th=""> <thzion< th=""> zion <thz< th=""><th>NO. Code Name QTY Material Each Total F</th><th>SFZ-66000/132 5.700.2930</th><th>Market Back date Statution Date Active Date Date</th><th>theder 2253 Mentuper 2022/12/5 Active part insulation Zhejjang Jiangshan Transform Auditer 26,2,26 Date 2022/12/5 Active part insulation Zhejjang Jiangshan Transform</th></thz<></thzion<></thzion<></th>	12 0.12.2.2.2.0.2.1 31.49 51119 14 51.759.3002.1 Angle ring 1264×1390×5 3 Sulfate pulp 2.04 6.12 23 51.759.3005.7 Lanuelsing Andrewoon VERNAM 0	12 5T.759.3002.4 Antiangular ring 1138×1250×5 3 Sulfate pulp 1.9 5.7	11 51.711.3005.7 Iron yoke insulation 1008x1206x15x60x45 6 3.63 21.78 10 57.759.3007.1 Annole ning of \$x1716x5 3 5.11.21 7.08 5.71	9 51.759.3002.1 Angle ring 958×1078×5 3 Sulfate pulp 1.53 4.59	8 8.090.2930.23 Auxiliary platen 1 40 Laminated wood -3 14.2 14.2 14.2 7 8.959.2930.21 Press nail base 28 75 round steel 0235 0.1 2.8	6 C02011242 Blackened thin nut M42 28 GB/T 6172.1 0.252 7.056	5 81.900.3006.2 Press nail M42×160 28 1.6 44.8 4 8.090.2930.21 Pressboard 1 60.1 minimited wood 3 230.5 230.5	3 51.759.2570.60 Corner Ring 728×926×5 (6) Sulfate pulp 20	z Distriction v zion zion <thzion< th=""> <thzion< th=""> zion <thz< th=""><th>NO. Code Name QTY Material Each Total F</th><th>SFZ-66000/132 5.700.2930</th><th>Market Back date Statution Date Active Date Date</th><th>theder 2253 Mentuper 2022/12/5 Active part insulation Zhejjang Jiangshan Transform Auditer 26,2,26 Date 2022/12/5 Active part insulation Zhejjang Jiangshan Transform</th></thz<></thzion<></thzion<>	NO. Code Name QTY Material Each Total F	SFZ-66000/132 5.700.2930	Market Back date Statution Date Active Date Date	theder 2253 Mentuper 2022/12/5 Active part insulation Zhejjang Jiangshan Transform Auditer 26,2,26 Date 2022/12/5 Active part insulation Zhejjang Jiangshan Transform
Technical requirements Technical requirements Technical requirements Technical requirements Technical requirements The color scenary shall be can the reading root assessed scenario Schematic diagram of coil outlet lead position \sqrt{x} $\frac{\alpha}{2}(x)$ $\frac{\beta}{2}(y)$ $\frac{c(z)}{2}$		$A \qquad A \qquad B \qquad C1-96 \sqrt{K} \qquad B \qquad C1-96 \sqrt{K} \qquad B \qquad C1-96 \sqrt{K} \qquad C \qquad $					250 160 160 250 140 14 14 14 14 14 14 14 14 14 14 14 14 14	 						740 41 ACTIMAL 250 (60160 250 41 ACTIMAL 740			The upper continuous unusual manufacture induction binding 1^{-1} upper contract manufaction binding 1^{-1} upper contract manufaction binding 1^{-1} upper contract manufaction binding 1^{-1} 1^{-1} 1^{-1} 1^{-1} 1^{-1}	$c \rightarrow 11.42$			1 mm Corrugated board	 Xiaoshi Gao,of Zhe jiang Jiangshan Transformer Co., Ltd certify that this drawing is a true representation of the apparatus tested. 	Signature:

Technical requirements: 1120mm²stranded wire TJR1 is used for HV A.B.C cable, with insulation of 10mm wrapped on one side 2. HV tap cable, 0-phase lead is 95mm² copper stranded wire TJR1, with side wrapped insulation of 4mm 3.All coil outgoing cables are arranged in an approximate circle, and the copper cable is filled and then cold pressed with the cold pressed pipe 4.All lead cables passing through the cable clamp shall be wrapped with insulation of 2mm on one side, and each side of the additional insulation shall extend 25mm out of the cable clamp; 5.Phase A, B and C lead cables shall be wrapped into a taper when entering the bushing, the taper length is 100mm

 (\Box)

百

(20)

42	87.570.3014.2	Reducing straight sleeve KSF95-70	6	Red copper T2	0.04	0.36	Cold pressing of each joint of tupping wire 1,9, k
41	87.570.3013.1	Straight sleeve KSF50	24	Red copper T2	0.03	0.72	Cold pressing the voltage regulari colds between 1 and 8
40	87.750.3008.10	Paperboard 60000×100	-	0.5 paperboard 100/00	J 3.48	3.48	
39	E02021404	Aluminum foil crepe paper	0	AL-FIL/30 Aluminum Foil crepe pap	ß		
38	E040104	High shrinkage insulating strip 0.28×25	0	0.28×25 High shrinkage insulating strip			
37	E02020903	Insulating crepe paper 0.05×25	0	0.05×25 Insulating crepe paper			
36	C020207	Nylon thin nut M16	35		0.002	0.07	
35	C020203	Nylon nut M16	35		0.002	0.07	
34	C0102310	Nylon bolt M16×140	9		0.037	0.222	
33	C0102309	Nylon bolt M16×130	25		0.034	0.85	
32	C0102308	Nylon bolt M16×120	4		0.031	0.124	
31	8.110.2930.44	Cable clamp	-	30 Laminated wood -3	1.5	2	
30	8.110.2930.41	Cable clamp	2	50 Laminated wood -3	5.28	10.56	
29	8.110.2930.40	Cable clamp	<u>, </u>	50 Laminated wood -3	5.28	5.28	
28	C0405050604	Blackened washer 12	18	GB/T 97.1	0.006	0.144	
27	C02010642	Blackened thin nut M12	18	GB/T 6172.1	0.006	0.108	
26	C02010641	Blackened nut M12	18	GB/T 6170	0.012	0.288	
25	C01010614304	Blackened bolt M12×85	18	GB/T 5783	0.08	1.92	
24	8.110.2930.43	Cable clamp	<u> </u>	30 Laminated wood -3	2	2	
53	8.110.2930.39	Cable clamp	-	50 Laminated wood -3	5.28	5.28	
22	87.570.3014.3	Reducing straight sleeve KSF120-95	21	Red copper T2	0.04	0.84	cóld pressing of each tup cuble 2.4 com
21	8T.516.3017.1	Paper wrapped copper stranded wire 115000	-	95 mc2 Bare capper stranded mire	97.23	97.23	HV tap and HV
20	87.110.3002.13	Cable clamp 395×25	4	50 Laminated wood -3	1.18	4.72	
19	8T.110.3002.20	Cable clamp 50	9	20 Laminated wood -3	0.06	0.36	
18	8.110.2930.6	Cable clamp	L	20 Laminated wood -3	0.43	3.01	
11	8.759.2930.1	Shield cap	4	pulp	1.42	5.68	
16	8T.110.3002.12	Cable clamp 345×25	9	50 Laminated wood -3	1.03	6.18	
5	81.570.3014.3	Reducing straight sleeve KSF120-95	m	Red copper T2	0.04	0.12	Cold pressing of HV phase outliet cut
14	81.516.3017.18	Paper wrapped copper stranded wire 10000	_	120 m2 Bare copper stranded mre	10.68	10.68	Unilateral wrapping 10
<u>ب</u>	8.110.2930.38	Cable clamp	-	50 Laminated wood -3	1.99	1.99	
12	8.110.2930.37	Cable clamp	- ·	50 Laminated wood -3	2.1	2.1	
1	51.516.3007.1	Clamp grounding lead cable	- ·		0.566	0.566	About 500m
20	2.1005.016.12 C CAAC ALL TO	Llamp grounding lead cable	- ^		0.3Z1	1.321 1.3E	About 500m
	C-200C-011-10	Ledute clamp Tahla clamn		50 Laminated wood -3	C +. V		
, L	70202020703	Rlackened washer 16	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C.D./T Q71	0 011	0 088	
. 9	C04022091	Blackened butterfly spring 34×16,3×1,5×2,4	, 16	GR/T 1972	0.006	0.096	
5	C02010741	Blackened nut M16	∞	GR/T 6170	0.029	0.232	
4	C01010711304	Blackened bolt M16×70	∞	GB/T 5783	0.124	0.992	
m	8.043.2930.5	OLTC support	-	12 steel plate 0235	29	29	
2	87.570.3017.8	Connection terminal KRF95-10	49	Red copper T2	0.09	4.41	
~	D0101323052041072	OLTC VVSI400Y/76-10193W	-	-	290	290	
N	Code	Name	QΤΥ	Material	Each Wei	Total ght	Remar
		SFZ-6600	0/1	32 5	.517.	293(.11
rker hie	reference file number Signal			Pattern markin	g Weight	Versio	ns Proportion
esigner	Stendard rev	never 2. Rt TV LEAU (, AD				
hecker	<u> ダま</u> の Markuper 基金文字 Date	2021/12/2		÷	-		-
	P-T-M	24441 141 2		/ hoursel			

Stan Paper wryped flexible capper structed wire-4 3500 z 2×150mm Paper wrapped flexible copper stranded wire-3 Z-X 1400 3000 U - U 2500 1800 p-b a-a 2800 0 24.0mm² Paper wrapped flexible copper stranded wire-3 W X – M X Leed cable length 2000 6000 W C – W C Lead cable

097

+

Technical requirements: 1.UV leads shall be made of 2 × 50mm flexible coper stranded wire, with 3mm wrapped on one side, 240mm flexible coper stranded cable for LV 0-phase lead, 4mm wrapped on one side, 95mm flexible copper stranded cable for HV 0-phase lead, and 4mm wrapped on one side. 2.All outgoing cables are arranged in an approximate circle, the copper cable shall be compacted before cold pressing with the 2.All outgoing cables are arranged in an approximate circle, the copper cable shall be compacted before cold pressing with the 2.All and read cable passing through the cable clamp shall be wrapped with insulation of 2mm on one side, and each side of the additional insulation shall extend 25mm out of the cable clamp. 4.HV Phase 0 lead cables shall be wrapped nito a taper when entering the bushing, the taper length is 100mm.

1

8

ingement draving of end inner oil baffe intervention int	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Idd hejdr of cachine kontension 218 (cakine kontension 218 (cakine kontension 213 (cakine kontension 214 215	21 E04.0103 White cloth band 0.1×16 1 0.1×16 write cloth band 20 E04.0104 High shrinkage insulating strip 0.28×25 1 L0%5 fish shrinkag strip 19 E02020903 Insulating crepe paper 0.05×25 1 L0%5 fish strinkage paper 18 5T.711.3005.7 Core yoke insulation 742×91(x-20×70×40 3 3.75 11.25 L0mink with age/link	16 8.711.2930.8 Outlet oil baffle 9 10 Opperboard 0.16 19.2 15 8.193.2930.8 Outlet oil baffle 9 10 Opperboard 0.16 19.2 14 8.193.2930.7 Cushion block 120 3 High-density paperboard 0.16 19.2 13 81.751.3006.2 Transposition pad block 240×25×31×10 120 10 Poperboard 00.14 16.8 11 81.751.3006.2 Transposition pad block 240×25×31×10 120 10 Poperboard 00.10 0.96 Minkin/Window 11 81.751.3006.2 Transposition pad block 240×25×31×10 120 10 Poperboard 00.10 0.96 Minkin/Window 11 81.751.3006.2 Transposition pad block 240×25×31×10 120 10 Poperboard 00.10 0.96 Minkin/Window 11 81.751.3006.2 Transposition pad block 240×25×31×10 120 10 Poperboard 100/100 0.96 Minkin/Window 10 B0109503050710 Transposition pad	9 8T.193.3009.1 Fan shaped pad 317.458×120×15 12 3 High-density paperbound 0.034 0.4.08 8 5T.711.3005.7 Core yoke insulation 742×9(4×14×70×40 3 2.71 8.13 kinkinkinkinkinkinkinkinkinkinkinkinkink	NU. COUE Nullie ULT Place Weight Relination NU. COUE NU. COUE Nullie SFZ-66000/132 6.600.2930.10 Mode Smoother Decimer Smoother Decimer Partern marking Weight Regintan Mode Mode Smoother Decimer Smoother Decimer Partern marking Weight Versions Proportion Decimer SMM Munder Smoother Zmoother Zhe jjang Jiangshan Transformer (o.,Ltd
Layout drawing of outer oil baffle 3 16 3 0 utlet binding schematic diagram 4 5 15 15 15 15 15 15 15 15 15 1	aining ring placement aining ring placement m m m m m m m m m m m m m m m m m m m	26 26 26 20 4 20 4 20 10 20 10 20 10 20 10 20 10 20 10 20 10 10 10 10 10 10 10 10 10 1	Outer diameter side of coll	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 braces evenly distributed	of Zhejiang Jiangshan Transformer Co., Ltd certify that a true representation of the apparatus tested. Signature:
Layout drawing of inner oil baffle M = 3 17 18 18 18 11 18 11 11 11	passage M J I5+1+15 Schematic diagram of oil flow direction and oil ret	passage N 1.5+1+1.5 passage N 1.5+1+1.5 heudetion continue N 1.5+1+1.5 heudetion continue N 1.5+1+1.5 heudetion continue N 1.5+1+1.5	Inner diameter side of coll	$\frac{M}{M} = \frac{3}{4.5 \times 1.5}$ Sketch of r a,b,c	erizlander dameter of paper steevel oritoiner dameter of paper steevel oritoiner dameter of paper steevel 19	 b(y) a(z) a(z) f) Xiaoshi Gao, this drawing is

d C wound lethward and phase B wound rightward. He coil shall be bound with lightening strip (bound at the interval of 1 gear), and the transposition shall be wrapped with insulation and padded with transposition paperboard, the constant pressure pressing force is 3Mpa, and the coll is not immersed in paint; right to the ectual span brace, and the coll is not immersed in paint; right to the ectual span brace, and the coulle not immersed in paint; right to the ectual span brace, and the coulle not the spanith can be replaced by redundant cushion blocks or trimmed with long cushion blocks. at the internal and external transposition according to the reaution meght requirements. Led to blod 4 cakes every other gear, and each 4 cakes from the north to the south cross one cake at the top and bottom.	Rated voltage 11 kV Phase current 666.6 A Rated capacity 66000 kVA Three-phase d Vector group Winding per set 3 Turns per winding 80 Graded per winding 42 Phase resistance 0.4172666 Model per set 3 Turns per winding 80 Vire-way Miner per winding 42 Phase resistance 0.4172666 Model per set 3 Turns per winding 80 Vire-way Vire-way Padding strip 5ize of winding Model per set 10ms per square Indiana Array Wire specification Length(m) Meight(kg) Meight(kg) Meight meter Meider Meight meter Meider N 12 1.32 22.322 0.1796 0.1796 0.1380 2.7	M 30 1 22 57 24 9.35 HNCI-0.55 BXIX3375 1261 0.1296 0.1380 4.2 Image: Strain stra	Induce w.c., w.c., w.c. w.c., y.c., w.c. Line Material Original line Original line Length 500 500 Eventsine fiver side 3mm	22 E04.0103 White cloth band 0.1×16 1 01×16 White cloth band 21 E04.0104 High shrinkage insulating strip 0.28×25 1 1006 My shring strip 0.1	ZV EVZ 22 20015 Insuranting treper paper uvu2.x1 Luncx1050000 C0008 L007 19 51.193.3001.5 Cushion block 53×21×16 14.4 0.008 1.097 18 81.711.3007.3 Inner oil baffle 640×689×8×15 72 1.0 Paperboard 100.000.021 1.4.76 Bagehendee 17 8.711.2930.10 Outer oil baffle 3 1.0 Paperboard 100.000.021 1.4.76 Bagehendee 16 8.193.2930.10 Cushion block 126 3.49-density paperboard 0.16 20.16	ID 0175.13006.2 ILansposition pad plate 180×30×215×9 I.2 3 liga-serecty pagerboard V.14 II.1.04 13 81.751.3006.2 Transposition pad plate 180×30×215×9 12 I.0 Pagerboard 100/000.003 0.044 Nonlinking 13 81.751.3006.2 Transposition pad plate 180×30×215×9 12 I.0 Pagerboard 100/000.003 0.044 Nonlinking 12 81.751.3006.2 Transposition pad plate 180×30×20×9 55 I.0 Pagerboard 100/000.003 0.19 Nonlinking 11 81.751.3006.2 Transposition pad plate 170×30×20×9 55 I.0 Pagerboard 100/000.003 0.19 Nonlinking 10 817.751.3006.2 Transposition pad plate 170×30×20×9 55 I.0 Pagerboard 100/00 0.03 0.19 Nonlinking 11 817.751.3006.2 Transposition pad plate 170×30×20×9 55 I.0 Pagerboard 100/00 0.03 0.178 Nonlinking 10 817.751.3006.2 Transposition pad plate 170×30×20×9 5 1 Pagerboard 100/00 0.03 0.178	7 5.711.2930.10 Core yoke insulation 6 3.79 22.74 6 8T.759.3001.2 Marrow edge anti-angle ring 138x59x10x9 4.8 1.0 Sulphate Plup0.006 0.288 5 8T.759.3001.1 Marrow edge positive angle ring 128x531x10x9 4.8 1.0 Sulphate Plup0.011 0.533 4 8T.123.3018.2 Brace strip 920 (72) 6 Paperboord<100/00 0.136 Marrowedge methods 3 8T.193.3018.7 Cushion block 53 4.000 15.4400 0.178 0.005 19.08 2 8T.133.3018.2 Brace strip 920 (72) 8 Paperboord<100/00 0.178 0.005 19.08 1 8T.103.3018.2 Brace strip 920 (72) 4 Paperboord<100/00 0.178 1.08 1 8T.770.3003.1 Insulation cylinder 1272x1280x920x4070 (3) 4 Paperboord<100/00 0.17.7	NO. Code Name QTY Material Code Weight Remark Monter terring Experiments Material Versions Proportion Monter terring Experiments Mindre Mindre Mindre Mindre Designer ### SFZ 66.600.2930.12 Proportion Mindre #### Mindre Mindre Mindre Designer ### Sinder terring W. Windre Auditier ### Sinder terring Mindre Mindre Auditier ### Sinder terring Koportion Mindre
Technical requirements: 1. Lots are continuous, with phases A and 1. Lots are continuous, with phases A and 2.4 cakes at the beginning and end of the 3.1 The solit pestimon are shift account of the second 3.1 The shift position counter the phase are un- $\frac{N}{N} = \frac{1}{3}$ $\frac{N}{N} = \frac{1}{3}$	N 15 N 15 M 15 M 15 Sage	<u>Μ</u> 1.5 <u>Μ</u> 1.5 <u>Μ</u> 1.5+1+1.5 <u>Μ</u> 1.5 1.5 1.5	sage	$\frac{N}{N} = \frac{3}{1.5}$ $\frac{N}{N} = \frac{1.5}{3}$ $\frac{N}{N} = \frac{3}{2}$ $\frac{N}{N} = \frac{3}{2}$ Coil outlet insulation binding		ic diagram of all flow direction and oil retaining ring placement	22 Duter all biffle	Outer diameter side of coil
42 41 40 40 40	39	24 23 21 29 20 20 20 20 20	12×M 13× 1.5 oil pas			s Dutlet binding schematic dagram Wy, WZ	meter of coil) er diameter) ohase - 6	ed.
Winding cake and oil passage arrangement 4.2 4.15 4.1 15 4.1 15	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24 M 15 23 M 15 21 M 15 21 M 15 115 19 M 15 15 15 15 15 15 15 15 15 15 15 15 15 1	12×M 13×1.5 oil passage	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 13 14 15 16	Sketch of number of turn a phase 80 $\frac{6}{24}$ WX, w0, wC chase 80 $\frac{6}{24}$ WX	Bisource dameter of paper steevel ϕ 1380/Outer dial Tainer dameter of paper steevel ϕ 1380/Outer dial Tainer dameter of paper steevel ϕ 1296/Coil inne 23 24 1 2 3 4 5 6 7 7 1 2 2 2 3 24 9 6 7 7 1 2 2 2 3 24 9 7 1 2 2 2 2 3 24 9 7 1 2 2 2 2 3 24 9 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	of Zhejiang Jiangshan Transformer Co., Ltd co a true representation of the apparatus test Signature:

