

N°: 3/LE130

LABORATORIO CENTRAL OFICIAL DE ELECTROTECNIA

FUNDACIÓN PARA EL FOMENTO DE LA INNOVACIÓN INDUSTRIAL

Centro Tecnológico UPM – Tecnogetafe
C/ Eric Kandel, 1 – 28906 Getafe (Madrid)

Teléfono: +34 91 491 81 68

www.f2i2.net

TYPE TEST REPORT

2015 11 3D 0683

OBJECT Voltage Transformer

MANUFACTURER Arteche

TYPE UTD-123

APPLICANT Electrotécnica Arteche Hermanos S.L.

C/ Derio Bidea, 28 – 48100 Munguía (Vizcaya)

TEST DATES From 24th November to 14th December 2015

DATE OF ISSUE 17th December 2015

RESULTS Tests passed according to IEC 61869-3

This report consists of 27 pages and 7 Annexes

Authorized signatory/s

Mr. Tomás García Aguado

Technical Responsible of Testing in HV Lab

CONDITIONS OF VALIDITY OF THIS DOCUMENT:

- The results of the tests refer exclusively to the sample which was tested.
- The above-mentioned sample is the one described in the Report and is the sample which was originally received, with any modifications which may have been produced during the tests, in order that these could be correctly performed. These modifications are documented in the LCOE files, and are available for inspection by any person or organization authorized to do so.
- Partial reproduction of this document is prohibited.

INDEX

			<u>Page</u>
1	IDE	NTIFICATION OF THE TEST OBJECT	3
	1.1	DESCRIPTION OF THE TEST OBJECT	3
	1.2	RATED CHARACTERISTICS ASSIGNED BY THE MANUFACTURER	3
	1.3	RATING PLATE	4
	1.4	PICTURE OF TEST OBJECT.	4
2	GEN	IERAL INFORMATION	5
	2.1	TESTS CARRIED OUT BY	5
	2.2	MEASUREMENT UNCERTAINTY	5
	2.3	STANDARDS APPLIED	5
	2.4	Additional information	5
3	PER	FORMED TESTS	6
	3.1	VERIFICATION OF TERMINAL MARKINGS AND RATING PLATE	6
	3.2	TEST FOR ACCURACY OF VOLTAGE TRANSFORMER	7
	3.3.	LIGHTNING IMPULSE AND CHOPPED IMPULSE TEST ON PRIMARY TERMINALS	9
	3.4	WET TEST FOR OUTDOOR TYPE TRANSFORMERS	11
	3.5	POWER FREQUENCY WITHSTAND TEST ON PRIMARY TERMINALS	12
	3.6	PARTIAL DISCHARGES MEASUREMENT	
	3.7	POWER FREQUENCY WITHSTAND TEST ON SECONDARY TERMINALS	14
	3.8	RADIO INTERFERENCE VOLTAGE MEASUREMENT	15
	3.9	TEMPERATURE-RISE TEST WITH ACCURACY BURDEN	16
	3.10	TEMPERATURE-RISE TEST WITH THERMAL LIMITING OUTPUT	
	3.11	SHORT-CIRCUIT WITHSTAND CAPABILITY TEST	
		.1 Visual inspection of test object	
		.2 Test for accuracy of voltage transformer after short-circuit test	
		.3 Power frequency withstand test on primary terminals	
		.4 Partial discharges measurement after short-circuit test	
		.5 Power frequency withstand test on secondary terminals after short-circuit test	
	3.12	TRANSMITTED OVERVOLTAGE TEST	_
	3.13	MEASUREMENT OF INSULATION RESISTANCE	26
4	SUN	MMARY AND CONCLUSIONS	27

- **ANNEX 1:** Rating plate and drawing of voltage transformer.
- **ANNEX 2:** Lightning Impulse test.
- **ANNEX 3:** Partial Discharge Measurement.
- **ANNEX 4:** Temperature-rise test.
- **ANNEX 5:** Short-circuit withstand capability test.
- **ANNEX 6:** Partial Discharge Measurement after short-circuit test.
- **ANNEX 7:** Transmitted Overvoltage test.

1 IDENTIFICATION OF THE TEST OBJECT

1.1 Description of the test object

Description: Voltage Transformer

Manufacturer: Arteche
Type: UTD-123
Serial number: 15012274/1
According to Standard: IEC 61869-3

Year of manufacture: 2015

1.2 Rated characteristics assigned by the manufacturer

 $\begin{array}{lll} \mbox{Highest Voltage for equipment, U_m:} & 123 \ \mbox{kV} \\ \mbox{Rated power-frequency with stand test voltage:} & 230 \ \mbox{kV} \\ \mbox{Rated lightning impulse with stand test voltage:} & 550 \ \mbox{kV} \\ \mbox{Rated frequency:} & 50 \ \mbox{Hz} \\ \end{array}$

Rated primary voltage, U_n : 110 000 / $\sqrt{3}$ V

Rated ratio and terminal markings:

a-n U_p 110 000 / $\sqrt{3}$ V / U_s 100 / $\sqrt{3}$ V 100 VA Class 0.2/3P da-dn U_p 110 000 / $\sqrt{3}$ V / U_s 100 / 3 V 100 VA Class 3P

Rated voltage factor: $1.9 \text{ U}_{n} 30 \text{ s}$ Thermal Burden: 1000 VA

Temperature category: -50°C / +40°C

Oil type: NYNAS NYTRO 10XN

Oil mass: 85 kg
Total mass: 300 kg
Installation: Outdoor

1.3 Rating Plate

Picture 1.1 – Rating plate of voltage transformer.

1.4 Picture of test object.

Picture 1.2 – Voltage transformer UTD-123.

2 **GENERAL INFORMATION**

2.1 Tests carried out by

Tests have been performed in L.C.O.E. High Voltage laboratory placed at Tecnogetafe, Eric Kandel street, number 1 – 28906 Getafe (Madrid). Tests performed by:

Name	<u>Company</u>
Mr. Miguel Corriols Delgado	L.C.O.E. (High Voltage Department)
Mr. Tomás García Aguado	L.C.O.E. (High Voltage Department)
Mr. Justo Sánchez Fernández	L.C.O.E. (High Voltage Department)
Mr. Javier Sánchez Rico	L.C.O.E. (High Voltage Department)

2.2 **Measurement uncertainty**

The uncertainty of the test is calculated and at the disposal of the applicant.

2.3 Standards applied

Tests have been performed according to:

- UNE-EN 61869-1:2010, "Transformadores de medida. Parte 1: Requisitos generales", Spanish official version of the European Standard EN 61869-1:2009, which adopts the modified International Standard IEC 61869-1:2007.
- UNE-EN 61869-3:2012, "Transformadores de medida. Parte 3: Requisitos adicionales para los transformadores de tension inductivos", Spanish official version of the European Standard EN 61869-3:2011, which adopts the International Standard IEC 61869-3:2011.
- UNE-EN 60060-1:2012, "Técnicas de ensayo de alta tension. Parte 1: Definiciones generales y requisitos de ensayo" Spanish official version of the European Standard EN 60060-1:2010, which adopts the modified International Standard IEC 60060-1:2010.

2.4 **Additional information**

In this report, voltage values corresponding to power frequency withstand tests are expressed in peak value divided by root of two and voltage values corresponding to lightning impulse tests are expressed in peak value.

3 PERFORMED TESTS

3.1 <u>Verification of terminal markings and rating plate</u>

Test date: 24th November 2015

• Procedure: UNE-EN 61869-3 section 6.13

Terminal markings of voltage transformer were verified in accordance with section 6.13.301 and rating plate was verified according to section 6.13.302 of UNE-EN 61869-3 Standard.

Results:

Terminal markings of voltage transformer satisfy section 6.13.301 of UNE-EN 61869-3 Standard.

Primary winding. Terminal markings A-N.

Secondary windings. Terminal markings of measuring winding a-n and terminal markings of residual voltage winding da-dn.

Rating plate of voltage transformer satisfies section 6.13.302 of UNE-EN 61869-3 Standard.

• Conclusion: Test passed

3.2 Test for accuracy of voltage transformer

• Test date: 24th and 25th November 2015

Procedure: UNE-EN 61869-3 section 7.2.6

Ratio and phase displacement errors of voltage transformer were measured in accordance with sections 7.2.6.301 and 7.2.6.302 of UNE-EN 61869-3 Standard.

Results of secondary winding a-n.

Test for accuracy. Primary A-N and secondary a-n

Ratio	Voltage (% Un)	Burden	Errors	
Rallo			Ratio (%)	Phase (min)
	80	25 % (25 VA)	+0.105	-1.4
	100		+0.101	-1.3
110000 / √3 /	120		+0.085	-1.2
100 / √3 V	80	100 % (100 VA)	-0.024	-3.7
	100		-0.029	-3.7
	120	(100 771)	-0.044	-3.6

Secondary winding da-dn without accuracy burden.

Test for accuracy. Primary A-N and secondary a-n

Ratio	Voltage (% Un)	Burden	Errors	
Ralio			Ratio (%)	Phase (min)
	2	25 % - (25 VA)	+0.039	-2.1
	5		+0.063	-1.9
	100		+0.101	-1.3
	190		-0.152	+0.7
110000 / √3 /	190 (*)		-0.286	-3.6
100 / √3 V	2	100 % (100 VA)	-0.090	-4.5
	5		-0.067	-4.3
	100		-0.029	-3.7
	190		-0.279	-1.8
	190 (*)		-0.412	-6.0

Secondary winding da-dn without accuracy burden.

(*) Secondary winding da-dn loaded with accuracy burden equal to 100 VA.

LABORATORIO CENTRAL OFICIAL DE ELECTROTECNIA

Results of secondary winding da-dn.

Test for accuracy. Primary A-N and secondary da-dn

Dotio	Voltage (% Un)	Burden	Errors	
Ratio			Ratio (%)	Phase (min)
	2	25 % (25 VA)	-0.003	-3.4
	5		+0.037	-3.1
	100		+0.099	-2.4
110000 / √3 /	190		-0.412	-0.2
100 / 3 V	2	100 % (100 VA)	-0.270	-6.2
	5		-0.230	-5.9
	100		-0.165	-5.3
	190		-0.672	-3.0

Secondary winding a-n without accuracy burden.

Test for accuracy. Primary A-N and secondary da-dn

Ratio	Voltage (% Un)	Develop	Errors	
Rallo		Burden	Ratio (%)	Phase (min)
	2	25 % (25 VA)	-0.111	-7.8
	5		-0.073	-7.4
	100		-0.027	-6.2
110000 / √3 /	190		-0.531	-4.5
100 / 3 V	2	100 % (100 VA)	-0.375	-10.6
	5		-0.339	-10.2
	100		-0.292	-9.0
	190		-0.787	-7.3

Secondary winding a-n loaded with accuracy burden of 100 VA.

Voltage ratio and phase displacement errors are between the limits specified for the accuracy class of the voltage transformer.

• Conclusion: Test passed

3.3. Lightning impulse and chopped impulse test on primary terminals

• Test date: 25th November 2015

Procedure: UNE-EN 61869-3 sections 7.2.3 and 7.4.1

Lightning impulse test and chopped impulse test on primary terminals of voltage transformer were performed according to sections 7.2.3 and 7.4.1 of UNE-EN 61869-3 Standard.

Peak value of full impulses was equal to 550 kV and test voltage of chopped impulses was equal to 633 kV (115 % of 550 kV), without correction due to local atmospheric conditions. Test wave polarity of the impulses was both positive and negative and chopping time of chopped impulses was between 2 µs and 5µs.

Terminal N, one terminal of each secondary winding and tank were connected to ground during the impulse test.

Sequence of the impulse test:

- 1 Reduced positive impulse (less than 80 % of test voltage)
- 15 Full positive impulses (100 % of test voltage)
- 1 Reduced negative impulse (less than 80 % of test voltage)
- 1 Full negative impulses (100 % of test voltage)
- 2 Chopped negative impulses (115 % of test voltage)
- 14 Full negative impulses (100 % of test voltage)
- Lightning impulse test with positive polarity. Test results:

Lightning Impulse Test - Positive polarity		
Peak Value of impulses 550 kV		
Positive full impulses	15	
Front Time t ₁	1.29 µs	
Time to half value t ₂	53.0 µs	
Ambient Conditions		
Ambient temperature	18.7 °C	
Relative Humidity	39.5 %	
Atmospheric Pressure	948.3 hPa	

LABORATORIO CENTRAL OFICIAL DE ELECTROTECNIA

• Lightning impulse and chopped impulse test with negative polarity. Test results:

Lightning Impulse Test - Negative polarity		
Peak Value of full impulses	550 kV	
Peak Value of chopped impulses	633 kV	
Negative full impulses	15	
Negative chopped impulses	2	
Front Time t ₁	1.27 µs	
Time to half value t ₂	53.0 µs	
Chopping time t _c of chopped impulses	3.03 µs	
Ambient Conditions		
Ambient temperature	18.7 °C	
Relative Humidity	39.5 %	
Atmospheric Pressure	948.3 hPa	

Test result:

No external flashover or insulation damage was detected during wet test.

• Conclusion: Test passed

3.4 Wet test for outdoor type transformers

• Test date: 26th November 2015

Procedure: UNE-EN 61869-3 section 7.2.4

Wet test for outdoor type transformers was performed on voltage transformer according to section 7.2.4 of UNE-EN 61869-3 Standard.

Test voltage equal to 230 kV, 120 Hz corrected due to local atmospheric conditions, was applied between high voltage terminal of voltage transformer and ground for 60 seconds under wet condition according to UNE-EN 60060-1 Standard.

Terminal N, one terminal of each secondary winding and tank were connected to ground during the test.

Test Parameters:

Wet test on Voltage Transformer			
Test voltage (normal conditions) 230 kV			
Test voltage (local conditions)	224.7 kV		
Test frequency	120 Hz		
Test duration	50 s		
Atmospheric factor	0.977		
Rain Parameters			
Horizontal flow rate	1.5 mm / min		
Vertical flow rate	1.5 mm / min		
Water conductivity	91.5 μS / cm		
Water temperature	14.4 ° C		
Ambient Conditions			
Ambient temperature	19.2 °C		
Atmospheric Pressure	952.4 hPa		

Results:

No external flashover or insulation damage was detected during wet test.

Conclusion: Test passed

3.5 Power frequency withstand test on primary terminals

Test date: 26th and 27th November 2015

Procedure: UNE-EN 61869-3 section 7.3.1

Power frequency withstand test was performed on primary terminals of voltage transformer according to section 7.3.1 of UNE-EN 61869-3 Standard.

Induced Voltage withstand test on primary winding.

Test voltage of 230 kV, 120 Hz was applied for 50 seconds on voltage transformer between high voltage primary terminal and ground with one terminal of each secondary winding and tank connected to earth.

Test Parameters:

Induced voltage test on winding A-N		
Test voltage 230 kV		
Test frequency	120 Hz	
Test duration	50 s	
Ambient Conditions		
Ambient temperature	19.5 °C	
Relative Humidity	30.9 %	
Atmospheric Pressure	950.3 hPa	

Separate source withstand test on terminal N.

Test voltage equal to 3 kV, 50 Hz was applied for 60 seconds between terminal N of primary winding and ground, with one terminal of each secondary winding and tank of the transformer connected to earth.

Test Parameters:

Power frequency test on terminal N		
Test voltage 3 kV		
Test frequency	50 Hz	
Test duration 60 s		
Ambient Conditions		
Ambient temperature	19.3 °C	
Relative Humidity	41.4 %	
Atmospheric Pressure	947.1 hPa	

No flashover or insulation damage was detected during the test.

Conclusion: Test passed

LABORATORIO CENTRAL OFICIAL DE ELECTROTECNIA

3.6 Partial discharges measurement

• Test date: 26th November 2015

• Procedure: UNE-EN 61869-3 section 7.3.2

Partial discharges measurement was performed on voltage transformer according to section 7.3.2 of UNE-EN 61869-3 Standard.

After induced voltage withstand test on primary winding, partial discharges were measured at test voltage equal to 147.6 kV (1.2 U_m) and 85.2 kV (1.2 $U_m/\sqrt{3}$).

• Test Parameters:

Partial Discharges Measurement			
Excitation	n Voltage	230 kV	
Test Fre	equency	120 Hz	
Test D	uration	50 s	
114	Test Voltage	147.6 kV	
Level 1 $1.2 U_m$	Partial Discharges Level	4.1 pC	
1.2 O _m	Standard limit	10 pC	
	Test Voltage	85.2 kV	
Level 2 1.2 U _m / √3	Partial Discharges Level	3.6 pC	
1.2 Om / 10	Standard limit	5 pC	
PD backgrou	2 pC		

Results:

Partial discharges measured at test voltage equal to 1.2 U_m and 1.2 $U_m/\sqrt{3}$ were lower than limits specified by UNE-EN 61869-3 Standard.

• Conclusion: Test passed

3.7 Power frequency withstand test on secondary terminals

• Test date: 27th November 2015

• Procedure: UNE-EN 61869-3 section 7.3.4

Power frequency withstand test on secondary terminals was performed on voltage transformer according to section 7.3.4 of UNE-EN 61869-3 Standard.

Test voltage equal to 3 kV, 50 Hz was applied for 60 seconds between short-circuited terminals of each secondary winding and earth with the primary terminals of the transformer and the others secondary windings connected to ground.

Test Parameters:

Voltage applied to secondary windings a-n / da-dn			
Test voltage 3 kV			
Test frequency	50 Hz		
Test duration 60 s			
Ambient Conditions			
Ambient temperature 19.3 °C			
Relative Humidity 41.4 %			
Atmospheric Pressure	947.1 hPa		

Results:

No flashover or insulation damage was detected during the test.

• Conclusion: Test passed

3.8 Radio interference voltage measurement

• Test date: 27th November 2015

Procedure: UNE-EN 61869-1 section 7.2.5

Radio interference voltage measurement was performed on voltage transformer according to section 7.2.5 of UNE-EN 61869-1 Standard.

Test voltage of 106.5 kV (1.5 $U_m/\sqrt{3}$), 50 Hz was applied for 30 seconds between high voltage primary terminal of voltage transformer and ground. Terminal N, one terminal of each secondary winding and tank were connected to ground during the test.

Then test voltage was reduced to 78.1 kV (1.1 $U_m/\sqrt{3}$) and radio interference voltage was measured during 30 seconds with measuring frequency equal to 1.34 MHz.

• Test results:

RIV Measurement				
Test voltage Level 1 106.5 kV				
Test voltage Level 2	78.1 kV			
Test frequency	50 Hz			
Test duration	30 s (each level)			
RIV measuring frequency	1.34 MHz			
Ambient Conditions				
Ambient temperature	17 °C			
Relative Humidity	46 %			
Atmospheric Pressure	948 hPa			

Test Voltage (kV)	RIV (μV)	RIV Limits (μV)	Result
106.5 kV	298.5 μV	-	OK
78.1 kV	295.1 μV	2500 μV (IEC)	OK

• Conclusion: Test passed

3.9 <u>Temperature-rise test with accuracy burden</u>

• Test date: 1st and 2nd December 2015

Procedure: UNE-EN 61869-3 section 7.2.2

Temperature-rise test was performed on voltage transformer according to section 7.2.2 of UNE-EN 61869-3 Standard.

Temperature rise of windings were measured by the increase-in-resistance method and four thermocouples were placed over the surface of the transformer in order to determine thermal stability.

The primary winding of the transformer was subjected to 1.2 U_n, 50 Hz and rated burden equal to 100 VA was connected to secondary winding a-n.

Once the thermal stability of test object was reached, after 22 hours form starting time, a burden equal to 100 VA was connected to residual voltage secondary winding da-dn, test voltage applied to primary winding was increased up to 1.9 U_n during 30 seconds and the resistances of the windings were measured when primary voltage was switched off.

Temperature-rise of the windings. Test results:

	Temperature-rise of windings.			
	A-N a-n da-dn			
R_{o} (m Ω)	11 340 Ω	0.1663 Ω	0.2046 Ω	
θ _o (°C)		13.2 ℃		
R_{t} (m Ω)	11 710 Ω 0.1715 Ω 0.2109 Ω			
θ _f (°C)	11.7 ℃			
Δθ (K)	9.8 K ± 3 K 9.5 K ± 3 K 9.3 K ± 3 K			

Temperature rise of windings measured by the increase-in-resistance method was lower than limit specified of 60 K (thermal insulation class A) specified by UNE-EN 61869-3 Standard.

LABORATORIO CENTRAL OFICIAL DE ELECTROTECNIA

Temperature-rise measurement of external parts. Test results:

Temperature rise on external parts of the transformer	
Ambient Temperature before the test	14.3 °C
Ambient Temperature after the test	11.7 ºC
Test voltage 1.2 U _n	76.2 kV
Test voltage 1.9 U _n during 30 seconds	120.7 kV
Test frequency	50 Hz
Burden connected to winding a-n	100 VA
Burden connected to winding da-dn (only during 1.9 U _n test)	100 VA
Temperature rise thermocouple 1 – Tank lower part	3.7 K
Temperature rise thermocouple 2 - Tank upper part	4.2 K
Temperature rise thermocouple 3 – Secondary terminals	1.8 K
Temperature rise thermocouple 4 – Tank lateral side	4.1 K

Temperature rise of external parts of voltage transformer was lower than limit specified of 60 K (thermal insulation class A) specified by UNE-EN 61869-3 Standard.

• Conclusion: Test passed

3.10 Temperature-rise test with thermal limiting output

• Test date: 2nd and 3rd December 2015

Procedure: UNE-EN 61869-3 section 7.2.2

Temperature-rise test was performed on voltage transformer according to section 7.2.2 of UNE-EN 61869-3 Standard.

Temperature rise of windings were measured by the increase-in-resistance method and four thermocouples were placed over the surface of the transformer in order to determine thermal stability.

The primary winding of the transformer was subjected to U_n, 50 Hz and thermal limiting output of 1000 VA was connected to secondary winding a-n. Once the thermal stability of test object was achieved, after 19 hours, the resistances of the windings were measured.

Temperature-rise of the windings. Test results:

	Temperature-rise of windings.			
	A-N a-n da-dn			
R_{o} (m Ω)	11 340 Ω 0.1663 Ω 0.2046 Ω			
θ _o (°C)	13.2 ℃			
R_{t} (m Ω)	11 860 Ω 0.1740 Ω 0.2125 Ω			
θ _f (°C)	14.2 °C			
Δθ (Κ)	10.7 K ± 3 K			

LABORATORIO CENTRAL OFICIAL DE ELECTROTECNIA

Temperature rise of windings measured by the increase-in-resistance method was lower than limit specified of 60 K (thermal insulation class A) specified by UNE-EN 61869-3 Standard.

• Temperature-rise measurement of external parts. Test results:

Temperature rise on external parts of the transformer			
Ambient Temperature before the test	13.6 °C		
Ambient Temperature after the test	14.3 °C		
Test voltage U _n	63.5 kV		
Test frequency	50 Hz		
Burden connected to winding a-n	1000 VA		
Burden connected to winding da-dn	0 VA		
Temperature rise thermocouple 1 – Tank lower part	3.1 K		
Temperature rise thermocouple 2 - Tank upper part	3.7 K		
Temperature rise thermocouple 3 – Secondary terminals	2.1 K		
Temperature rise thermocouple 4 – Tank lateral side	3.6 K		

Temperature rise of external parts of voltage transformer was lower than limit specified of 60 K (thermal insulation class A) specified by UNE-EN 61869-3 Standard.

Conclusion: Test passed

3.11 Short-circuit withstand capability test

• Test date: 4th December 2015

Procedure: UNE-EN 61869-3 section 7.2.301

Short-circuit withstand capability test was performed on voltage transformer in accordance with section 7.2.301 of UNE-EN 61869-3 Standard.

The voltage transformer was energized from the primary winding with the secondary winding short-circuited. Test voltage equal to rated voltage was applied to voltage transformer for one second with test frequency equal to 50 Hz.

Results of test. Secondary winding a-n short-circuited.

Short-circuit test winding a-n			
Test voltage 65.8 kV			
Test frequency	50 Hz		
Test duration 1.03 s			
Secondary test current	873 A		
Ambient temperature	15.5 °C		

• Results of test. Secondary winding da-dn short-circuited.

Short-circuit test winding da-dn			
Test voltage 65.8 kV			
Test frequency	50 Hz		
Test duration 1.03 s			
Secondary test current 763 A			
Ambient temperature	15.5 °C		

• Requirements after short-circuit test:

3.11.1 Visual inspection of test object.

• Test date: 4th December 2015

Results of test:

After short-circuit test voltage transformer is not visibly damaged and the insulation next to the surface of both the primary and the secondary windings does not show significant deterioration.

Conclusion: Test passed

3.11.2 Test for accuracy of voltage transformer after short-circuit test

• Test date: 11th December 2015

Procedure: UNE-EN 61869-3 section 7.2.6

Ratio and phase displacement errors of voltage transformer were measured after short-circuit capability test in accordance with sections 7.2.6.301 and 7.2.6.302 of UNE-EN 61869-3 Standard.

Results of secondary winding a-n.

Test for accuracy. Primary A-N and secondary a-n

Ratio	Voltage	Voltage	Err	rors
Rallo	(% Un)	Burden	Ratio (%)	Phase (min)
	80	25 % (25 VA)	+0.102	-1.4
	100		+0.098	-1.3
110000 / √3 /	120	(20 771)	+0.083	-1.2
100 / √3 V	80	400.0/	-0.028	-3.7
100 120	100	100 % (100 VA)	-0.036	-3.7
	120		-0.048	-3.6

Secondary winding da-dn without accuracy burden.

Test for accuracy. Primary A-N and secondary a-n

Dotio	Voltage	Burden	Errors	
Ratio	(% Un)		Ratio (%)	Phase (min)
	2	25 % (25 VA)	+0.041	-2.4
	5		+0.068	-2.0
	100		+0.098	-1.3
	190		-0.155	+0.7
110000 / √3 /	000 / √3 / 190 (*)		-0.287	-3.5
100 / √3 V	2	100 % (100 VA)	-0.091	-4.8
	5		-0.064	-4.4
100 190 190 (*)	100		-0.034	-3.7
	190	(100 VA)	-0.283	-1.7
	190 (*)		-0.416	-5.8

Secondary winding da-dn without accuracy burden.

(*) Secondary winding da-dn loaded with accuracy burden equal to 100 VA.

LABORATORIO CENTRAL OFICIAL DE ELECTROTECNIA

Results of secondary winding da-dn.

Test for accuracy. Primary A-N and secondary da-dn

Voltage	Demolese	Errors		
Ratio	Ratio (% Un)	Burden	Ratio (%)	Phase (min)
	2		-0.002	-3.2
110000 / √3 /	5	25 % (25 VA)	+0.040	-3.0
	100		+0.095	-2.2
	190		-0.422	-0.2
100 / 3 V	100/3 V 2		-0.275	-6.0
	5	100 % (100 VA)	-0.234	-5.7
	100		-0.180	-4.9
	190		-0.687	-2.9

Secondary winding a-n without accuracy burden.

Test for accuracy. Primary A-N and secondary da-dn

Ratio	Voltage (% Un)	Burden	Errors	
			Ratio (%)	Phase (min)
110000 / √3 / 100 / 3 V	2	25 % (25 VA)	-0.148	-7.3
	5		-0.104	-7.1
	100		-0.032	-6.5
	190		-0.538	-4.4
	2	100 % (100 VA)	-0.420	-10.0
	5		-0.376	-9.8
	100		-0.302	-9.3
	190		-0.817	-7.1

Secondary winding a-n loaded with accuracy burden of 100 VA.

Voltage ratio and phase displacement errors are between the limits specified for the accuracy class of the voltage transformer.

• Conclusion: Test passed

3.11.3 Power frequency withstand test on primary terminals

Test date:
 9th and 11th December 2015

Procedure: UNE-EN 61869-3 section 7.3.1

Power frequency withstand test was performed on primary terminals of voltage transformer after short-circuit test according to section 7.3.1 of UNE-EN 61869-3 Standard.

Induced Voltage withstand test on primary winding.

Test voltage of 207 kV (90 % of power frequency withstand voltage), 120 Hz was applied for 50 seconds on voltage transformer between high voltage primary terminal and ground with one terminal of each secondary winding and tank connected to earth.

Test Parameters:

Induced voltage test on winding A-N		
Test voltage	207 kV	
Test frequency	120 Hz	
Test duration	50 s	
Ambient Conditions		
Ambient temperature	17.3 °C	
Relative Humidity	51.3 %	
Atmospheric Pressure	965.6 hPa	

Separate source withstand test on terminal N.

Test voltage equal to 2.7 kV, 50 Hz was applied for 50 seconds between terminal N of primary winding and ground, with one terminal of each secondary winding and tank of the transformer connected to earth.

Test Parameters:

Power frequency test on terminal N		
Test voltage	2.7 kV	
Test frequency	50 Hz	
Test duration	60 s	
Ambient Conditions		
Ambient temperature	16.2 °C	
Relative Humidity	49.8 %	
Atmospheric Pressure	968.4 hPa	

No flashover or insulation damage was detected during the test.

Conclusion: Test passed

LABORATORIO CENTRAL OFICIAL DE ELECTROTECNIA

3.11.4 Partial discharges measurement after short-circuit test

• Test date: 9th December 2015

• Procedure: UNE-EN 61869-3 section 7.3.2

Partial discharges measurement was performed on voltage transformer after short-circuit test in accordance with section 7.3.2 of UNE-EN 61869-3 Standard.

After induced voltage withstand test on primary winding, partial discharges were measured at test voltage equal to 147.6 kV (1.2 U_m) and 85.2 kV (1.2 $U_m/\sqrt{3}$).

Test Parameters:

Partial Discharges Measurement		
Excitation Voltage		207 kV
Test Frequency		120 Hz
Test Duration		50 s
Level 1 1.2 U _m	Test Voltage	147.6 kV
	Partial Discharges Level	3.8 pC
	Standard limit	10 pC
110	Test Voltage	85.2 kV
Level 2 1.2 $U_m / \sqrt{3}$	Partial Discharges Level	3.5 pC
	Standard limit	5 pC
PD background noise level		2 pC

Results:

Partial discharges measured at test voltage equal to 1.2 U_m and 1.2 $U_m/\sqrt{3}$ were lower than limits specified by UNE-EN 61869-3 Standard.

• Conclusion: Test passed

3.11.5 Power frequency withstand test on secondary terminals after short-circuit test

• Test date: 11th December 2015

Procedure: UNE-EN 61869-3 section 7.3.4

Power frequency withstand test on secondary windings was performed on voltage transformer in accordance with section 7.3.4 of UNE-EN 61869-3 Standard.

Test voltage of 2.7 kV (90 % of power frequency withstand voltage), 50 Hz was applied for 60 seconds between short-circuited terminals of each secondary winding and earth with the primary terminals of the transformer and the others secondary windings connected to ground.

Test Parameters:

Voltage applied to secondary windings a-n / da-dn		
Test voltage	2.7 kV	
Test frequency	50 Hz	
Test duration	60 s	
Ambient Conditions		
Ambient temperature	16.2 °C	
Relative Humidity	49.8 %	
Atmospheric Pressure	968.4 hPa	

Results:

No flashover or insulation damage was detected during the test.

• Conclusion: Test passed

LABORATORIO CENTRAL OFICIAL DE ELECTROTECNIA

3.12 <u>Transmitted Overvoltage Test</u>

Test date: 14th December 2015

Procedure: UNE-EN 61869-1 section 7.4.4

Procedure:

Transmitted overvoltage test was performed on voltage transformer in accordance with section 7.4.4 of UNE-EN 61869-1 Standard.

A low-voltage impulse with a peak value (U_p) of around 25 V was applied to terminal A of primary winding. Test wave polarity was positive, front time around 500 ns and time to half value above 50 μ s.

The transmitted voltage at the open secondary terminals (U_s) was measured by using an oscilloscope having a bandwidth of 500 MHz and input impedance equal to 50 Ω .

• Transmitted overvoltage test. Results:

	Transmitted overvoltage test	
Peak Value of the impulse,U₁		26 V
Front Time t₁		500 ns
Time to half value t ₂		> 50 µs
Secondary a-n	Applied peak value, U₁	26.4 V
	Transmitted peak voltage, U ₂	196 mV
	Calculated peak value on secondary	1.19 kV
	Limit of peak value on secondary winding	1.6 kV
Secondary da-dn	Applied peak value, U₁	26.4 V
	Transmitted peak voltage, U ₂	196 mV
	Calculated peak value on secondary	0.67 kV
	Limit of peak value on secondary winding	1.6 kV
Ambient temperature		17.5 °C

Results:

Transmitted overvoltage peak voltage on secondary windings was lower than limit value specified by UNE-EN 61869-1 Standard.

Conclusion: Test passed

3.13 Measurement of insulation resistance

• Test date: 14th December 2015

Procedure:

Measurement of insulation resistance of the windings was performed on voltage transformer according to specification of the manufacturer.

Test voltage was applied between each winding of voltage transformer and ground during one minute with other windings short-circuited and connected to ground. Insulation resistance was measured during the test.

Test results:

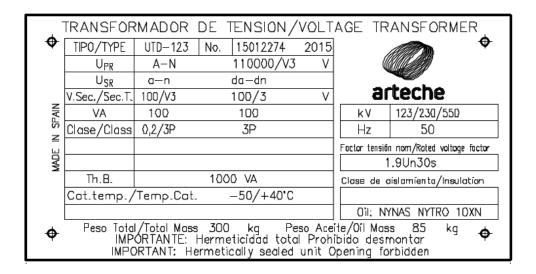
Insulation resistance measurement		
Test voltage	2500 V _{DC}	
Test duration	60 s	
Winding A-N	629 GΩ	
Winding a-n	241 GΩ	
Winding da-dn	219 GΩ	
Ambient temperature	17.5 °C	

• Conclusion: Test passed

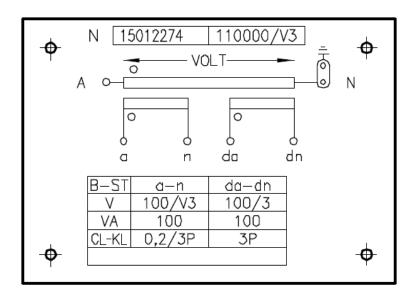
The test performed is out of the scope of ENAC Accreditation.

4 SUMMARY AND CONCLUSIONS

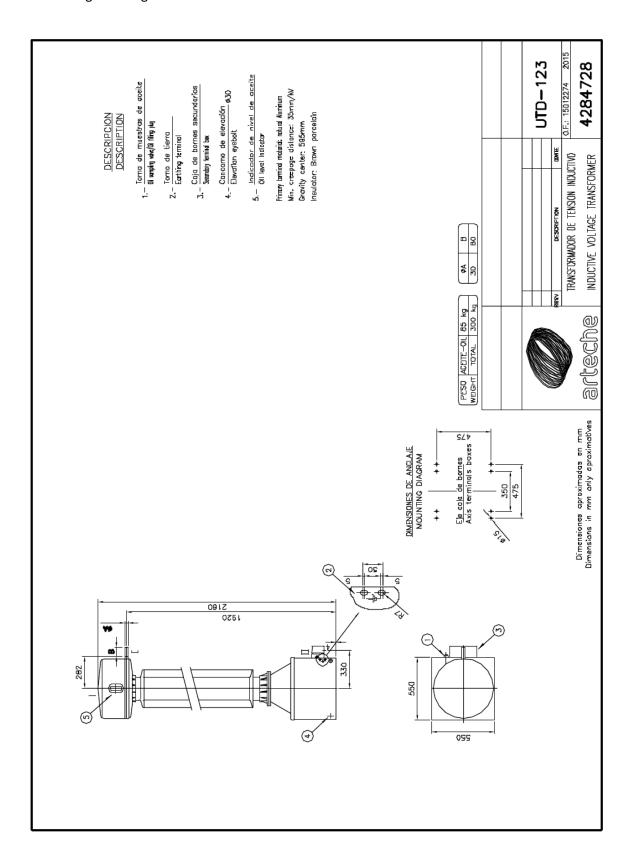
The following tests according to UNE-EN 61869-1 and UNE-EN 61869-3 Standards have been performed on voltage transformer manufactured by Arteche, type UTD-123 and identification 15012274/1.


- Verification of terminal markings.
- Test for accuracy of voltage transformer.
- Lightning impulse test on primary terminals.
- Chopped impulse voltage withstand test on primary terminals.
- Wet test for outdoor type transformers.
- Power frequency withstand test on primary terminals.
- Partial discharges measurement.
- Power frequency withstand test on secondary terminals.
- Radio interference voltage test.
- Temperature-rise test.
- Short-circuit withstand capability test.
- Transmitted overvoltage test.
- Insulation resistance measurement.

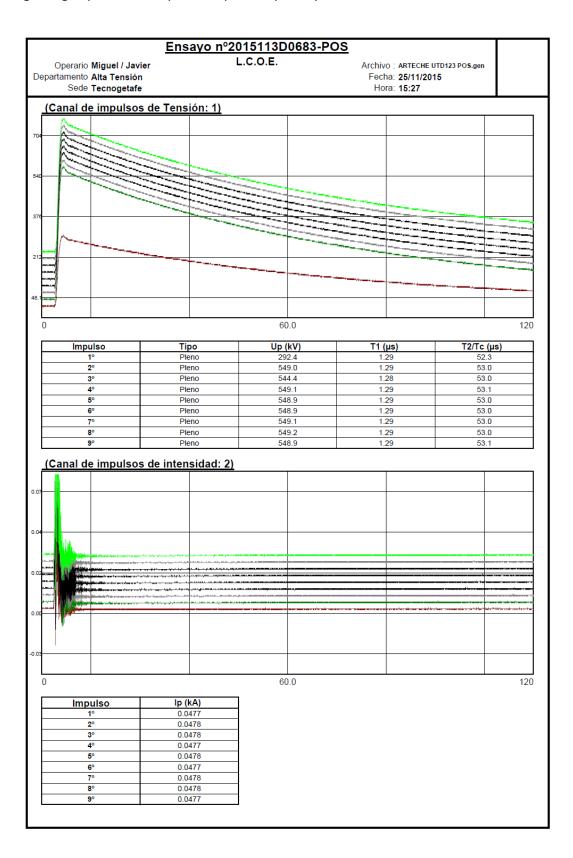
All test performed on Voltage Transformer have been successful.


Annex 1

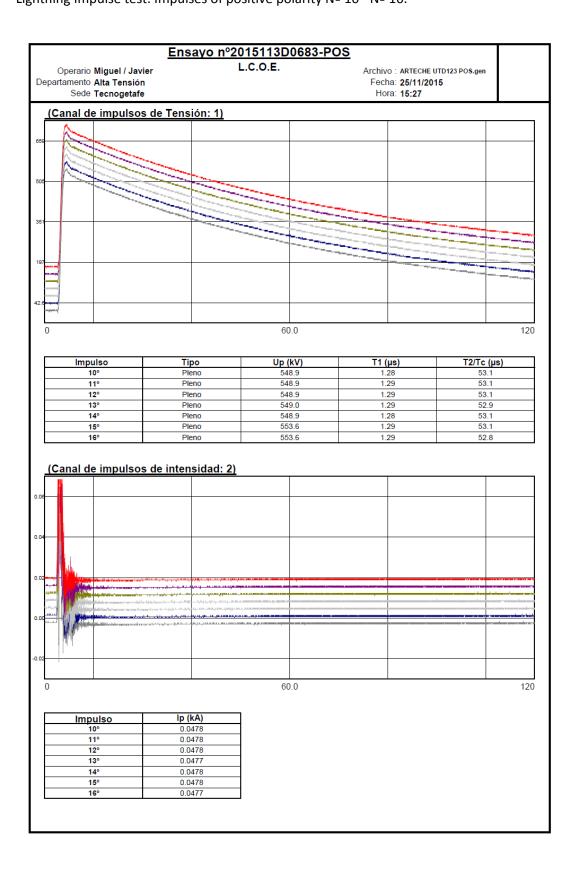
Rating plate and drawing of voltage transformer


Rating plate of voltage transformer UTD-123.

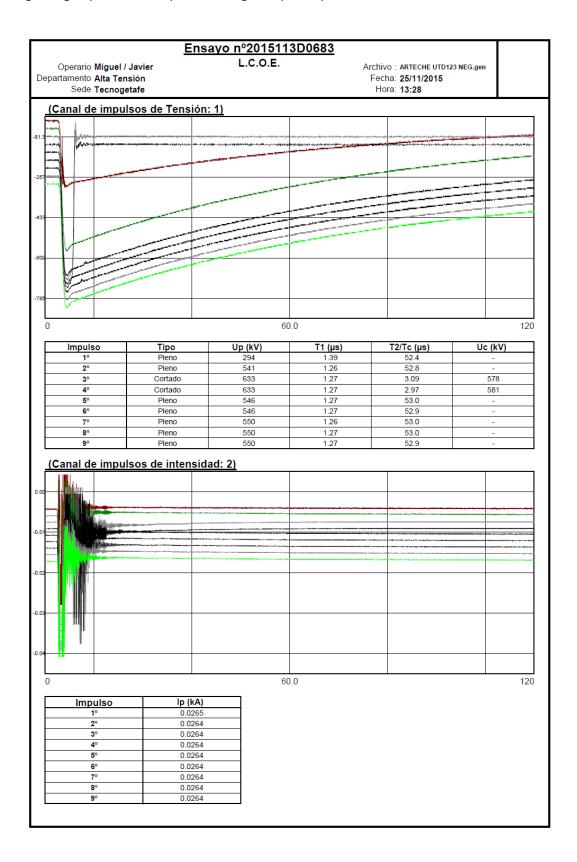
> Secondary connection plate of voltage transformer UTD-123.


Drawing of voltage transformer UTD-123.

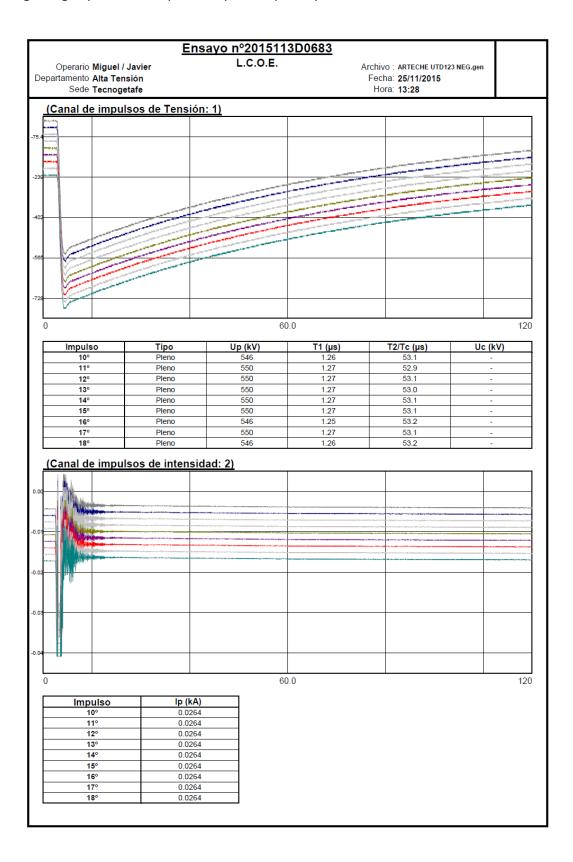
Annex 2


Lightning impulse test

Lightning Impulse test. Impulses of positive polarity № 1 –№ 9.

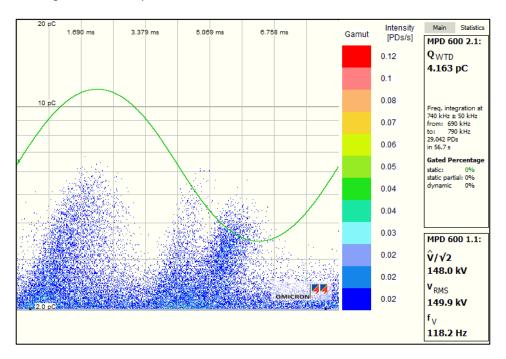


 \triangleright


Lightning Impulse test. Impulses of positive polarity № 10 –№ 16.

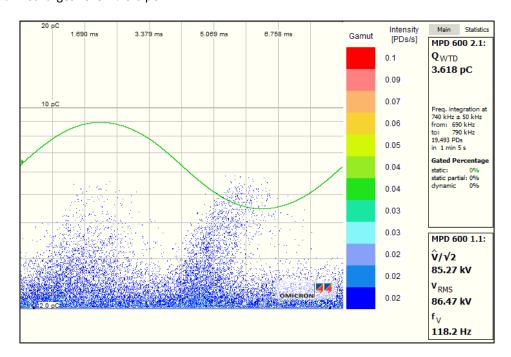
► Lightning Impulse test. Impulses of negative polarity № 1 – № 9.

► Lightning Impulse test. Impulses of positive polarity № 10 –№ 18.



Annex 3

Partial Discharge Measurement


Figure 1 – Partial Discharges Measurement. Record 1.

Test Voltage \Rightarrow 148 kV Measuring Frequency \Rightarrow 740 kHz \pm 100 kHz Partial Discharges Level \Rightarrow 4.2 pC

Figure 2 – Partial Discharges Measurement. Record 2.

Test Voltage \Rightarrow 85.2 kV Measuring Frequency \Rightarrow 740 kHz \pm 100 kHz Partial Discharges Level \Rightarrow 3.6 pC

Annex 4

Temperature-rise test

Figure 1 – Temperature-rise test on voltage transformer with accuracy burden.

Test Voltage \implies 76.2 kV and 120.7 kV 30 s Secondary burden \implies 100 VA on secondary a-n

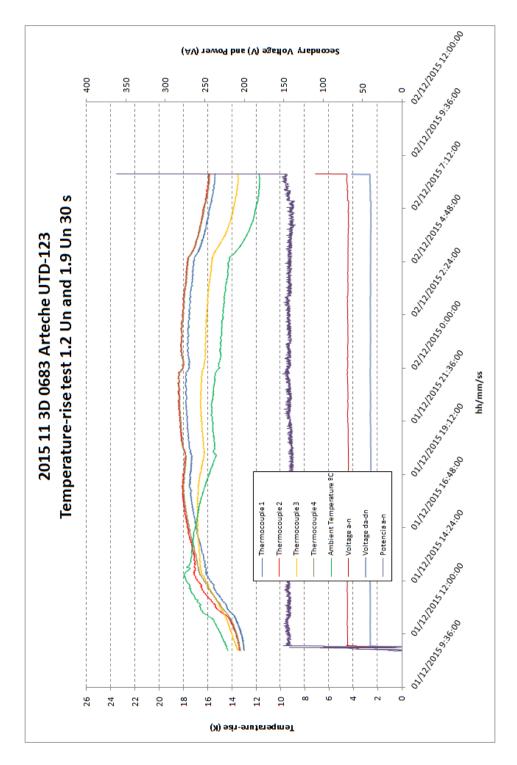
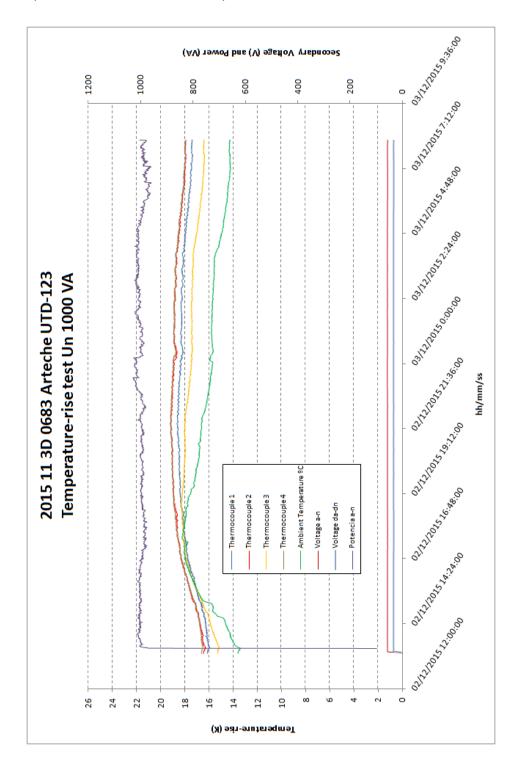
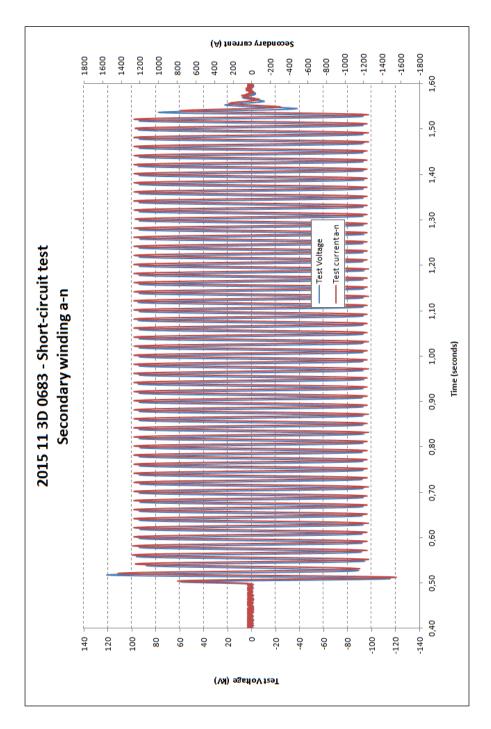



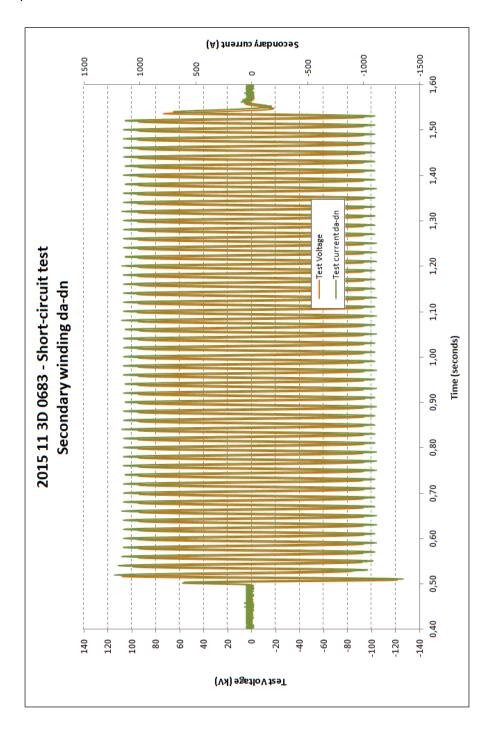
Figure 2 – Temperature-rise test on voltage transformer with rated thermal burden.

Test Voltage \implies 63.5 kV Secondary burden \implies 1000 VA on secondary a-n



Annex 5

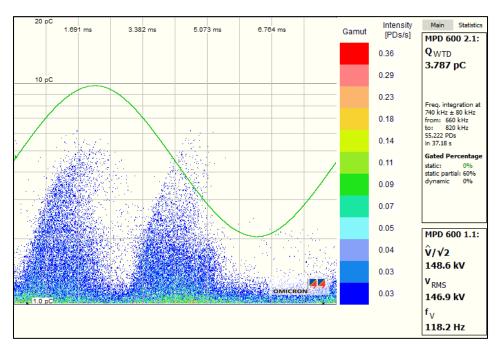
Short-circuit withstand capability test


Short-circuit test on secondary winding a-n.

Test voltage \Rightarrow 65.8 kV Test duration \Rightarrow 1.03 s Secondary test current \Rightarrow 873 A

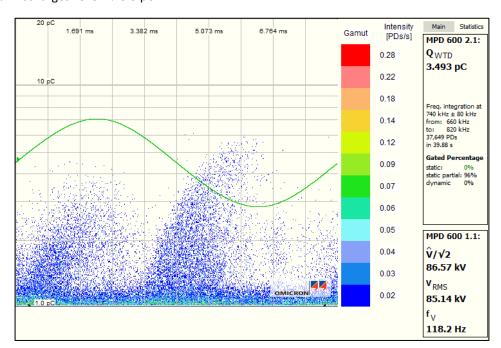
Short-circuit test on secondary winding da-dn.

Test voltage \Rightarrow 65.8 kV Test duration \Rightarrow 1.03 s Secondary test current \Rightarrow 763 A



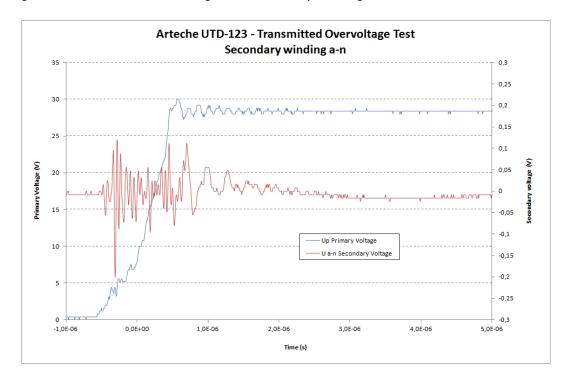
Annex 6

Partial Discharge Measurement after short-circuit test


Figure 1 – Partial Discharges Measurement. Record 1.

Test Voltage \Rightarrow 148 kV Measuring Frequency \Rightarrow 740 kHz \pm 100 kHz Partial Discharges Level \Rightarrow 3.8 pC

Figure 2 – Partial Discharges Measurement. Record 2.


Test Voltage \Rightarrow 85.2 kV Measuring Frequency \Rightarrow 740 kHz \pm 100 kHz Partial Discharges Level \Rightarrow 3.5 pC

Annex 7

Transmitted Overvoltage Test

Figure 1 – Transmitted overvoltage test. Secondary winding a-n.

Figure 2 – Transmitted overvoltage test. Secondary winding da-dn.

