

PREMIUM 1.5T MRI SYSTEM MRT-1550

Product Data
No. MPDMR0628EAA

# Vantage Orian

### **APPLICATION**

Vantage Orian with 35/155 gradient subsystem is a premium 1.5T MRI system. With migrated high end technology, you can be sure you are offering your referring physicians and your patients better MRI services today. Designed to enhance productivity and reduce costs every day, take care of patient comfort and deliver outstanding clinical performance, you can be sure that you are purchasing the complete 1.5T MRI package.

#### **ADVANTAGES**

### Achieve high SNR and resolution images with intelligence

Utilizing deep learning reconstruction technology, Vantage Orian's advanced MRI technology offers your referring physicians and patients the best 1.5T MRI services available. Advanced intelligent Clear-IQ Engine (AiCE), Precise IQ Engine (PIQE), and Iterative Motion Correction (IMC) produce MR images that are exceptionally detailed and high in SNR, anatomically sharp, and robust against motion.

# Productivity focused technology that improves workflow and image consistency

Canon's automated workflow solutions simplify the flow of MR procedures from patient setting down to the scan and check

Patient preparation can be remotely performed via Tablet UX, Ceiling Camera detects patient on the table for Auto Positioning, and Auto Scan Assist applications support Auto Planning. After scanning, this application asks if the operator would like to proceed the examination according to the predefined scenario.



### Patient friendly features putting your patients first

A relaxed patient is key in MRI, and you can be assured that Vantage Orian takes care of this with industry leading whisper quiet sequences with Pianissimo  $\Sigma$  and Pianissimo Zen, 71<sup>1)</sup> cm open bore aperture and MR Theater all designed to put patients at ease. A range of features to ensure easier examinations for even the most challenging patients. With pre-scan, free breathing, contrast free and pediatric applications, you can deliver a better patient experience which improves your facilities MRI reputation, and expands your patient population.

# Clinical confidence and consistent imaging mean better diagnosis

With advanced new hardware delivering stable and reliable imaging, Vantage Orian enhances confidence in diagnosis for the most accurate diagnosis. Vantage Orian redefines clinical confidence with outstanding image consistency imaging across all procedures. Achieve excellent MRI diagnostic services with high quality and stable output, improving outcomes for your patients and your business.

Our unique digital PURE RF means that stable and consistent imaging performance is ensured, increasing diagnostic confidence and shortening scan times.

### Vantage **Orian**

#### **COMPOSITION**

# Standard composition (Model: MRT-1550 + MZKT-MP1544)

- Gantry
  - 1.5-Tesla Magnet
  - Active Shield Gradient Coil
  - Whole Body Coil
- Patient Table
- Filter Panel
- Control Cabinet and Gradient Power Supply
- Cooling Cabinet
- FAN Box
- Console
  - Wide LCD Color Monitor
  - Keyboard and Mouse
  - Control Pad
  - Control Box
  - Microphone
- Software
  - System Software (V8.0 + V9.0 Software Package)
  - DICOM® Software (Standard)
    - Storage SCU
    - Print SCU
    - · DICOM Media
    - MWM SCU
- Full Set of Accessories
  - Operation Manuals
  - Service Manuals
  - Phantoms
  - Patient Call
  - Patient Observation Camera
  - Support Devices for Scanning

(Tabletop Mats, Wedge Mats, Pads, Belts)

- Safety Training Video
- Warning Plates
- Speakers

Note: Heat exchanger, transformation installation, oxygen monitor and desk for console are not included in the standard composition.

### Optional software DTI Application

| • DIT Application                                               | N122AA-D115              |
|-----------------------------------------------------------------|--------------------------|
| <ul> <li>DTT Application</li> </ul>                             | MSSW-DTT                 |
| <ul> <li>Single Voxel MRS Application</li> </ul>                | MSSW-MRSS2               |
| <ul> <li>Multi Voxel MRS Application</li> </ul>                 | MSSW-MRSM2               |
| <ul> <li>NeuroLine+ Application</li> </ul>                      | MSSW-ASNU1               |
| <ul> <li>Contrast Free MRA Application</li> </ul>               | MSSW-CFMRA3              |
| <ul> <li>k-t SPEEDER Application</li> </ul>                     | MSSW-KTS1                |
| <ul> <li>SpineLine+ Application</li> </ul>                      | MSSW-LOCSP1              |
| <ul> <li>W-SpineLine+ Application</li> </ul>                    | MSSW-LOCWS               |
| <ul> <li>ProstateLine+ Application</li> </ul>                   | MSSW-LOCPR               |
| UTE Application                                                 | MSSW-UTE                 |
| <ul> <li>Olea Nova®+ Sequence</li> </ul>                        | MSSW-CNV                 |
| <ul> <li>Pianissimo Zen Application</li> </ul>                  | MSSW-ZEN                 |
| <ul> <li>MultiBand SPEEDER Application</li> </ul>               | MSSW-SMS1                |
| <ul> <li>Quick Star Application</li> </ul>                      | MSSW-SOS1                |
| <ul> <li>Fast 3D for mVox</li> </ul>                            | MSSW-FST3D               |
| • Fast 3D for TOF                                               | MSSW-FST3D2              |
| • Fast 3D for SSFP                                              | MSSW-FST3D3              |
| GAIN Algorithm                                                  | MSSW-GA01                |
| <ul> <li>Compressed SPEEDER Application</li> </ul>              | MSSW-CS01                |
| <ul> <li>Compressed SPEEDER Application - 3D</li> </ul>         | MSSW-CS3D1               |
| <ul> <li>Fat Fraction Quantification Application</li> </ul>     | MSSW-FIQ1                |
| <ul> <li>Advanced intelligent Clear-IQ Engine for MR</li> </ul> | MSSW-DLR1                |
| <ul> <li>RDC DWI Application</li> </ul>                         | MSSW-EPIDC <sup>1)</sup> |
| <ul> <li>IMC Application</li> </ul>                             | MSSW-MCO3                |
| <ul> <li>mART EXP Application</li> </ul>                        | MSSW-MAR1                |
| • pCASL (pseudo-Continuous) Application                         | MSSW-PCASL               |
| <ul> <li>PIQE Application</li> </ul>                            | MSSW-HRDLR1              |

MCCIM/DTI2

#### **Optional software package**

| Basic Package                   |             |
|---------------------------------|-------------|
| – mNeuro Package                | MSSW-NEURO2 |
| – mVascular Package             | MSSW-VASCU  |
| – mCardiac Package              | MSSW-CFA3   |
| <ul><li>mBody Package</li></ul> | MSSW-BODY3  |
| – mBreast Package               | MSSW-BRST3  |
| – mOrtho Package                | MSSW-ORTHO  |
| · Advanced Package              |             |

Advanced Package
 mCardiac Plus Package
 mOrtho EXP Package
 Fast 3D Package
 Comfort Package
 Acceleration Package
 Neuro EXP Package
 Body EXP Package
 MSSW-COMFP1<sup>2)</sup>
 MSSW-ACCEP1<sup>2)</sup>
 MSSW-NEXPP1<sup>2)</sup>
 MSSW-BEXPP1<sup>2)</sup>

Auto Scan Assist Package

Auto Scan Assist Cardiac Package
 Auto Scan Assist Knee Package
 Auto Scan Assist Spine Package
 Auto Scan Assist Liver Package
 Auto Scan Assist Liver Package
 Auto Scan Assist EXP Package
 MSSW-APEX1

<sup>1)</sup> Optional mNeuro, mBody and/or mBreast package is required to use this application.

<sup>2)</sup> Only for Europe

### DICOM

|   | 100111                 |             |
|---|------------------------|-------------|
| • | Storage Commitment Kit | MSSW-DCCOU  |
| • | MPPS SCU Kit           | MSSW-DCPPU1 |
| • | Q/R SCP Kit            | MSSW-DCQRP1 |
| • | Q/R SCU Kit            | MSSW-DCQRU1 |

### **Second Console**

| <ul> <li>Second Console</li> </ul>                     | MKDN-014A/S2 <sup>3)</sup> |
|--------------------------------------------------------|----------------------------|
| <ul> <li>mNeuro Package for Second Console</li> </ul>  | MSSW-NEURO2                |
| <ul> <li>MRS Application for Second Console</li> </ul> | MSSW-MRSS2                 |
| <ul> <li>DTT Application for Second Console</li> </ul> | MSSW-DTT                   |
| • GAIN Algorithm for Second Console                    | MSSW-GA01                  |

### **Optional RF Coils**

| MJAB-217A/S1               |
|----------------------------|
| MJAB-207A/S1               |
| MJAH-177A/S1               |
| MJAS-147A/E1               |
| MJAB-167A/P1               |
| MJAJ-237A/S1               |
| MJAJ-197A/J1               |
| MJLC-107H/S1 <sup>4)</sup> |
| MJLC-157H/S1 <sup>4)</sup> |
| MJQH-147A/J1               |
| MJAJ-217A/S1               |
| MJAJ-227A/S1               |
| MJAB-197A/S1               |
| MJAB-187A/J1               |
| MJAH-167A/S1               |
| MJAS-167A/S1               |
| MJAM-127A/S1               |
| MJCA-187A/S1               |
| MJKM-107A/S1               |
| MJCA-197A/S1               |
| MJAM-147A/S1               |
| MJCA-247A/S1               |
| MJAJ-167B/J2               |
| MJAJ-177A/S1               |
| MJAJ-257A/S1               |
|                            |

### Optional coil holder & pad

| • | Coil Holder for TMJ Imaging            | MJCA-147A/S2 |
|---|----------------------------------------|--------------|
| • | 16ch Flex SPEEDER Pad Kit              | MJCA-207A/S1 |
| • | Patient Pads for Spine and Extremities | MBPP-1503/S1 |
| • | Patient Adaptable Tilting Device       | MJCA-227A/S1 |
| • | Patient Pads for Octave SPEEDER coils  | MZCM-1501/S1 |

### **Optional equipment**

| • | Receiving Circuit Extension Kit         | MKPA-1508/S3                |
|---|-----------------------------------------|-----------------------------|
| • | Wireless Cardiac Gating System          | MKSU-ECGU13/S1 <sup>5</sup> |
| • | Wireless Peripheral Pulse and           |                             |
|   | Respiratory Gating System               | MKSU-PRGK13/S1 <sup>5</sup> |
| • | Higher Order Shim Kit                   | MZKT-HOSK14/S1              |
| • | Additional Patient CAMERA Package       | MMPM-GP3001/S1              |
| • | Foot Switch Unit                        | MKFS-003A/S1 <sup>6)</sup>  |
| • | MR Theater                              | MZTH-4003/S1                |
| • | Extended Table Travel Option            | MZPT-1551/S1                |
| • | Dockable Table                          | MZPT-1560/S3 <sup>7)</sup>  |
| • | Advanced Image Reconstruction Unit      | MZDL-011B/S4                |
| • | T/R Coil Hardware Kit                   | MJTX-107A/S1                |
| • | Uninterruptible Power-supply System Kit | MZUP-001A/S1                |
| • | 10GbE High-speed reconstruction kit     | MZNC-011A/S1                |

<sup>3)</sup> Additional software is required to use optional applications for the Second Console.

<sup>4)</sup> In the application for approval under relevant national regulations, the coil name "Phi 'XXX' Flex coil" is used.

<sup>5)</sup> This option may not be available in all countries. Please consult your local Canon Medical Systems sales representative.

<sup>6)</sup> For fixed table exclusive use.

<sup>7)</sup> This is an additional dockable table for the MRI system with dockable table.



### HARDWARE SPECIFICATIONS

### Magnet

The Vantage Orian uses the industry's shortest self-shielded superconducting magnet. The system combines slim and compact design with a wide patient aperture of 71 cm<sup>1)</sup>. This minimizes patient anxiety, ensuring a comfortable examination environment for all patients.

| Magnet type                    | Superconducting mag                      | gnet                                                                                  |                                                        |
|--------------------------------|------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------|
| Field strength                 | 1.5T                                     |                                                                                       |                                                        |
| Magnet length                  | 140 cm                                   |                                                                                       |                                                        |
| Magnet weight                  | Approx. 4,100 kg (incl.                  | liquid helium)                                                                        |                                                        |
| Cryogen                        | Zero helium boil-off                     | •                                                                                     |                                                        |
| Magnetic field stability       | 0.1 ppm/hr or better                     |                                                                                       |                                                        |
| (bare magnet)                  |                                          |                                                                                       |                                                        |
| Fringe Field                   |                                          | active shielding. The fringe field line at 0.                                         |                                                        |
|                                |                                          | at 4.0 m in the axial direction from the c                                            | enter of the magnet.                                   |
| Shimming method                | Passive shimming                         | insigned on site by the addition of formance                                          | anatic material incida                                 |
|                                |                                          | imized on site by the addition of ferroma<br>ring installation using a computerized p |                                                        |
|                                |                                          | method that does not require regular ma                                               |                                                        |
|                                | <ul> <li>AAS (Auto-Active Sh</li> </ul>  |                                                                                       |                                                        |
|                                | · ·                                      | aced in the magnet, the patient's body w                                              | vill affect the magnetic                               |
|                                | field homogeneity. A                     | AAS adjusts the homogeneity to ensure                                                 | the optimal field                                      |
|                                | uniformity for each p                    | patient and/or pulse sequence such as F                                               | atSAT, PASTA, and EPI.                                 |
|                                | <ul> <li>Slice shimming</li> </ul>       |                                                                                       |                                                        |
|                                | · · · · · · · · · · · · · · · · · · ·    | ne multi-slice image acquisition, paramet                                             | ters for magnetic                                      |
|                                |                                          | re corrected per slice.                                                               |                                                        |
|                                | High Order Shimmin This function improve | ng (Active Shimming);*<br>ves the static field homogeneity over the                   | a field of view anabling                               |
|                                |                                          | on of extremely high quality to be obtain                                             |                                                        |
|                                | alagnostie iniornati                     | Number of additional shim chann                                                       | <del></del>                                            |
|                                |                                          | Components:                                                                           | ZX/XY/ZY/Z2/X2Y2                                       |
|                                |                                          | Total shim channels of the system                                                     |                                                        |
| Homogeneity with passive shimm | ning at 100 mm DSV                       | Guaranteed:                                                                           | 0.04 ppm                                               |
| (24 plane plot method)         |                                          | Typical:                                                                              | 0.007 ppm                                              |
|                                |                                          |                                                                                       | 0.007 ppiii                                            |
|                                | at 200 mm DSV                            | Guaranteed:                                                                           | 0.15 ppm                                               |
|                                | at 200 mm DSV                            | Guaranteed: Typical:                                                                  |                                                        |
|                                | at 200 mm DSV                            | Typical:                                                                              | 0.15 ppm<br>0.03 ppm                                   |
|                                |                                          |                                                                                       | 0.15 ppm                                               |
|                                |                                          | Typical: Guaranteed:                                                                  | 0.15 ppm<br>0.03 ppm<br>0.4 ppm<br>0.08 ppm            |
|                                | at 300 mm DSV                            | Typical: Guaranteed: Typical:                                                         | 0.15 ppm<br>0.03 ppm<br>0.4 ppm                        |
|                                | at 300 mm DSV                            | Typical: Guaranteed: Typical: Guaranteed:                                             | 0.15 ppm<br>0.03 ppm<br>0.4 ppm<br>0.08 ppm<br>1.0 ppm |

| Operation panel on the magnet     | The operating panel supports the following operations to facilitate patient set-up and scanning.  - Scan start/abort and pause/resume  - Emergency stop  - Laser light localizer ON/OFF  - Ventilation adjustment  - Lighting adjustment  - Patient table operation incl. Auto-in/Auto-home The panel is also provided with a table position display. |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intelligent monitor on the magnet | The gantry monitor provides the following information.  - Patient table information  - Patient information  - Connecting RF coils status  - Respiration/ECG information <sup>21</sup> The gantry monitor features approximate 12" LCD color monitor. The display matrix is 1,280 × 800.                                                               |

<sup>2)</sup> Optional gating system (MKSU-ECGU13/S1 and MKSU-PRGK13/S1) is required to use this function.

### Vantage **Orian**

#### RF coils

#### Atlas SPEEDER COMPASS

This is an automatic receive coil setting function that determines the position of the connected Atlas SPEEDER coil and automatically ON the coil sections that are positioned near the magnetic field center. This function is useful for spine imaging and body imaging in which the coil sections to be selected differ depending on the coil setting and target region and for scanning in which data is acquired at multiple tabletop positions.

#### Standard RF coils

### QD whole-body coil

Type of coil Transmit RF, Receive signals

Number of rung 24

The Vantage Orian features a full range of RF array coils to cover a wide range of clinical requirements.

This coil is integrated into the magnet cover. It provides a uniform RF field with QD transmission and a high SNR with QD

reception.

### **Optional RF coils**

#### Shape Coil W

Model number MJAB-217A/S1
Type of coil Receive signals

Applicable Regions General human body, including torso,

pelvis, joints, bones and extremities variety

of anatomical regions

Number of elements 32

This soft and light coil supports patient comfort by adapting flexibility to patient body shape.

To use this coil for imaging with 32 channel, Receiving Circuit Extension Kit (MKPA-1508/S1) is required.

### Shape Coil

Model number MJAB-207A/S1
Type of coil Receive signals

Applicable Regions General human body, including torso,

pelvis, joints, bones and extremities variety

of anatomical regions

Number of elements 16

This soft and light coil supports patient comfort by adapting flexibility to patient body shape.

### Atlas SPEEDER Head/Neck

Model number MJAH-177A/S1

Type of coil Receive signals

Applicable Regions Head, Neck and Feet

Number of elements 16

A detachable mirror is provided to minimize patient anxiety.

### Atlas SPEEDER Spine

Model number MJAS-147A/E1

Type of coil Receive signals

Applicable Regions Thoracolumbar spine, Trunk

Number of elements 32

This integrated coil design features the unique ability to slide up to 380 mm to permit routine feet-first imaging of the lumbar and thoracic spine.







### Atlas SPEEDER Body

Model number MJAB-167A/P1
Type of coil Receive signals

Applicable Regions Trunk

Number of elements 16



### 16ch Tx/Rx Knee SPEEDER 3)

Model number MJAJ-237A/S1

Type of coil Transmit RF, Receive signals
Applicable Regions Knee, Wrist, Hand, Forefoot

Number of elements 16



#### 4ch Flex SPEEDER

Model number MJAJ-197A/J1

Type of coil Receive signals

Applicable Regions Extremities, Joints, Trunk

Number of elements 4



#### φ100 Flex Coil

Model number MJLC-107H/S1
Type of coil Receive signals
Applicable Regions Extremities, Joints

Number of elements 1

The diameter of the coil loop is 100 mm. The circular loop section is cushioned and flexible.



### φ150 Flex Coil

Model number MJLC-157H/S1

Type of coil Receive signals

Applicable Regions Extremities, Joints

Number of elements 1

The diameter of the coil loop is 150 mm. The circular loop section is cushioned and flexible.



#### OD Head Coil<sup>3)</sup>

Model number MJQH-147A/J1

Type of coil Transmit RF, Receive signals

Applicable Regions Head
Number of elements 1

Its large internal diameter improves patient comfort, especially for large patients.

Provides a uniform RF field with QD transmission and optimizes SNR with QD reception. A detachable mirror is provided to minimize patient anxiety.

<sup>3)</sup> Optional T/R Coil Hardware Kit (MJTX-107A/S1) is required to use this coil

### Vantage **Orian**

### 16ch Flex SPEEDER Medium

Model number MJAJ-217A/S1
Type of coil Receive signals

Applicable Regions Shoulder, Hip, Upper and Lower extremities

(Elbow, Wrist, Knee, Foot, Ankle, Thigh), Head, Spine, Torso, Cardiac applications.

Number of elements 16



### 16ch Flex SPEEDER Large

Model number MJAJ-227A/S1
Type of coil Receive signals

Applicable Regions Shoulder, Hip, Upper and Lower extremities

(Elbow, Wrist, Knee, Foot, Ankle, Thigh), Head, Spine, Torso, Cardiac applications.

Number of elements 16



### Pediatric SPEEDER

Model number MJAB-197A/S1
Type of coil Receive signals

Applicable Regions Head and neck of pediatric patients

Number of elements 16

Whole body imaging becomes available by combining additional 16ch Flex SPEEDER Medium.



### 32ch Cardiac SPEEDER

Model number MJAB-187A/J1

Type of coil Receive signals

Applicable Regions Cardiac

Number of elements 32

To use this product, Receiving Circuit Extension Kit (MKPA-1508/S3) is required.



### Octave SPEEDER Head

Model number MJAH-167A/S1
Type of coil Receive signals
Applicable Regions Head and Neck

Number of elements 11



### Octave SPEEDER Spine

Model number MJAS-167A/S1

Type of coil Receive signals

Applicable Regions Spine
Number of elements 12



| Breast SPEEDER     |                                   |       |
|--------------------|-----------------------------------|-------|
| Model number       | MJAM-127A/S1                      |       |
| Type of coil       | Receive signals                   |       |
| Applicable Regions | Breast                            |       |
| Number of elements | 8                                 |       |
|                    |                                   |       |
| Breast SPEEDER CX  |                                   |       |
| Model number       | MJAM-147A/S1                      |       |
| Type of coil       | Receive signals                   |       |
| Applicable Regions | Breast                            | N 120 |
| Number of elements | 8                                 |       |
|                    |                                   |       |
| Shoulder SPEEDER   |                                   |       |
| Model number       | MJAJ-177A/S1                      |       |
| Type of coil       | Receive signals                   |       |
| Applicable Regions | Shoulder                          |       |
| Number of elements | 6                                 | 4     |
| Knee/Foot SPEEDER  |                                   |       |
| Model number       | MJAJ-257A/S1                      |       |
| Type of coil       | Receive signals                   |       |
| Applicable Regions | Knee, Wrist, Hand, Foot and Ankle |       |
| Number of elements | 8                                 | FEE   |
|                    |                                   |       |
| Wrist SPEEDER      |                                   |       |
| Model number       | MJAJ-167B/J2                      |       |
| Type of coil       | Receive signals                   |       |
| Applicable Regions | Wrist, Hand                       |       |
|                    |                                   |       |

Number of elements

6

# Vantage **Orian** -

### Console

The console features a widescreen LCD color monitor, permitting multiple windows to be clearly displayed for true multitasking operation. It is ergonomically designed to allow operation by a single technician, either standing or seated.

| Display Monitor             | The console features a high-resolution 24" LCD color monitor. The display matrix is $1,920 \times 1,200$ with 256 B/W gradation levels.                                                                                       |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control Pad and Control Box | The following operations can be performed using the hardware controls at the console:  • System power ON  • Emergency stop  • Scan start  • Scan abort  • Scan pause/resume  • Tabletop movement  • Intercom talk and volume. |
| Mouse                       | Optical two-button scroll mouse. All interfaces can be accessed by simple point-and-click operation except for registration of patient information and comments for image annotation.                                         |
| Keyboard                    | The keyboard is used to register patient information and comments for image annotation.                                                                                                                                       |

### **Computer system**

The computer system is designed to provide outstanding multitasking performance, permitting image reconstruction and advanced image processing to be performed simultaneously with scanning,

This helps to increase examination productivity. In addition, the computer system is provided with network connectivity for expandability.

| Host computer                                    | Operating system                                                                                                                                                          | Windows® 10 IoT Enterprise                                                                                                                                                                                                                                |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | CPU                                                                                                                                                                       | 8-core dual-processor system (16 CPUs)                                                                                                                                                                                                                    |
|                                                  | Clock speed                                                                                                                                                               | 3.2 GHz                                                                                                                                                                                                                                                   |
|                                                  | Main memory capacity                                                                                                                                                      | 32 GB                                                                                                                                                                                                                                                     |
|                                                  | Solid state drive                                                                                                                                                         | For system use: 480 GB                                                                                                                                                                                                                                    |
|                                                  | (unformatted)                                                                                                                                                             | For image data: 960 GB                                                                                                                                                                                                                                    |
|                                                  | Image capacity                                                                                                                                                            | Approximately 1,680,000 images                                                                                                                                                                                                                            |
|                                                  |                                                                                                                                                                           | $(256 \times 256 \text{ images, raw data not saved})$                                                                                                                                                                                                     |
| Hardware control system                          | Real-time manager (RM)<br>CPU                                                                                                                                             | 32 bit                                                                                                                                                                                                                                                    |
|                                                  | Memory capacity                                                                                                                                                           | 256 MB                                                                                                                                                                                                                                                    |
|                                                  | System control method                                                                                                                                                     | Distributed control                                                                                                                                                                                                                                       |
| Reconstruction system                            | CPU                                                                                                                                                                       | 8-core dual-processor system (16 CPUs)                                                                                                                                                                                                                    |
|                                                  | Clock speed                                                                                                                                                               | 2.5 GHz                                                                                                                                                                                                                                                   |
|                                                  | Main memory capacity                                                                                                                                                      | 128 GB                                                                                                                                                                                                                                                    |
|                                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                           |
|                                                  | Maximum reconstruction                                                                                                                                                    | 62,000 images/second or more (256 × 256, FFT Full FOV, potential)                                                                                                                                                                                         |
|                                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                           |
|                                                  | Maximum reconstruction                                                                                                                                                    | 62,000 images/second or more (256 × 256, FFT Full FOV, potential)<br>248,000 images/second or more (256 × 256, FFT 25% rec FOV, potential)<br>7 TB (unformatted)                                                                                          |
|                                                  | Maximum reconstruction speed  Hard disk drive capacity                                                                                                                    | 62,000 images/second or more (256 × 256, FFT Full FOV, potential) 248,000 images/second or more (256 × 256, FFT 25% rec FOV, potential) 7 TB (unformatted) 2.7 TB (RAID 10)                                                                               |
|                                                  | Maximum reconstruction speed  Hard disk drive capacity  Reconstruction matrix                                                                                             | 62,000 images/second or more (256 × 256, FFT Full FOV, potential) 248,000 images/second or more (256 × 256, FFT 25% rec FOV, potential) 7 TB (unformatted) 2.7 TB (RAID 10) 1,024 × 1,024 (maximum)                                                       |
|                                                  | Maximum reconstruction speed  Hard disk drive capacity  Reconstruction matrix  Simultaneous image                                                                         | 62,000 images/second or more (256 × 256, FFT Full FOV, potential) 248,000 images/second or more (256 × 256, FFT 25% rec FOV, potential) 7 TB (unformatted) 2.7 TB (RAID 10)                                                                               |
|                                                  | Maximum reconstruction speed  Hard disk drive capacity  Reconstruction matrix  Simultaneous image reconstruction during                                                   | 62,000 images/second or more (256 × 256, FFT Full FOV, potential) 248,000 images/second or more (256 × 256, FFT 25% rec FOV, potential) 7 TB (unformatted) 2.7 TB (RAID 10) 1,024 × 1,024 (maximum)                                                       |
| USB drive unit                                   | Maximum reconstruction speed  Hard disk drive capacity  Reconstruction matrix  Simultaneous image reconstruction during scanning                                          | 62,000 images/second or more (256 x 256, FFT Full FOV, potential) 248,000 images/second or more (256 x 256, FFT 25% rec FOV, potential) 7 TB (unformatted) 2.7 TB (RAID 10) 1,024 x 1,024 (maximum) Possible                                              |
| USB drive unit                                   | Maximum reconstruction speed  Hard disk drive capacity  Reconstruction matrix  Simultaneous image reconstruction during scanning  Interface                               | 62,000 images/second or more (256 × 256, FFT Full FOV, potential) 248,000 images/second or more (256 × 256, FFT 25% rec FOV, potential) 7 TB (unformatted) 2.7 TB (RAID 10) 1,024 × 1,024 (maximum)                                                       |
| USB drive unit                                   | Maximum reconstruction speed  Hard disk drive capacity  Reconstruction matrix Simultaneous image reconstruction during scanning  Interface  USB 3.0                       | 62,000 images/second or more (256 x 256, FFT Full FOV, potential) 248,000 images/second or more (256 x 256, FFT 25% rec FOV, potential) 7 TB (unformatted) 2.7 TB (RAID 10) 1,024 x 1,024 (maximum) Possible  Type-A                                      |
| USB drive unit                                   | Maximum reconstruction speed  Hard disk drive capacity  Reconstruction matrix  Simultaneous image reconstruction during scanning  Interface                               | 62,000 images/second or more (256 x 256, FFT Full FOV, potential) 248,000 images/second or more (256 x 256, FFT 25% rec FOV, potential) 7 TB (unformatted) 2.7 TB (RAID 10) 1,024 x 1,024 (maximum) Possible                                              |
| USB drive unit  Connection with external devices | Maximum reconstruction speed  Hard disk drive capacity  Reconstruction matrix  Simultaneous image reconstruction during scanning  Interface  USB 3.0  USB memory capacity | 62,000 images/second or more (256 × 256, FFT Full FOV, potential) 248,000 images/second or more (256 × 256, FFT 25% rec FOV, potential) 7 TB (unformatted) 2.7 TB (RAID 10) 1,024 × 1,024 (maximum) Possible  Type-A  8 GB for 35,000 images of 256 × 256 |



### RF system

The Vantage Orian has digital RF design which improves SNR and achieves high RF stability.

### **RF Transmit system**

| Frequency stability         | $\pm 3.8 \times 10^{-6} \text{Hz/min}$ |
|-----------------------------|----------------------------------------|
| Frequency control           | 32 bit, 0.64 Hz                        |
| Phase control               | 16 bit, 0.0055 degree                  |
| Amplitude resolution        | 15 bit, 1μs                            |
| Gain stability              | <0.5 dB (10 min)                       |
| Optical signal transmission | Possible                               |
| Transmit peak power         | 24 kW                                  |
| Transmit bandwidth          | 550 kHz                                |

### **RF Receiver system**

| KF Receiver system                                  |                                                                                                                                                                                                                                |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PURERF RX                                           | Enhanced SNR by unique noise-suppression technology which reduces the electrical noise received with MR signal. High- performance amplifier and digitizer for each receiver makes faster sampling which results in higher SNR. |
| Atlas SPEEDER technology                            | Atlas SPEEDER technology easily handles multiple studies by allowing you to position and utilize the coils you need in one easy step. Maximum 7 coils is combinable at same time.                                              |
| Receiver bandwidth                                  | 1 MHz (for each channel)                                                                                                                                                                                                       |
| Sampling rate of ADC                                | 100 MHz                                                                                                                                                                                                                        |
| Receiver signal resolution (ADC resolution in bits) | 16 bit                                                                                                                                                                                                                         |
| Receiver signal resolution                          | 32 bit                                                                                                                                                                                                                         |
| Pre-amplifier noise figure                          | <0.5 dB (typical 0.5)                                                                                                                                                                                                          |
| Pre-amplifier total gain                            | 25 dB                                                                                                                                                                                                                          |
| Dynamic range                                       | 157 dB/Hz                                                                                                                                                                                                                      |
| Number of independent receiver channels             | 128 <sup>4)</sup>                                                                                                                                                                                                              |

<sup>4)</sup> The number of channels for simultaneous image reconstruction is selectable at sales. It may vary depending on sales area. Please consult your local sales representative..

### **Gradient subsystem**

The combination of a powerful gradient power supply unit and a high-precision active shield gradient coil ensures stable image quality with all sequences, eliminating eddy currents.

| Maximum Gradient amplitude (Each axis)                                 | 35 mT/m   |
|------------------------------------------------------------------------|-----------|
| Maximum Slew rate (Each axis)                                          | 155 T/m/s |
| Minimum Rise time                                                      | 217 μs    |
| Maximum effective gradient amplitude (vector summation for three axes) | 61 mT/m   |
| Maximum effective gradient slew rate (vector summation for three axes) | 268 T/m/s |
| Gradient duty cycle                                                    | 100%      |
| Maximum Output voltage (Each axis)                                     | 1,550 V   |
| Maximum Output current (Each axis)                                     | 550 A     |

### **Patient table (Selectable)**

The patient table is ergonomically designed to maximize both patient comfort and patient throughput. Hydraulic drive ensures smooth and quiet vertical tabletop movement.

|                                    |                      | Fixed table         | Dockable table      |
|------------------------------------|----------------------|---------------------|---------------------|
| Minimum table height from floo     | r                    | 430 mm              | 550 mm (Dock)       |
|                                    |                      |                     | 535 mm (Undock)     |
| Maximum table height               |                      | 845 mm              | 845 mm (Dock)       |
|                                    |                      |                     | 875 mm (Undock)     |
| Maximum patient load               |                      | 250 kg              | 250 kg              |
| Scanning range                     |                      | 145 cm <sup>‡</sup> | 145 cm <sup>‡</sup> |
| Positional accuracy of patient tak | ole                  | 0.5 mm or less      | 0.5 mm or less      |
| Vertical table speed               | Up:                  | 21 sec              | 12 sec              |
|                                    | Down (typical):      | 23 sec              | 12.5 sec            |
| Horizontal table speed             | Normal (selectable): | 250/200/150 mm/s    | 300/200/150 mm/s    |
|                                    | Slow:                | 20 mm/s             | 20 mm/s             |

<sup>‡</sup> Extended table travel option (MZPT-1551/S1) increases the usable scanning range to 205 cm.

### • Dockable table

Vantage Orian can apply dockable table. It allows seamless patient handling as preparation can be achieved in advance outside the scan room, enhancing workflow and allowing medical staff to respond to any patient requirements quickly and easily.



# Vantage **Orian** –

### Patient comfort and safety

| Open bore                              | The industry's shortest open gantry (1.4 m magnet) with the large clinical FOV and wide patient aperture of 71 cm significantly reduce patient anxiety and ensures comfort during examination.                                                                                           |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pianissimo Σ                           | Pianissimo $\Sigma$ technology dramatically reduces the level of acoustic gradient noise, thus substantially enhancing patient comfort, especially during scanning with fast sequences.                                                                                                  |
| Pianissimo Zen <sup>‡</sup>            | The Pianissimo Zen silent sequence package reduces noise by up to 99%, down to as little as 2 dB above ambient noise. The combination of Pianissimo and Pianissimo Zen make our Vantage series the quietest MR system in its class, providing comfortable examination for your patients. |
| MR Theater <sup>‡</sup>                | In-bore immersive virtual experience enhances patient comfort. The MR Theater encourages patients to relax and stay still, enabling clinicians to produce stable.                                                                                                                        |
| Lighting/Ventilation of the patient bo | ore Adjustable lighting/ventilation improves patient comfort in the magnet during scanning.                                                                                                                                                                                              |
| SAR calculation                        | The system always calculates SAR before scanning. If the calculation result indicates that the preset limit will be exceeded, scanning cannot be started.                                                                                                                                |
| Patient call system                    | The patient call system allows the patient to signal an emergency during scanning. The system includes a hand- switch that is actuated by the patient.                                                                                                                                   |
| Intercom system                        | The integrated intercom system allows two-way communication between the patient and the operator.                                                                                                                                                                                        |
| Patient observation system             | A CCD camera is used to observe the patient during scanning.                                                                                                                                                                                                                             |
| Emergency rundown unit                 | This safety switch allows automatic ramp-down of the magnetic field in the event of                                                                                                                                                                                                      |

### **SCAN SPECIFICATIONS**

### **Acquisition parameters**

The Vantage Orian digital architecture offers extremely flexible acquisition parameters for optimizing image quality and scan times.

| Imaging method <sup>1)</sup>     | 2DFT, 3DFT                                                                               |
|----------------------------------|------------------------------------------------------------------------------------------|
| Imaging nucleus                  | Proton (hydrogen nucleus)                                                                |
| Slice orientations <sup>1)</sup> | Axial, sagittal, coronal, oblique (single and double) Refer to the scan parameter table. |

### Sequences<sup>2)</sup>

|                          |                                     |         | 64 Matrix | 128 Matrix | 256 Matrix | 512 Matrix |
|--------------------------|-------------------------------------|---------|-----------|------------|------------|------------|
| 2D Spin Echo             | min. TR                             | [ms]    | 4         | 4          | 4          | 18         |
|                          | min. TE                             | [ms]    | 1.7       | 1.7        | 1.9        | 8          |
| 2D Fast Spin Echo        | min. TR                             | [ms]    | 5         | 5          | 7          | 27         |
|                          | min. TE                             | [ms]    | 1.6       | 1.7        | 2.5        | 4          |
|                          | min. ETS                            | [ms]    | 1.6       | 1.7        | 2.5        | 4          |
|                          | max. ETL                            | _       | 1,024     | 1,024      | 1,024      | 1,024      |
| 3D Fast Spin Echo        | min. TR                             | [ms]    | 27        | 32         | 50         | 55         |
|                          | min. TE                             | [ms]    | 5         | 5          | 7          | 5          |
|                          | min. ETS                            | [ms]    | 4.5       | 4.5        | 4.5        | 4.5        |
|                          | max. ETL                            | _       | 1,024     | 1,024      | 1,024      | 1,024      |
| 2D Fast Field Echo       | min. TR                             | [ms]    | 1.0       | 1.7        | 1.8        | 5.2        |
|                          | min. TE                             | [ms]    | 0.29      | 0.4        | 0.6        | 2.3        |
| 3D Fast Field Echo       | min. TR                             | [ms]    | 1.0       | 1.7        | 1.9        | 3.6        |
|                          | min. TE                             | [ms]    | 0.29      | 0.4        | 0.6        | 1.5        |
| True SSFP                | min. TR                             | [ms]    | 1.5       | 1.8        | 2.4        | _          |
|                          | min. TE                             | [ms]    | 0.75      | 0.9        | 1.2        | _          |
| Inversion Recovery       | min. Tl                             | [ms]    | 9         | 9          | 9          | 9          |
| Echo Planar Imaging      | min. TR                             | [ms]    | 3.9       | 3.9        | 3.9        | 23         |
|                          | min. TE                             | [ms]    | 1.8       | 1.8        | 1.8        | 10         |
|                          | min. ETS                            | [ms]    | 0.28      | 0.28       | 0.8        | 3          |
|                          | min. acquisition time               | [ms]    | 12        | 74         | 118        | 5,000      |
|                          | max. EPI Factor                     | -       | 288       | 288        | 288        | 288        |
| Diffusion Imaging        | max. b-value                        | [s/mm²] | 10,000    | 10,000     | 10,000     | _          |
|                          | min. TE with b=1000                 | [ms]    | 52        | 52         | 73         | _          |
| Diffusion Tensor Imaging | max. diffusion tensor<br>directions | -       | 256       | 256        | 256        | 256        |

<sup>1)</sup> Specifications vary depending on the pulse sequence.

<sup>2)</sup> Some parameters may require an optional package.

# 

### Resolution

| FOV                                  | min.                     | [mm]   | 2                                                                |
|--------------------------------------|--------------------------|--------|------------------------------------------------------------------|
| *Adjustable in increments of 1 mm.   | max.                     | [mm]   | 550 (X-Y plane)                                                  |
|                                      |                          |        | 500 (Z direction)                                                |
| Slice thickness 2D                   | min.                     | [mm]   | 0.1                                                              |
| *Adjustable in increments of 0.1 mm. | max.                     | [mm]   | 100                                                              |
| Slice thickness 3D                   | min.                     | [mm]   | 0.05                                                             |
| *Adjustable in increments of 0.1 mm. | max.                     | [mm]   | 50                                                               |
| Slab thickness 3D                    | min.                     | [mm]   | 5.4                                                              |
|                                      | max.                     | [mm]   | 400                                                              |
| Matrix size                          | min. <sup>3)</sup>       | _      | 32 (Phase encoding)                                              |
|                                      | min. <sup>3)</sup>       | _      | 64 (Frequency encoding)                                          |
|                                      | max.                     | _      | 1,024                                                            |
| Highest in plane resolution          |                          | [µm]   | 8                                                                |
| Number of slices 2D                  | max.                     | -      | 128                                                              |
| Number of slices 3D                  | max.                     | -      | 256                                                              |
| Flip angle                           |                          | [deg]  | 1 to 180                                                         |
| Flop angle                           |                          | [deg]  | 30 to 180                                                        |
| Number of acquisitions (NAQ)         | Integer NAQ              |        | From 1 to 64                                                     |
|                                      |                          |        | *Adjustable in increments of one (1, 2, 3, 4, 5, 6, and 7, etc.) |
|                                      | Variable NAQ             |        | Available                                                        |
|                                      |                          |        | *Adjustable increments of 0.1 from NAQ=1                         |
|                                      |                          |        | (NAQ = 1.1, 1.2, etc)                                            |
|                                      | AFI (Advanced Fourier Im | aging) | Available                                                        |
|                                      |                          |        | *Scan time reduced by approximately NAQ=0.5                      |

### Imaging techniques and parameters

A wide range of imaging techniques are provided to complement the Vantage Orian's precise and powerful digital RF system, computer platform, and high-performance gradient subsystem.

### **Conventional pulse sequences**

- SE (Spin Echo)
- FE (Field Echo)

### Fast scan techniques

| SPEEDER                         | SPEEDER is an image domain parallel imaging method for increased acquisition speed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|
|                                 | SPEEDER factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Max. 6 <sup>4)</sup> |  |  |
|                                 | Number of acceleration factor combining SPEEDER with DRKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Max. 16              |  |  |
|                                 | Number of acceleration factor combining SPEEDER with MultiBand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Max. 10<br>(SP5×MB2) |  |  |
| FastSE                          | The flop angle for 180° RF pulses can be varied to reduce saturation transfer contrast (STC) effects and the specific absorption rate (SAR) to ensure patient safety. FastSE is compatible with both 2DFT and 3DFT. Flow compensation and presaturation are available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |  |  |
| FastIR                          | An inversion pulse is added to the 2DFT FastSE technique to enhance results in a much shorter scan time than in conventional IR. Multislice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |  |  |
| FastFLAIR (FLuid-Attenuated IR) | Increases contrast between fluids, such as CSF, and lesions to improv<br>FastIR with a long TI, TE, and TR. This results in a much shorter scan tir<br>conventional IR. Multislice is available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |  |  |
| FastFE                          | A pre-pulse is applied prior to FE pulse sequences to enhance T1 contrast with short scan times. Segmentation of scans is available to increase spatial resolution. FastFE is applicable to both 2DFT and 3DFT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |  |  |
| FASE (Fast Advanced Spin Echo)  | This pulse sequence, which is based on FastSE with a large number of echoes (max. 276 ETL), is combined with advanced Fourier imaging (AFI) to reduce the scan time significantly with an echo factor of 512 (scan time reduction factor) in the standard configuration or 1,024 with optional software. A single shot is sufficient to generate an image in a few seconds. A pre-pulse is available for fat suppression. This technique is compatible with both 2DFT and 3DFT. T2-weighted images with short scan times can be used to clearly depict the gallbladder, hepatic ducts, and pancreatic duct without contrast agent. FASE expands the range of clinical applications of MRI, supporting magnetic resonance cholangiopancreatography (MRCP), MR urography, and MR myelography. |                      |  |  |
| Contrast Free MRA <sup>‡</sup>  | This application supports an expanded range of clinical applications such as fresh blood imaging (FBI) or swap phase encode extended data acquisition (SPEED).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |  |  |
| Multi-Shot EPI                  | Utilizes gradient echoes for SE-EPI, which are divided by up to 15 echo factors for one acquisition. Multislice is available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |  |  |
| Single-Shot EPI                 | Both SE type and FE type are available. FE-type Single-Shot EPI requires the optional mNeuro package.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |  |  |
| TrueSSFP <sup>‡</sup>           | T2/T1-contrast images can be obtained quickly using the steady-state free precession technique. This is suitable for scanning relatively longer T2 tissues such as CSF, synovial fluid, and vascular structures during breath-holding. Fat saturation is possible by dividing scans into multiple segments. The slice thickness can be reduced by 3DFT scanning.                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |  |  |
| FSE/FASE T2 Plus                | By promoting transverse magnetization recovery in FSE and FASE, the scan time can be reduced and the resolution can be increased with no loss of T2 contrast and SNR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |  |  |



### Advanced fast scan techniques

| UTE (Ultra short TE) <sup>‡</sup>                          | This technique depicts short T2* tissues by radially acquiring k-space data. It can be applied to FFE3D sequences.  CG Recon <sup>5</sup> , which is based on the CG (Conjugate Gradient) method that solves MRI                                                                                                                                                                                                                                                                                   |                                                                                  |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
|                                                            | encoding model equations for image reconstr<br>while maintaining resolution and SNR.                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |  |
| mUTE (minimized acoustic noise utilizing UTE) <sup>‡</sup> | The mUTE applications suppress high-speed gradient field switching, making it possible to provide even quieter scanning.                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |  |
| FASE3D mVox <sup>‡</sup>                                   | Enables acquisition of clear images with reduc<br>angle for each echo.                                                                                                                                                                                                                                                                                                                                                                                                                             | red SAR by changing the refocusing flip                                          |  |
| FFE3D MP2RAGE <sup>‡</sup>                                 | This sequence uses FFE3D and images at two different TI values, and FA values are acquired for the same slab at the same time. The image data is acquired at each TI value, and one T1W image is obtained in the last result. T1W images acquired with this sequence are not affected by nonuniformity of B1 or coil sensitivity. T1W images acquired with this sequence are not affected by nonuniformity of B1 or coil sensitivity. T1map can also be calculated at the console using T1calcmp2. |                                                                                  |  |
| FSE2D mEcho <sup>‡</sup>                                   | This sequence uses FSE2D and images at four same position at the same time. T2map is ther these images. T2map can also be calculated at                                                                                                                                                                                                                                                                                                                                                            | n calculated on the workstation using                                            |  |
| MultiBand SPEEDER <sup>‡</sup>                             | This application allows reducing the scan time for diffusion imaging, expanding the range of its clinical applications. Scan time reduction is achieved by simultaneously exciting and acquiring multiple slices using multiband RF pulses. As the results, scan time for diffusion imaging can be reduced to less than half. With this technique, a whole liver diffusion weighted scan can be acquired in a single breath holding of 15 seconds or less. It can be applied to SEEPI2D sequences. |                                                                                  |  |
| k-t SPEEDER <sup>‡</sup>                                   | This sequence enables scanning with a higher acceleration factor than the conventional SPEEDER scan by changing the sampling pattern in the time direction during data acquisition. Up to x8 accelerated k-t SPEEDER allows high frame rate cardiac cine and perfusion imaging in free breathing without training scan required. It can be applied in cine imaging with SSFP2D sequences (3 phases or more).                                                                                       |                                                                                  |  |
| Fast 3D mode                                               | This application allows reducing the scan time while maintaining image quality by u to half for T1, PD, T2, FLAIR, STIR weighted images by adjusting data acquisition ratio. can be applied to FE3D, FFE3D, FASE3D <sup>‡</sup> , 3D-TOF <sup>‡</sup> and 3D-SSFP <sup>‡</sup> sequences.                                                                                                                                                                                                          |                                                                                  |  |
| Compressed SPEEDER <sup>#</sup>                            | This application allows acceleration factors for<br>based in FSE2D, FASE3D and FFE3D imaging u<br>sensing in combination with parallel imaging.                                                                                                                                                                                                                                                                                                                                                    | _                                                                                |  |
|                                                            | Number of acceleration factor in 2D imaging                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max. 4                                                                           |  |
|                                                            | Number of acceleration factor in 3D imaging                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max. 16 (PExSE: $4 \times 4$ )  Combination with Compressed                      |  |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SPEEDER and Fast 3D application provides about 18 times acceleration.            |  |
| Exsper (Expanded SPEEDER)                                  | This application allows reducing scan time for SE2D and FFE2D/3D sequences. Exsper techniq surrounding area data is undersampled. It find of k-space and synthesize the undersampled coefficient in the image domain.                                                                                                                                                                                                                                                                              | ue scans center of k-space data and<br>s the coefficient from the data of center |  |
|                                                            | Number of acceleration factor in 2D imaging                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max. 6 <sup>6)</sup>                                                             |  |
|                                                            | Number of acceleration factor in 3D imaging                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max. 9 (PE×SE: 3×3)                                                              |  |

<sup>5)</sup> Advanced intelligent Clear-IQ Engine (AiCE) for MR (MZDL-010A) or Advanced Image Reconstruction Unit (MZDL-010B) is required to use this application.

<sup>6)</sup> Available acceleration factor may depend on the sequence and the scanning condition.

### Vascular imaging techniques

| 2D-TOF (Time of Flight)                                                                | The time of flight effect is induced by the in-flow of fresh spins into the imaging slice to differentiate blood flow from tissue. Slices are acquired sequentially through the imaging volume. This technique functions optimally when the vessels are perpendicular to the acquired slices. It depicts relatively slower blood flow and is suitable for cervical, abdominal, and extremity applications. Maximum intensity projection (MIP) images can be displayed from multiple viewing angles. An overlapping scanning technique improves the visualization of vessels.  A moving presaturation band can also be applied to differentiate between arterial and venous flow in certain body areas.  ECG gating is applicable for 2D-TOF <sup>‡</sup> . |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3D-TOF (Time of Flight)                                                                | 3DFT with TOF is used to depict multidirectional vascular structures and faster blood flow. MIP images can be displayed from multiple viewing angles. SORS-STC and ISCE RF pulses can be combined with 3D-TOF to improve vessel detail.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 3D-CE (Contrast Enhanced)                                                              | Contrast agent is injected in order to enhance blood signals, followed by a 3D-FE or 3D-FastFE sequence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| SORS-STC (Slice-selective<br>Off-Resonance Sinc pulse Saturation<br>Transfer Contrast) | Enhances blood flow and suppresses background signals by using a slice-selective off-<br>resonance pulse. SORS-STC is more effective than conventional spatially nonselective<br>STC (or MTC) because it suppresses background tissues without reducing the signals<br>from blood flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| ISCE (Inclined Slab for Contrast<br>Enhancement)                                       | Provides increased vessel detail by using an RF pulse with a different flip angle in combination with 3D-TOF to enhance signals from blood flow throughout the imaging volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Multi coverage                                                                         | Separates the data acquisition area of 3D TOF MRA into a few regions in order to limit signal reduction due to saturation effects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 2D-PS (Phase Shift)                                                                    | The phase shift effect is generated by applying a flow encoding gradient pulse. The phase shift is proportional to the flow velocity. 2D-PS can be used with a volume slice to increase coverage of vessels and shorten scan times. Selecting the flow velocity allows specific vessels to be depicted.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Cine 2D-PS (Phase Shift)                                                               | 2D-PS can be used with an optional cardiac-gating unit for cine imaging.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Flow Quantification                                                                    | Blood flow velocity can be measured using cine 2D-PS with an optional cardiac-gating unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 3D-PS (Phase Shift)                                                                    | The phase shift effect, when used with 3DFT, is suitable for showing multidirectional vascular structures. Selecting the flow velocity allows specific vessels to be visualized. MIP images can be displayed from multiple viewing angles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| BEST (Blood vessel Enhancement by Selective suppression Technique)                     | A postprocessing algorithm that selectively enhances small vessel detail and suppresses background tissue signals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Cardiac tagging <sup>‡</sup>                                                           | Allows myocardial movement to be visualized by applying several presaturation bands. Optional ECG gating is required. The number and positions of tags can be selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Flow imaging                                                                           | Various flow dynamics can be observed by sequentially acquiring images with tagging pulses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

# Vantage **Orian** —

### Fat suppression techniques

| STIR (Short TI inversion Recovery)                                  | A short TI 180° pre-pulse with IR suppresses fat signals to enhance water-proton images. It can be applied to FastSE and FASE sequences.                                                                                                                                                                                          |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FastSTIR                                                            | STIR with FastIR to reduce scan times.                                                                                                                                                                                                                                                                                            |
| WFOP (Water/Fat Opposed Phase)                                      | An asymmetric SE technique in which image acquisition is performed at the instant. The signals from water and fat go out of phase.                                                                                                                                                                                                |
| FatSAT (Fat Saturation)                                             | Fat saturation pulses are applied to presaturate fat only. The multislice off-resonance fat suppression technique (MSOFT), an innovative our technology, ensures uniform fat suppression over all slices by using an offset RF pulse for each slice. Offset values are determined based on data acquired by auto-active shimming. |
| PASTA (Polarity Altered Spectral and spaTial selective Acquisition) | Another innovative technique for suppressing fat signals in SE and FastSE sequences to obtain uniform water images over all slices. It consists of a narrow-bandwidth 90° RF pulse to separate water from fat. Opposing slice gradient polarity is used for 90° and 180° RF pulses to refocus water signals.                      |
| DIET (Dual Interval Echo Train)                                     | A drawback of FastSE is the high rightness levels from fat tissue signals.  DIET is a new technique that reduces fat signals in FastSE by utilizing a pulse sequence with irregular echo intervals to achieve contrast near SE levels.                                                                                            |
| SPAIR (SPectral Attenuated Inversion Recovery)                      | A 180° adiabatic pulse is used to invert the fat signals inside the imaging plane uniformly regardless of B1 inhomogeneity and imaging is started at the null point of fat after TI in order to obtain fat-suppressed images with minimal fat suppression nonuniformity.                                                          |
| Enhanced fat Free                                                   | Multiple fat suppression pulses are applied in order to obtain a more stable fat suppression effect.                                                                                                                                                                                                                              |
| WET (Water Excitation Technique)                                    | WET enables the spatial-position-selective and frequency-selective excitation of water. This technique can be applied to many types of sequences.                                                                                                                                                                                 |
| WFS (Water Fat Separation) DIXON                                    | WFS DIXON provides water based images and fat based images by calculating images acquired with two different echo time. It can be applied to FSE2D and FE3D sequences.                                                                                                                                                            |

### **Imaging modes**

| Multislice                      | Multiple slices can be acquired during a scan.                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Multi-echo                      | Multiple echo data can be acquired within a single TR.                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Multi-coverage                  | If the specified number of slices cannot be acquired within the designated TR, the system automatically repeats the scan to cover the required area.                                                                                                                                                                                                                                                                                                                 |  |
| Interleaved scan                | Excites odd slices first and even slices second to eliminate interslice interference.                                                                                                                                                                                                                                                                                                                                                                                |  |
| Excitation order for multislice | The user can select the order of excitation in multislices as follows.  • Forward (from small to large numbers)  • Reverse (from large to small numbers)  • Concentric (from center to outside)                                                                                                                                                                                                                                                                      |  |
| Dynamic scan                    | Sets up to five continuous dynamic scans in one study. Each dynamic scan is specified independently according to the delay time, scan interval, and number of scans. The minimum scan interval is zero.                                                                                                                                                                                                                                                              |  |
| Gating                          | <ul> <li>Cardiac gating:         Multislice/single-phase and single-slice/multiphase imaging techniques are available.         Cardiac images can be displayed in cine mode. Retrospective gating is also available as an option.</li> <li>Peripheral pulse gating<sup>‡</sup>:         Reduces CSF pulsation artifacts.</li> <li>Respiratory gating<sup>‡</sup>:         Reduces respiratory motion artifacts.</li> <li>Retrospective gating<sup>‡</sup></li> </ul> |  |



### **Artifact suppression techniques**

| Flow compensation                                                          | Utilizes gradient moment nulling techniques to reduce flow artifacts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Presaturation                                                              | Up to seven presaturation bands can be set to reduce motion, flow, and wrap-around artifacts. The Vantage Orian's graphical user interface allows multiple bands in the orthogonal and oblique directions to be set with ease.  The following preset presaturation bands are available.  • Anti-phase aliasing  • Anti-frequency aliasing  • Flow suppression  • Leading or following slices                                                                                                                                                                                 |
| Skipping SAT                                                               | Reduces the number of presaturation pulses in order to increase the number of slices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| No wrap<br>(frequency and phase directions)                                | 2D: frequency and phase directions 3D: frequency, phase, and slice directions Eliminates wrap-around artifacts by increasing the sampling data points in frequency or encoding steps in phase. The no wrap function is applicable up to a 512 × 512 matrix with 3DFT.                                                                                                                                                                                                                                                                                                        |
| Phase swap                                                                 | The phase and frequency encoding directions can be swapped to minimize flow and respiratory motion artifacts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Breath-hold imaging                                                        | An optional Auto-Voice function instructs patients when to hold their breath.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JET technique <sup>‡</sup>                                                 | JET acquires the data for the k-space in non-Cartesian mode and suppresses motion artifacts by detecting and correcting for in-plane motion using the data for the central part of the k-space, which is acquired repeatedly. This application can suppress not only image artifacts in patients who are unable to remain still during scanning, but also artifacts due to involuntary motion such as CSF flow. This technique is based on FastSE 2D, and uses T2W and FLAIR contrast enhancement.                                                                           |
| 2D-RMC<br>(2D-Real-time Motion Correction) <sup>‡</sup>                    | An image with reduced respiratory motion artifacts can be obtained by following the scanning cross section and acquisition timing relative to diaphragm motion. This technique can be applied to some types of FFE3D, SEEPI2D, FSE2D, FASE2D and FASE3D sequences.                                                                                                                                                                                                                                                                                                           |
| mART<br>(metal Artifact Reduction Technique)                               | In acquisition with FSE2D sequences, this technique reduces artifacts at locations with a high magnetic susceptibility which can be caused by the presence of metal by optimizing parameters for band-width, slice thickness, readout matrix and SPEEDER factor.                                                                                                                                                                                                                                                                                                             |
| mART+<br>(metal Artifact Reduction Technique Plus) <sup>‡</sup>            | mART+ is the application of mART technique in addition to VAT (View Angle Tilting).<br>mART+ further reduces metal related artifact caused by high off-resonance frequency<br>and reduces image artifacts caused by implants.                                                                                                                                                                                                                                                                                                                                                |
| mART EXP<br>(metal Artifact Reduction Technique<br>EXPansion) <sup>‡</sup> | mART EXP is 3D method to resolve in-plane and through-plane distortion artifact induced by susceptibility. Each slice is 3D phase-encoded to resolve distortion in slice dimension. In addition, VAT method is combined to resolve in-plane distortion. In the reconstruction, the data of each slice which is encoded in the slice direction is combined and corrected, and finally the images are registered as 2D multi-slice images like normal FSE2D. In addition, this application can be used in combination with Compressed SPEEDER application to reduce scan time. |
| Iterative Motion Correction (IMC) <sup>‡</sup>                             | IMC reduces motion artifact by correcting k-space data based on detecting the amount of motion during scan. Applying IMC in the brain corrects for rigid motion, applying IMC in the c-spine corrects for both rigid and non-rigid motion. From V9.0, IMC utilizes Deep Learning based methods in addition to traditional model-based ones.                                                                                                                                                                                                                                  |
| Quick Star <sup>‡</sup>                                                    | Quick Star allows high resolution image for liver examination with free breathing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

### **USER EXPERIENCE**

### **Automated Workflow**

Vantage Orian delivers advanced workflow solution that is thoroughly automated and simplified at each phase from entering MRI room to the scan and check.

### **Basic Operations**

| System startup  | System startup                                                                                       | Possible                                                                                                                                                                   |  |  |
|-----------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                 | The initial screen display                                                                           | Possible                                                                                                                                                                   |  |  |
|                 | •                                                                                                    | The system status can be checked at the time of system startup. If the system status is determined to be abnormal, data acquisition is disabled or the system is shutdown. |  |  |
|                 | The system check is executed at the time detected, system operation is disabled.                     | e of system startup. If an abnormality is                                                                                                                                  |  |  |
|                 | Registration and control of authorized users                                                         | Possible                                                                                                                                                                   |  |  |
| Page control    | A processing switching function that allows multiple processing tasks to be performed simultaneously | Possible                                                                                                                                                                   |  |  |
|                 | Display of errors and warnings                                                                       | Possible                                                                                                                                                                   |  |  |
| System shutdown | System shutdown                                                                                      | Possible                                                                                                                                                                   |  |  |



# Patient Preparation Patient scheduling and registration

Patient information and scanning conditions for examinations can be scheduled and registered. The scanning conditions can be registered simply by selecting a set of conditions preregistered in the database for individual anatomies (PAS function).

### Auto Populate<sup>1)</sup>

Previous scan parameters are easily retrieved and populated if a patient has been scanned before.

### Patient registration

| Scheduling and registration items   | Patient ID, patient name, height, weight, sex, birth date (automatic age calculation), date of scanning (selection from calendar is possible), time of scanning, ordering department, name of ordering physician, name of radiologist, name of radiographic technologist |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Search function                     | Provided (patient name, date and time of scanning, etc.)                                                                                                                                                                                                                 |  |
| Sorting function                    | Provided (by patient name, by date and time of scanning, etc.)                                                                                                                                                                                                           |  |
| DICOM MWM                           | IHE is supported as the standard.                                                                                                                                                                                                                                        |  |
| Adaptive Scan Mode                  | Scanning conditions are preset available (Patient Orientation, SAR operating mode B1+RMS limit, CP mode).                                                                                                                                                                |  |
| Scanning condition selection and re | gistration: PAS (Programmable Anatomical Scan)                                                                                                                                                                                                                           |  |
| Preset items                        | PAS name (name of a set of scans)                                                                                                                                                                                                                                        |  |
|                                     | Scanning region (graphic icon), etc.                                                                                                                                                                                                                                     |  |
|                                     | Type of RF coil                                                                                                                                                                                                                                                          |  |
|                                     | Scan name (names of individual scans)                                                                                                                                                                                                                                    |  |
|                                     |                                                                                                                                                                                                                                                                          |  |

Scanning conditions (imaging parameters), etc.

### **Scan Planning**

### **Operator Independent Scan Planning**

A pilot scan (initial scan) is performed, scans are planned using the acquired data, and the scans are run. Progress of the scans is controlled using the scan list displayed in the Sequence Queue window.

Auto Scan Assist<sup>‡</sup> takes away the variability and helps operators improve workflow with automatic slice alignment, standardizing workflow with automatic positioning. Planning of re-scan which is based on the result of image analysis are also available.

### Sequence Queue operations

IDC image planning

Coil selection

Auto Map

| Queuing                         | Scans can be copied, added, or deleted, and acquisition order can be changed.                  |                                                                                                              |  |
|---------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Scan start control              | Auto                                                                                           | Multiple specified scans can be run in succession automatically.                                             |  |
|                                 | Breath hold                                                                                    | Each scan is started by pressing the Scan Start button. Combination with the AutoVoice function is possible. |  |
|                                 | Pause/resume function, abort function                                                          |                                                                                                              |  |
| Automatic tabletop movement     | Possible                                                                                       |                                                                                                              |  |
| Pilot scan                      |                                                                                                |                                                                                                              |  |
| Prescan                         | Automatic (ma                                                                                  | nual control is possible for some types of prescan)                                                          |  |
| Simultaneous multiplane scan    | Maximum three planes (axial, sagittal, coronal)  Combination with multislice scan is possible. |                                                                                                              |  |
| Scan planning                   |                                                                                                |                                                                                                              |  |
| Multiplane scan planning        | Three-plane scan planning is possible.                                                         |                                                                                                              |  |
| Image switching during planning | Possible                                                                                       |                                                                                                              |  |
|                                 | Possible (sequential, multiangle)                                                              |                                                                                                              |  |
| Oblique plan                    | Possible (seque                                                                                | ential, multiangle)                                                                                          |  |
| Oblique plan Graphical plan     | Possible (seque                                                                                | ential, multiangle)                                                                                          |  |
|                                 | Plan items Slice position a                                                                    | and angle, slice thickness, slice gap, FOV, phase encode direction/on, presaturation area, etc.              |  |
|                                 | Plan items Slice position a readout directi                                                    | and angle, slice thickness, slice gap, FOV, phase encode direction/                                          |  |
| Graphical plan                  | Plan items  Slice position a readout directi  Possible (multi                                  | and angle, slice thickness, slice gap, FOV, phase encode direction/<br>on, presaturation area, etc.          |  |

Intelligent Distortion Correction image is available for scan planning.

Mapping is automatically applied after selecting the coil section.

It visualizes the coil selection on locator display.



### **Auto Planning**

### Auto Scan Assist<sup>‡</sup>

Boosted by artificial intelligence, Auto scan planning reduces unnecessary steps and enhances consistent operation.

| Automated VOI recognition | Deep Learning based<br>Machine learning based<br>Non machine learning method | <sup>SURE</sup> VOI Liver<br><sup>SURE</sup> VOI Knee<br><sup>SURE</sup> VOI Cardiac    |
|---------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Automated plane detection | Machine learning based                                                       | CardioLine+, NeuroLine+, SpineLine+, KneeLine+, W-SpineLine+, LiverLine+, ProstateLine+ |

#### Auto Protocol<sup>‡</sup>

Auto Protocol enables examination with automatic scan planning based on a pre-established PAS. Then, this application asks if the operator would like to proceed the examination according to the pre-defined scenario.

#### **Auto Start**

Scanning starts to run automatically when the patient is sent to iso-center and the door of shield room is closed.

# Scan and Reconstruction Scan Management

High SNR, high resolution and robust imaging achieved by AI based solutions are reproducible and operator independent.

| _ 3                                  |                                                                                             |  |
|--------------------------------------|---------------------------------------------------------------------------------------------|--|
| Safety functions                     | SAR limitation function, dB/dt limitation function                                          |  |
| Move table function                  | The tabletop can be moved so that the slice center is positioned at the magnetic field      |  |
|                                      | center.                                                                                     |  |
| Remaining scan time display function | Provided                                                                                    |  |
| SAR display                          | The estimated SAR value is displayed before scanning.                                       |  |
| Gating signal display                | The ECG gating, peripheral pulse gating, and respiratory gating waveforms can be displayed. |  |

### **Reconstruction and In-line processing**

| AutoView function        | Provided (all images are displayed in the Image Matrix)         |          |  |
|--------------------------|-----------------------------------------------------------------|----------|--|
| Auto windowing function  | Provided                                                        |          |  |
| Automatic postprocessing | Automatic dynamic subtraction (absolute value)                  | Possible |  |
|                          | Automatic dynamic subtraction (complex value)                   | Possible |  |
|                          | Automatic MIP preview (three directions)                        | Possible |  |
|                          | Automatic Diffusion postprocessing (ADC image, Isotropic image) | Possible |  |



### Post Process Image Display and Processing

Images acquired in scanning are displayed, various processing is applied to these images as required, and the images are printed onto film. Image Matrix, which displays thumbnails of actually acquired images, allows the user to quickly search for and select the desired images. A variety of image processing functions are provided to serve different purposes. The excellent parallel processing capability of Vantage Orian allows image processing to be performed in parallel with scanning.

### Image display

| Image selection            | Selection from Image Matrix                                                                                                                                      |                                     |  |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|
|                            | Skipped selection function                                                                                                                                       | Provided                            |  |  |
| Display template           | Multiframe display is possible.                                                                                                                                  | ar la a constante and a constitu    |  |  |
|                            | Images for two different patients ca                                                                                                                             | ·                                   |  |  |
| Automatic display function | Provided (multiple images selected in the Image Matrix are displayed in sequence)                                                                                |                                     |  |  |
| Window adjustment          | WW/WL adjustment by mouse ope                                                                                                                                    | WW/WL adjustment by mouse operation |  |  |
|                            | Auto windowing                                                                                                                                                   | Possible                            |  |  |
|                            | Apply Contrast function                                                                                                                                          | Provided                            |  |  |
| Image-related information  | Patient information, imaging param                                                                                                                               | eters, RF coil type, etc.           |  |  |
|                            | Graphics & annotation function                                                                                                                                   | Provided                            |  |  |
|                            | Image-related information display ON/OFF Possible                                                                                                                |                                     |  |  |
| Reference display          | All positioning ROIs can be displayed on the image used for scan planning. ROI corresponding to an arbitrary image slice can be displayed on an arbitrary image. |                                     |  |  |
| Inset display              | Possible                                                                                                                                                         |                                     |  |  |
|                            | Size change                                                                                                                                                      | Possible in three levels or more    |  |  |
|                            | Display position selection                                                                                                                                       | Possible                            |  |  |
| Cine display               | Possible                                                                                                                                                         |                                     |  |  |
|                            | Multiframe display                                                                                                                                               | Possible                            |  |  |
|                            | Playback/switching speed                                                                                                                                         | Variable                            |  |  |
|                            | Storage of moving images                                                                                                                                         | Possible                            |  |  |
| Various display functions  | Black/white reversal, rotation, flipping, grid, zooming (interactive enlargement and reduction), scrolling (interactive scroll), Apply View function             |                                     |  |  |
| ROI calculation            |                                                                                                                                                                  |                                     |  |  |
| Calculation functions      | Distance, angle, area, pixel value, profile, histogram, TIC (Time Intensity Curve)                                                                               |                                     |  |  |

### Image processing

| Image filters                                                       | Smoothing, edge enhancement, etc.                                                                                                                                                                                                                                                                                                 |                                                                                   |  |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| MIP (Maximum Intensity Projection,<br>Minimum Intensity Projection) | Projection direction                                                                                                                                                                                                                                                                                                              | Specified using ROI (specification of multiple projection directions is possible) |  |
|                                                                     | Target MIP                                                                                                                                                                                                                                                                                                                        | MIP target region can be specified in three directions.                           |  |
| MPR                                                                 | Interactive MPR, batch MPR                                                                                                                                                                                                                                                                                                        |                                                                                   |  |
|                                                                     | Double oblique                                                                                                                                                                                                                                                                                                                    | Possible                                                                          |  |
|                                                                     | Slice thickness change function                                                                                                                                                                                                                                                                                                   | Available                                                                         |  |
|                                                                     | Image storage function                                                                                                                                                                                                                                                                                                            | Available                                                                         |  |
| Image calculation                                                   | Addition, subtraction, multiplication, division, and other functions                                                                                                                                                                                                                                                              |                                                                                   |  |
|                                                                     | Automatic dynamic subtraction                                                                                                                                                                                                                                                                                                     | Subtraction image is generated automatically after dynamic scan.                  |  |
| Intensity correction                                                | Provided as standard for both 2D and 3D.                                                                                                                                                                                                                                                                                          |                                                                                   |  |
| Distortion correction                                               | Provided as standard for both 2D and 3D.                                                                                                                                                                                                                                                                                          |                                                                                   |  |
| 3D post-process                                                     | Provided as standard.                                                                                                                                                                                                                                                                                                             |                                                                                   |  |
| Fusion processing                                                   | Provided as standard.                                                                                                                                                                                                                                                                                                             |                                                                                   |  |
| Temporal Filter                                                     | The temporal filter is used for images of R-space (real space) in image reconstruction. For images acquired with cine mode or retrospective mode, minor intensity variation of the noise components is suppressed while maintaining the myocardial motion and physiological tissue structures in the image, improving visibility. |                                                                                   |  |
| Filming                                                             |                                                                                                                                                                                                                                                                                                                                   |                                                                                   |  |
| Virtual filming                                                     | The dedicated Virtual film window is provided.                                                                                                                                                                                                                                                                                    |                                                                                   |  |
| Support of multiple imagers                                         | Possible                                                                                                                                                                                                                                                                                                                          |                                                                                   |  |

# Vantage **Orian** –

### Data management

| Temporary storage of patient data                                                                               | Solid state drive                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                       |  |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Long-term storage of patient data                                                                               | External hard drive (USB 3.0, type A), DVD-R, DVD-RAM, and Blu-ray $Disc^TM$                                                                                                                                       |                                                                                                                                                                                                                                                                       |  |
| Patient data search                                                                                             | Possible                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                       |  |
| Security Settings                                                                                               |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                       |  |
| Meets the requirements of Risk<br>Management Framework (RMF),<br>governed by the Defense Health<br>Agency (DHA) | Provided as a standard. RMF tested and verified.                                                                                                                                                                   |                                                                                                                                                                                                                                                                       |  |
| HIPPA compliance                                                                                                | Provided as a standard. The requirement Accountability Act are met.                                                                                                                                                | ts of US Health Insurance Portability and                                                                                                                                                                                                                             |  |
| White list type antivirus software                                                                              | Utilizing the highly secure White List security software embedded control security solution that provides a high level of protection against malicious attacks, advanced persistent threats, viruses, and malware. |                                                                                                                                                                                                                                                                       |  |
| Utilities                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                       |  |
| LHe level indication                                                                                            | The LHe level data is read from the supervisory unit.                                                                                                                                                              |                                                                                                                                                                                                                                                                       |  |
|                                                                                                                 | Logging is possible.                                                                                                                                                                                               |                                                                                                                                                                                                                                                                       |  |
| Quality control                                                                                                 | Daily QA (absolute value)                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |  |
|                                                                                                                 | Logging is possible.                                                                                                                                                                                               |                                                                                                                                                                                                                                                                       |  |
| Errors                                                                                                          | Logging is possible.                                                                                                                                                                                               |                                                                                                                                                                                                                                                                       |  |
| Image processing                                                                                                |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                       |  |
| Reconstruction                                                                                                  | The maximum reconstruction matrix                                                                                                                                                                                  | 1,024 × 1,024                                                                                                                                                                                                                                                         |  |
|                                                                                                                 | FINE                                                                                                                                                                                                               | Doubles the reconstruction matrix to improve the inplane spatial resolution without increasing scan times for both 2D and 3D images. This technique can also be applied to the slice encoding direction for 3D images.                                                |  |
|                                                                                                                 | Refine filter                                                                                                                                                                                                      | User-selectable reconstruction filter to enhance image quality.                                                                                                                                                                                                       |  |
|                                                                                                                 | DSD Filter                                                                                                                                                                                                         | DSD filter removes the noise while retaining the optimal smoothness and sharpness.                                                                                                                                                                                    |  |
|                                                                                                                 | GA Filter <sup>‡</sup>                                                                                                                                                                                             | GAIN Algorithm filter is available as a reconstruction filter to reduce image noise.                                                                                                                                                                                  |  |
|                                                                                                                 | Advanced intelligent Clear-IQ Engine (AiCE) <sup>1</sup>                                                                                                                                                           | AiCE intelligently removes noise from images which results in high SNR and leads to enhanced anatomical and spatial resolution utilizing the power of Deep Learning.                                                                                                  |  |
|                                                                                                                 | Precise IQ Engine (PIQE) <sup>‡</sup>                                                                                                                                                                              | PIQE is Deep Learning based technique that generates higher spatial in-plane resolution images from lower resolution images with the ability to triple the matrix dimensions in both in-plane directions, i.e. a factor of 9x, while mitigating the ringing artifact. |  |
| Batch multiplanar reconstruction                                                                                | Provides oblique as well as interactive N                                                                                                                                                                          | IPR                                                                                                                                                                                                                                                                   |  |

### Networking

| Networking                  |                                                                                                                                                             |                                                                          |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| DICOM 3.0                   | Storage SCU, Print SCU, DICOM Media, and MWM SCU                                                                                                            | Available                                                                |
|                             | Storage Commitment, Q/R SCU, Q/R SCP, and MPPS SCU                                                                                                          | Available <sup>‡</sup>                                                   |
|                             | IHE profiles                                                                                                                                                | SWF, CPI, PDI and CT are Supported. Only DVD media is supported for PDI. |
|                             | Two more DICOM service classes                                                                                                                              | Available                                                                |
| Laser Imager                | DICOM print                                                                                                                                                 | Available                                                                |
| Second Console <sup>‡</sup> | This console includes an independent computer platform and supports all of the functions of the main system console except for scanning and reconstruction. |                                                                          |
|                             | This console is connected to the system of independent platform means that the masimultaneously for different tasks.                                        |                                                                          |
|                             | DICOM                                                                                                                                                       | Supported                                                                |
| Remote Service Maintenance  | The InnerVision remote service system per<br>connection to the Canon Medical system<br>your Canon Medical systems representation                            | ns Technical Support Center. Please consult                              |



### **SPECIFICATIONS OF CLINICAL APPLICATIONS**

### **TOF MRA method**

Blood vessels can be visualized without contrast medium using the time of flight effect.

| 2D TOF method | Artery/vein simultaneous acquisition: | Available                                                                                                    |  |
|---------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
|               | Artery/vein separate:                 | MovingSAT available                                                                                          |  |
|               | Fat saturation method:                | Can be used in combination                                                                                   |  |
|               | Presaturation method:                 | Can be used in combination                                                                                   |  |
|               | Quiet Scan:                           | Standard                                                                                                     |  |
| 3D TOF method | Fat saturation method:                | Can be used in combination                                                                                   |  |
|               | Presaturation method:                 | Can be used in combination                                                                                   |  |
|               | Quiet Scan:                           | Standard                                                                                                     |  |
|               | Multicoverage method:                 | This is a wide-range imaging method taking advantage of the TOF effect using a thin slab.                    |  |
|               |                                       | Coverage joint suppression Available method:                                                                 |  |
|               | SORS-STC method:                      | The imaging capabilities for blood vessels are improved by selectively suppressing the signals from tissues. |  |
|               |                                       | Flip angle of SORS-STC Available pulse:                                                                      |  |
|               | ISCE method:                          | Degradation in peripheral blood vessel images is suppressed.                                                 |  |
|               |                                       | Selection of flip angle Available distribution in slab:                                                      |  |
|               |                                       | Combined use of SORS-STC Available (inclined slab for method: contrast enhancement)                          |  |

### **Non-contrast MRA**

| FSBB (Flow Sensitive Black Blood)                 | FSBB depicts more details of arteries and veins by utilizing the flow dephasing effect. Weak MPG pulses are applied to FE sequence, clearly depicting small vessels with slow blood flow that is difficult to depict by TOF.                            |                                                                                                                                                                                                                                                                                          |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FBI (Fresh Blood Imaging) method                  | This is a vascular imaging method in which new blood ejected from the heart is visualized by setting an appropriate delay time from the R wave using ECG gating and peripheral pulse gating and performing data acquisition synchronized for each shot. |                                                                                                                                                                                                                                                                                          |  |
|                                                   | ECG-Prep method <sup>‡</sup> :                                                                                                                                                                                                                          | ECG-gated scanning or peripheral-pulse-<br>gated scanning is performed with multiple<br>delay times set in order to acquire images<br>of the same plane in different cardiac<br>phases so that the optimal delay time for<br>visualizing the target vessels in FBI can be<br>determined. |  |
|                                                   | Intermittent breath-hold method in ECG-gated scanning:                                                                                                                                                                                                  | ECG-gated scanning is performed during breath-holding, with the patient permitted to breathe at regular intervals corresponding to a certain number of slice-encoding steps.                                                                                                             |  |
|                                                   | Sequential FASE method:                                                                                                                                                                                                                                 | Images for different slices are acquired sequentially to provide multislice images in the same cardiac phase.                                                                                                                                                                            |  |
|                                                   | FlowSpoiled FBI method:                                                                                                                                                                                                                                 | The optimal dephase pulse is applied in the readout direction in order to permit the arteries and veins to be visualized separately for low-velocity blood vessels such as peripheral vessels and collateral vessels, which is difficult with standard FBI.                              |  |
| SPEED (Swap Phase Encode Extended Data) method    | Blood vessels that run through multiple acquiring two images in which the pha                                                                                                                                                                           | e orientations are observed on one image by ase encode direction is rotated by 90°.                                                                                                                                                                                                      |  |
| Time-SLIP (Time-Spatial Labeling Inversion Pulse) | The inversion pulse is applied space-selectively and after an appropriate wait time to permit the blood or cerebrospinal fluid flowing into or out of the slice to be visualized This method can be used in combination with FASE or TrueSSFP.          |                                                                                                                                                                                                                                                                                          |  |
| mASTAR                                            | Non-contrast MRA is performed using ASTAR pulses. After uniform Ta applied, sequential acquisition is performed at different TI timings to images at the different TI timings, allowing hemodynamics to be obs                                          |                                                                                                                                                                                                                                                                                          |  |
| mUTE 4D MRA                                       | UTE sequences allow for less dephasing and more homogeneous vessel signals. At the same time, the use of multiple inversion times (TIs) allows generation of dynamic images (4D) visualizing the blood flow without the need for contrast agents.       |                                                                                                                                                                                                                                                                                          |  |



### **Contrast-enhanced MRA**

Blood vessels can be visualized at high temporal resolution with a short TR/TE using contrast medium.

| Dynamic scan        | Scanning is performed automatically according to the specified time sequence.        |                             |                 |  |
|---------------------|--------------------------------------------------------------------------------------|-----------------------------|-----------------|--|
|                     | Application:                                                                         | FE (2DFT/3DFT)              |                 |  |
|                     |                                                                                      | FastFE (2DFT/3DFT)          |                 |  |
|                     | FastFE data acquisition                                                              | 2DFT:                       | Interleave,     |  |
|                     | method:                                                                              |                             | Sequential      |  |
|                     |                                                                                      | 3DFT:                       | Interleave,     |  |
|                     |                                                                                      |                             | Slice Centric,  |  |
|                     |                                                                                      |                             | Sequential,     |  |
|                     |                                                                                      |                             | Swirl,          |  |
|                     |                                                                                      |                             | Reverse Centric |  |
| Dynamic subtraction | Subtraction images between the image in the specified base phase and subsequent      |                             |                 |  |
|                     | images are generated.                                                                |                             |                 |  |
|                     | Automatic processing after Available (absolute and complex)                          |                             |                 |  |
|                     | dynamic scan:                                                                        |                             |                 |  |
| VisualPrep method   | Data acquisition, image reconstruction, and display are performed repeatedly for the |                             |                 |  |
|                     | same plane.                                                                          |                             |                 |  |
|                     | Fat suppression:                                                                     | Can be used in combination  |                 |  |
|                     | Complex subtraction:                                                                 | Available                   |                 |  |
| MovingBed           | The tabletop is moved between scans to allow a wide range of the patient to be       |                             |                 |  |
|                     | acquired.                                                                            |                             |                 |  |
|                     | Specification of tabletop                                                            | Available                   |                 |  |
|                     | movement distance:                                                                   |                             |                 |  |
| Advanced MovingBed  | Individual scan setting ca                                                           | n be set for each scan in M | lovingBed.      |  |
|                     | Specification of tabletop                                                            | Available                   |                 |  |
|                     | movement distance:                                                                   |                             |                 |  |
|                     | Scan setting:                                                                        | Available                   |                 |  |

### **PS MRA method**

The PS (Phase Shift) method performs visualization based on the phase differences between moving parts and stationary parts.

| 2D PS method | IVisualizes the blood vessels in a | IVisualizes the blood vessels in a short time. |  |  |
|--------------|------------------------------------|------------------------------------------------|--|--|
|              | Scan cross section:                | Arbitrary planes                               |  |  |
| 3D PS method | Covers the slice range continuo    | usly without slice gaps.                       |  |  |
|              | Scan cross section:                | Arbitrary planes                               |  |  |

### Flow velocity measurement method

| Scan for flow velocity measurement | Method:        | 2D cine PS method          |
|------------------------------------|----------------|----------------------------|
|                                    | Cross section: | Arbitrary planes           |
|                                    | Direction:     | Slice/readout/phase encode |

### **Diffusion Imaging**

Isotropic diffusion-weighted images and ADC images can be obtained using the EPI and the FASE method.

| EPI Diffusion                                                     | Single-Shot EPI:                                                                                                                        | Available                  |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                                                                   | Three-axis continuous acquisition:                                                                                                      | Available <sup>‡</sup>     |
|                                                                   | Multi b-value:                                                                                                                          | Available                  |
| FASE Diffusion <sup>‡</sup>                                       | Three-axis continuous acquisition:                                                                                                      | Available <sup>‡</sup>     |
| RDC DWI (Reverse encoding Distortion Correction DWI) <sup>‡</sup> | n RDC DWI is intended to reduce distortion in phase encoding direction due to B0 fi inhomogeneity or eddy current, in SEEPI2D sequence. |                            |
| Diffusion postprocessing <sup>‡</sup>                             | Diffusion ADC image (apparent diffusion co                                                                                              | oefficient image)          |
|                                                                   | Diffusion isotropic image (isotropic diffusion-weighted image)                                                                          |                            |
|                                                                   | Dynamic averaging function:                                                                                                             | Available                  |
|                                                                   | Automatic postprocessing:                                                                                                               | Available (ADC, isotropic) |

### **Diffusion Tensor Imaging (DTI)**<sup>‡</sup>

Continuous white matter tracts running in various directions in the head can be visualized using the EPI method.

| EPI Diffusion            | Single-Shot EPI:                                             | Available                                               |  |
|--------------------------|--------------------------------------------------------------|---------------------------------------------------------|--|
| Diffusion postprocessing | Isotropic image (Isotropic diff                              | usion weighted image)                                   |  |
|                          | ADC image                                                    |                                                         |  |
|                          | Fractional anisotropy image (                                | indicating the degree of diffusion anisotropy)          |  |
|                          | Lambda image (characteristic value image)                    |                                                         |  |
|                          | Lambda image (vector image of characteristic value)          |                                                         |  |
|                          | MAP image (scalar and vector                                 | r MAP image)                                            |  |
|                          | Fusion image (Anatomical (T1, T2, FLAIR etc.) and MAP image) |                                                         |  |
|                          | MPR image                                                    |                                                         |  |
|                          | 3D image (SVR + Plan cut + N                                 | MAP image + Fiber or Cross section + MAP image + Fiber) |  |

# Vantage **Orian** -

### **Perfusion Imaging**

Various types of perfusion imaging are supported.

| EPI Diffusion                              | Single-Shot EPI:                                                                                                    | Available                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Perfusion postprocessing                   | ΔR2* image                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                            | Curve fitting:                                                                                                      | Available                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            | Functional parameters:                                                                                              | Peak Height, Peak Time, Area under Curve, 1st Moment,                                                                                                                                                                                                                                                                                                                                                    |
|                                            |                                                                                                                     | etc                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                            |                                                                                                                     | Map and color display: Available                                                                                                                                                                                                                                                                                                                                                                         |
| ASL (Arterial Spin Labeling)               | application position for the with respect to the imaging imaging slice is suppressed tissues are suppressed can 3D. | d to cancel out the MTC effect by setting the IR pulse ne control image and that for the tag image asymmetrically ng slice, while the blood flow signal on one side of the ed. As a result, images in which the MR signals from stationary n be obtained. This technique can be applied to both 2D and argeting Alternating Radiofrequency using Asymmetric sfer Contrast)  Variable  Variable  Variable |
| pCASL (pseudo-continuous ASL) <sup>‡</sup> | gradient field, and collect:                                                                                        | he RF pulse that are intermittently applies and tags and<br>s images of both tag and control modes at the same position<br>busly and acquires the perfusion images from those images.                                                                                                                                                                                                                    |

### **Cardiac Imaging**

Various types of cardiac imaging can be performed by the combined use of the ECG-gating method.

| Cine imaging                                                 | Application:                                                                                                                                                                                                                                                                                                                                                                                        | FE2D, FFE2D (support for TrueSSFP)                                                                     |                                          |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------|--|
|                                                              | Sequential multislice multiphase                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                        |                                          |  |
|                                                              | Number of phases:                                                                                                                                                                                                                                                                                                                                                                                   | Variable (depending on the                                                                             | R-R interval)                            |  |
|                                                              | ECG-gating:                                                                                                                                                                                                                                                                                                                                                                                         | Prospective, retrospective <sup>‡</sup>                                                                |                                          |  |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | Viewshare reconstruction:                                                                              | Available                                |  |
|                                                              | Tagging scan:                                                                                                                                                                                                                                                                                                                                                                                       | Freehand tag:                                                                                          | Tag thickness can be set.                |  |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | Parallel tag:                                                                                          | Tag pitch can be set.                    |  |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | Radial tag:                                                                                            | Number of tags and tag angle can be set. |  |
| Gate-free Cine imaging                                       | Application:                                                                                                                                                                                                                                                                                                                                                                                        | FFE2D (support for TrueSSFF                                                                            | 9)                                       |  |
|                                                              | Taking images without ga                                                                                                                                                                                                                                                                                                                                                                            | ting in the breath-hold state.                                                                         |                                          |  |
| BB (Black Blood) method <sup>‡</sup>                         | Application:                                                                                                                                                                                                                                                                                                                                                                                        | FASE and FFE                                                                                           |                                          |  |
|                                                              | Sequential multislice                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |                                          |  |
|                                                              | Number of slices per brea                                                                                                                                                                                                                                                                                                                                                                           | th-hold can be specified.                                                                              |                                          |  |
|                                                              | BB pulse application time                                                                                                                                                                                                                                                                                                                                                                           | can be changed sequentially.                                                                           |                                          |  |
|                                                              | Fat saturation pulse can b                                                                                                                                                                                                                                                                                                                                                                          | e used in combination.                                                                                 |                                          |  |
| Retrospective gating mode <sup>‡</sup>                       | Application:                                                                                                                                                                                                                                                                                                                                                                                        | FFE2D (support for TrueSSFF                                                                            | 2)                                       |  |
|                                                              | Acquires continuous cine images.                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                        |                                          |  |
|                                                              | An image of the entire cardiac cycle, including diastole, can be obtained.                                                                                                                                                                                                                                                                                                                          |                                                                                                        |                                          |  |
| Tissue characterization imaging <sup>‡</sup>                 | Application: FFE2D, FFE3D                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                          |  |
|                                                              | AT1-weighted image obtained using the inversion recovery method.                                                                                                                                                                                                                                                                                                                                    |                                                                                                        |                                          |  |
|                                                              | Analysis of delayed myocardial enhancement is available.                                                                                                                                                                                                                                                                                                                                            |                                                                                                        |                                          |  |
| Time course imaging <sup>‡</sup>                             | Application:                                                                                                                                                                                                                                                                                                                                                                                        | FFE2D                                                                                                  |                                          |  |
|                                                              | Multi-slice ECG-gated dyr                                                                                                                                                                                                                                                                                                                                                                           | amic scan to acquire images o                                                                          | f first pass of contrast.                |  |
|                                                              | Temporal change of signal intensity can be analyzed                                                                                                                                                                                                                                                                                                                                                 |                                                                                                        |                                          |  |
| RMC (Real-time Motion Correction) <sup>‡</sup>               | Application:                                                                                                                                                                                                                                                                                                                                                                                        | FFE3D, SEEPI2D, FSE2D, FASE                                                                            | E2D, FASE3D                              |  |
|                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                   | espiratory motion artifacts can l<br>ative to diaphragm motion.                                        | oe obtained by following the             |  |
| R-wave monitoring <sup>‡</sup>                               | Application:                                                                                                                                                                                                                                                                                                                                                                                        | SSFP2D, SSFP3D                                                                                         |                                          |  |
|                                                              | Reacquiring the ECG wave ECG-gated scanning.                                                                                                                                                                                                                                                                                                                                                        | eform when RR interval offed a                                                                         | preset threshold during                  |  |
| MOLLI (MOdified Look-Locker Inversion recovery) <sup>‡</sup> |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        |                                          |  |
| PSIR (Phase Sensitive Inversion<br>Recovery) <sup>‡</sup>    | In ECG-gated scanning with the FFE2D sequence, T1 contrast-weighted real images are acquired in this mode. After single IR pulse is applied, acquisition is performed with two different TI timings. Using the image data with a longer TI value which is less affected by T1 contrast, phase correction is performed for the image acquired with another TI value in order to enhance T1 contrast. |                                                                                                        |                                          |  |
| T2 map <sup>‡</sup>                                          | different Pre-contrast puls                                                                                                                                                                                                                                                                                                                                                                         | oulse gating is used in scanning<br>ses are used to obtain multiple<br>then applied to the obtained Ti | TE <sub>eff</sub> images. The            |  |



### Imaging Processing for BOLD Imaging<sup>†</sup>

Friendly user interface for BOLD Image (functional MRI) processing

Alignment process using 3-dimensional motion correction

Statistically processed images (t-value, correlation coefficient)

### **UTE Imaging**<sup>‡</sup>

Data is acquired with a very short TE by starting radial scan (in which data is acquired in a radial pattern from the center of the k-space) immediately after the RF excitation pulse is applied, without using a phase encode gradient pulse. Because UTE enables observation of signals with short T2\* values and acquires the data starting from the center of the k-space for each TR, this technique is less susceptible to motion.

CG Recon<sup>1)</sup>, which is based on the CG (Conjugate Gradient) method that solves MRI encoding model equations for image reconstruction is available to reduce scan time while maintaining resolution and SNR.

This application is also available acquisition of different TE data for T2\* mapping of tissues with short T2\*.

### Pediatric Imaging<sup>‡</sup>

Various types of technology can be performed for pediatric imaging.

Pianissimo Zen ApplicationUTE ApplicationMSSW-ZENMSSW-UTE

Selection of surface coils are below

Pediatric SPEEDER
 4ch Flex SPEEDER
 16ch Flex SPEEDER Medium
 16ch Flex SPEEDER Large
 MJAJ-217A/S1
 MJAJ-227A/S1

#### Fat Fraction Quantification<sup>‡</sup>

Data is acquired with several different TE and provides PDFF image, R2\* image, water image, fat image, in phase image and out of phase image (total 6 kind of images). Proton Density Fat Fraction data is supporting fat content ratio of liver.

#### MR Spectroscopy \*

Proton spectroscopy provides spectral and metabolic information for enhanced diagnostic confidence in neuro, prostate and breast examinations and is fully integrated in the imaging routine.

| Single Voxel method <sup>±</sup> | Data acquisition, processing and display are available on the console. The Volume of      |
|----------------------------------|-------------------------------------------------------------------------------------------|
|                                  | Interest (VOI) can be set up on the locator MR images of arbitrary orientations.          |
| Multi Voxel method <sup>‡</sup>  | Spectral data processing and analysis are available on the console. Chemical-shift images |
|                                  | can be generated and overlaid on the corresponding high-resolution anatomical image.      |

Note: It is possible to process the MRS data acquired by Canon MRI systems using software LCModel or equivalent, which supports data acquired by single-voxel acquisition and multi-voxel acquisition and it can be implemented on workstation.

<sup>1)</sup> Advanced intelligent Clear-IQ Engine (AiCE) for MR (MZDL-010A) or Advanced Image Reconstruction Unit (MZDL-010B) is required to use this application.

#### **INSTALLATION CONDITIONS**

### **Power requirements**

A continuous and stable power supply is required for reliable operation of the system.

Frequent power failures may damage the system.

The power line shall be free of rapid variations and must not be shared by other equipment.

| Line voltage        | 380/400/415/440/480 V |
|---------------------|-----------------------|
| Phase               | Three-phase           |
| Voltage fluctuation | ±10%                  |
| Frequency           | 50/60 Hz±1Hz          |
| Power requirements  | 52 kVA <sup>1)</sup>  |

### Grounding

Independent grounding is required. Grounding must be provided in accordance with all applicable legal requirements for medically used electrical equipment.

### Power consumption and heat dissipation<sup>2)</sup>

| <del>-</del>                 | •                |         |         |
|------------------------------|------------------|---------|---------|
| Power consumption            |                  | 50 Hz   | 60 Hz   |
| (Average)                    | During scan      | 23.2 kW | 24.5 kW |
|                              | Low-power mode   | 11.4 kW | 12.2 kW |
|                              | System power off | 6.3 kW  | 7.6 kW  |
| Max. System heat dissipation |                  | 2.0 kW  | 2.2 kW  |

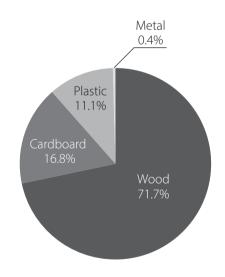
#### Air conditioning

An appropriate air conditioning system is required to maintain the specified temperature and humidity. Continuous air conditioning (day and night) is required for some equipment.

<sup>1)</sup> An additional 15-20 kVA cooling is required.

Continuous power (day and night) is required for some equipment.

<sup>2)</sup> Power consumption is calculated based on COCIR Self-Regulatory Initiative for medical imaging equipment (2011). The heat dissipation value does not include the external heat exchanger.


# Vantage **Orian**

### **Environmental requirements**

| Temperature and humidity:<br>No condensation | Scan room                                                                                                                              | 16°C to 24°C                                               | 40% to 60% R.H.  |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------|--|--|
|                                              | Operator's room                                                                                                                        | 16℃ to 28℃                                                 | 40% to 75% R.H.  |  |  |
|                                              | Computer room                                                                                                                          | 16°C to 24°C with                                          | 40% to 70% R.H.  |  |  |
|                                              | fluctuation +/-3°C/day or less                                                                                                         |                                                            |                  |  |  |
| Magnetic field                               | Less than 1.0 μT peak-to-peak                                                                                                          |                                                            |                  |  |  |
| Electric field                               | Less than - 5 dB $\mu$ V/m (0.56 $\mu$ V/m) from 62.0 MHz to 64.0 MHz<br>An RF shield room with more than 90-dB shielding is required. |                                                            |                  |  |  |
| Emergency ventilation                        | 30 m <sup>3</sup> /min or more for the scan room                                                                                       |                                                            |                  |  |  |
| Ventilation pipe                             | A ventilation pipe must be provided in the scan room for emergency quenching of                                                        |                                                            |                  |  |  |
|                                              | the magnet.                                                                                                                            |                                                            |                  |  |  |
| Minimum rigging clearance                    | 2.0 m (W) × 2.5 m (H) or more                                                                                                          |                                                            |                  |  |  |
| Minimum installation area <sup>3)</sup>      | 24.69 m <sup>2</sup>                                                                                                                   |                                                            |                  |  |  |
|                                              | Scan room                                                                                                                              | $5.125 \text{ m} \times 3.20 \text{ m} = 16.4 \text{ m}^2$ |                  |  |  |
|                                              | Operator's room                                                                                                                        | $1.60 \text{ m} \times 1.30 \text{ m} = 2.08 \text{ m}^2$  |                  |  |  |
|                                              | Computer room                                                                                                                          | $3.65 \text{ m} \times 1.70 \text{ m} = 6.21 \text{ m}^2$  |                  |  |  |
| Ceiling height                               | 2.4 m for the scan room, except for the maintenance space for the refrigerator (2.8 m)                                                 |                                                            |                  |  |  |
| Maximum floor loading                        | 7.0 tons for the scan room                                                                                                             |                                                            |                  |  |  |
| Installation altitude                        | 2,000 m or less above sea level                                                                                                        |                                                            |                  |  |  |
| Cooling water                                | Flow rate                                                                                                                              | 90 L/min or more                                           | 90 L/min or more |  |  |
|                                              | Temperature                                                                                                                            | 15°C or less                                               |                  |  |  |
|                                              |                                                                                                                                        |                                                            |                  |  |  |

### **Packaging materials**

|           | Mass<br>kg (Average) |
|-----------|----------------------|
| Wood      | 841                  |
| Cardboard | 197                  |
| Plastic   | 130                  |
| Metal     | 5                    |



<sup>3)</sup> Minimum room inside clear space dimensions. These dimensions may not be applied to some cases depending on each site situation.

### **COMPATIBILITY WITH INTERNATIONAL STANDARDS**

IEC 60601-1:2005+A1:2012

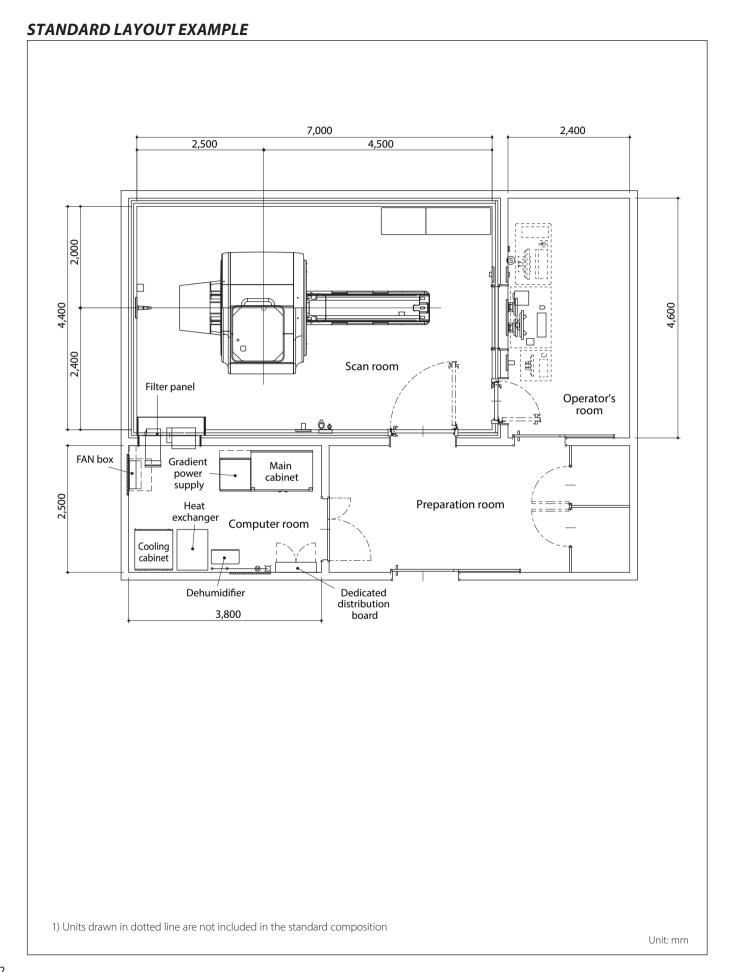
IEC 60601-1-2:2014+A1:2020

IEC 60601-1-6:2010+A1:2013+A2:2020

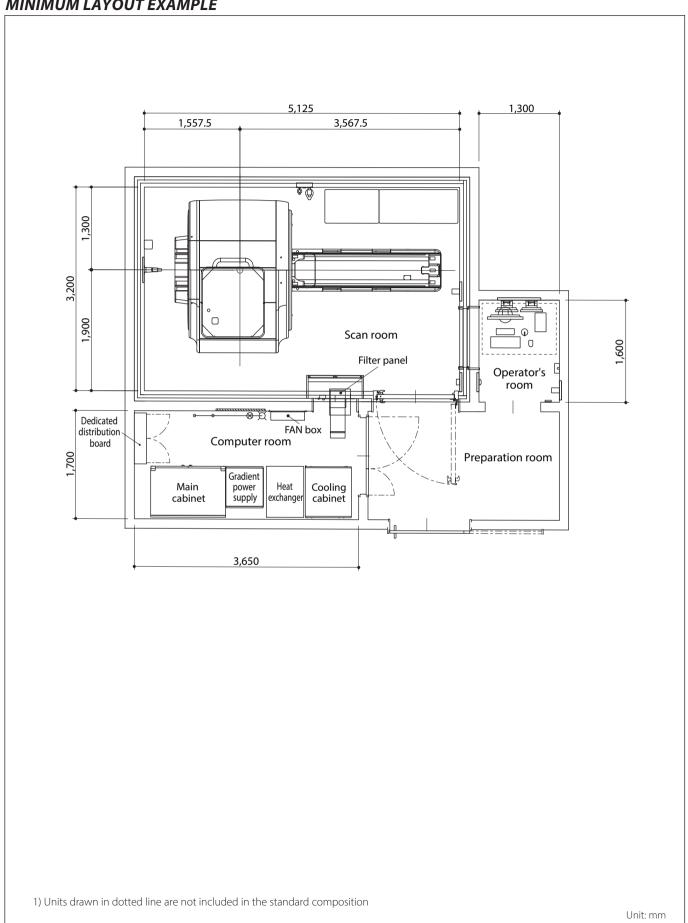
IEC 60601-1-9:2007+A1:2013+A2:2020

IEC 60601-2-33:2010+A1:2013+A2:2015

IEC 60825-1:2014


IEC 62304:2006+A1:2015

IEC 62366-1:2015+A1:2020


### **DIMENSIONS AND MASS**

|                                        | Dimensions W x D x H                                           | Mass  | Recycling rate |
|----------------------------------------|----------------------------------------------------------------|-------|----------------|
| Unit                                   | mm                                                             | kg    | %              |
| Magnet assembly                        |                                                                |       |                |
| For fixed table                        | $2,400 \times 1,900 \times 2,320$                              | 5,800 | 86             |
| For dockable table                     | $2,400 \times 2,287 \times 2,320$                              | 5,800 | 86             |
| Entire bore length (including covers)  | 1,690                                                          | _     |                |
| Patient bore length                    | 1,495                                                          | _     |                |
| Patient Table                          |                                                                |       |                |
| Fixed table                            | $660 \times 2,470 \times 430$ to 845                           | 318   | 80             |
| Dockable table                         | $660 \times 2,486 \times 550 \text{ to } 845 \text{ (Dock)}$   | 262   | 80             |
|                                        | $660 \times 2,486 \times 535 \text{ to } 875 \text{ (Undock)}$ |       |                |
| Console                                |                                                                |       |                |
| Monitor                                | 575 × 245 × 423 to 553                                         | 8.7   | 60             |
| Control Box                            | $283 \times 310 \times 85$                                     | 4     | no data        |
| Control pad                            | 293 × 95 × 82                                                  | 1.2   | 71             |
| Main Cabinet and Gradient Power Supply | 1,836 × 800 × 1,987                                            | 1,300 | 83             |
| Cooling Cabinet                        | 900 × 800 × 1,920                                              | 365   | 97             |
| FAN Box                                | 630 × 145 × 520                                                | 17    | 95             |
| Filter Panel                           | 1,150 × 770 × 650                                              | 67    | 85             |
| Accessories                            | _                                                              | 90    | 9              |
| Heat Exchanger                         | 609 × 800 × 1170                                               | 165   | no data        |

# Vantage **Orian**



### MINIMUM LAYOUT EXAMPLE





### CANON MEDICAL SYSTEMS CORPORATION

1385, Shimoishigami, Otawara-shi, Tochigi 324-8550, Japan

### https://global.medical.canon

©Canon Medical Systems Corporation 2023. All rights reserved. Design and specifications are subject to change without notice. MPDMR0628EAA 2023-07 CMSC/Produced in Japan

 $Can on Medical Systems Corporation meets internationally recognized standards for Quality Management System ISO 9001, ISO 13485. \\ Can on Medical Systems Corporation meets the Environmental Management System standard ISO 14001. \\$ 

Olea Nova is a registered trademark of Olea Medical S.A.S.

 $DICOM\ is\ the\ registered\ trademark\ of\ the\ National\ Electrical\ Manufacturers\ Association\ for\ its\ Standards\ publications\ relating\ to\ digital\ communications\ of\ medical\ information.$ 

Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries.

Blu-ray Disc is a trademark of the Blu-ray Disc Association.

This document may include trademarks or registered trademarks of their respective owners.