ANEXA 2
Utilajul, echipamentul tehnologic: TEAVA PE100 RC TYPE 2 - TRIPLUSTRAT

Nr . crt.	Specificatii tehnice impuse prin Caietul de sarcini	Corespondenta propunerii tehnice cu specificatiile tehnice impuse prin Caietul de sarcini	Producator
0		2	3
1	Parametrii tehnici si functionali: - Mediu de lucru: retele apa potabila; - Diametrul: D50 \div D90. Material: PE100 RC: - SDR: 17; - Presiunea nominala: PN10; - Rezistenta minima admisibila: $10,0 \mathrm{MPa}$; - Presiune hidrostatica pe termen lung la $20-\mathrm{C}$: minim 8.0 MPa. Material: PE100: - SDR: 17; - Presiunea nominala: PN10; - Rezistenta minima admisibila: 10,0 MPa; Presiune hidrostatica pe termen lung la 20†C: minim 8.0 MPa.	Parametrii tehnici si functionali: - Mediu de lucru: retele apa potabila; - Diametrul: D50 \div D90. Material: PE100 RC: - SDR: 17; - Presiunea nominala: PN10; - Rezistenta minima admisibila: 10,0 MPa; - Presiune hidrostatica pe termen lung la 20fC: minim 8.0 MPa. Material: PE100: - SDR: 17; - Presiunea nominala: PN10; - Rezistenta minima admisibila: $10,0 \mathrm{MPa}$; Presiune hidrostatica pe termen lung la $20+\mathrm{C}$: minim 8.0 MPa .	Konti Hidroplast LtdMacedonia de Nord
2	Specificatii de performanta si conditii privind siguranta in exploatare: - Respectarea condititilor de temperatura: -20. $6 \theta \mathrm{C}$; - Amplasare: retea distributie apa ingropata fara pat de nisip; - Lichid de lucru: apa potabila; Montarea se va efectua conform instructiunilor de montare date de producator. Digitally signed by Buzdugan Valeria Date: 2021.08.05 23:16:02 EEST	Specificatii de performanta si conditii privind siguranta in exploatare: - Respectarea conditiilor de temperatura: -20 . $6 \theta \mathrm{C}$; - Amplasare: retea distributie apa ingropata fara pat de nisip; - Lichid de lucru: apa potabila; Montarea se va efectua conform instructiunilor de montare date de producator.	

Conditii privind conformitatea cu standardele relevante: - TYPE 2;

- Aprobare internationala obligatorie: DVGW, KIWA sau WRc
- Certificare obligatorie PAS 1075:2009-03 - TYPE 2;
- Certificari obligatorii: ISO 9001/ISO 14001 / ISO 45001 /

ISO 50001;

- Certificari obligatorii: Aviz sanitar si Evaluare tehnica emise de catre autoritatile din Republica Moldova;
- Certificare obligatorie: Aviz Sanitar emis de catre autoritatile din

Republica Moldova;
Producatorul va detine laborator propriu de incercari.
Conditii de garantie si post-

garantie:

- Minim 24 luni de la livrare;
- Furnizorul va asigura service in perioada de garantie;

Furnizorul va asigura piese de schimb pe baza de comanda in perioada post- garantie.

Alte conditii cu caracter tehnic:

5 Conductele din PEHD Triplustrat: PE100 RC / PE100 / PE100 RC: - exteriorul tevii este din PE100 RC de minim 2,50mm grosime sau 8\%
din total
grosime
teava;

- mijlocul tevii este din PE100;
- interiorul tevii este din PE100 RC de minim 2,50mm
grosime sau 8\%
din total
grosime
teava.
Culoare:
- stratul exerior si cel interior al tevii sunt de culoare albastra;
- stratul din mijloc al tevii este de culoare neagra.

Marcajul conductelor: Standard productie, Nume producator, diametru teava, SDR, tipul de material, PN, Data si locul productie.

Conditii privind conformitatea cu standardele relevante:

- Standard productie: EN 12201-2:2011, PAS 1075:2009-03TYPE 2;
- Aprobare internationala obligatorie: DVGW, KIWA sau WRc;
- Certificare obligatorie PAS 1075:2009-03 - TYPE 2;
- Certificari obligatorii: ISO 9001/ISO 14001 / ISO 45001 / ISO 50001;
- Certificari obligatorii: Aviz sanitar si Evaluare tehnica emise de catre autoritatile din Republica Moldova;
- Certificare obligatorie: Aviz Sanitar emis de catre autoritatile din

Republica Moldova;
Producatorul va detine laborator propriu de incercari.

Conditii de garantie si post-

garantie:

- Minim 24 luni de la livrare;
- Furnizorul va asigura service in perioada de garantie;

Furnizorul va asigura piese de schimb pe baza de comanda
in perioada post- garantie.

Alte conditii cu caracter tehnic:

Conductele din PEHD Triplustrat: PE100 RC / PE100 / PE100 RC: - exteriorul tevii este din PE100 RC de minim 2,50mm grosime sau 8\%
din total
grosime teava;

- mijlocul tevii este din PE100;
- interiorul tevii este din PE100 RC de minim 2,50mm grosime sau 8\%
din total
grosime teava.

Culoare:

- stratul exerior si cel interior al tevii sunt de culoare albastra; - stratul din mijloc al tevii este de culoare neagra.

Marcajul conductelor: Standard productie, Nume producator,
diametru teava, SDR, tipul de material, PN, Data si locul productie.

Annex 2

MANUFACTURER'S AUTHORISATION

Date: 22.07.2021

Tender Reference:
Construcṭia sondei arteziene și a reṭelelor de alimentare cu apă din s.Cajba, r-nul Glodeni /
Construction of an artesian well and water supply network in Cajba village, Glodeni district"
Reference number: 45200000-9

To: Primăria s. Cajba, r-nul Glodeni, Republica Moldova /
Town Hall Cajba village, Glodeni district, Republic of Moldova

We, KONTI HIDROPLAST DOOEL, based in North Macedonia, Gevgelija, Industriska No.5, legally represented by Mrs. Dijana Chochkova, as Regional Sales Area Manager having production facilities in North Macedonia, Gevgelija, Industriska No.5, as manufacturer of:

- PE80 /100 WATER SUPPLY PIPES
- PE100 RC SINGLE LAYER \& PE100 RC MULTILAYER PIPES CERTIFIED DVGW \& PAS 1075, TYPE I, TYPE II, TYPE III
- KONTI-KAN PE CORRUGATED SEWAGE PIPES (OD DIAMETERS)
- HIGH RIGIDITY VISITING AND INSPECTION MANHOLES PE/PP
- KONTI KAN PPHM CORRUGATED SEWAGE PIPES (ID DIAMETERS)
- KONTI KAN PE SPIRAL SEWAGE PIPES
- PPHM SMOOTH WALL SEWAGE PIPES SN10 \& SN8 D160 - D315
- INJECTED POLYPROPYLENE MANHOLE DN1000
- CONNECTION CHAMBERS FROM PP WITH INJECTED BASE OD400

We do authorize the company ATRACTIV INVEST LTD , with the headquarters in R. Moldova MD-2075 Mun. Chișinău, blvd. Mircea cel Bătrîn 39, of.470, to submit a complete offer which purpose is the supply of the above-mentioned products.

KONTI HIDROPLAST DOOEL - is part of the world's largest manufacturer and supplier of high-performance plastic pipes and offers the best and the most cost effective pipe systems for its customers.

KONTI HIDROPLAST DOOEL products find a broad range of applications in the industrial and utilities market on a worldwide scale.

Being one of the foremost pioneers in polyethylene pipe systems, KONTI HIDROPLAST DOOEL is continually improving and updating its offer to meet the ever-growing needs of the distribution engineer, ensuring they stay at the forefront of world gas and water distribution/treatment systems.

KONTI HIDROPLAST DOOEL is a result-driven business - its people, products and service. Designed, manufactured and supplied under EN ISO 9001 accredited Quality Management Systems, KONTI HIDROPLAST DOOEL products comply with relevant national, European and international product standards to ensure complete reliability for our customers.

Besides the ISO certificates ($9001 ; 14001 ; 18001 \& 50001$) for Quality Management Systems and ecology, the gas and water pipes are also certified by DVGW CERT GmbH.

We also agree that the company ATRACTIV INVEST LTD shall submit to this tender the technical documentation, the sanitary certifications and approvals, the specific technical approvals and approvals to put into operation the products mentioned above.

Signed by Mrs. Dijana CHOCHKOVA
as: AREA SALES REGIONAL MANAGER

MANUFACTURER OF POLYETHYLENE AND POLYPROPYLENE PIPES AND MOULDED ACCESSORIES
1480 Gevgelija, R. of North Macedonia str."Industriska" bb tel: 0038934212 064; 211757 fax: 0038934211964
ACC.Number:210300000057483; IBAN CODE:MK07210300000057483; SWIFT:TUTNMK22 Tutunska Bank AD Skopje

Signature: \& Stamp:

www.konti-hidroplast.com.mk

CONTENTS

INTRODUCTION 2
PRODUCT DESCRIPTION 5
STANDARDS 6
ADVANTAGES OF PE 100 RC MULTILAYER PIPES 7
PRODUCT DATA SHEETS 9
CERTIFICATES 10
SELECTION OF PIPE MATERIAL 11
PROTECTIVE LAYER - ACTHE PROTECTION 12
PE 100 REMULTILAYER WATER PIRE 13
PE 100 RC MULTILAYER GAS PIPE 15
PE 100 RC + PP ADDITIONAL LAYER MUULTILAYER WATER PIPE 17
MULTILAYER SEWAGE PIPE 18
MARKING A PIPE 19
BARCODE LASER MARKING 20
PACKAGING 20
INSTALATION 21
METHODS OF CONNECTING 21
BUTTWELDING 21
CONNECTION METHOD CONNETION METHOD FOR TYPE 3 PIPE 25 CERTIFICATIONS
LAYING INSTRUCTIONS FITTINGS
CERTIFICATES 32
LABORATORYTESTING 33

KONTI
 HIDROPLAST

WELCOME TO OUR WORLD

Konti Hidroplast is part of the world's largest, manufacturer and supplier of high performance plastic pipes and offers the best and the most cost effective pipes systems for its customers.

Konti Hidkoplast specialises in polyethylene pipe systems for gas and water transportation in the utilities and industrial markets.

MARKET ORIENTED

Konti Hidroplast products find a broad range of applications in the industrial and utilities market on a worldwide scale.

The water and gas distribution enterprises are important sectors forkigh integrity products where the maintenance of water quality and the safe transport of gaseous fuelsfare of paramount importance.

Industrial applications include alternative energyinstallations in landfill gas systems to effluent transportation and mineral slurry.

Products are widely used in pipeline installation, repair and maintenance.
Many of the brands in the Konti Hidroplast portfolio have a long record of innovation inymeeting the needs of the water and gas utilities.

Being one of the foremost pioneers in polyethylene pipe systems, Konti Hidroplast is continually improving and updating its offer to meet the ever growing needs of the distribution engineer, ensuring they stay at the forefront of world gas and water distribution/treatment systems.

The key to our success lies in the commitment to provide the highest quality service and support. We are a team of highly motivated and experienced individuals.

We place the utmost importance on meeting the needs of our customers, constantly evolving our extensive product portfolio to meet the ever changing demands of the water and gas utilities, industrial and foreign markets.

QUALITY

Konti Hidroplast is a result-driven busines - its people, products and service. Designed, manufactured and supplied under EN ISO 9001:2000 accredited Quality Management Systems, Konti Hidroplast products comply with relevant national, European and international product standards to ensure \checkmark complete reliability for our customers.

Besides the ISO certificates for Quality Management Systems and ecology, the gas pipes are also certified \triangle by DVGW GERT GmbH.

THE ENVIRONMENT

${ }^{\circ}$ Committed ${ }^{\text {to }}$ sustainable manufacture and systems, Konti $\begin{aligned} & \text { lid idroplast operates and maintains an }\end{aligned}$ environmental police, fully accredited by ISO 14001.

PRODUCT DESCRIPTION

HIGH QUALITY MATERIAL FOR COST EFFECTIVE INSTALLATION

PRODUCT DESCRIPTION

Cost and time pressure forces providers to rethink the conventional methods and use modern materials. For example, the previously required embedding of PE pipes in sand or fine gravel is no longer necessary using pipes made of the latest PE $100-\mathrm{RC}$ materials.

Conventional pipelines Pmade of PE are exposed to higher stresses caused by stones, refuse glass and other compact materieis.present in the ground when no sand bedding is provided inn combination with the operating stresses (internal pressure, traffic and soil loads); the punctual or-linear forceslacting directly ypon the pipe will result in stress cracks' (sfow crack growth PE 100 RC multilayer pipes are co-extruded full-wall pipes with a dimensionall integrated coloured outerylayer (drinking water $=$ blue, gas $=$ orafge-yellow, waste water = brown). PE 100 RC multilayer is particularl \widehat{y}, resistant to the consequences following from:scratches caused when no sand bedding is provided and tg point loads occurring over a longer period of time.
The targeted utilisation of further developed product \int characteristics - resistance to slow crack growth ensures the fulfillment of all requirements of modern and economic pipe laying. The manufacturing process ensures a service life of more than 100 years even with) unconventional pipe laying (without sand bedding).

COMPARISON OF PE 100 TO PE 100-RC

All characteristics of the raw material PE 100 proven over many years are also fulfilled by PE $100-\mathrm{RC}$, e.g. MRS 10. The only, but significant difference is the outstanding resistance of PE $100-R C$ to stress cracking. Processing, particularly the joining technique, is subject to the same conditions. Welding (e.g. heating element butt welding) is governed by guideline DVS 2207-1 for PE $100-R C$ as well and preferably without any restrictions.

The growing demarid for fasterand more economic pipe installation with less environmental disturbance has led to new installation techniques. During the last several years, there have been investors in the infrastructure system construction indústry searching for solutions for reducing investment costs with advanced technologies. The phenomenon encompasses both newpipelines and the renovation of current ones.

These include sandless bedding, pipe bursting and horizontal directional dfiling. In order to apply such methods of pipe-laying and because of their aggressive impalst on the pipe these new methods need new plastic pipe materials - a product that has its external surface durability several Łimes higher than normal and a higher point load resistance.

STANDARDS

PAS 1075

In terms of a common definition of the material PE 100-RC the PASS 1075 (Publicly Available Specification) titled "Pipes made of polyethylene for alternative installation technologies" specification is considered a supplement to the existing standards and regulations.

The scope of PAS 1075 is the increased resistance to slow crack growth of PE 100-RC pipes which are used for alternative installation technologies, such as horizontal directional drilling, burst-lining or installation without sand embedding. The requirements, characteristics and test procedures, as well as the respective quality assurance procedures are regulated and ensured via third party inspection. Polyethylene pipes, which are described in the regulation, do have a significantly higher resistance to slow crack growth, compared to the regular PE 80 and PE 100 pipes.

MATERIAL REQUIREMENTS FOR PE 100 RC

NR.	PROPERTY	STANDARD	REQUIREMENTS
1.	MRS (THE MINIMUM REQUIRED STRENGTH) AT 20 CAND 50 YEARS LIFETIME		DESIGN STRESS, $\sigma=8.0 \mathrm{~N} / \mathrm{mm}^{2}$
2.	DENSITY	ISO 1183R	$\leq 930 \mathrm{gr} / \mathrm{cm}^{3}$
3.	MFI	ISO 1133, CONDITIONT/ 190/5 KG	02-1.4 gr/10 min
4.	TENSILE STRENGTH ATYIELD	ISO 6259	e $\leq 5 \mathrm{~mm} / 100 \mathrm{~mm} / \mathrm{min}$ $5 \mathrm{~mm}<\mathrm{e} \leq 12 \mathrm{~mm} / 50 \mathrm{~mm} / \mathrm{min}$
5.	THERMAL STABILITY	EN 728/OR ISO 11357	
6.	CARBON BLACK.	ISO 6964	2.25\% + 0.25
7.	DISPERSION OF CARBON BLACK	$\text { ISD1 } 18553$	\leq GRADE 3

ADDITIONAL MATERIAL REQUIREMENTSACCORDING TO PAS 1075

PE 100 RC class materials and the most advanced plastic processingènsure the highest reliability of the product.

- Good abrasion resistance
- High stress crack resistance
- Good resistance to point loads (e. g. stones, fragments) (Dr. Hessel's test)
- High resistance to slow crack growth
- Optimal choice for pipe-laying without sand embedding and backfill
- Excavated soil can be used as backfill material
- They can be used for pipe-laying without trenches
- They can be butt-welded, ERW, poly fusion welded or connected mechanically
- Compatible with classic PE pipes

PROTECTION AGAINST OCCURING POINT LOADSWHEN NO SAND BEDDING IS PROVIDED

The notch test according to PN EN ISO 13479 is a pressure test conducted on a section of a pipe that has been notched on the surface, and then submerged in water at a given temperature and put under hydrostatic pressure. The notch test allows to determine the resistance of pipes to the fast propagation of cracks. The PE 100 RC pipe should withstand the hydrostatic pressure given for 5000 hours. (PE 100 RC Multilayen ${ }^{\circledR}$ 10000 h).

Dr. Hessels point load test is used to determine a material's resistance to slow propagation of cracks. A sample of pipe section is subjected to external point pressure in a given timeframe and at a specific temperature. The RC sample should withstand these conditions for 8,760 hours without exhibiting damage (PE 100 RC multilayer $=10000 \mathrm{~h}$).

- Point load test: required result met, test interrupted after 10,000 hours.
- FNCT: required result met.
- Notch test:required result met,test interrupted after 10,000 hours.

PRODUCT DATA SHEETS

CLASSIFICATION OF PE 100-RC PIPE

There are several combinations of materials for pipe production, and for PE 100-RC material this combination surpasses the minimal requirements applied with PE 100.

These pipes can be made in colour, blue for water, orange for gas, brownfor sewage, black, striped pipe according to the application. They exceed the minimum requirements applicable for $\mathrm{RE} 1,00$.

TYPE 2: PIPE WITH DIMENSIONALLY INTEGRATED PROTECTIVELAYER MADE QF PE 100-RC
Double-layer pipes with dimensionally integrated protective layers consist of PE 100 or PEsi00-RC and have an internal co-extruded protective layer made of PE 100-RC.

Triple-layer pipes with dimensionally integrated protective layers consist of PE 100 or PE 100-RC and have an internal and external co-extruded protective layer made of PE 100-RC. The co-extruded layers have been inseparably bonded with each other in a special tool that fuses the layers together. Made of PE 100-RC, the internal layer is integrated as a functional layer in the wall structure.

The layering gauge is to be at least 2.5 mm and possesses protective properties against the formation of stress cracking.

This production is based on two and three-layer pipes which can be with black outside colour with coloured identification stripe or with different external layer colours - blue for water, orange for gas or brown for sewage.
The inside layer is always PE 100 RC, in black or blue color. The other two layers can be PE 100 or PE 100 RC ,or combination of both, depending on the specific request of the customers.

TYPE 3: PIPES WITH DIMENSIONS ACCORDING TO ISO 4065 WITH DIMENSIONALLY ADDED OUTER PROTECTIVE LAYER MADE OF PP

Pipes of dimensions as specified in ISO 4065 with outer protective jacket consist of a core pipe made of PE 100-RC /PE 100 monolayer or multilayer pipe, and a protective jacket made of polypropylene. The minimum thickness of the protective jacket is 0.8 mm . The minimum thickness of the protective jacket is dependent on the pipe dimension; large-sized pipes have a thicker jacket because of the heavier loads the pipes are designed for. The bonding strength between the protective jacket and the core pipe must be such that the shearing forces occurring during pipe laying

PE 100 RC MULTILAYER PIPE water pipes have the same reference documents as the classic PE 100 water pressure pipes. The pipes also have the National Institute of Hygiene certificate. $\stackrel{>}{ }$
The PE 100 RC MULTILAYER PIPE gas pipes have the same refererice documents as the classic PE 100 gas pipes.

PE 100-RC MULTILAYER PIPE - PRODUCTION PROGRAM

- PE 100 RC MULTILAYER WATER PIPE
- PE 100 RC MULTILAYER GAS PIPE
- PE 100 RC /PE 100 MULTILAER MULTIPURPOSE PIPE WITH ADDITIONAL PP LAYER

SELECTION OF PIPE MATERIAL

The selected installation method is decisive for the choice of material and consequently the risk of damage to the pipe system deployed.
Pipes with dimensionally integrated protective layers in accordance with EN 12201-2/ISO 4065 made of PE 100 RC to PS 1075 types 1 and 2.
Type 1 and Type 2, co-extruded multilayer pipe made of special PE 100 RC. Permanent quality tests reveal high resistance to point loads and related slow crack growth. Predestined for economical sand bed free laying. For service life of >100 years. This pipe construction does not have a notch protection.

Pipes with dimensionally integrated protective layers

Pipes with dimensions in accordance with EN 12201-2/ISO 4065 made of PE 100-RC monolayer or PE 100RC/PE 100 multilayer, to Pas 1075 Type 3, with additional protective layer with modified PP material. Pressure containing medium pipe effectively excludes mechanical damage.
This pipe is predestinated for all trenchless laying techniques and absolutely necessary for trenchless laying. For a safe service life >100 years. Pipe with protective layer corresponding to Pas 1075 Type 3.

PROTECTIVE LAYER - ACTIVE PROTECTION

Considerable underground engineering work is involved when creating underground infrastructures. It is therefore the objective of an operator to be able to operate new pipeline for as long as possible without damage. When correctly installed, pipes made from polyethylene offer a service life of at least 100 years. If by contrast they are damaged during installation, this long service life may be substantially curtailed.
Scratches and scorring weaken the pipe wall. This risk can appear during pipe jacketing. Since the standardized wall thickness is precisely attuned to the operating pressure, albeit supplemented by the safety factor, every weakening means a reduection in the engineered safety factor, even a direct reduction in pressure resistance of the new pipeline and consequently in curtailment of the service life.

A damage depth of 10% of the wall thickness is permitted by the codes of practice, because despite the reduction in the safety factor, a curtailment of the service life of the pipeline is not to be expected. By contrast, wreaking of the pipe wall that penetrates deeper than this is dangerous.
With an analysis of these damages, the safety factor dropss to below 1 , starting from addamage of the pipe wall of 20% due to reduction of wall thickness.

PE 100 RC MULTILAYER WATER PIPE

PIPE TYPE 1

PIPE DESIGN	BLACK PIPE WITH BLUE COLOURED STRIPE OR 100\% BLUE
APPLICATION	DRINKING WATER FOR BURIED INSTALLATION, LAYING POSSIBLE WITH AND
WITHOUT SAND BEDDING	

PIPE TYPE 2

PIPE DESIGN	DOUBLE LAYERED - OUTSIIDE BLACK (OR BLUE) PD 100 OR PE 100 RCWITH INSIDE LAYER PE100 RC (MIN 2.5 MM O'R 8\%) IN BLUE (OR BLACK) COLOUR. IFTHE OUTSIDE ISBLACK, THEN IT HAS A BLUE STRIPE FOR DRINKING WATER DENTIFICATION. TRIPLE LAYER PIPE - OUTTSIDE AND INSIDE IN BLUJE OR BLACK, RE 100 RC (LAYER THICKNESS MIN 2.5MM OR 8\%) AND MIDDLEPE 100 MATERIAL IN BLACK OR BLUE COLOUR.
APPLICATION	DRINKING WATER FOR BURIED INSTALLATION, LAYING POSSSBLE WITH AND WITHOUT SAND BEDDING
PRODUCT STANDARD	EN 12201-2:2011, DIN 8074:2011-12, DIN 8075:2011-12, PAS 1075:2009-03-TYPE 2
PROCESSING STANDARD	EN 805, DINV ENV 1046
MATERIAL	PE 100 RC, PE 100
APPROVALS	DVGW,TZW, MPA CERT
CERTIFICATION	ISO 9001/ISO 14001
DIMENSIONS	SDR 17; SDR11; SDR9; SDR7.4; SDR6
DELIVERY FORM	AVALIABLE UPTO 125 mm IN COILS, DIMENSIONS FROM 140 mm AND ABOVE IN STRAIGHT LENGTH

TABLE OF PIPE DIMENSIONS

PE 100 RC MULTILAYER PIPE

$\begin{gathered} \mathrm{DN} / \\ \mathrm{OD} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \text { SDR } 17 \\ & =58 \\ & \text { *PN } 10 \end{aligned}$		$\begin{aligned} & \text { SDR } 11 \\ & \text { S } 5 \\ & \text { *PN } 16 \end{aligned}$		$\begin{gathered} \text { SDR } 9 \\ \text { S } 4 \\ \text { *PN } 20 \end{gathered}$		$\begin{gathered} \text { SDR } 7.4 \\ \text { S } 4 \\ \text { *PN } 25 \end{gathered}$		$\begin{gathered} \text { SDR } 6 \\ \text { S } 2.5 \\ \text { *PN } 32 \end{gathered}$	
	$\begin{gathered} \mathrm{s} \\ (\mathrm{~mm}) \end{gathered}$	WEIGHT (kg/m)	$\begin{gathered} \mathrm{s} \\ (\mathrm{~mm}) \end{gathered}$	WEIGHT (kg/m)	$\begin{gathered} \mathrm{s} \\ (\mathrm{~mm}) \end{gathered}$	WEIGHT (kg/m)	$\begin{gathered} \mathrm{s} \\ (\mathrm{~mm}) \end{gathered}$	WEIGHT (kg/m)	$\begin{gathered} \mathrm{s} \\ (\mathrm{~mm}) \end{gathered}$	WEIGHT (kg/m)
25	2.0	0.137	2.3	C0. 171	3.0	0.200	3.5	0.240	4.2	0.278
32	2.0	0.187	3.0	0.272	3.6	0.327	4.4	0.386	5.4	0.454
40	2.4	0.295	$3.7 \bigcirc$	0.430 ,	4.5	0.509	5.5	0.600	6.7	0.701
50	3.0	$0.453>$	4.6	20.666	$5: 6$	0.788	6.9	0.936	8.3	1.09
63	3.8	0.721	-5.8	1.05	$7.1{ }^{1}$	1.26	8.6	1.47	10.5	1.73
75	4.5	1.02	6.87	1.47	8.4	0.76	10.3	2.09	12.5	2.44
90	5.4	1.46	8.2	$)^{2.12}$	10.1	2.54	12.3	3.00	15.0	3.51
110	6.6	2.17	10.0	3.14	12.3	3.78	(1)15.1	4.49	18.3	5.24
125	7.4	2.76	11.4	4.08	14.0	24.87	17.1	5.77	20.8	6.75
140	8.3	3.46	12.7	- 5.08	15.7	6.15	19.2	7.25	23.3	8.47
160	9.5	4.52	14.6	6.67	17.97	7.96	21.9	9.44	26.6	11.0
180	10.7	5.71	16.4	$8.42{ }^{2}$	20.1	${ }^{10.1}$	24.6	11.9 (e)	29.9	14.0
200	11.9	7.05	18.2	10.4	(22.4	12.4	27.4	14.8	-33.2	17.2
225	13.4	8.93	20.5	13.1	25.2λ	15.8	30.8	18.6	37.4.	21.8
250	14.8	11.0	22.7	16.2	27.9	>19.4	34.2	23.0	41.6	27.0
280	16.6	13.7	25.4	20.3	31.3	24.3	38.3	28.9	46.5	33.8
315	18.7	17.4	28.6	25.6	35.2	30.8	43.1	36.5	52.3	42.7
355	21.1	22.1	32.2	32.5	39.7	39.1	48.5	46.3	59.0	54.3
400	23.7	28.0	36.3	41.3	44.7	49.6	54.7	58.8	66.5	68.9
450	26.7	35.4	40.9	52.3	50.3	62.7	61.5	74.4	75.2	89.41
500	29.7	43.8	45.4	64.5	55.8	77.3	67.7	92.88	83.5	110.3
560	33.2	54.8	50.8	80.8	62.5	99.7	75.8	116.5	93.5	138.3
630	37.4	69.4	57.2	102	70.3	126.16	85.3	147.38	105	174.78
710	42.1	89	64.5	130	79.3	160.2	-	-	-	-
800	47.4	113	72.6	168.9	89.3	197	-	-	-	-

PE 100 RC MULTILAYER GAS PIPE

PIPE TYPE 1 AND 2

PIPE DESIGN	BLACK PIPE WITH ORANGE - YELLOW COLOURED STRIPE OR BLACK MEDIUM PIPE WITH DIMENSIONALY INTEGRATED ORANGE -YELLOW LAYER
APPLICATION	GAS PIPE FOR BURIED INSTALLATION, LAYING POSSIBLE WITH AND
PRODUCT,	
STANDARD	ENTHOUT SAND BEDDING

TABLE OF PIPE DIMENSIONS

PE 100 RC MULTILAYER PIPE

DN/OD (mm)	$\begin{aligned} & \text { SDR } 11 \\ & \$ 5 \\ & \text { *PN } 10 \end{aligned}$		$\begin{gathered} \text { SDR } 17.6 \\ \text { S } 8.3 \\ \text { *PN } 4 \end{gathered}$	
	$\begin{aligned} & \mathrm{O}_{\mathrm{s}} \\ & (\mathrm{~mm}) \end{aligned}$	WEIGHT (kg/m)	$\stackrel{\mathrm{s}}{(\mathrm{~mm})}$	WEIGHT (kg/m)
25	2.3	, 0.150	2.3	0.150
30	2.9	0.272	2.3	0.200
40	3.7	0.430	2.3	0.285
50	4.6	0.666	2.9	0.440
63	5.8	1.05	3.6	0.688
75	6.8	1.47	4.3	0.976
90	8.2	2.12	5.1	1.39
110	10.0	3.14	6.3	2.08

TABLE OF PIPE DIMENSIONS

PE 100 RC MULTILAYER PIPE

DN/OD (mm)	$\begin{gathered} \text { SDR } 11 \\ \text { S } 5 \\ \text { *PN } 10 \end{gathered}$		SDR 17.6 S 8.3 *PN 4	
	$\begin{gathered} \mathrm{s} \\ (\mathrm{~mm}) \end{gathered}$	WEIGHT (kg/m)	$\begin{gathered} \mathrm{s} \\ (\mathrm{~mm}) \end{gathered}$	WEIGHT (kg/m)
125	11.4	4.08	7.1	2.66
140	12.7	5.08	8.0	3.34
$\rightarrow 160$	14.6	6.67	9.1	4.35
180	16.4	8.42	10.2	5.48
200	18.2	10.4	11.4	6.79
225	20.5	1.13 .1	12.8	8.55
250	22.7	16.2	14.2	10.6
280	25.4	20.3	15.9	13.2
315	28.6	, 25.6	入17.9	16.7
-355	32,2	32.5	20.1	21.2
400	36.3	41.3	22.7	26.9
450	40.9	52.3	25.5	34.0
500	$V_{45.4}$	64.5	28.4	42.0
560	$50.8)$	80.8	31.7	52.5
630	57.2	102	35.7	66.5
800	-	-	45.3	108

PE 100 RC + PP ADDITIONAL LAYER MULTILAYER WATER PIPE

PIPE TYPE 3

PIPE DESIGN

| BLACK MONOLAYER PE 100 RC PIPE OR BLACKIBLUE PE100RC/PE 100 |
| :--- | :--- |
| PIPE WITH COLORED BLUE COLOR STRIPE +ADDITIONAL PP BLUE |
| LAYER |

APPLICATION
PRODUCT STANDARD
DRINKING WATER FOR BURIED INSTALLATION AND LAYING WITHOUT
SAND BEDDING

TABLE OF PIPE DIMENSIONS

MATERIAL

INSIDE: PE 100 RC or PE 100RC / PE100, with outside additional PP layer

$\mathrm{DN}(\mathrm{mm})$	SDR 17	SDR 11	SDR 9	SDR 7.4	SDR 6
	PN 10	PN 16	PN 20	PN 25	PN 32
	$\mathrm{s}(\mathrm{mm})$	s (mm)	s (mm)	s (mm)	s (mm)
75	4,5+PP	2) 6,8+PP	8,4+PP	10,3+PP	12,5+PP
90	5,4+ PP	, $8,2+\mathrm{PP}$	10,1+PP	12,3+PP	15,0+PP
110	6,6+PP	10,0+PP	12,3+PP	15,1+PP	18,3+PP
125	, $7,4+\mathrm{PP}$	S 11,4+PR	14,0+PP	17,1+PP	20,8+PP
140	8,3+, PP	12,7+PP 15, 15,7+PP		19,2+PP	23,3+PP
160	9,5+PP	$14,6+$ PP	17,9+PP	21,9+PP	26,6+PP
180	$10,7+P \mathrm{C}$ (16,4+PP		$20,1+\mathrm{PP}$	24,6+PP	29,9+PP
200	$11,9+P P$	\$ $18,2+\mathrm{PP}$		27,4+PP	33,2+PP
225	13,4+ RP	$20,5+$ PP	25,2+PP	30,8+PP	37,4+PP
250	$14,8+$ PP	22,7+RP	$27,9+\mathrm{PP}$	$34,2+\mathrm{PP}$	41,6+PP
280	$16,6+$ PP	P25,4+PP	31,3+RP	38,3+PP	46,5+PP
315	18,7+ PP	28,6 6 PP	35,2+PP 4, 43,1+RP		52,3+PP
355	$21,1+$ PP	32,2+PP>	39,7+PP	$48,5+\mathrm{PP} \mathrm{Cl}^{59,0+\mathrm{PP}}$	
400	$23,7+$ PP	36,3+PP	$44,7+$ PP	$54,7+P P$	66,5+PP

OPTIONAL PE 100 RC MULTILAYER SEWAGE PIPE

Option-PE 100 RC multilayer sewage pipe - at the request of the customer, we can produce the PE 100 RC multilayer pipe for disposal pipelines (gravity or irrigation pipelines) in light coloured inner layer.

It allows easier camera inspection, mining application, disposal of other high abrasive media or application during water irrigation with suspended material.

All dimensions and pressure classes are available at request. Pipes can be supplied as 6 m and 12 m straight pipes or in coils of 125 mm in 100 m length.

MARKING A PIPE

The marking of the pipes complies with ISO 4427/ EN 12201-2.

All pipes include clear, permanent marking at each meter length, made with ident printing in a colour contrasted to the pipe colour (white, black or yellow).

The following information is printed on the pipe:

- STANDARD

e.g EN 12201 -2 or DIN 8074 /PAS 1075
- Manufacturer name KONTI HIDROPLASTC
- Nominal sizes (diameter \times walk thickness)
- SDR serve
- Material designation e.g PE 100 RC/PE 100
- Pressure class e/g PN 10
- Production date and place
- Remaining length

Latest technologies for ident printing have been applied as well, using laser marking where a bar code having all the above information can be printed in 128 C in accordance with ISO 12176-4:2003 on the pipe.

BARCODE LASER MARKING

BARCODE EXAMPLES

The coils are securely banded with tough tape which can be removed only by cutting.

The internal diameter of the coils is not smaller then 18 times of the nominal outside diameter of the pipe (minimum 600 mm).

INSTALLATION

For pipe installation, it is recommended that the pipes are placed into trenches at minimal depth of $45-60 \mathrm{~cm}$, depending on the freezing zone. The installation of the pipes may be performed at air temperature of $-5^{\circ} \mathrm{C}$.

METHODS OF CONNECTING

The polyethylene can berconnected in different ways. The most fre氏̂uent are:

- Butt welding 1
- Electro fusion weldifigg
- Mechanicałèonnecting

BUTT WELDING

The quality of butt welding directly depends on the operator's ability, the quality of the equipment and the supervisor who is responsible for the related standards. The process shout d be observed carefully from the beginning until the end. Before starting the butt welding process, it is important' to check and verify all the parameters. Every operator should be educated and certified.

These issues should be considered before starting the welding process:

- The welding environment should be over $+5^{\circ} \mathrm{C}$ and, if the weather is rainy or cold, it should be done in a sheltered area;
- Pipe ends should be closed to prevent air circulation and fast cooling;
- Before starting the welding process for coiled pipes, bending must be taken away from the pipes;
- The welding zone should be clean and undamaged.

BUTTWELDING METHOD

The principle of the butt welding system is heating the welding surfaces for a certain time and pressuring the pipes with the same inner and outer diameter. The joining area of the welding components should be cleaned thoroughly and heated up to $200^{\circ} \mathrm{C}$ or $220^{\circ} \mathrm{C}$. Then, the components are bonded together under certain pressure.

The welding pressure, the heat and the time should be properly chosen in order not to change the chemical and mechanical properties of the welded parts.

In the butt welding method, the butt areas are pressed on the heater plate, left at zero pressure until they reach the welding temperature, and joined together under pressure (welding).

If the welding is well applied, the welded zone provides the same strength as the original pipe. In order to have a good-quality welding application, the butt welding pressure, the temperature and the time parameters should be set carefully.

BUTTWELDING PREPARATION

The temperature on the butt welding machine should be controlled just before starting the butt welding process. This must be done by an infrared thermometer.The heater plate should be left for a pinimum of 10 minutes after reaching the set temperature. To insure an optimum welding guality, the heater plate has to be cleaned before every welding operation. The cleaning should be done by a seft cleaning material and aleôhol. The heater plate (the Teflon coating) must be undamaged.

The joining forces and joining pressures have to conformito the machine working instructions. These can be based on the manufacturer's information or they can be calculated and measured. The moving pressure is taken from the indicators of the welding machine during the slow movement of the part to be welded. This value has to be added to the established joining pressure. The moving pressure may change depending on the machine, the pipe diameter and the pipe length. Therefore, before every welding process, the moving pressure should be read and added to the joining pressure.

The joining areas have to be planned before the butt welding. In this way, the pipes can be properly aligned and have a clean surface.

The gap width and the misalignment have to be controlled. Any misalignment must be avoided as much as possible. Even in the worst circumstances, it may not exceed $1 / 10$ of the wall thickness.

The trimmed welding zones should not be touched and contaminated. Otherwise, trimming should be repeated. The shaving ribbons and other cut pieces must be cleared away from the welding zone without touching the trimmed faces.

BUTTWELDING PROCESS

In the butt welding process, the welding zones are heated up to the welding temperature by the heater plate and the pipes are joined under pressure after removing the heater plate. The heating temperature should be $200^{\circ} \mathrm{C}$ to $220^{\circ} \mathrm{C}$.

Higher temperatures are required for the thinner walls and lower temperatures for the thicker walls.

REQUIRED TEMPERATVRES FOR QIFFERENT
WALLTHICKNESSES

REGIME OF HEATER PLATE SHAPED BUTT WELDING

HEATING UPWITHOUT PRESSURE

For heating up, the joining areas must contact the heater plate and the pressure must decrease. The pressure between the joining areas and the heater plate must be nearly zero ($\mathrm{P} 2=0.02 \mathrm{~N} / \mathrm{mm}^{2}$). At this time, the heat penetrates through the pipe axis. The heating up periods (T2) are mentioned in table 1, column 3. If a period lesser than the required is applied, the depth of the plastic part will be smaller than needed. As a result of this, the welding area will melt and corrode.

REMOVALOF THE HEATER PLATE

After heating up, the joining areas are to be detached from the heater plate. The heater plate should be carefully removed andthe heated joining faces should be free of damage and contamination.

The joining areas,should be joined together quickly after the removal of the heating tool. If the operator delays, the welding quality will be insufficient because of oxidation and cooling.

JOINING

After the heater plate is removed, the areas are aligned closer. There must be no strike or hit during this process. The required pressure time (interfaced pressure) îs obtained linearly. The required time (T4). The joining pressure (P3) is $0,15 \pm 0,01,1 \mathrm{l} / \mathrm{mm}^{2}$.

Pipe alignment and joining, beads appear under pressure

COOLING

The joining pressure (P3-interfaced pressure) has to be kept during the cooling time. After the process, a regular double bead must appear. The bead size shows the regularity of the welding. Different beads could be caused by a different MFR (Melt Flow Rate) of the pipes. It must always be larger thàn 0.

Cross section of beads

BUTTWELDING PROBLEMS AND POSSIBLE CAUSES

CONNETION METHOD EOR TYPE 3 PIPE

The connection method is the same as for the nermal PE 100 or PE 100 RCpipe.
The only change is that pipe Type 3 has additionalPP layer that should be peeled off without damages to the medium pipe. This is enabled with exact bonding strenoth that will not stick the PRPayer, but will still make wear protection of medium pipe.
The butt welding preparation of Multi press PPPipe goes through the following steps:

Measure and mark the pipe

With scalpel make a cut on circle of top layer

Place the cutting tool on place for cutting

Pull releasable layer

With light circular movement, cut the outside PP layer

The inner layer is ready for polishing and soldering.

CERTIFICATION

LAYING INSTRUCTIONS

PIPE-LAYNG AND ASSEMBLY

PE 100 RC MULTILAYER pipes are laid and assembled just like typical PE 100 pipes. Due to their high resistance to point loads and surface scratching effects, the pipes, can be laid' in soil without backfill and sand embedding which is usually used as a protective layer forr the pipes. Hfigh resistance of PE 100 RC MULTILAYER pipes to slow propagation of cracks allows pipe-laying in 瓜eavy soils withibackfill and pácking of crushed rocks and stones up to 60 mm of grain. Note that the soil fragments must evenly supp ort the pipeline around its circumference. Soil transport is expensive - application of RCPE 100 R': MULTILAYERcan significantly reduce the costs of supplying the construction site with proper earthuork material and the removal of excess soill from the site.

HANDLING AND STORAGE

Before the installation of the pipes and components, sheck theme transport damage and other defects, and clean the joining faces and zones. Sort out damaged parts, and use a fire-toothed saw or plastic pipe cutter if the pipe needs to be cut. Cuts at right angles to the longitudina pipe axis can\$e achieved when the saw is guided, for example by a mitre gauge. Once cut, prepare the pipe ends as required fór the type of joining.

Unwinding pipes from bundle can be performed in various ways. It the case of pipes with outer diameter of up to 63 mm , the pipe is usually unwound with the bundle held in vertical 'position and the pipe fixed. The use of an unwinding device is recommended for greater dimensions.

The pipes must be unwound in a straight direction and must be kept kinked; also pulling them off in a spiral form is not allowed.

Moreover, when unwinding a pipe, it should be taken into account that the flexibility of PE pipes is influenced by the ambient temperature. At temperatures near the freezing point, pipes of an outer diameter greater then 75 mm should be warmed up before unwinding whenever possible.

Note: When shortening and laying the pipeline, remember to take the temperature-dependent length change into account. A PE pipe of 1 m length will elongate when the temperature rises and become shorter when the temperature decreases, by 0.2 mm per K .

PIPELAYING IN AN OPENTRENCH

Applicable standards áre EN 805 (water pipe), EN 1610 (waste water and sewer pipe) and EN 12207-2 (gas pipe).

Handling and storage

BEDDING AND BACKFILLING

Based on the proof of resistance to slow crack growth (tested by an independent subject) Multilayer PE 100-RC pipes made of PE 100-RC are suitable for laying without a sand bedding. Thus, additional work in order to replace the excavated material with a sand bed in accordance with EN 805 (transport, disposal) is not necessary. The pipe properties are such that no restriction of the grain size of the bedding and backfilling materials is necessary.

TRENCHLESS LAYING OF PIPES

Multilayer PE 100 RC pipes are suitabble for an alternative, trenchless laying.

- Ploughing
- Milling

Alternative sinstallation methods are chiosen because they are time and cost-savitg, In the last rifew years, various installation technologies have become the state-of-the-art due to their economic advantages:

- Minimal adverse efeéct on develóped and paved surfaces.
- Use of existing pipeline routés.s.
- Minor inconvenience for residents.
- Shorter construction time.
- Lower civil engineering and recultivation costs.
- Installation possible under rivers, lakes or traffic routes.
- Reduction in CO_{2} emissions, as no vehicles are needed for transport of road surface materials, excavation work, etc.
- Avoidance of traffic rerouting and congestion.

PLOUGHING

Ploughing is the fast and possibly most cost-effective method of laying new plastic pipes. The technique used has a minimal impact on the subsoil and is therefore considered to be environmentally friendly.

A winch is used to pull a plough blade and pipe-laying unit through the ground. Once the pipe has been installed, the furrow (trench) is automatically closed as the plough blade advances.

This method is also suitable for the parallel installation of several pipelines. As the soil initially displaced by the plough is re-used without any further processing, the pipes deployed have to be highly resistant to point, i.e. concentrated, loads. Owing to their high stress crack resistance, PE 100 RC pipes are particularly durable.

MILLING

This laying method is usually applied in rural areas and outside traffic zones. With the milling technique, a suitable machine is used to cut a pipe trench into the soil, and the PE 100 RC pipes are simultaneously placed on the trench bottom by means of a so-called installation box. As the trench is in most cases not walkable, this box serves as a trench support in the installation of the pipeline. Once the pipe has been laid, the trench is mechanically backfilled and compacted with the previously milled-out material, i.e. no sand bed is needed.

TRENCHLESS PIPE REPLACEMENT

- Horizontal directional drilling - HDD
. Relining
人
- Burst-lining
S^{\prime}
vHorizontar Directional Drilling (HDD) is a method of installing underground pipelines, through trenchless methiods. It invotves, the use ofrya directional drilling machine, and associated attachments, Soil is loosened and flushed out in various stages usiog a drilling fluid. The first step is, to create a pipe duct by means of a pilotbore. Then, in further steps, the final pipe duct is widened and the pipe is introduced with the help of an insertion dèvice.

This means very minimal surface disturbance and low reinstatement costs. We can drill under buildings, rivers, roads, through hills and rock.

RELINING OFAN OLD WATERPIPE

Relining with pipe is a trench-free procedure, by which PE 100 RC is pulled into the existing carriage from the manhole. The individual pipes are connected with an electrical or butt welding technique.

PIPE BURSTING

Burstlining, a trenchless pipe bursting method is used for repairing damaged pipelines by retaining or enlarging the hydraulic cross-section.

Together with the in-situ soil, the broken material compacted into the ground forms an annular space, into which the new pipeline attached to the bursting unit is introduced.

Based on the proof of resistance to slow crack growth, pipes made of PE 100-RC are suitäble for laying without a sand bedding. Thus, additional work in order to replace the excavated materiatwith a sand bed in accordance with EN 805 (transport, disposal) is not necessary. The pipe properties are such that no restriction of the grain size of the bedding and backfilling materials is necessary.

JOINING TECHNIQUES

The standardized dimensioning for internal pressure load of PE 100 pipes is also valid for alternatively installed pipes. PE 100 RC MULTILAYER PIPE can be joined with techniques as standard PE 100 pipe, butt welding and electro fusion, as PE 100 RC is inseparable part of the pipe wall. The fittings used in this system are made of the same material as PE 100 RC .

FITTINGS

PE 100 RC MULTILAYER PIPES provide project-related supplies and a number of special fittings upon request. For laying without a sand bedding, the latter are made of PE 100-RC. A selection is shown below - manufacturing in accordance with the customer specifications possible:

CERTIFICATES

LABORATORY TESTING

MELT MASS-FLOW RATE

LONGITUDINAL REVERSION
 Γ No

ELONGATION AT BREAK

CARBON BLACK OR PIGMENT DISPERSION

Certificato di Registrazione Certificate of Registration

F This is to certify that the management system of

KONTI HIDROPLAST DOOEL

INDUSTRISKA NO 5 ., 1480 GEVGELIJA, NORTH MACEDONIA è conforme ai requisiti / is complied with the requirements of standard

ISO 50001:2018

per il seguente scoport for the following scope:

PROGETTAZIONE, SVILUPPO E PRODUZIONE DITUBI, RACCORDERIE, GIUNTI E CHIUSINI IN POLIETILENE E POLIPROPILENE.

DESIGN, DEVELOPMENT AND PRODUCTION OF POLYETHYLENE, POLYPROPYLENE

 PIPES, FITIINGS, SEALS AND MANHOLES.Certificato N .
Certificate No.

Data di prima emissione:
Originally registered: 26.06.2018

Per conto ed in nome di Certi W ® For and on behalf of Certi W \circledR^{\circledR}

Data di ultima emissione:
Latest issue:
14.06.2021

Codice di Documento/Document code: F08.21 V6-17 Oct 2019

Data dil scadenza:
Expiry date:
25.06.2024

[^0]La validità del presente certificato è subordinato ad un esito positivo del continuing assessment e del pagamento dei relativi importi annuali.
Ad oggi la data di scadenza è: 25.06.2022.
The validity of this certificate is subject to a successful outcome of the continuing assessment and to the payment of related annual fees. To date the expire date is: 25.06 .2022 .

THE INTERNATIONAL CERTIFICATION NETWORK

 CERTIFICATE

Quality Austria
has issued an IQNet recognized certificate that the organization:
KOÑTI HIDROPLAST DOOEL Industriska nr. 5, 1480 Gevgelija, North Macedonia

Designindevelopmentand production of polyethylene

QUALITYMANAGEMENESYSTEM
which fulfils the requirements ore the following standard
TSO 9001:2015

This attestation is directly linked to the IQNet Partner's original Certificate and shempmot be used as a stand-alone document Issued on:

Validity date:
Quality Austria certified since:

Registration Number
Signatures removed for security reasons

Mag. Friedrich Khuen-Belasi Authorised Representative of Quality Austria
qualityaustria
Succeed with Quality

qualityaustria

THE INTERNATIONAL CERTIFICATION NETWORK

Quality Austria
has issued an IQNet recognized certificate that the organization:
KOÑJI HIDROPLAST DOOEL Industriska nr. 5, 1480 Gevgelija, North Macedonia
has implemented and malntains an
ENVIRONMENTAL MANAGEMENT SYSTEM
which fulfils the reqgirements \&erthe following standard
1SO 14001:2015

Issued on:

Registration Number.

Signatures removed for security reasons
Mag. Friedrich Khuen-Belasi Authorised Representative of Quality Austria
qualityaustria
Succeed with Quality

THE INTERNATIONAL CERTIFICATION NETWORK

CERTIFICATE

has issued an IQNet recognized certificate that the organization: Industriska nr. 5, 1480 Gevgelija, North Macedonia Design, development for the following scope:

OCCUPATIONAL HEALTH AND SAFETY MANAGEMENT/ SYSTEMS
which fulfil the requirements of theffollowing standard

This attestation is directly linked to the IQNet Partner's originafrgertificate and shall not be used as ac stand-alone document
Registration Number:- AT-00590/0

Signatures removed for security reasons

[^0]: This certificate was issued electronically and remains the property of Certi W Baltic SIA and is bound by the conditions of contract Printed copy can be validated on request. To verify the authenticity send an e-mail to info@certiw.com
 © Copyright 2008-2021-Certi W \circledR^{\circledR} is a registered trademark owned by Certi W international Itd.
 SIA "Certi W Baltic" Headquarter: Aspazijas bulvaris, 20, LV-1050 - Riga - Latvia

