Table 15: Technical Data - Data Contacts

Data contacts	Slide contact, hard gold plated, self-
	cleaning

3.6.6 **Climatic Environmental Conditions**

Table 16: Technical Data - Climatic Environmental Conditions

Surrounding air temperature, operation	0°C55°C
Surrounding air temperature, storage	−25 °C +85 °C
Operating altitude	without temperature derating:
	0 2000 m;
	with temperature derating:
	2000 5000 m (0.5 K/100 m);
	max.: 5000 m
Relative humidity	Max. 5 % 95 % without condensation
Pollution degree	2
Protection type	IP20
Resistance to harmful substances	Acc. to IEC 60068-2-42 and
	IEC 60068-2-43
Maximum pollutant concentration at	SO ₂ ≤ 25 ppm
relative humidity < 75 %	H ₂ S ≤ 10 ppm
Special conditions	Ensure that additional measures for
	components are taken, which are used
	in an environment involving:
	– dust, caustic vapors or gases
	– ionizing radiation

3.7 Approvals

The following approvals have been granted to 750-496 I/O modules:

((Conformity Marking

CUL)US UL508

The following approvals are pending for 750-496 I/O modules:

The following Ex approvals have been granted to the basic version of 750-496 I/O modules:

CULUS ANSI/ISA 12.12.01

Class I, Div2 ABCD T4

The following Ex approvals are pending for 750-496 I/O modules:

TÜV 07 ATEX 554086 X

I M2 Ex d I Mb II 3 G Ex nA IIC T4 Gc II 3 D Ex tc IIIC T135°C Dc

IECEx TUN 09.0001 X

Ex d I Mb Ex nA IIC T4 Gc Ex tc IIIC T135°C Dc

The following ship approvals are pending for 750-496 I/O modules:

ABS (American Bureau of Shipping)

Federal Maritime and Hydrographic Agency

BV (Bureau Veritas)

KR (Korean Register of Shipping)

LR (Lloyd's Register)

Env. 1, 2, 3, 4

NKK (Nippon Kaiji Kyokai)

PRS (Polski Rejestr Statków)

RINA (Registro Italiano Navale)

The following ship approvals have been granted to the basic version of 750-496 I/O modules:

DNV GL

[Temperature: B, Humidity: A, Vibration: B, EMC: B,

Enclosure: A]

Applicable from HW 01 / SW 01!

This ship approval is only applicable from HW 01 / SW 01!

3.8 Standards and Guidelines

750-496 I/O modules meet the following standards and guidelines:

750-496 I/O modules meet the following requirements on emission and immunity of interference:

EMC CE-Immunity to interference EN 61000-6-2

and to EN 61131-2

EMC CE-Emission of interference EN 61000-6-3 + A1

and to EN 61131-2

4 Process Image

The 750-496 I/O module provides 1 status byte (8 bits) and 1 data word (16 bits) per channel.

The I/O module supplies the input current range 0 ... 20 mA or 4 ... 20 mA or 3.6 ... 21 mA (sensor type NAMUR NE43) at a resolution of 13 bits.

The digitalized measured value is transmitted to the process image of the coupler/controller in a data word (16 bits) as input byte "0" (low) and input byte "1" (high). This value is mapped with a resolution of 12 bits on bit B3 ... B14. Status information, which can be evaluated for fault detection, is contained in the two least significant bits (B0 ... B1).

In the case of a measurement underrange or overrange, bits B0 and B1 are set = 1.

Bit 2 is not defined and is not evaluated.

4.1 Overview

Note

Presentation of control/status bytes a function of fieldbus coupler/controller!

The I/O module always makes its complete process image incl. control/status bytes available to the fieldbus coupler/controller. The **WAGO-I/O-CHECK** commissioning tool accesses the complete commissioning process image. The fieldbus coupler/controller uses a different process image to stage cyclic process data via the fieldbus. In the other process image, depending on the fieldbus coupler/controller, the representation of control/status bytes can be suppressed.

Table 17: Process Image – I/O Module 750-496

Table 17.1	Process Image						
	Input ¹⁾		Output ²⁾				
Byte 0	Status byte CH1_S0	Byte 0	Control byte CH1_C0				
Byte 1	Function of status byte: Process value CH1_D0	Byte 1	Function of control byte: Reserved				
Byte 2	Function of status byte: Process value CH1_D1	Byte 2	Function of control byte: Reserved				
Byte 3	Control byte CH2_S1	Byte 3	Control byte CH2_C1				
Byte 4	Function of status byte: Process value CH2_D0	Byte 4	Function of control byte: Reserved				
Byte 5	Function of status byte: Process value CH2_D1	Byte 5	Function of control byte: Reserved				
Byte 21	Status byte CH8_S7	Byte 21	Control byte CH8_C7				
Byte 22	Function of status byte: Process value CH8_D0	Byte 22	Function of control byte: Reserved				
Byte 23	Function of status byte: Process value CH8_D1	Byte 23	Function of control byte: Reserved				

¹⁾ CHx_Sx = Status byte x from channel x

CHx_D0 = Low byte for process value for channel x

CHx D1 = High byte for process value for channel x

CHx_Cx = Control byte x from channel x

4.2 Status Bytes

Status bytes are identically implemented for all channels. Therefore, the following description in this section applies to all status bytes of the I/O module.

Table 18: Status Byte CH1_S0

Table 10. Ctal	Status byte CH1_S0, Byte 1						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RegCom	General	Wire	Short	User	User	Over-	Underrange
	Error	Break	Circuit	Over-	Underrange	range	
	<u> </u>			range			
Underrange	Under	range					
	0:				e the current lo		
	1:			rrent is belov	v the current lo	wer limit.	
Overrange	Range	e exceede	b				
	0:				v the current u	•	
	1:	The field-s	side input cu	rrent is abov	e the current u	pper limit.	
User	User I	imiting val	ue underranç	ge			
Underrange	0:	The field-s	side input cu	rrent is abov	e the current lo	wer limit cor	nfigured by
		the user.					
	1:		ide input cur	rent is below	the current lov	wer limit conf	figured by the
		user.					
User Overran			ue overrange				
	0:	The field-s	side input cu	rrent is belov	v the current u	pper limit co	nfigured by
ļ	<u> </u>	the user.					
	1:		side input cu	rrent is abov	e the current u	pper limit co	nfigured by
01 10: "	01 1	the user.					
Short Circuit		circuit					
	0:		side input cui	rrent is withir	the maximum	i permissible	input current
	1:	range.	ida innut aur	rant is above	the mevimum	narmiaaibla	innut ourrent
	1.	range.	side iriput cur	rent is above	the maximum	permissible	input current
Wire Break	Wire k	oreak ¹⁾					
Wile Dieak	0:		side innut cui	rrent is above	- 1 mΔ		
	1:			rrent is below			
General Error			side iliput cui	HEHLIS DEION	v i iliA.		
General Enoi	0:	General error					
0: No error or bit 0 (underrange), bit 1 (overrange), bit 4 (short circuit) of (wire break) is/are not set.						icuit) of bit 3	
	1.	General error; bit 0 (underrange) or bit 1 (overrange) is/are set.					
RegCom		Register communication					
T togoom	0:			n is disabled	d (normal mod	۵)	
	-				· · · · · · · · · · · · · · · · · · ·	<i>- j</i> .	
1)-		1: Register communication is enabled.					

¹⁾Does not apply to 0 ... 20 mA (ID0)

4.3 Process Data

4.3.1 Overview of Sensor Types

The following table serves as an overview of all supported sensor types. The following sections contain detailed information about the individual sensor types. The information provided in the respective tables on the resolution of the measured values and the raw value ranges yielded from this are based on manufacturing scaling.

ID	Sensor type	Measurement range
0	0 20 mA	0 +20 mA
1	4 20 mA	+4 +20 mA
2	3.6 21 mA	+3.8 +20.5 mA

4.3.2 Standard Format

4.3.2.1 Sensor Type 0 ... 20 mA

For the current measurement with sensor type 0 ... 20 mA, the input range of 0 ... +20 mA is mapped to a process value rage of 0 ... +32767. The current underranges and overranges refer to manufacturer range violations.

Table 19: Process Image, Sensor Type 0-20 mA, Two's Complement Representation

Input current mA	Nu	Numeric value			Status Byte	Error LED
	Binary	XFÜ 1)	Hex.	Dec.	Hex.	
< 0	'0000.0000.0000.0	011'	0x0003	3	0x41	ON
Underrange ²⁾	0000.0000.0000.0	011	0x0003	3	0X 4 1	ON
0.0	'0000.0000.0000.0	000'	0x0000	0	0x00	OFF
2.5	'0000.1111.1111.1	000'	0x0FF8	4088	0x00	OFF
5.0	'0001.1111.1111.1	000'	0x1FF8	8184	0x00	OFF
7.5	'0010.1111.1111.1	000'	0x2FF8	12280	0x00	OFF
10.0	'0011.1111.1111.1	000'	0x3FF8	16376	0x00	OFF
12.5	'0100.1111.1111.1	000'	0x4FF8	20472	0x00	OFF
15.0	'0101.1111.1111.1	000'	0x5FF8	24568	0x00	OFF
17.5	'0110.1111.1111.1	000'	0x6FF8	28664	0x00	OFF
20.0	'0111.1111.1111.1	000'	0x7FF8	32760	0x00	OFF
Overrange ²⁾	'0111.1111.1111.1	011'	0x7FFB	32763	0x42	ON
> 20.0	0111.1111.1111.1	UII	UX/FFD	32103	UX4Z	ON
Short circuit ³⁾	'0111.1111.1111.1	011'	0x7FFB	32763	0x50	ON ,
> 21.0						

¹⁾Status bits: X: not used, F= error, Ü= overflow

²⁾When underrange / overrange limit is ON

³⁾When short circuit diagnostics is ON

4.3.2.2 Sensor Type 4 ... 20 mA

For the current measurement with sensor type 4 \dots 20 mA, the input range of +4 \dots +20 mA is mapped to a value rage of 0 \dots +32767. The current underranges and overranges refer to manufacturer range violations.

Table 20: Process Image, Sensor Type 4 ... 20 mA, Two's Complement Representation

Input current mA	Numeric value				Status Byte	Error LED
	Binary	XFÜ 1)	Hex.	Dec.	Hex.	
< 1.0	'0000.0000.0000.0	011'	0x0003	3	0x60	ON
Wire break ³⁾	0000.0000.0000.0	011	0.0000	5	0,000	ON
< 4.0	'0000.0000.0000.0	011'	0x0003	3	0x41	ON
Underrange ²⁾	0.000.0000.0000.0	011	000003	3	0.841	ON
4.0	0.0000.0000.0000.0	000'	0x0000	0	0x00	OFF
5.6	'0000.1100.1100.0	000'	0x0CC8	3272	0x00	OFF
7.2	'0001.1001.1001.1	000'	0x1998	6552	0x00	OFF
8.8	'0010.0110.0110.0	000'	0x2660	9824	0x00	OFF
10.4	'0011.0011.0011.0	000'	0x3330	13104	0x00	OFF
12.0	'0011.1111.1111.1	000'	0x3FF8	16376	0x00	OFF
13.6	'0100.1100.1100.1	000'	0x4CC8	19656	0x00	OFF
15.2	'0101.1001.1001.1	000'	0x5998	22936	0x00	OFF
16.8	'0110.0110.0110.0	000'	0x6660	26208	0x00	OFF
18.4	'0111.0011.0011.0	000'	0x7330	29488	0x00	OFF
20.0	'0111.1111.1111.1	000'	0x7FF8	32760	0x00	OFF
Overrange ²⁾	10111 1111 1111 1	011	0.7555	20762	0.42	ON
> 20.0	'0111.1111.1111.1	011'	0x7FFB	32763	0x42	ON
Short circuit 3)	'0111.1111.1111.1	011'	0x7FFB	32763	0x50	ON
> 21.0	3.71.1111.1111.1	3	JATT D	32100	0,000	011

¹⁾Status bits: X: not used, F= error, Ü= overflow

²⁾When underrange / overrange limit is ON

³⁾When wire break / short circuit diagnostics is ON

4.3.2.3 Sensor Type 3.6 ... 21 mA (NAMUR NE43)

For the current measurement with sensor type 3.6 ... 21 mA, the input range of +3.6 ... +21 mA is mapped to a value rage of -768 ... +32767. The current underranges and overranges refer to manufacturer range violations.

Table 21: Process Image, Sensor Type 3.6 \dots 21 mA (NAMUR NE43), Two's Complement Representation

Input current mA	Numeric value				Status Byte	Error LED
	Binary	XFÜ 1)	Hex.	Dec.	Hex.	
< 1.0						
Wire break ³⁾	'1111.1101.0000.0	011'	0xFD03	-7 65	0x60	ON
< 3.6						
Underrange ²⁾	'1111.1101.0000.0	011'	0xFD03	-7 65	0x41	ON
3.6	'1111.1101.0000.0	011'	0xFD03	-7 65	0x41	ON
3.8	'1111.1110.0111.1	000'	0xFE78	-392	0x00	OFF
4.0	'0000.0000.0000.0	000'	0x0000	0	0x00	OFF
5.6	'0000.1100.0000.1	000'	0x0C08	3080	0x00	OFF
7.2	'0001.1000.0001.0	000'	0x1810	6160	0x00	OFF
8.8	'0010.0100.0010.0	000'	0x2420	9248	0x00	OFF
10.4	'0011.0000.0010.1	000'	0x3028	12328	0x00	OFF
12.0	'0011.1100.0011.1	000'	0x3C38	15416	0x00	OFF
13.6	'0100.1000.0100.0	000'	0x4840	18496	0x00	OFF
15.2	'0101.0100.0101.0	000'	0x5450	21584	0x00	OFF
16.8	'0110.0000.0101.1	000'	0x6058	24664	0x00	OFF
18.4	'0111.0000.0110.1	000'	0x6C68	27752	0x00	OFF
20.0	'0111.1000.1110.0	000'	0x7870	30832	0x00	OFF
20.5	'0111.1100.0011.1	000'	0x7C38	31800	0x00	OFF
21.0	'0111.1111.1111.1	011'	0x7FFB	32763	0x42	ON
Overrange ²⁾	'0111.1111.1111.1	011'	0x7FFB	32763	0x42	ON
> 21.0	V 171.1111.1111.1	311	OATTI D	32700	0,72	014
Short circuit 3)	. '0111.1111.1111.1	011'	0x7FFB	32763	0x50	ON
> 21.0						

¹⁾Status bits: X: not used, F= error, Ü= overflow

²⁾When underrange / overrange limit is ON

³⁾When wire break / short circuit diagnostics is ON

4.3.3 Special Format

4.3.3.1 Sensor Type 0 ... 20 mA

For the current measurement with sensor type 0 ... 20 mA, the input range of 0 ... +20 mA is mapped to a process value rage of 0 ... +32767. The current underranges and overranges refer to manufacturer range violations.

Table 22: Process Image, Sensor Type 0 ... 20 mA, Amount/Sign Format

Input current mA	Numeric value				Status Byte Hex.	Error LED
	Binary	XFÜ 1)	Hex.	Dec.	IIOX.	
< 0	'0000.0000.0000.0	011'	0x0003	3	0x41	ON •
Underrange ²⁾		•	0,,000		0,7.1.	•
0.0	'0000.0000.0000.0	000'	0x0000	0	0x00	OFF
2.5	'0000.1111.1111.1	000'	0x0FF8	4088	0x00	OFF
5.0	'0001.1111.1111.1	000'	0x1FF8	8184	0x00	OFF
7.5	'0010.1111.1111.1	000'	0x2FF8	12280	0x00	OFF
10.0	'0011.1111.1111.1	000'	0x3FF8	16376	0x00	OFF
12.5	'0100.1111.1111.1	000'	0x4FF8	20472	0x00	OFF
15.0	'0101.1111.1111.1	000'	0x5FF8	24568	0x00	OFF
17.5	'0110.1111.1111.1	000'	0x6FF8	28664	0x00	OFF
20.0	'0111.1111.1111.1	000'	0x7FF8	32760	0x00	OFF
Overrange ²⁾	'0111.1111.1111.1	011'	0x7FFB	32763	0x42	ON
> 20.0	VIII.IIII.IIII.I	011	UX/FFD	32703	UX4Z	ON
Short circuit ³⁾	'0111.1111.1111.1	011'	0x7FFB	32763	0x50	ON
> 21.0	. •		JA111 D	32,00	0,00	0.1

¹⁾Status bits: X: not used, F= error, Ü= overflow

²⁾When underrange / overrange limit is ON

³⁾When short circuit diagnostics is ON

4.3.3.2 Sensor Type 4 ... 20 mA

For the current measurement with sensor type 4 ... 20 mA, the input range of +4 ... +20 mA is mapped to a value rage of 0 ... +32767. The current underranges and overranges refer to manufacturer range violations.

Table 23: Process Image, Sensor Type 4 ... 20 mA, Amount/Sign Format

Input current mA	Numeric value				Status Byte	Error LED
	Binary	XFÜ 1)	Hex.	Dec.	Hex.	
< 1.0	'0000.0000.0000.0	011'	0x0003	3	0x60	ON
Wire break ³⁾	0000.0000.0000.0	011	0,0000	3	0,000	ON
< 4.0	'0000.0000.0000.0	011'	0x0003	3	0x41	ON
Underrange ²⁾	0000.0000.0000.0	011	0.0000	5	0.41	ON
4.0	0.0000.0000.00000	000'	0x0000	0	0x00	OFF
5.6	'0000.1100.1100.0	000'	0x0CC8	3272	0x00	OFF
7.2	'0001.1001.1001.1	000'	0x1998	6552	0x00	OFF
8.8	'0010.0110.0110.0	000'	0x2660	9824	0x00	OFF
10.4	'0011.0011.0011.0	000'	0x3330	13104	0x00	OFF
12.0	'0011.1111.1111.1	000'	0x3FF8	16376	0x00	OFF
13.6	'0100.1100.1100.1	000'	0x4CC8	19656	0x00	OFF
15.2	'0101.1001.1001.1	000'	0x5998	22936	0x00	OFF
16.8	'0110.0110.0110.0	000'	0x6660	26208	0x00	OFF
18.4	'0111.0011.0011.0	000'	0x7330	29488	0x00	OFF
20.0	'0111.1111.1111.1	000'	0x7FF8	32760	0x00	OFF
Overrange ²⁾	'0111.1111.1111.1	011'	0x7FFB	22762	0v42	ON
> 20.0	0111.1111.1111.1	UII	UX/FFB	32763	0x42	ON
Short circuit 3)	. '0111.1111.1111.1	011'	0x7FFB	32763	0x50	ON
> 21.0	0.71.1111.1111.1	3	JATT D	32100	0,000	011

¹⁾Status bits: X: not used, F= error, Ü= overflow

²⁾When underrange / overrange limit is ON

³⁾When wire break / short circuit diagnostics is ON

4.3.3.3

For the current measurement with sensor type 3.6 ... 21 mA, the input range of +3.6 ... +21 mA is mapped to a value rage of **-771** ... +32767. The current underranges and overranges refer to manufacturer range violations.

Sensor Type 3.6 ... 21 mA (NAMUR NE43)

Table 24: Process Image, Sensor Type 3.6 ... 21 mA (NAMUR NE43), Amount/Sign Format

Input current mA	Nu	Numeric value				Error LED
	Binary	XFÜ 1)	Hex.	Dec.	Hex.	
< 1.0						
Wire break ³⁾	'1000.0011.0000.0	011'	0x8303	-771	0x60	ON
< 3.6						
Underrange ²⁾	'1000.0011.0000.0	011'	0x8303	-771	0x41	ON
3.6	'1000.0011.0000.0	011'	0x8303	-771	0x41	ON
3.8	'1000.0001.1000.1	000'	0x8188	-392	0x00	OFF
4.0	0.0000.0000.0000	000'	0x0000	0	0x00	OFF
5.6	'0000.1100.0000.1	000'	0x0C08	3080	0x00	OFF
7.2	'0001.1000.0001.0	000'	0x1810	6160	0x00	OFF
8.8	'0010.0100.0010.0	000'	0x2420	9248	0x00	OFF
10.4	'0011.0000.0010.1	000'	0x3028	12328	0x00	OFF
12.0	'0011.1100.0011.1	000'	0x3C38	15416	0x00	OFF
13.6	'0100.1000.0100.0	000'	0x4840	18496	0x00	OFF
15.2	'0101.0100.0101.0	000'	0x5450	21584	0x00	OFF
16.8	'0110.0000.0101.1	000'	0x6058	24664	0x00	OFF
18.4	'0111.0000.0110.1	000'	0x6C68	27752	0x00	OFF
20.0	'0111.1000.1110.0	000'	0x7870	30832	0x00	OFF
20.5	'0111.1100.0011.1	000'	0x7C38	31800	0x00	OFF
21.0	'0111.1111.1111.1	011'	0x7FFB	32763	0x42	ON
Overrange ²⁾	'0111.1111.1111.1	011'	0x7FFB	32763	0v42	ON ,
> 21.0	0111.1111.1111.1	UII	UX/FFD	32/03	0x42	ON
Short circuit 3)	'0111.1111.1111.1	011'	0x7FFB	32763	0x50	ON
> 21.0						

¹⁾Status bits: X: not used, F= error, Ü= overflow

²⁾When underrange / overrange limit is ON

³⁾When wire break / short circuit diagnostics is ON

5 **Mounting**

5.1 Mounting Sequence

Fieldbus couplers, controllers and I/O modules of the WAGO-I/O-SYSTEM 750 are snapped directly on a carrier rail in accordance with the European standard EN 60175 (DIN 35).

The reliable positioning and connection is made using a tongue and groove system. Due to the automatic locking, the individual devices are securely seated on the rail after installation.

Starting with the fieldbus coupler or controller, the I/O modules are mounted adjacent to each other according to the project design. Errors in the design of the node in terms of the potential groups (connection via the power contacts) are recognized, as the I/O modules with power contacts (blade contacts) cannot be linked to I/O modules with fewer power contacts.

A CAUTION

Risk of injury due to sharp-edged blade contacts!

The blade contacts are sharp-edged. Handle the I/O module carefully to prevent injury. Do not touch the blade contacts.

NOTICE

Insert I/O modules only from the proper direction!

All I/O modules feature grooves for power jumper contacts on the right side. For some I/O modules, the grooves are closed on the top. Therefore, I/O modules featuring a power jumper contact on the left side cannot be snapped from the top. This mechanical coding helps to avoid configuration errors, which may destroy the I/O modules. Therefore, insert I/O modules only from the right and from the top.

Note

Don't forget the bus end module!

Always plug a bus end module (750-600) onto the end of the fieldbus node! You must always use a bus end module at all fieldbus nodes with WAGO-I/O-SYSTEM 750 fieldbus couplers or controllers to guarantee proper data transfer.

5.2 Inserting and Removing Devices

DANGER

Do not work when devices are energized!

High voltage can cause electric shock or burns.

Switch off all power to the device prior to performing any installation, repair or maintenance work.

5.2.1 Inserting the I/O Module

 Position the I/O module so that the tongue and groove joints to the fieldbus coupler or controller or to the previous or possibly subsequent I/O module are engaged.

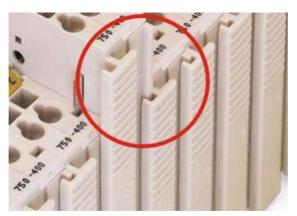


Figure 7: Insert I/O Module (Example)

2. Press the I/O module into the assembly until the I/O module snaps into the carrier rail.

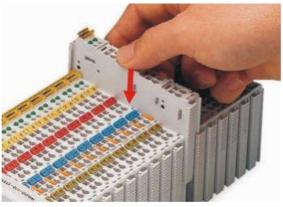


Figure 8: Snap the I/O Module into Place (Example)

With the I/O module snapped in place, the electrical connections for the data contacts and power jumper contacts (if any) to the fieldbus coupler or controller or to the previous or possibly subsequent I/O module are established.

5.2.2 Removing the I/O Module

1. Remove the I/O module from the assembly by pulling the release tab.

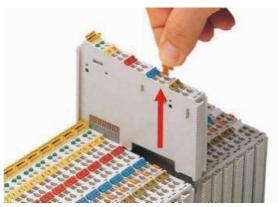


Figure 9: Removing the I/O Module (Example)

Electrical connections for data or power jumper contacts are disconnected when removing the I/O module.

6 Connect Devices

6.1 Connecting a Conductor to the Push-in CAGE CLAMP[®]

The Push-in CAGE CLAMP[®] connection is appropriate for solid, stranded and finely stranded conductors.

Note

Only connect one conductor to each Push-in CAGE CLAMP[®] connection! Only one conductor may be connected to each Push-in CAGE CLAMP[®] connection.

Do not connect more than one conductor at one single connection!

If more than one conductor must be routed to one connection, these must be connected in an up-circuit wiring assembly, for example using WAGO feed-through terminals.

Terminate both solid and stranded or ferruled conductors by simply pushing them in - no tool required. For all other types of conductors, Push-in CAGE CLAMP[®] must be opened for connection with an operating tool with a 2.5 mm blade (order no. 210-719).

- 1. To open the Push-in CAGE CLAMP[®] insert the actuating tool into the opening above the connection.
- 2. Insert the conductor into the corresponding connection opening.
- 3. To close the Push-in CAGE CLAMP[®] simply remove the tool the conductor is then clamped firmly in place.

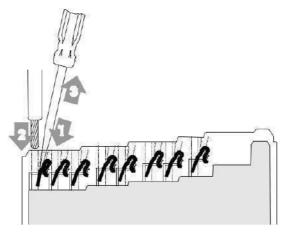


Figure 10: Connecting a Conductor to a Push-in CAGE CLAMP®

6.2 Connection Example

Note

Use shielded signal lines!

Only use shielded signal lines for analog signals and I/O modules which are equipped with shield clamps. Only then can you ensure that the accuracy and interference immunity specified for the respective I/O module can be achieved even in the presence of interference acting on the signal cable.

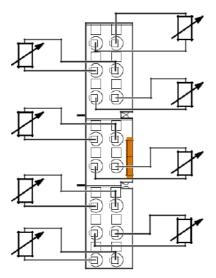


Figure 11: Connection example – 2-Wire

7 Commissioning

7.1 Parameterization with WAGO-I/O-CHECK

The WAGO-I/O-CHECK software from WAGO Kontakttechnik GmbH & Co. KG can be used to conveniently and completely configure and parameterize the I/O module. You have the following options.

- Graphical display of bus nodes
- Display of the measured values
- Settings for the application
- Configuration of the I/O module operating modes
- Parameterization of module, channel and scaling settings
- Calibration of channels and adjustment of analog inputs
- Monitoring

Information

WAGO-I/O-CHECK

You can obtain the WAGO-I/O-*CHECK* software on a CD under Item No. 759-302. This CD contains all the application program files and an explanation. You can find a description at the internet page at http://www.wago.com

Note

Save all your settings before you begin parameterization!

To be on the safe side you should always save all of your current settings in a parameter file before you begin parameterization. This enables you to always use the original values, should any parameters you are defining not be correct.

To open specific parameterization dialogs for the I/O module 750-496, proceed as follows:

- 1.Right click on the I/O module.
- 2. Click the **Settings** menu item (see following figure).

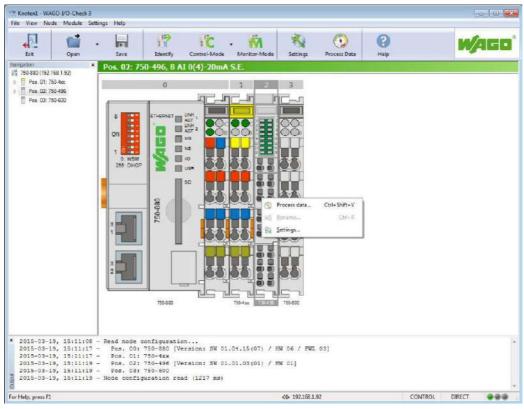


Figure 12: WAGO-I/O-CHECK user interface

The configuration dialog appears, which forms the basis for the following description. This forms the basis for the subsequent explanation.

7.1.1 Parameterization Dialog

The parameterization dialog is divided into the following areas:

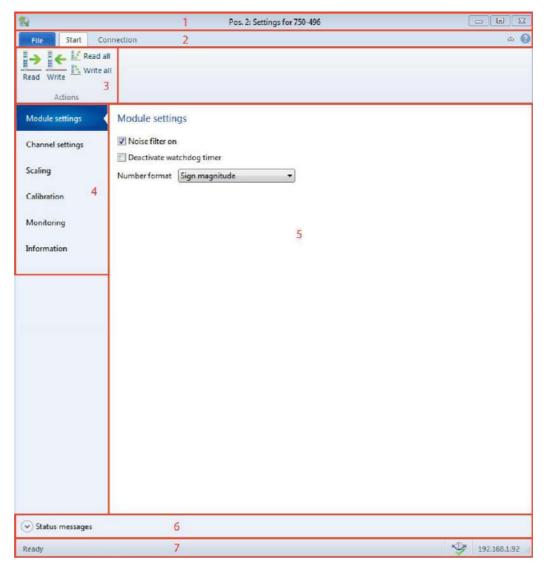


Figure 13: Parameterization Dialog for the I/O Module 750-496

- 1 Title bar
- 2 Horizontal tab menu
- 3 Main menu
- 4 Vertical tab menu
- 5 Area of application
- 6 Status messages
- 7 Status bar

The individual areas are explained in more detail in the following sections.

7.1.1.1 Title Bar

The title bar in the parameterization dialog contains the program icon, a window title and buttons for exiting, minimizing and maximizing the application window.

Figure 14: Title Bar in the Parameterization Dialog

The window title provides information about the position of the selected I/O module within the fieldbus node used and the item number of the selected I/O module.

7.1.1.2 **Main Menu**

Table 25: buttons on the main menu

Button	Function	Description
Connect	[Connect]	Creates a connection to the I/O module
Disconnect	[Disconnect]	Interrupts an existing connection to the I/O module
Read	[Read]	Reads all parameters of the currently displayed view in the application area of the I/O module.
<u>⊮</u> Read all	[Read all]	Reads all parameters from the I/O module including module, channel, scaling and calibration settings.
<u>W</u> rite	[Write]	Writes all parameters of the currently displayed view in the application area to the I/O module.
Write all	[Write all]	Writes all parameters to the I/O module including module, channel, scaling and calibration settings.
Channel 1	[Channel x]	Opens the channel selection list.

7.1.1.3 Horizontal Tab Menu

The horizontal tab menu contains the following tabs:

Figure 15: Horizontal Tab Menu

Click one of the tabs to display the respective selection options in the main menu.

The individual tabs are explained in more detail in the following sections.

7.1.1.3.1 "File" Tab

The **File** tab opens the application menu. It contains the following buttons.

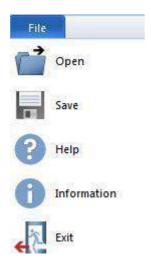


Figure 16: Buttons in the Application Menu

Table 26: Buttons in the application menu

Button	Function	Description
Open Open	[Open]	Opens the dialog for loading a parameter file.
Save	[Save]	Opens the dialog for saving a parameter file.
Help	[Help]	Opens the manual for the I/O module 750-496 in PDF format
посремения:	[Information]	Opens the information dialog, which contains details about the version of the software used and the manufacturer's contact information.
Exit	[Exit]	Closes the parameterization dialog and the connection to the I/O module is interrupted.
Recent parameter files		Lists recent parameter files (max. 15); you can open the files from this area directly.

Select one of the menu items to execute the respective action.

7.1.1.3.1.1 "Open" Menu Item

Note

Only open parameter files created with WAGO-I/O-CHECK!

Please note that only parameter files created with WAGO-I/O-CHECK can be opened. The parameter files have the extension *.ai.

In this menu item you can open and load an existing parameter file. Proceed as follows:

- 1. Click the **[File]** button in the horizontal tab menu.
- 2. The application menu opens.
- 3. Click the **[Open]** button in the application menu.
- 4. A standard Windows dialog for selecting the source directory opens.
- 5. Select the parameter file that you want to open.
- 6. Click [Open] in the standard Windows dialog.
- 7. The parameter file opens.

7.1.1.3.1.2 "Save" Menu Item

Note

Calibration settings are not saved!

Please note that the calibration settings cannot be saved in the parameter file.

Note

Note the memory range!

Please note that only the settings are saved in the parameter file that you have already transferred to the I/O module by clicking the **[Write]** or **[Write all]** buttons in the main menu.

In this menu item you can save the changes you have made in a parameter file. Proceed as follows:

- 1. Click the [File] button in the horizontal tab menu.
- 2. The application menu opens.
- 3. Click the **[Save]** button in the application menu.
- 4. A standard Windows dialog appears to select the target directory.

- 5. Select the target directory in which you want to save the new parameter file.
- 6. Click [Save] in the standard Windows dialog.
- 7. The parameter file is saved to the target directory that you selected.

7.1.1.3.2 "Start" Tab

Click the **Start** tab in the horizontal tab menu to display the following selection options in the main menu.

Figure 17: Contents of the Horizontal Tab Start

If you select the **Channel settings** menu item in the vertical tab menu, you can also choose the required I/O module channel in the main menu.

Figure 18: Start > Main Menu > Channel Selection List

The exact meaning of the individual selection options is described in the "Main Menu" section.

7.1.1.3.3 "Connection" Tab

Click the **Connection** tab in the horizontal tab menu to display the following selection options in the main menu.

If the is no connection to the I/O module, the following button appears:

Figure 19: Connection Tab for Disconnected I/O Module

Click the [Connect] button to establish a connection to the I/O module.

If there is a connection to the I/O module, the following button appears:

Figure 20: Connection Tab for Connected I/O Module

Click the **[Disconnect]** button to interrupt the connection to the I/O module.

The exact meaning of the individual selection options is described in the "Main Menu" section.

7.1.1.4 Vertical Tab Menu

In the vertical tab menu, you can select the individual module- and channel-specific menu items.

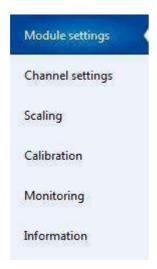


Figure 21: Overview of the Vertical Tab Menu

Click one of the menu items to call up the related parameterization options in the application area.

The exact meaning of the individual selection options is described in the following sections.

7.1.1.4.1 "Module settings" Menu Item

Note

Save settings!

Click the **[Write]** or **[Write all]** button to write any settings you have made to the I/O module.

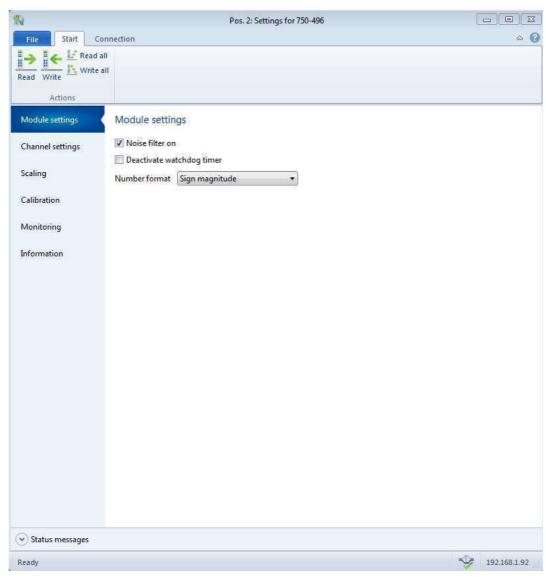


Figure 22: Module settings Menu Item View

Table 27: Module settings Menu Item

Table 27. Module Settings Went Item		
Option	Description	
Noise Filter		
Noise filter on	□*) The noise filter is deactivated.	
	☑ The noise filter is activated.	
Watchdog Timer		
Deactivate watchdog timer	□⁺) The watchdog timer is activated.	
	☑ The watchdog timer is deactivated.	
	The green LEDs illuminate continuously.	
Process value format		
Number format	Two's complement representation*)	
	Amount/sign format	

^{*)} Factory setting

7.1.1.4.2 "Channel settings" Menu Item

Note

Save settings!

Click the [Write] or [Write all] button to write any settings you have made to the I/O module.

Note

Offset input for sensor type NAMUR NE43 not possible!

When selecting the sensor type 3.6 ... 21 mA (NAMUR NE 43), it is not possible to enter an offset value for the range violation diagnostics.

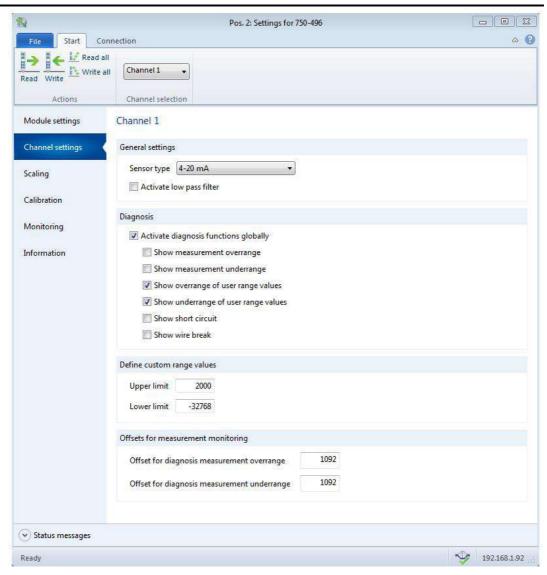


Figure 23: Channel settings Menu Item View

Table 28: Channel settings Menu Item

Option	Description		
General Settings			
		The channel selected in the main menu is deactivated.	
Sensor type	Channel deactivated	If the channel is deactivated, "0x7FFF" appears in the Monitoring menu item under process value "N/A" (not available) and under hexadecimal process value.	
	0 20 mA	Measurement range 0 +20 mA	
	4 20 mA ^{*)}	Measurement range +4 +20 mA	
	3.6 21 mA (NAMURNE43)	Measurement range +3.8 +20.5 mA	
Software low pass filter	☑ The software low pass filter is activated.		
ON	□⁺) The software low pass filter is deactivated.		
Diagnostics			
Show measurement	 The "Measurement Overrange" is activated and is displayed in the status byte. The "Measurement Overrange" diagnosis function is deactivated and not displayed in the status byte. 		
overrange			

Table 28: Channel settings Menu Item

Option	Description	
Show measurement underrange	* *)	The "Measurement Underrange" diagnosis function is activated and is displayed in the status byte.
		The "Measurement Underrange" diagnostics function is deactivated and is not displayed in the status byte.
Show overrange of user range values	*)	The "User limiting value overrange" diagnosis function is activated and is displayed in the status byte.
		The "User limiting value overrange" diagnosis function is deactivated and is not displayed in the status byte.
Show underrange of user range values	*)	The "User limiting value underrange" diagnosis function is activated and is displayed in the status byte.
		The "User limiting value underrange" diagnosis function is deactivated and is not displayed in the status byte.
Show short circuit	* *)	The "Display short circuit" diagnosis function is activated and is displayed in the status byte.
		The "Display short circuit" diagnosis function is deactivated and is not displayed in the status byte.
Show wire break	Z *)	The "Show wire break" is activated and is displayed in the status byte.
		The "Show wire break" diagnosis function is deactivated and is not display status byte.
Specifying Limiting Valu	ies	
Upper limit	Enter the upper limiting value of your required value range. The value entered must fall within the value range −32768 +32767.	
Lower limit	Enter tl	ne lower limiting value of your required value range.
	The value entered must fall within the value range -32768 +32767.	
Offset for Measurement		
Offset for diagnosis	Enter the offset value at which the "Measurement Range Overrange" diagnostic message should be triggered.	
measurement overrange	Note: When selecting the sensor type 3.6 21mA (NAMUR NE43), you are not permitted to determine this value.	
Offset for diagnosis measurement	Enter the offset value at which the "Measurement Range Underrange" diagnostic message should be triggered.	
underrange		When selecting the sensor type 3.6 21mA (NAMUR NE43), you permitted to determine this value.

^{*)}Factory setting

7.1.1.4.3 "Scaling" Menu Item

Note

Save settings!

Click the **[Write]** or **[Write all]** button to write any settings you have made to the I/O module.

Note

Selecting the scaling method!

Factory scaling is always active according to the measurement range selected. Gain/Offset values can be adjusted by activating the user scaling. Activating/deactivating factory scaling has no effect here.

Note

Scaling method is carried out by channel!

Before writing the settings to the I/O module, make sure to select the respective channel.

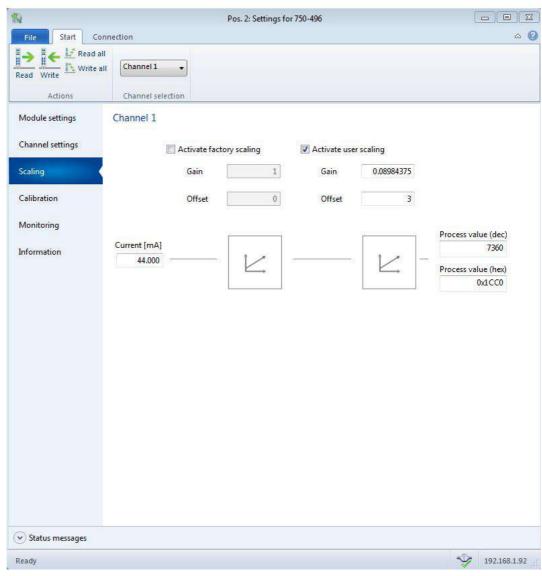


Figure 24: Scaling Menu Item View

Table 29: Scaling Menu Item

Option	Description	
Channel x		
Activate factory scaling	Ø	Factory scaling is activated (no effect).
	□ *)	Factory scaling is deactivated (no effect).
	Gain	The Gain value is specified by the manufacturer.
	Offset	The Offset value is specified by the manufacturer.
		User-defined scaling is active. By activating this setting you can also specify the individual gain and offset values.
	□*) values c	User scaling is deactivated. Individually specified gain and offset annot be entered.
		Enter the Gain value for the user scaling.
Activate user scaling	Gain	The Gain value is used as a gain factor on the process value. The value entered must fall within the value range 0 65535. The resolution is 1/1024.
		Enter the Offset value for the user scaling.
	Offset	The Offset value causes a zero offset of the process value (shift along the Y axis).
		The value entered must fall within the value range -32768 32767.
		of the calibrated input current in milliamps (mA).
	This is a 32-bit value.	
Current [mA]	If the channel is deactivated, "N/A" (not available) is displayed.	
	The input current value is read cyclically from the I/O module.	
		of the process value for the channel selected in decimal notation.
Process value (dec)	If the channel is deactivated, "N/A" (not available) is displayed.	
	The process value is read cyclically from the I/O module.	
	Display of the process value for the channel selected in hexadecimal	
L	notation.	
Process value (hex)	If the channel is deactivated, "0x7FFF" (not available) is displayed.	
	The prod	cess value is read cyclically from the I/O module.

^{*)} Factory setting

7.1.1.4.4 "Calibration" Menu Item

Note

Save settings!

Click the **[Write]** or **[Write all]** button to write any settings you have made to the I/O module.

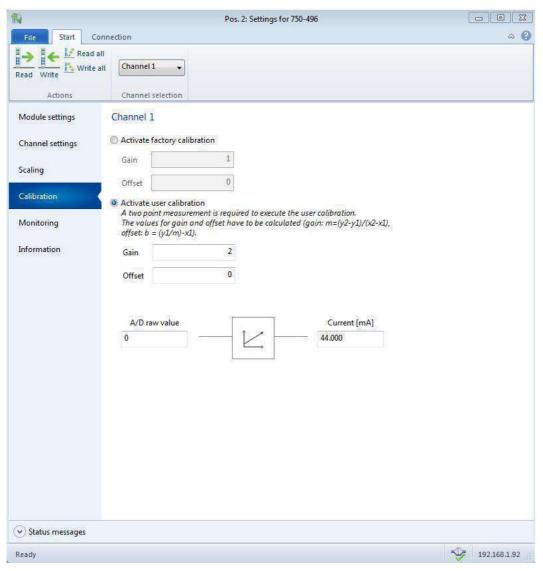


Figure 25: Calibration Menu Item View

Table 30: Calibration Menu Item

Option	n Description			
	Activate factory co		nfiguration	
	Activate	© *)	Factory calibration is activated and user calibration is deactivated.	
	factory configurati	O activate	Factory calibration is deactivated and user calibration is d.	
	on	Gain	The Gain value is specified by the manufacturer.	
		Offset	The Offset value is specified by the manufacturer.	
	Activate us	ser calibration		
Selection		©	User calibration is activated and factory calibration is deactivated. You determine the gain and offset value yourself.	
of the calibration		O*) activate	User calibration is deactivated and factory calibration is d.	
method			Enter the Gain value for the user calibration.	
	Activate user calibration	Gain	The Gain value changes the gain factor of the A/D raw value. The value entered must fall within the value range 0 65535. The resolution is 1/8192.	
			Enter the Offset value for the user calibration. The Offset value moves the zero point of the A/D raw value	
		Offset	(offset on the y axis). The value entered must fall within the value range	
			-32768 32767.	
A/D raw value			lue of the analog/digital converter. This is a 14-bit value. nannel is deactivated, "N/A" (not available) is displayed.	
		The A/D raw value is read cyclically from the I/O module.		
Current [mA]		Display of the calibrated input current in milliamps (mA). This is a 32-bit value.		
		If the channel is deactivated, "N/A" (not available) is displayed.		
		The input current value is read cyclically from the I/O module.		

^{*)} Factory setting

7.1.1.4.5 "Monitoring" Menu Item

In this area, an overview of all of the I/O module channels are displayed individually. This overview provides information about the process value of each individual I/O module channel.

Note

Save settings!

Click the **[Write]** or **[Write all]** button to write any settings you have made to the I/O module.

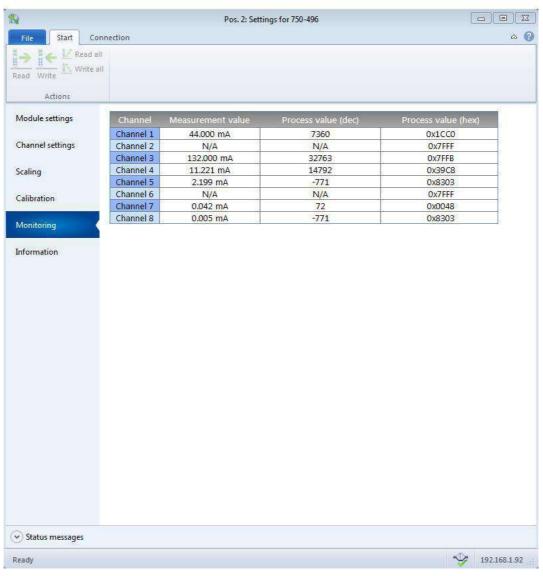


Figure 26: Monitoring Menu Item View

Table 31: Monitoring Menu Item

Option	Description	
Process value overview		
Channel	Display of the bus channel	
Measured value	Display of the calibrated input current in milliamps (mA). This is a 32-bit value. If the channel is deactivated, "N/A" (not available) is displayed.	
	The measured value is read cyclically from the I/O module.	
Process value (dec)	Display of the process value in decimal notation. If the channel is deactivated, "N/A" (not available) is displayed.	
Process value (hex)	The process value is read cyclically from the I/O module. Display of the process value in hexadecimal notation. If the channel is deactivated, the process value (hex) "0x7FFF" is displayed.	
	The process value is read cyclically from the I/O module.	

7.1.1.4.6 "Information" Menu Item

This area provides an overview of the specifications for the I/O module used. You obtain information about the following points:

- · Article number
- Description
- · Software version
- Hardware version

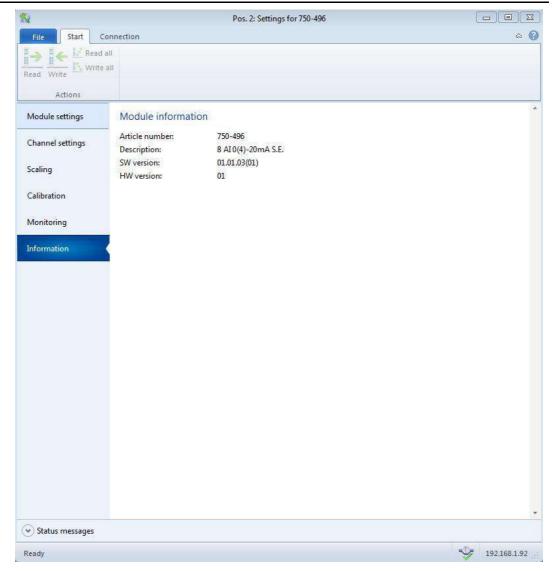


Figure 27: Information Menu Item View

7.1.1.5 **Application Area**

Click one of the menu items in the vertical tab menu to call up the related parameterization options in the application area.

7.1.1.6 **Status Messages**

Note

Activate diagnostics!

Activate the diagnostics in the Channel settings menu item to receive status messages!

This area provides information about occurring diagnostics. If you have activated diagnostics in the Channel settings menu item and a diagnostic occurs, the diagnostic is displayed in the status messages window. These status messages are determined from the status bytes of the individual channels.

Click the button to expand the **Status Messages** window at the bottom of

Status messages

Figure 28: Expanding the Status Messages Window

The following status messages with corresponding additional information are displayed:

Table 32: Status Messages – Possible Status Messages with Additional Information

the parameterization dialog to display the status messages.

Status message	Error type	Channel	Status byte
Measurement range overflow	Warning	Х	0x42
Measurement range underflow	Warning	Х	0x41
User-defined limiting value overrange	Warning	х	0x04
User-defined limiting value underrange	Warning	х	0x08
Short circuit	Error	Х	0x50
Short circuit	Information	Х	0x00
Wire break	Error	Х	0x60
I ville break	Information	Х	0x00
Channel deactivated	Information	Х	0x00
Measured values in permissible range	Information	х	0x00

The status messages are displayed with assignment of the relevant I/O module channels.

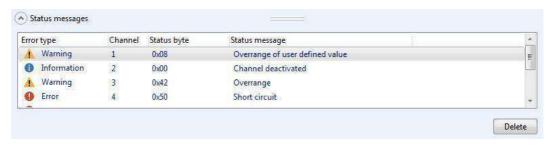


Figure 29: Status Messages in the Application Window of the Parameterization Dialog

Click the **[Delete]** button to clear the status message history. The history is automatically cleared if you interrupt the connection to the I/O module or close the parameterization dialog.

7.1.1.7 Status Bar

The following information is displayed in the status bar:

- Status indication with display of the currently executed action as text or the respective error message if an error occurs
- A progress bar is displayed as the actions are executed
- Online status
- IP address or COM interface

Figure 30: Status Bar in the Parameterization Dialog

7.2 Calibrating Measured Values

User calibration serves to compensate for tolerances in electrical components. Calibrate the I/O module by channel to achieve maximum measurement accuracy for each channel.

Note

User calibration by channel required!

Calibrate separately for each channel.

The following sensor types are specified:

Table 33: Sensor Types

ID	Sensor type
1	0 20 mA
2	4 20 mA
3	3.6 21 mA (NAMUR NE43)

The variables in the following equations have the following meaning:

Table 34: Variable Legend – Calibrating Measured Values

Variable	Meaning/function
m	Calibration gain (gain factor)
b	Calibration offset (offset)
	Actual value 1 (analog input current)
x2	Actual value 2 (analog input current)
y1	Setpoint 1
y2	Setpoint 2

The "Gain" and "Offset" values are required to perform user-defined calibration. The calibration gain is the gain factor. The calibration offset is the offset on the y axis. The following general calibration equation applies:

$$y = (x + b) \times m$$

The general calibration equation yields the following two equations for calculating the two values sought:

Calibration gain: m = (y2 - y1) / (x2 - x1)

Calibration offset: b = (y1 / m) - x1

7.2.1 Example of Determining Gain and Offset

A two-point calibration method is used. Perform the following steps in WAGO-I/O-CHECK:

- Select a sensor type.
 In this example, sensor type 0 ... 20 mA (ID1) was selected.
- 2. Activate user calibration.
- 3. Set the value for the calibration offset to "0".
- 4. Set the value for the calibration gain to "1".
- 5. Apply a 24 kOhm resistor in series with a ammeter to an I/O module channel. Read the current of the measurement device and I/O module.

Example:

Reference current 1 (y1)=
$$\underline{0.9 \text{ mA}}$$

At 1 V is x1 = $\underline{0.915 \text{ mA}}$

6. Apply a second 1.1 kOhm resistor in series to the same I/O module channel. Read the current of the measurement device and I/O module.

Example:

Reference current 2 (y2)=
$$\underline{13.7 \text{ mA}}$$

At 9 V is x2 = $\underline{13.8 \text{ mA}}$

7. Insert all read values into the respective equations to obtain the values for the calibration gain and offset sought.

Example:

Calibration gain:

m =
$$(y2 - y1) / (x2 - x1)$$

 \rightarrow m = $(13.7 \text{ mA} - 0.9 \text{ mA})) / $(13.8 \text{ mA} - 0.915 \text{ mA}) = 0.993$$

Calibration offset:

b =
$$(y1 / m) - x1$$

 \Rightarrow b = $(0.9 \text{ mA} / 0.993) - 0.915 \text{ mA} = -0.008 \text{ mA}$

- 8. Enter the value calculated for calibration gain (0.993) in WAGO-I/O-CHECK.
- 9. Convert the result for the calibration offset from milliamps to microamps.
- 10. Enter the value calculated for calibration **offset in microamps (-8** μA) in WAGO-I/O-*CHECK*.

7.3 Scaling Measured Values

User scaling serves to adjust the process values. When user scaling is used, the required accuracy of the process value resolution is changed, but not fundamentally limited. User scaling is optional.

The values for "Gain" and "Offset" are required to perform user-defined scaling. The scaling gain is the gain factor. The scaling offset is the offset on the y axis. When these two values are input, a scaled process value is yielded as the result. The following general scaling equation applies:

• $y2 = y1 \times (Gain / 1024) + Offset$

The variables have the following meaning:

Table 35: Variable Legend – Scaling Measured Values

Variable	Meaning/function
y2	Scaled process value
y1	Unscaled process value
Gain	Scaling gain (gain factor)
Offset	Scaling offset (offset)
1024	Resolution 1/1024

The y1 value (unscaled process value) serves as the input value for the user scaling. With user scaling switched off, the y1 value is transferred unchanged to y2.

8 **Diagnostics**

8.1 I/O Module Behavior in the Event of an Error

The response of the I/O module if a diagnostic is present depends on the configuration for wire break monitoring, short circuit monitoring, underrange/overrange monitoring and upper/lower limiting value monitoring. You can activate or deactivate these diagnostics separately in WAGO-I/O-CHECK (see section "Startup" > ... > "Parameterization with WAGO-I/O-CHECK").

The I/O module only allows one error to be indicated. A dedicated bit in the status byte is assigned to each error. The associated status bit is set if an error status is detected. Certain errors cause multiple error statuses to occur. This is why error statuses are given priority levels. In the event of several errors being present, the error with the highest priority will always be displayed.

The following priority levels apply:

Table 36: Priority levels of diagnostic functions

Priority level	diagnosis function
High	Short circuit
High	Wire break
Medium	Under-range
Medium	Over-range
Low	Violation of user-defined lower limit (user under-range)
Low	Violation of user-defined upper limit (user over-range)

Table 37: Behavior in the Event of an I/O Module Error Dependent on the Configuration

Configuration Wire break/short circuit monitoring	Underrange/overr ange monitoring	I/O module behavior for wire break/short circuit	I/O module behavior for range violation
OFF	OFF	Process value is saturated, no change in statues byte, error LED off	Process value is saturated, no change in statues byte, error LED off
OFF	ON	Process value is saturated, no change in statues byte, error LED on	Process value is saturated, error bit (bit 0: Underrange or bit 1: Overrange) is set, general error (bit 6: General Error) is set, error LED ON
ON	OFF	Process value is saturated, error bit (bit 5: Wire Break or bit 6: Short Circuit) is set, general error (bit 6: General Error) is set, error LED ON	Process value is saturated, no change in statues byte, error LED off
ON	ON	Process value is saturated, error bit (bit 5: Wire Break or bit 6: Short Circuit) is set, general error (bit 6: General Error) is set, error LED ON	Process value is saturated, error bit (bit 0: Underrange or bit 1: Overrange) is set, general error (bit 6: General Error) is set, error LED ON

The limiting values for detecting an underrange / overrange, a wire break, short circuit or a limiting value underrange / overrange and the output process values are specified in the process image tables (see section "Process Image").

A general error signals a diagnosed error status. A general error is displayed if one or more of the error statuses named in this section occur or other internal error statuses for the I/O module are present. If there are any of the diagnostics for range violation, short circuit or wire break, the bit for general error is always set.

Note

Note how long diagnostics are displayed!

A diagnosed error status is displayed at least 100 ms even if the detected error status is no longer present in this period. If a higher-priority error status occurs in this period, the higher-priority error status is displayed for 100 ms and the lower-priority error status is lost.

9 Use in Hazardous Environments

The **WAGO-I/O-SYSTEM 750** (electrical equipment) is designed for use in Zone 2 hazardous areas and shall be used in accordance with the marking and installation regulations.

The following sections include both the general identification of components (devices) and the installation regulations to be observed. The individual subsections of the "Installation Regulations" section must be taken into account if the I/O module has the required approval or is subject to the range of application of the ATEX directive.

9.1 Marking Configuration Examples

9.1.1 Marking for Europe According to ATEX and IECEx

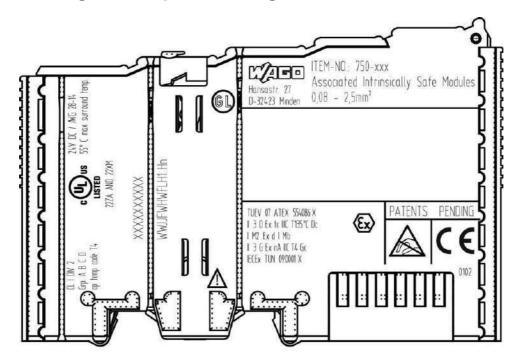


Figure 31: Marking Example According to ATEX and IECEx

TUEV 07 ATEX 554086 X

II 3 D Ex tc IIIC T135°C Dc

I M2 Ex d I Mb

II 3 G Ex nA IIC T4 Gc

IECEX TUN 090001 X

Figure 32: Text Detail – Marking Example According to ATEX and IECEx

Table 38: Description of Marking Example According to ATEX and IECEx

Marking	Description	
TUEV 07 ATEX 554086 X	Approving authority resp. certificate numbers	
IECEx TUN 09.0001 X		
Dust		
II	Equipment group: All except mining	
3 D	Category 3 (Zone 22)	
Ex	Explosion protection mark	
tc	Type of protection: Protection by enclosure	
IIIC	Explosion group of dust	
T135°C	Max. surface temperature of the enclosure (without a dust layer)	
Dc	Equipment protection level (EPL)	
Mining		
1	Equipment group: Mining	
M2	Category: High level of protection	
Ex	Explosion protection mark	
d	Type of protection: Flameproof enclosure	
I	Explosion group for electrical equipment for mines susceptible to firedamp	
Mb	Equipment protection level (EPL)	
Gases		
II	Equipment group: All except mining	
3 G	Category 3 (Zone 2)	
Ex	Explosion protection mark	
nA	Type of protection: Non-sparking equipment	
IIC	Explosion group of gas and vapours	
T4	Temperature class: Max. surface temperature 135 °C	
Gc	Equipment protection level (EPL)	

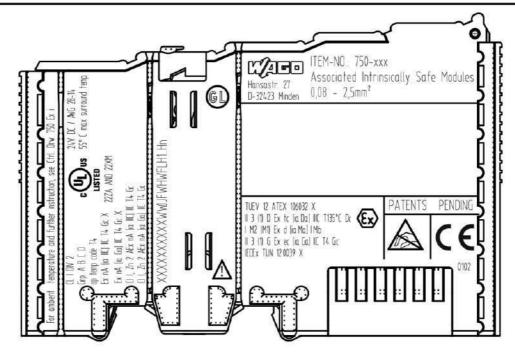


Figure 33: Marking Example for Approved Ex i I/O Module According to ATEX and IECEx

TUEV 12 ATEX 106032 X
|| 3 (1) D Ex tc [ia Da] |||C T135°C Dc
| M2 (M1) Ex d [ia Ma] | Mb
|| 3 (1) G Ex ec [ia Ga] ||C T4 Gc
||ECEX TUN 120039 X

Figure 34: Text Detail – Marking Example for Approved Ex i I/O Module According to ATEX and IECEx

Table 39: Description of Marking Example for Approved Ex i I/O Module According to ATEX and

Marking	Description
TUEV 12 ATEX 106032 X	Approving authority resp. certificate numbers
IECEx TUN 12 0039 X	
Dust	
II	Equipment group: All except mining
3(1)D	Category 3 (Zone 22) equipment containing a safety device for a category 1 (Zone 20) equipment
Ex	Explosion protection mark
tc	Type of protection: Protection by enclosure
[ia Da]	Type of protection and equipment protection level (EPL): Associated apparatus with intrinsic safety circuits for use in Zone 20
IIIC	Explosion group of dust
T135°C	Max. surface temperature of the enclosure (without a dust layer)
Dc	Equipment protection level (EPL)
Mining	
1	Equipment Group: Mining
M2 (M1)	Category: High level of protection with electrical circuits which present a very high level of protection
Ex	Explosion protection mark
d	Type of protection: Flameproof enclosure
[ia Ma]	Type of protection and equipment protection level (EPL): Associated apparatus with intrinsic safety electrical circuits
I	Explosion group for electrical equipment for mines susceptible to firedamp
Mb	Equipment protection level (EPL)
Gases	
II	Equipment group: All except mining
3(1)G	Category 3 (Zone 2) equipment containing a safety device for a category 1 (Zone 0) equipment
Ex	Explosion protection mark
ес	Equipment protection by increased safety "e"
[ia Ga]	Type of protection and equipment protection level (EPL): Associated apparatus with intrinsic safety circuits for use in Zone 0
IIC	Explosion group of gas and vapours
T4	Temperature class: Max. surface temperature 135 °C
Gc	Equipment protection level (EPL)

9.1.2 Marking for the United States of America (NEC) and Canada (CEC)

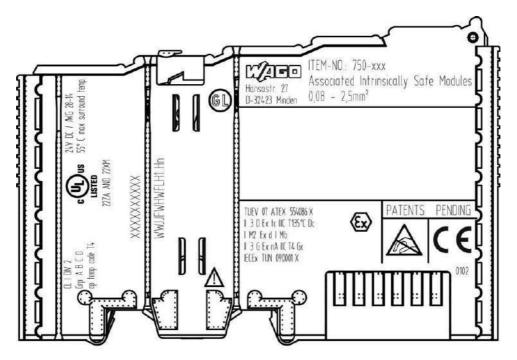


Figure 35: Marking Example According to NEC

CL I DIV 2
Grp. A B C D
op temp code T4

Figure 36: Text Detail – Marking Example According to NEC 500

Table 40: Description of Marking Example According to NEC 500

Marking	Description
CL I	Explosion protection (gas group)
DIV 2	Area of application
Grp. A B C D	Explosion group (gas group)
op temp code T4	Temperature class

CI I, Zn 2 AEx nA [ia Ga] IIC T4 Gc

Figure 37: Text Detail – Marking Example for Approved Ex i I/O Module According to NEC 505

Table 41: Description of Marking Example for Approved Ex i I/O Module According to NEC 505

Marking	Description
CI I,	Explosion protection group
Zn 2	Area of application
AEx	Explosion protection mark
nA	Type of protection
[ia Ga]	Type of protection and equipment protection level (EPL): Associated apparatus with intrinsic safety circuits for use in Zone 20
IIC	Group
T4	Temperature class
Gc	Equipment protection level (EPL)

CI I. Zn 2 AEx nA [ia IIIC] IIC T4 Gc

Figure 38: Text Detail – Marking Example for Approved Ex i I/O Module According to NEC 506

Table 42: Description of Marking Example for Approved Ex i I/O Modules According to NEC 506

Marking	Description
CI I,	Explosion protection group
Zn 2	Area of application
AEx	Explosion protection mark
nA	Type of protection
[ia IIIC]	Type of protection and equipment protection level (EPL): Associated apparatus with intrinsic safety circuits for use in Zone 20
IIC	Group
T4	Temperature class
Gc	Equipment protection level (EPL)

Ex nA [ia IIIC] IIC T4 Gc X
Ex nA [ia Ga] IIC T4 Gc X

Figure 39: Text Detail – Marking Example for Approved Ex i I/O Modules According to CEC 18 attachment J

Table 43: Description of Marking Example for Approved Ex i I/O Modules According to CEC 18 attachment J

Marking	Description
Dust	
Ex	Explosion protection mark
nA	Type of protection
[ia IIIC]	Type of protection and equipment protection level (EPL): Associated apparatus with intrinsic safety circuits for use in Zone 20
IIC	Group
T4	Temperature class
Gc	Equipment protection level (EPL)
Χ	Symbol used to denote specific conditions of use
Gases	
Ex	Explosion protection mark
nA	Type of protection
[ia Ga]	Type of protection and equipment protection level (EPL): Associated apparatus with intrinsic safety circuits for use in Zone 0
IIC	Group
T4	Temperature class
Gc	Equipment protection level (EPL)
X	Symbol used to denote specific conditions of use

9.2 Installation Regulations

For the installation and operation of electrical equipment in hazardous areas, the valid national and international rules and regulations which are applicable at the installation location must be carefully followed.

9.2.1 Special Notes Regarding Explosion Protection

The following warning notices are to be posted in the immediately proximity of the WAGO-I/O-SYSTEM 750 (hereinafter "product"):

WARNING - DO NOT REMOVE OR REPLACE FUSED WHILE ENERGIZED!

WARNING - DO NOT DISCONNECT WHILE ENERGIZED!

WARNING - ONLY DISCONNECT IN A NON-HAZARDOUS AREA!

Before using the components, check whether the intended application is permitted in accordance with the respective printing. Pay attention to any changes to the printing when replacing components.

The product is an open system. As such, the product must only be installed in appropriate enclosures or electrical operation rooms to which the following applies:

- Can only be opened using a tool or key
- Inside pollution degree 1 or 2
- In operation, internal air temperature within the range of 0 °C ≤ Ta ≤ +55 °C or -20 °C ≤ Ta ≤ +60 °C for components with extension number .../025-xxx or -40 °C ≤ Ta ≤ +70 °C for components with extension number .../040-xxx
- Minimum degree of protection: min. IP54 (acc. to EN/IEC 60529)
- For use in Zone 2 (Gc), compliance with the applicable requirements of the standards EN/IEC/ABNT NBR IEC 60079-0, -7, -11, -15
- For use in Zone 22 (Dc), compliance with the applicable requirements of the standards EN/IEC/ABNT NBR IEC 60079-0, -7, -11, -15 and -31
- For use in mining (Mb), minimum degree of protection IP64 (acc. EN/IEC 60529) and adequate protection acc. EN/IEC/ABNT NBR IEC 60079-0 and
- Depending on zoning and device category, correct installation and compliance with requirements must be assessed and certified by a "Notified Body" (ExNB) if necessary!

Explosive atmosphere occurring simultaneously with assembly, installation or repair work must be ruled out. Among other things, these include the following activities

- Insertion and removal of components
- Connecting or disconnecting from fieldbus, antenna, D-Sub, ETHERNET or USB connections, DVI ports, memory cards, configuration and programming interfaces in general and service interface in particular:
 - Operating DIP switches, coding switches or potentiometers
 - Replacing fuses

Wiring (connecting or disconnecting) of non-intrinsically safe circuits is only permitted in the following cases

- The circuit is disconnected from the power supply.
- The area is known to be non-hazardous.

Outside the device, suitable measures must be taken so that the rated voltage is not exceeded by more than 40 % due to transient faults (e.g., when powering the field supply).

Product components intended for intrinsically safe applications may only be powered by 750-606 or 750-625/000-001 bus supply modules.

Only field devices whose power supply corresponds to overvoltage category I or II may be connected to these components.

9.2.2 Special Notes Regarding ANSI/ISA Ex

For ANSI/ISA Ex acc. to UL File E198726, the following additional requirements apply:

- Use in Class I, Division 2, Group A, B, C, D or non-hazardous areas only
- ETHERNET connections are used exclusively for connecting to computer networks (LANs) and may not be connected to telephone networks or telecommunication cables
- **WARNING** The radio receiver module 750-642 may only be used to connect to external antenna 758-910!
- WARNING Product components with fuses must not be fitted into circuits subject to overloads!
 These include, e.g., motor circuits.
- **WARNING** When installing I/O module 750-538, "Control Drawing No. 750538" in the manual must be strictly observed!

Information

Additional Information

Proof of certification is available on request.

Also take note of the information given on the operating and assembly instructions.

The manual, containing these special conditions for safe use, must be readily available to the user.

10 Appendix

10.1 Configuration and Parameterization using a GSD File with PROFIBUS DP and PROFINET IO

10.1.1 Configuration 8 Al 0(4)-20 mA, S.E.

10.1.1.1 PROFIBUS DP Fieldbus Coupler/Controller 750-333(/0xx-000), 750-833(/0xx-000)

When using the aforementioned PROFIBUS DP fieldbus devices, the process image size is configured by selecting the corresponding GSD entry.

Table 44: Configuration PROFIBUS DP

Table 11. Configuration 1 (C) 1200 B1					
GSD Entry		PI-Length/[byte]		Data Type	Inst.
Module	Submodule	ı	0		
750-496 8AI/0/4-20mA/SE		16	n/a	INT16	
750-496 8AI/0/4-20mA/SE RA	n/a	24	24	{UINT8, INT16}	8
PFC 750-496 8AI/0/4-20mA/ SE		n/a	n/a	n/a	n/a

10.1.1.2 PROFINET IO Fieldbus Coupler 750-370, 750-375(/025-000), 750-377(/025-000)

When using the aforementioned PROFINET IO fieldbus couplers, the process image size is configured by selecting the corresponding GSD entry.

Table 45: Configuration 750-370

GSD Entry		PI-Leng	th/[byte]	Data Type	Inst.
Module	Submodule	I	0		
750-496 8AI, 0(4)-20 mA	n/a	16	n/a	INT16	8
750-496 8AI, 0(4)-20 mA, EM	11/4	24	24	{UINT8, INT16}	

Table 46: Configuration 750-375(/025-000), 750-377(/025-000)

GSD Entry		Pi-Length/[byte]		Data Type	Inst.
Module	Submodule	I	0		
750-496 8AI,	INT16[8] I	16	n/a	INT16	8
0(4)-20 mA	{UINT8, INT16}[8] I/O	24	24	{UINT8, INT16}	°

10.1.2 Parameterization 8 AI 0(4)-20 mA, S.E.

Apart from the user limits, the GSD file can be used to provide the I/O module on the PROFIBUS DP and PROFINET IO fieldbus coupler with all operating parameters.

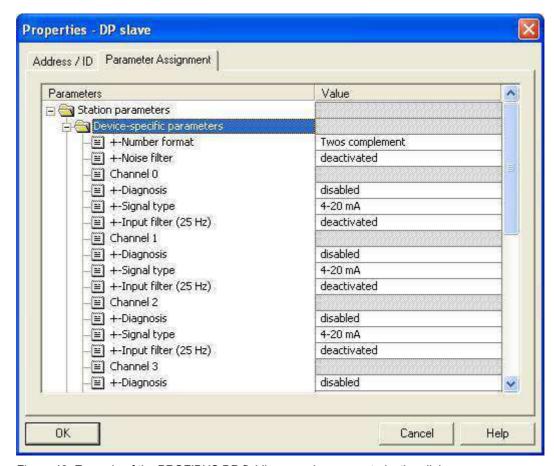


Figure 40: Example of the PROFIBUS DP fieldbus coupler parameterization dialog

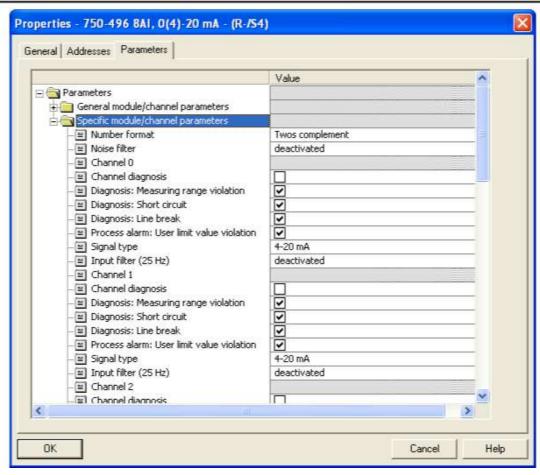


Figure 41: Example of the 750-370 fieldbus coupler parameterization dialog

For the PROFINET IO fieldbus couplers 750-375(/025-000) and 750-377(/025-000) the channel's user limits can be adjusted via GSD, too. On input values falling below or exceeding those limits, a respective process alarm will be issued.

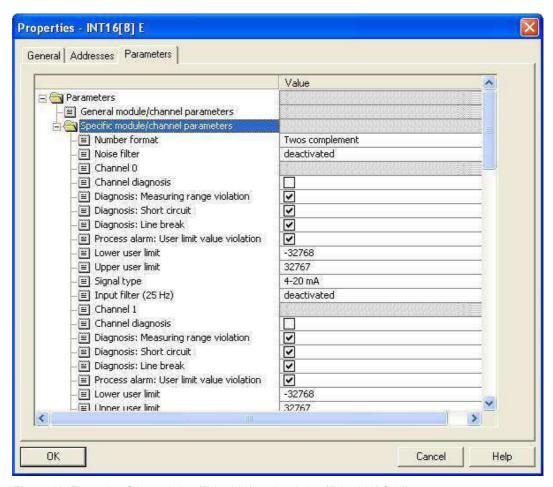


Figure 42: Example of the 750-375(/025-000) and 750-377(/025-000) field bus coupler parameterization dialog

10.1.2.1 All PROFIBUS DP and PROFINET IO Fieldbus Couplers

The following assignment applies to the parameters of the I/O module when using PROFIBUS DP and PROFINET IO fieldbus devices.

Table 47: Specific module / channel parameters for 750-496

GSD File	·	WAGO-I/O-CH	ECK
Description	Value	Selection box	Value
Number format	Twos complement*)	Number format	Twos complement*)
	Sign magnitude		Sign magnitude
Noise filter	deactivated*)	Noise-Filter	Checkbox deactivated*)
	activated		activated
Signal type	deactivated	Signal type	deactivated
Channel x	0-20 mA		0-20 mA
(x = 07)	4-20 mA*)		4-20 mA*)
	3.6-21 mA (Namur NE43)		3.6-21 mA (Namur NE43)
Input filter (25 Hz)	deactivated ^{*)}	Input filter (25 Hz)	Checkbox deactivated ^{*)}
Kanal x (x = 0 7)	activated		activated

^{*)} Factory setting

10.1.2.2 PROFIBUS DP Fieldbus Coupler 750-333(/0xx-000), 750-833(/0xx-000)

The aforementioned fieldbus couplers allow module-specific parameterization of behavior at diagnosis.

Table 48: General module / channel parameters

Parameter	Value	Explanation
Diagnosis Channel x (x = 07)		The fieldbus coupler signals a diagnosis if the I/O module reports the events: • Measuring range overflow • Measuring range underflow Diagnostics reported by the I/O module do not lead to the signaling of a diagnosis by the fieldbus coupler.
	1 (enabled)	Diagnostics reported by the I/O module lead to the signaling of a diagnosis by the fieldbus coupler.

^{*)} Factory setting

oo Appondix

10.1.2.3 PROFINET IO Fieldbus Coupler 750-370, 750-375(/025-000), 750-377(/025-000)

The aforementioned fieldbus couplers allow module-specific parameterization of behavior at diagnosis.

Table 49: General module / channel parameters

Parameter	Value	Explanation
Channel diagnosis Channel x (x = 07)	0 (false)*)	Any errors that may occur on the respective signal channel do not cause transmission of a diagnostic alarm nor entry in the diagnostics database of the station proxy.
	1 (true)	Any errors that may occur on the respective signal channel and the error type explicitly released entail transmission of a diagnostic alarm. The respective error leads to an entry in the diagnostics database of the station proxy.
Diagnosis: Measuring range underflow Channel x (x = 0 7)	0 (false)	An undershot on the respective signal channel does not lead to transmission of a diagnostic alarm nor entry in the diagnostics database of the station proxy.
	1 (true)*)	Provided that the channel diagnostics of the respective signal channel has been activated, an undershoot leads to transmission of a diagnostic alarm and entry in the diagnostics database of the station proxy.
Diagnosis: Measuring range violation Channel x (x = 0 7)	0 (false)	An violation on the respective signal channel does not lead to transmission of a diagnostic alarm nor entry in the diagnostics database of the station proxy.
	1 (true)*)	Provided that the channel diagnostics of the respective signal channel has been activated, an violation leads to transmission of a diagnostic alarm and entry in the diagnostics database of the station proxy.
Diagnosis: Short circuit Channel x (x = 0 7)	0 (false)	A short circuit on the respective signal channel does not lead to transmission of a diagnostic alarm nor to entry in the diagnostics database of the station proxy.
	1 (true)*)	Provided that the channel diagnostics of the respective signal channel has been activated, a short circuit leads to transmission of a diagnostic alarm and entry in the diagnostics database of the station proxy.
Diagnosis: Wire break Channel x (x = 0 7)	0 (false)	A wire break on the respective signal channel does not lead to transmission of a diagnostic alarm nor to entry in the diagnostics database of the station proxy.
	1 (true)*)	Provided that the channel diagnostics of the respective signal channel has been activated, a wire break leads to transmission of a diagnostic alarm and entry in the diagnostics database of the station proxy.

Table 49: General module / channel parameters

Parameter	Value	Explanation
Process alarm: User limit value violation Channel x (x = 0 7)	0 (false)	Falling below the lower or above the upper user limit on the respective signal channel does not lead to transmission of a process alarm. The lower and upper user limits are set in another attribute.
	1 (true) ^{*)}	Provided that the channel diagnostics of the respective signal channel has been activated, falling below the lower or above the upper user limit leads to transmission of a process alarm. No entry in the diagnostics database of the station proxy is made. The lower and upper user limits are set in another attribute.
Lower user limit	-32768 ^{*)} 32767	Based on the value range of the input signal, a lower limit value of the input signal can be specified that can lead to the abovementioned event of a process alarm.
Upper user limit	-32768 32767 ^{*)}	Based on the value range of the input signal, an upper limit value of the input signal can be specified that can lead to the abovementioned event of a process alarm.

^{*)} Factory setting

List of Figures

Figure 1: View	
Figure 2: Data Contacts	
Figure 3: Power Jumper Contacts	
Figure 4: Push-in CAGE CLAMP® Connectors	. 21
Figure 5: Display Elements	. 22
Figure 6: Schematic Diagram	. 23
Figure 7: Insert I/O Module (Example)	. 40
Figure 8: Snap the I/O Module into Place (Example)	. 40
Figure 9: Removing the I/O Module (Example)	
Figure 10: Connecting a Conductor to a Push-in CAGE CLAMP [®]	. 42
Figure 11: Connection example – 2-Wire	. 43
Figure 12: WAGO-I/O-CHECK user interface	. 45
Figure 13: Parameterization Dialog for the I/O Module 750-496	. 46
Figure 14: Title Bar in the Parameterization Dialog	. 47
Figure 15: Horizontal Tab Menu	. 48
Figure 16: Buttons in the Application Menu	. 48
Figure 17: Contents of the Horizontal Tab Start	. 50
Figure 18: Start > Main Menu > Channel Selection List	
Figure 19: Connection Tab for Disconnected I/O Module	. 50
Figure 20: Connection Tab for Connected I/O Module	. 51
Figure 21: Overview of the Vertical Tab Menu	. 51
Figure 22: Module settings Menu Item View	. 52
Figure 23: Channel settings Menu Item View	. 54
Figure 24: Scaling Menu Item View	. 56
Figure 25: Calibration Menu Item View	. 58
Figure 26: Monitoring Menu Item View	
Figure 27: Information Menu Item View	
Figure 28: Expanding the Status Messages Window	. 63
Figure 29: Status Messages in the Application Window of the Parameterization	า
Dialog	. 63
Figure 30: Status Bar in the Parameterization Dialog	
Figure 31: Marking Example According to ATEX and IECEx	
Figure 32: Text Detail – Marking Example According to ATEX and IECEx	. 71
Figure 33: Marking Example for Approved Ex i I/O Module According to ATEX	
and IECEx	. 73
Figure 34: Text Detail – Marking Example for Approved Ex i I/O Module	
According to ATEX and IECEx	
Figure 35: Marking Example According to NEC	
Figure 36: Text Detail – Marking Example According to NEC 500	. 75
Figure 37: Text Detail – Marking Example for Approved Ex i I/O Module	
According to NEC 505	. 76
Figure 38: Text Detail – Marking Example for Approved Ex i I/O Module	
According to NEC 506	. 76
Figure 39: Text Detail – Marking Example for Approved Ex i I/O Modules	
According to CEC 18 attachment J	. 77
Figure 40: Example of the PROFIBUS DP fieldbus coupler parameterization	
dialog	. 82

Figure 41: Example of the 750-370 fieldbus coupler parameterization dialog	83
Figure 42: Example of the 750-375(/025-000) and 750-377(/025-000)	
fieldbus coupler parameterization dialog	84

List of Tables

Table 1: Revision History	6
Table 2: Number Notation	9
Table 3: Font Conventions	9
Table 4: Compatibility List 750-496	16
Table 5: Legend for Figure "View"	17
Table 6: Legend for Figure "Power Jumper Contacts"	19
Table 7: Legend for Figure "Push-in CAGE CLAMP® Connectors"	
Table 8: Legend for Figure "Display Elements"	
Table 9: Technical Data – Device	
Table 10: Technical Data, Power Supply	24
Table 11: Technical Data – Communication	24
Table 12: Technical Data – Inputs	25
Table 13: Technical Data – Field Wiring	
Table 14: Technical Data – Power Jumper Contacts	25
Table 15: Technical Data – Data Contacts	26
Table 16: Technical Data – Climatic Environmental Conditions	26
Table 17: Process Image – I/O Module 750-496	31
Table 18: Status Byte CH1_S0	32
Table 19: Process Image, Sensor Type 0-20 mA, Two's Complement	
Representation	33
Table 20: Process Image, Sensor Type 4 20 mA, Two's Complement	
Representation	34
Table 21: Process Image, Sensor Type 3.6 21 mA (NAMUR NE43),	
Two's Complement Representation	
Table 22: Process Image, Sensor Type 0 20 mA, Amount/Sign Format	
Table 23: Process Image, Sensor Type 4 20 mA, Amount/Sign Format	37
Table 24: Process Image, Sensor Type 3.6 21 mA (NAMUR NE43),	
Amount/Sign Format	
Table 25: buttons on the main menu	
Table 26: Buttons in the application menu	
Table 27: Module settings Menu Item	
Table 28: Channel settings Menu Item	
Table 29: Scaling Menu Item	
Table 30: Calibration Menu Item	
Table 31: Monitoring Menu Item	61
Table 32: Status Messages – Possible Status Messages with Additional	
Information	
Table 33: Sensor Types	
Table 34: Variable Legend – Calibrating Measured Values	
Table 35: Variable Legend – Scaling Measured Values	
Table 36: Priority levels of diagnostic functions	68
Table 37: Behavior in the Event of an I/O Module Error Dependent on the	00
Configuration	
Table 38: Description of Marking Example According to ATEX and IECEx	72
Table 39: Description of Marking Example for Approved Ex i I/O Module	74
According to ATEX and IECEx	
Table at Trechblion of Marking Eyamble According to Met. 500	/ h

Table 41: Description of Marking Example for Approved Ex i I/O Module	
According to NEC 505	76
Table 42: Description of Marking Example for Approved Ex i I/O Modules	
According to NEC 506	76
Table 43: Description of Marking Example for Approved Ex i I/O Modules	
According to CEC 18 attachment J	77
Table 44: Configuration PROFIBUS DP	81
Table 45: Configuration 750-370	81
Table 46: Configuration 750-375(/025-000), 750-377(/025-000)	81
Table 47: Specific module / channel parameters for 750-496	85
Table 48: General module / channel parameters	85
Table 40: General module / channel parameters	96

WAGO Kontakttechnik GmbH & Co. KG
Postfach 2880 • D - 32385 Minden
Hansastraße 27 • D - 32423 Minden
Phone: +49 571 887 – 0
Fax: +49 571 887 – 844169
E-Mail: info@wago.com
Internet: www.wago.com

WAGO-I/O-SYSTEM 750

Manual

750-600(/xxx-xxx)

End Module
Internal Bus Termination

Version 1.3.0

© 2015 by WAGO Kontakttechnik GmbH & Co. KG All rights reserved.

WAGO Kontakttechnik GmbH & Co. KG

Hansastraße 27 D-32423 Minden

Phone: +49 (0) 571/8 87 – 0 Fax: +49 (0) 571/8 87 – 169

E-Mail: info@wago.com

Web: http://www.wago.com

Technical Support

Phone: +49 (0) 571/8 87 -555 Fax: +49 (0) 571/8 87 -8555

E-Mail: support@wago.com

Every conceivable measure has been taken to ensure the accuracy and completeness of this documentation. However, as errors can never be fully excluded, we always appreciate any information or suggestions for improving the documentation.

E-Mail: documentation@wago.com

We wish to point out that the software and hardware terms as well as the trademarks of companies used and/or mentioned in the present manual are generally protected by trademark or patent.

Table of Contents

1	Notes about this Documentation	5
1.1	Validity of this Documentation	5
1.2	Copyright	
1.3	Symbols	
1.4	Number Notation	8
1.5	Font Conventions	8
2	Important Notes	9
2.1	Legal Bases	
2.1.1	C	
2.1.2		
2.1.3		
	Provisions	_
2.1.4		
2.2	Safety Advice (Precautions)	
3	Device Description	
_	•	
3.1 3.2	View Connectors	
3.2.1		
3.2.2	1 11 /	14
3.2.3		14
3.3	Display Elements	
3.4	Operating Elements	
3.5	Technical Data	
3.5.1		
3.5.2	J_1	16
3.5.3		
3.6 3.7	ApprovalsStandards and Guidelines	
4	Mounting	
4.1	Mounting Sequence	
4.2	Inserting and Removing Devices	
4.2.1	8	
4.2.2	Removing the I/O Module	22
5	Use in Hazardous Environments	23
5.1	Marking Configuration Examples	24
5.1.1	Marking for Europe According to ATEX and IEC-Ex	24
5.1.2	Marking for America According to NEC 500	29
5.2	Installation Regulations	30
5.2.1		
	554086 X)	31
5.2.2	`	
	106032 X)	
	Special Condition	
.	Safe Use (IEC-Ex Certificate TUN 09.0001	X)33
5.2.4	1	2.4
	12.0039 X)	34

5.2.3

5.2.5	Special Conditions for Safe Use According to ANSI/ISA 12.12.01	35
List of	Figures	. 36
List of Tables		37

1 Notes about this Documentation

Note

Always retain this documentation!

This documentation is part of the product. Therefore, retain the documentation during the entire service life of the product. Pass on the documentation to any subsequent user. In addition, ensure that any supplement to this documentation is included, if necessary.

1.1 Validity of this Documentation

This documentation is only applicable to the I/O module 750-600 (End Module) and the variants listed in the table below.

Table 1: Variants

Item Number/Variant	Designation
750-600	End Module
750-600/025-000	End Module/T

Note

Documentation Validity for Variants

Unless otherwise indicated, the information given in this documentation applies to listed variants.

The I/O module 750-600 shall only be installed and operated according to the instructions in this manual and in the manual for the used fieldbus coupler/controller.

NOTICE

Consider power layout of the WAGO-I/O-SYSTEM 750!

In addition to these operating instructions, you will also need the manual for the used fieldbus coupler/controller, which can be downloaded at www.wago.com. There, you can obtain important information including information on electrical isolation, system power and supply specifications.

1.2 Copyright

This Manual, including all figures and illustrations, is copyright-protected. Any further use of this Manual by third parties that violate pertinent copyright provisions is prohibited. Reproduction, translation, electronic and phototechnical filing/archiving (e.g., photocopying) as well as any amendments require the written consent of WAGO Kontakttechnik GmbH & Co. KG, Minden, Germany. Non-observance will involve the right to assert damage claims.

1.3 Symbols

DANGER

Personal Injury!

Indicates a high-risk, imminently hazardous situation which, if not avoided, will result in death or serious injury.

A DANGER

Personal Injury Caused by Electric Current!

Indicates a high-risk, imminently hazardous situation which, if not avoided, will result in death or serious injury.

⚠ WARNING

Personal Injury!

Indicates a moderate-risk, potentially hazardous situation which, if not avoided, could result in death or serious injury.

△ CAUTION

Personal Injury!

Indicates a low-risk, potentially hazardous situation which, if not avoided, may result in minor or moderate injury.

NOTICE

Damage to Property!

Indicates a potentially hazardous situation which, if not avoided, may result in damage to property.

NOTICE

Damage to Property Caused by Electrostatic Discharge (ESD)!

Indicates a potentially hazardous situation which, if not avoided, may result in damage to property.

Note

Important Note!

Indicates a potential malfunction which, if not avoided, however, will not result in damage to property.

Information

Additional Information:

Refers to additional information which is not an integral part of this documentation (e.g., the Internet).

1.4 Number Notation

Table 2: Number Notation

Number Code	Example	Note
Decimal	100	Normal notation
Hexadecimal	0x64	C notation
Binary	'100'	In quotation marks, nibble separated with
	'0110.0100'	dots (.)

1.5 Font Conventions

Table 3: Font Conventions

Font Type	Indicates
italic	Names of paths and data files are marked in italic-type. e.g.: <i>C:\Program Files\WAGO Software</i>
Menu	Menu items are marked in bold letters. e.g.: Save
>	A greater-than sign between two names means the selection of a menu item from a menu. e.g.: File > New
Input	Designation of input or optional fields are marked in bold letters, e.g.: Start of measurement range
"Value"	Input or selective values are marked in inverted commas. e.g.: Enter the value "4 mA" under Start of measurement range .
[Button]	Pushbuttons in dialog boxes are marked with bold letters in square brackets. e.g.: [Input]
[Key]	Keys are marked with bold letters in square brackets. e.g.: [F5]

2 Important Notes

This section includes an overall summary of the most important safety requirements and notes that are mentioned in each individual section. To protect your health and prevent damage to devices as well, it is imperative to read and carefully follow the safety guidelines.

2.1 Legal Bases

2.1.1 Subject to Changes

WAGO Kontakttechnik GmbH & Co. KG reserves the right to provide for any alterations or modifications that serve to increase the efficiency of technical progress. WAGO Kontakttechnik GmbH & Co. KG owns all rights arising from the granting of patents or from the legal protection of utility patents. Third-party products are always mentioned without any reference to patent rights. Thus, the existence of such rights cannot be excluded.

2.1.2 Personnel Qualifications

All sequences implemented on WAGO-I/O-SYSTEM 750 devices may only be carried out by electrical specialists with sufficient knowledge in automation. The specialists must be familiar with the current norms and guidelines for the devices and automated environments.

All changes to the coupler or controller should always be carried out by qualified personnel with sufficient skills in PLC programming.

2.1.3 Use of the WAGO-I/O-SYSTEM 750 in Compliance with Underlying Provisions

Fieldbus couplers, fieldbus controllers and I/O modules found in the modular WAGO-I/O-SYSTEM 750 receive digital and analog signals from sensors and transmit them to actuators or higher-level control systems. Using programmable controllers, the signals can also be (pre-) processed.

The devices have been developed for use in an environment that meets the IP20 protection class criteria. Protection against finger injury and solid impurities up to 12.5 mm diameter is assured; protection against water damage is not ensured. Unless otherwise specified, operation of the devices in wet and dusty environments is prohibited.

Operating the WAGO-I/O-SYSTEM 750 devices in home applications without further measures is only permitted if they meet the emission limits (emissions of interference) according to EN 61000-6-3. You will find the relevant information in the section "Device Description" > "Standards and Guidelines" in the manual for the used fieldbus coupler/controller.

Appropriate housing (per 94/9/EG) is required when operating the WAGO-I/O-SYSTEM 750 in hazardous environments. Please note that a prototype test certificate must be obtained that confirms the correct installation of the system in a housing or switch cabinet.

2.1.4 Technical Condition of Specified Devices

The devices to be supplied ex works are equipped with hardware and software configurations, which meet the individual application requirements. WAGO Kontakttechnik GmbH & Co. KG will be exempted from any liability in case of changes in hardware or software as well as to non-compliant usage of devices.

Please send your request for modified and new hardware or software configurations directly to WAGO Kontakttechnik GmbH & Co. KG.

2.2 Safety Advice (Precautions)

For installing and operating purposes of the relevant device to your system the following safety precautions shall be observed:

A DANGER

Do not work on devices while energized!

All power sources to the device shall be switched off prior to performing any installation, repair or maintenance work.

A DANGER

Install the device only in appropriate housings, cabinets or in electrical operation rooms!

The WAGO-I/O-SYSTEM 750 and its components are an open system. As such, install the system and its components exclusively in appropriate housings, cabinets or in electrical operation rooms. Allow access to such equipment and fixtures to authorized, qualified staff only by means of specific keys or tools.

NOTICE

Replace defective or damaged devices!

Replace defective or damaged device/module (e.g., in the event of deformed contacts), since the long-term functionality of device/module involved can no longer be ensured.

NOTICE

Protect the components against materials having seeping and insulating properties!

The components are not resistant to materials having seeping and insulating properties such as: aerosols, silicones and triglycerides (found in some hand creams). If you cannot exclude that such materials will appear in the component environment, then install the components in an enclosure being resistant to the above-mentioned materials. Clean tools and materials are imperative for handling devices/modules.

NOTICE

Clean only with permitted materials!

Clean soiled contacts using oil-free compressed air or with ethyl alcohol and leather cloths.

NOTICE

Do not use any contact spray!

Do not use any contact spray. The spray may impair contact area functionality in connection with contamination.

NOTICE

Do not reverse the polarity of connection lines!

Avoid reverse polarity of data and power supply lines, as this may damage the devices involved.

Avoid electrostatic discharge!

The devices are equipped with electronic components that may be destroyed by electrostatic discharge when touched. Please observe the safety precautions against electrostatic discharge per DIN EN 61340-5-1/-3. When handling the devices, please ensure that environmental factors (personnel, work space and packaging) are properly grounded.

3 **Device Description**

The module 750-600 (End Module) is used to terminate the internal bus of a fieldbus node. This module completes the internal data circuit and ensures correct data flow.

Note

Don't forget the bus end module!

Always plug a bus end module 750-600 onto the end of the fieldbus node! You must always use a bus end module at all fieldbus nodes with WAGO-I/O-SYSTEM 750 fieldbus couplers/controllers to guarantee proper data transfer.

3.1 **View**

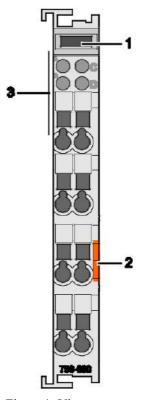


Figure 1: View

Table 4. Legend for Figure "View"

Pos.	Description	Details see section
1	Marking possibility with Mini-WSB	
2	Release tab	"Mounting" > "Inserting and Removing Devices"
3	Data contacts	"Device Description" > "Connectors"

3.2 Connectors

3.2.1 Data Contacts/Internal Bus

Communication between the fieldbus coupler/controller and the I/O modules as well as the system supply of the I/O modules is carried out via the internal bus. It is comprised of 6 data contacts, which are available as self-cleaning gold spring contacts.

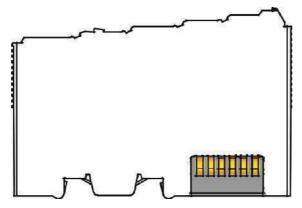


Figure 2: Data Contacts

NOTICE

Do not place the I/O modules on the gold spring contacts!

Do not place the I/O modules on the gold spring contacts in order to avoid soiling or scratching!

NOTICE

Ensure that the environment is well grounded!

The devices are equipped with electronic components that may be destroyed by electrostatic discharge. When handling the devices, ensure that the environment (persons, workplace and packing) is well grounded. Avoid touching conductive components, e.g. data contacts.

3.2.2 Power Jumper Contacts/Field Supply

The I/O module 750-600 has no power jumper contacts.

3.2.3 CAGE CLAMP® Connectors

The I/O module 750-600 has no CAGE CLAMP[®] connectors.

3.3 Display Elements

The I/O module 750-600 has no display elements.

3.4 Operating Elements

The I/O module 750-600 has no operating elements.

3.5 Technical Data

3.5.1 Device

Table 5: Technical Data – Device

Width	12 mm
Height (from upper edge of 35 DIN rail)	64 mm
Depth	100 mm
Weight	Approx. 35 g

3.5.2 Connection Type

Table 6: Technical Data – Data Contacts

Data contacts	Slide contact, hard gold plated, self-
	cleaning

3.5.3 Climatic Environmental Conditions

Table 7: Technical Data – Climatic Environmental Conditions

Table /: Technical Data – Climatic Environmen	ital Collultions
Operating temperature range	0°C55°C
Operating temperature range for components with extended temperature range (750-xxx/025-xxx)	−20 °C +60 °C
Storage temperature range	−25 °C +85 °C
Storage temperature range for components with extended temperature range (750-xxx/025-xxx)	-40 °C +85 °C
Relative humidity	Max. 5 % 95 % without condensation
Resistance to harmful substances	Acc. to IEC 60068-2-42 and IEC 60068-2-43
Maximum pollutant concentration at relative humidity < 75 %	$SO_2 \le 25 \text{ ppm}$ $H_2S \le 10 \text{ ppm}$
Special conditions	Ensure that additional measures for components are taken, which are used in an environment involving: – dust, caustic vapors or gases – ionizing radiation

3.6 Approvals

Information

More information about approvals.

Detailed references to the approvals are listed in the document "Overview Approvals **WAGO-I/O-SYSTEM 750**", which you can find via the internet under: www.wago.com SERVICES > DOWNLOADS > Additional documentation and information on automation products > WAGO-I/O-SYSTEM 750 > System Description.

The following approvals have been granted to the basic version and all variants of 750-600 I/O modules:

CE

Conformity Marking

us CULUS

UL508

Korea Certification

MSIP-REM-W43-END750

The following Ex approvals have been granted to the basic version and all variants of 750-600 I/O modules:

TÜV 07 ATEX 554086 X

I M2 Ex d I Mb II 3 G Ex nA IIC T4 Gc II 3 D Ex tc IIIC T135°C Dc

IECEx TUN 09.0001 X

Ex d I Mb Ex nA IIC T4 Gc Ex tc IIIC T135°C Dc

CULUS

ANSI/ISA 12.12.01

Class I, Div2 ABCD T4

The following ship approvals have been granted to the basic version and all variants of 750-600 I/O modules listed in the table:

Table 8: Ship Approvals

	ABS	SUMMERS FOR STREET AND	V	1å	(GL)	KR.	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	A R. Canada	A CONTRACTOR OF THE PARTY OF TH	
750-600	X	X	X	X	X	X	X	X	X	X
750-600 /025-000		X			X					

ABS (American Bureau of Shipping)

BV (Bureau Veritas)

DNV (Det Norske Veritas) Class B

GL (Germanischer Lloyd)

Cat. A, B, C, D (EMC 1)

KR (Korean Register of Shipping)

LR (Lloyd's Register)

Env. 1, 2, 3, 4

NKK (Nippon Kaiji Kyokai)

PRS (Polski Rejestr Statków)

RINA (Registro Italiano Navale)

3.7 Standards and Guidelines

All variations of 750-600 I/O modules meet the following requirements on emission and immunity of interference:

EMC CE-Emission of interference acc. to EN 61000-6-3

EMC CE-Immunity to interference acc. to EN 61000-6-2

EMC marine applications-Emission

of interference acc. to Germanischer Lloyd

EMC marine applications-Immunity

to interference acc. to Germanischer Lloyd

4 Mounting

4.1 Mounting Sequence

Fieldbus couplers/controllers and I/O modules of the WAGO-I/O-SYSTEM 750/753 are snapped directly on a carrier rail in accordance with the European standard EN 50022 (DIN 35).

The reliable positioning and connection is made using a tongue and groove system. Due to the automatic locking, the individual devices are securely seated on the rail after installation.

Starting with the fieldbus coupler/controller, the I/O modules are mounted adjacent to each other according to the project design. Errors in the design of the node in terms of the potential groups (connection via the power contacts) are recognized, as the I/O modules with power contacts (blade contacts) cannot be linked to I/O modules with fewer power contacts.

△ CAUTION

Risk of injury due to sharp-edged blade contacts!

The blade contacts are sharp-edged. Handle the I/O module carefully to prevent injury.

NOTICE

Insert I/O modules only from the proper direction!

All I/O modules feature grooves for power jumper contacts on the right side. For some I/O modules, the grooves are closed on the top. Therefore, I/O modules featuring a power jumper contact on the left side cannot be snapped from the top. This mechanical coding helps to avoid configuration errors, which may destroy the I/O modules. Therefore, insert I/O modules only from the right and from the top.

Note

Don't forget the bus end module!

Always plug a bus end module 750-600 onto the end of the fieldbus node! You must always use a bus end module at all fieldbus nodes with WAGO-I/O-SYSTEM 750 fieldbus couplers/controllers to guarantee proper data transfer.

4.2 Inserting and Removing Devices

NOTICE

Perform work on devices only if they are de-energized!

Working on energized devices can damage them. Therefore, turn off the power supply before working on the devices.

4.2.1 Inserting the I/O Module

1. Position the I/O module so that the tongue and groove joints to the fieldbus coupler/controller or to the previous or possibly subsequent I/O module are engaged.

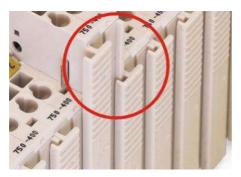


Figure 3: Insert I/O Module (Example)

2. Press the I/O module into the assembly until the I/O module snaps into the carrier rail.

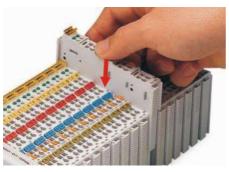


Figure 4: Snap the I/O Module into Place (Example)

With the I/O module snapped in place, the electrical connections for the data contacts and power jumper contacts (if any) to the fieldbus coupler/controller or to the previous or possibly subsequent I/O module are established.

4.2.2 Removing the I/O Module

1. Remove the I/O module from the assembly by pulling the release tab.

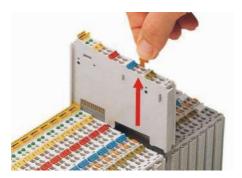


Figure 5: Removing the I/O Module (Example)

Electrical connections for data or power jumper contacts are disconnected when removing the I/O module.

Use in Hazardous Environments 5

The WAGO-I/O-SYSTEM 750 (electrical equipment) is designed for use in Zone 2 hazardous areas.

The following sections include both the general identification of components (devices) and the installation regulations to be observed. The individual subsections of the "Installation Regulations" section must be taken into account if the I/O module has the required approval or is subject to the range of application of the ATEX directive.

5.1 Marking Configuration Examples

5.1.1 Marking for Europe According to ATEX and IEC-Ex

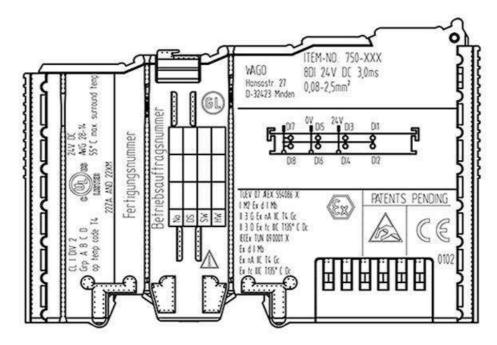


Figure 6: Side Marking Example for Approved I/O Modules According to ATEX and IECEx

TUEV 07 AFEX 554086 X

I M2 Ex d I Mb

II 3 G Ex nA IIC T4 Gc

II 3 D Ex tc IIIC T135° C Dc

IECEX TUN 09.0001 X

Ex d I Mb

Ex nA IIC T4 Gc

Ex tc IIIC T135° C Dc

Figure 7: Text Detail – Marking Example for Approved I/O Modules According to ATEX and IECEx.

Table 9: Description of Marking Example for Approved I/O Modules According to ATEX and

Printing on Text	Description
TÜV 07 ATEX 554086 X	Approving authority and certificate numbers
IECEx TUN 09.0001 X	
Dust	
II	Equipment group: All except mining
3D	Category 3 (Zone 22)
Ex	Explosion protection mark
tc Dc	Type of protection and equipment protection level (EPL):protection by enclosure
IIIC	Explosion group of dust
T 135°C	Max. surface temperature of the enclosure (without a dust layer)
Mining	
I	Equipment group: Mining
M2	Category: High level of protection
Ex	Explosion protection mark
d Mb	Type of protection and equipment protection level (EPL): Flameproof enclosure
I	Explosion group for electrical equipment for mines susceptible to firedamp
Gases	
II	Equipment group: All except mining
3G	Category 3 (Zone 2)
Ex	Explosion protection mark
nA Gc	Type of protection and equipment protection level (EPL): Non-sparking equipment
nC Gc	Type of protection and equipment protection level (EPL): Sparking apparatus with protected contacts. A device which is so constructed that the external atmosphere cannot gain access to the interior
IIC	Explosion group of gas and vapours
T4	Temperature class: Max. surface temperature 135°C

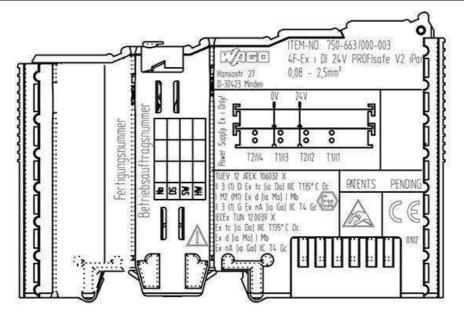


Figure 8: Side Marking Example for Approved Ex i I/O Modules According to ATEX and IECEx.

TUEV 12 ATEX 106032 X

II 3 (1) D Ex tc (ia Da) IIC T135° C Dc

I M2 (M1) Ex d (ia Ma) I Mb

II 3 (1) G Ex nA (ia Ga) IIC T4 Gc

IECEX TUN 12.0039 X

Ex tc (ia Da) IIC T135° C Dc

Ex d (ia Ma) I Mb

Ex nA (ia Ga) IIC T4 Gc

Figure 9: Text Detail – Marking Example for Approved Ex i I/O Modules According to ATEX and IECEx.

Table 10: Description of Marking Example for Approved Ex i I/O Modules According to ATEX and IECEx

Inscription Text	Description
TÜV 07 ATEX 554086 X	Approving authority and certificate numbers
IECEx TUN 09.0001X	
TÜV 12 ATEX 106032 X	
IECEX TUN 12.0039 X	
Dust	
II	Equipment group: All except mining
3(1)D	Category 3 (Zone 22) equipment containing a safety device for a category 1 (Zone 20) equipment
3(2)D	Category 3 (Zone 22) equipment containing a safety device for a category 2 (Zone 21) equipment
Ex	Explosion protection mark
tc Dc	Type of protection and equipment protection level (EPL): protection by enclosure
[ia Da]	Type of protection and equipment protection level (EPL): associated apparatus with intrinsic safety circuits for use in Zone 20
[ib Db]	Type of protection and equipment protection level (EPL): associated apparatus with intrinsic safety circuits for use in Zone 21
IIIC	Explosion group of dust
T 135°C	Max. surface temperature of the enclosure (without a dust layer)
Mining	• /
I	Equipment Group: Mining
M2 (M1)	Category: High level of protection with electrical circuits which present a very high level of protection
Ex d Mb	Explosion protection mark with Type of protection and equipment protection level (EPL): Flameproof enclosure
[ia Ma]	Type of protection and equipment protection level (EPL): associated apparatus with intrinsic safety electrical circuits
I	Explosion group for electrical equipment for mines susceptible to firedamp

Table 10: Description of Marking Example for Approved Ex i I/O Modules According to ATEX and IECEx

Gases	
II	Equipment group: All except mining
3(1)G	Category 3 (Zone 2) equipment containing a safety device for a category 1 (Zone 0) equipment
3(2)G	Category 3 (Zone 2) equipment containing a safety device for a category 2 (Zone 1) equipment
Ex	Explosion protection mark
nA Gc	Type of protection and equipment protection level (EPL): Non-sparking equipment
[ia Ga]	Type of protection and equipment protection level (EPL): associated apparatus with intrinsic safety circuits for use in Zone 0
[ia Gb]	Type of protection and equipment protection level (EPL): associated apparatus with intrinsic safety circuits for use in Zone 1
IIC	Explosion group of gas and vapours
T4	Temperature class: Max. surface temperature 135°C

5.1.2 **Marking for America According to NEC 500**

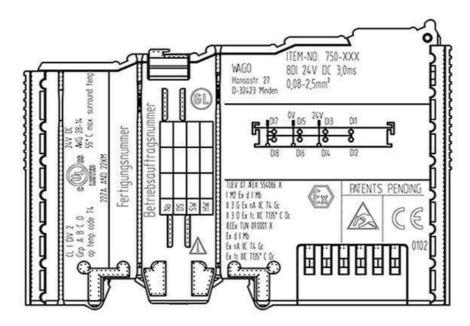


Figure 10: Side Marking Example for I/O Modules According to NEC 500

Figure 11: Text Detail – Marking Example for Approved I/O Modules According to NEC 500

Table 11: Description of Marking Example for Approved I/O Modules According to NEC 500

Printing on Text	Description
CL I	Explosion protection group (condition of use
	category)
DIV 2	Area of application
Grp. ABCD	Explosion group (gas group)
Op temp code T4	Temperature class

5.2 Installation Regulations

For the installation and operation of electrical equipment in hazardous areas, the valid national and international rules and regulations which are applicable at the installation location must be carefully followed.

Special Conditions for Safe Use (ATEX Certificate TÜV 07 5.2.1 **ATEX 554086 X)**

- For use as Gc- or Dc-apparatus (in zone 2 or 22) the Field bus Independent 1. I/O Modules WAGO-I/O-SYSTEM 750-*** shall be erected in an enclosure that fulfils the requirements of the applicable standards (see the marking) EN 60079-0, EN 60079-11, EN 60079-15 and EN 60079-31. For use as group I electrical apparatus M2 the apparatus shall be erected in an enclosure that ensures a sufficient protection according to EN 60079-0 and EN 60079-1 and the degree of protection IP64. The compliance of these requirements and the correct installation into an enclosure or a control cabinet of the devices shall be certified by an ExNB.
- Measures have to be taken outside of the device that the rating voltage is 2. not being exceeded of more than 40 % because of transient disturbances.
- Dip-switches, binary-switches and potentiometers, connected to the 3. module may only be actuated when explosive atmosphere can be excluded.
- 4. The connecting and disconnecting of the non-intrinsically safe circuits is only permitted during installation, for maintenance or for repair purposes. The temporal coincidence of explosion hazardous atmosphere and installation, maintenance resp. repair purposes shall be excluded. This is although and in particular valid for the interfaces "Memory-Card", "USB", "Fieldbus connection", "Configuration and programming interface", "antenna socket", "D-Sub", "DVI-port" and the "Ethernet interface". These interfaces are not energy limited or intrinsically safe circuits. An operating of those circuits is in the behalf of the operator.
- For the types 750-606, 750-625/000-001, 750-487/003-000, 750-484 and 5. 750-633 the following shall be considered: The Interface circuits shall be limited to overvoltage category I/II/III (non mains/mains circuits) as defined in EN 60664-1.
- 6. For replaceable fuses the following shall be considered: Do not remove or replace the fuse when the apparatus is energized.
- 7. The following warnings shall be placed nearby the unit: WARNING - DO NOT REMOVE OR REPLACE FUSE WHEN **ENERGIZED** WARNING – DO NOT SEPARATE WHEN ENERGIZED

WARNING – SEPARATE ONLY IN A NON-HAZARDOUS AREA

2.

5.2.2 Special Conditions for Safe Use (ATEX Certificate TÜV 12 ATEX 106032 X)

- 1. For use as Gc- or Dc-apparatus (in zone 2 or 22) the Field bus Independent I/O Modules WAGO-I/O-SYSTEM 750-*** Ex i shall be erected in an enclosure that fulfils the requirements of the applicable standards (see the marking) EN 60079-0, EN 60079-11, EN 60079-15 and EN 60079-31. For use as group I electrical apparatus M2 the apparatus shall be erected in an enclosure that ensures a sufficient protection according to EN 60079-0 and EN 60079-1 and the degree of protection IP64.

 The compliance of these requirements and the correct installation into an
 - enclosure or a control cabinet of the devices shall be certified by an ExNB. Measures have to be taken outside of the device that the rating voltage is not being exceeded of more than 40 % because of transient disturbances.
- 3. The connecting and disconnecting of the non-intrinsically safe circuits is only permitted during installation, for maintenance or for repair purposes. The temporal coincidence of explosion hazardous atmosphere and installation, maintenance resp. repair purposes shall be excluded.
- 4. For the type the following shall be considered: The Interface circuits shall be limited to overvoltage category I/II/III (non mains/mains circuits) as defined in EN 60664-1.

5.2.3 Special Conditions for Safe Use (IEC-Ex Certificate TUN 09.0001 X)

- 1. For use as Gc- or Dc-apparatus (in zone 2 or 22) the Field bus Independent I/O Modules WAGO-I/O-SYSTEM 750-*** shall be erected in an enclosure that fulfils the requirements of the applicable standards (see the marking) IEC 60079-0, IEC 60079-11, IEC 60079-15 and IEC 60079-31. For use as group I electrical apparatus M2 the apparatus shall be erected in an enclosure that ensures a sufficient protection according to IEC 60079-0 and IEC 60079-1 and the degree of protection IP64. The compliance of these requirements and the correct installation into an enclosure or a control cabinet of the devices shall be certified by an ExCB.
- 2. Measures have to be taken outside of the device that the rating voltage is not being exceeded of more than 40 % because of transient disturbances.
- 3. DIP-switches, binary-switches and potentiometers, connected to the module may only be actuated when explosive atmosphere can be excluded.
- 4. The connecting and disconnecting of the non-intrinsically safe circuits is only permitted during installation, for maintenance or for repair purposes. The temporal coincidence of explosion hazardous atmosphere and installation, maintenance resp. repair purposes shall be excluded. This is although and in particular valid for the interfaces "Memory-Card", "USB", "Fieldbus connection", "Configuration and programming interface", "antenna socket", "D-Sub", "DVI-port" and the "Ethernet interface". These interfaces are not energy limited or intrinsically safe circuits. An operating of those circuits is in the behalf of the operator.
- For the types 750-606, 750-625/000-001, 750-487/003-000, 750-484 and 5. 750-633 the following shall be considered: The Interface circuits shall be limited to overvoltage category I/II/III (non mains/mains circuits) as defined in IEC 60664-1.
- For replaceable fuses the following shall be considered: Do not remove 6. or replace the fuse when the apparatus is energized.
- The following warnings shall be placed nearby the unit: 7. WARNING - DO NOT REMOVE OR REPLACE FUSE WHEN **ENERGIZED** WARNING – DO NOT SEPARATE WHEN ENERGIZED

WARNING - SEPARATE ONLY IN A NON-HAZARDOUS AREA

5.2.4 Special Conditions for Safe Use (IEC-Ex Certificate IECEx TUN 12.0039 X)

- 1. For use as Gc- or Dc-apparatus (in zone 2 or 22) the Field bus independent I/O Modules WAGO-I/O-SYSTEM 750-*** Ex i shall be erected in an enclosure that fulfils the requirements of the applicable standards (see the marking) IEC 60079-0, IEC 60079-11, IEC 60079-15, IEC 60079-31. For use as group I electrical apparatus M2 the apparatus shall be erected in an enclosure that ensures a sufficient protection according to IEC 60079-0 and IEC 60079-1 and the degree of protection IP64. The compliance of these requirements and the correct installation into an enclosure or a control cabinet of the devices shall be certified by an ExCB.
- 2. Measures have to be taken outside of the device that the rating voltage is not being exceeded of more than 40 % because of transient disturbances.
- 3. The connecting and disconnecting of the non-intrinsically safe circuits is only permitted during installation, for maintenance or for repair purposes. The temporal coincidence of explosion hazardous atmosphere and installation, maintenance resp. repair purposes shall be excluded.
- 4. For the type the following shall be considered: The Interface circuits shall be limited to overvoltage category I/II/III (non mains/mains circuits) as defined in IEC 60664-1.

5.2.5 Special Conditions for Safe Use According to ANSI/ISA 12.12.01

- "This equipment is suitable for use in Class I, Division 2, Groups A, B, C, D Α. or non-hazardous locations only."
- В. "This equipment is to be fitted within tool-secured enclosures only."
- "WARNING Explosion hazard substitution of components may impair C. suitability for Class I, Div. 2."
- "WARNING Do not disconnect equipment unless power has been D. switched off or the area is known to be non-hazardous" has to be placed near each operator accessible connector and fuse holder.
- E. When a fuse is provided, the following information shall be provided: "A switch suitable for the location where the equipment is installed shall be provided to remove the power from the fuse."
- F. For devices with EtherCAT/Ethernet connectors "Only for use in LAN, not for connection to telecommunication circuits."
- G. "WARNING - Use Module 750-642 only with antenna module 758-910."
- For Couplers/Controllers and Economy bus modules only: The instructions Н. shall contain the following: "The configuration interface Service connector is for temporary connection only. Do not connect or disconnect unless the area is known to be non-hazardous. Connection or disconnection in an explosive atmosphere could result in an explosion."
- Modules containing fuses only: "WARNING Devices containing fuses I. must not be fitted into circuits subject to over loads, e.g. motor circuits."
- J. Modules containing SD card reader sockets only: "WARNING - Do not connect or disconnect SD-Card while circuit is live unless the area is known to be free of ignitable concentrations of flammable gases or vapors."

Information

Additional Information

Proof of certification is available on request.

Also take note of the information given on the operating and assembly instructions.

The manual, containing these special conditions for safe use, must be readily available to the user.

List of Figures

Figure 1: View	13
Figure 2: Data Contacts	14
Figure 3: Insert I/O Module (Example)	21
Figure 4: Snap the I/O Module into Place (Example)	21
Figure 5: Removing the I/O Module (Example)	22
Figure 6: Side Marking Example for Approved I/O Modules According to ATE	X
and IECEx	24
Figure 7: Text Detail – Marking Example for Approved I/O Modules According	5
to ATEX and IECEx.	24
Figure 8: Side Marking Example for Approved Ex i I/O Modules According to	
ATEX and IECEx.	26
Figure 9: Text Detail – Marking Example for Approved Ex i I/O Modules	
According to ATEX and IECEx.	26
Figure 10: Side Marking Example for I/O Modules According to NEC 500	29
Figure 11: Text Detail - Marking Example for Approved I/O Modules According	ıg
to NEC 500	29

List of Tables

Table 1: Variants	5
Table 2: Number Notation	8
Table 3: Font Conventions	8
Table 4: Legend for Figure "View"	13
Table 5: Technical Data – Device	
Table 6: Technical Data – Data Contacts	16
Table 7: Technical Data – Climatic Environmental Conditions	16
Table 8: Ship Approvals	18
Table 9: Description of Marking Example for Approved I/O Modules Accordi	ng
to ATEX and IECEx	25
Table 10: Description of Marking Example for Approved Ex i I/O Modules	
According to ATEX and IECEx	27
Table 11: Description of Marking Example for Approved I/O Modules Accord	ling
to NEC 500	29

INNOVATE.

WAGO Kontakttechnik GmbH & Co. KG
Postfach 2880 • D-32385 Minden
Hansastraße 27 • D-32423 Minden
Phone: 05 71/8 87 – 0
Fax: 05 71/8 87 –169
E-Mail: info@wago.com
Internet: http://www.wago.com

WAGO-I/O-SYSTEM 750

Manual

750-652 Serial Interface RS-232 / RS-485 Configurable

Version 2.0.0

© 2017 WAGO Kontakttechnik GmbH & Co. KG All rights reserved.

WAGO Kontakttechnik GmbH & Co. KG

Hansastraße 27 D-32423 Minden

Phone: +49 (0) 571/8 87 – 0 Fax: +49 (0) 571/8 87 – 169

E-Mail: info@wago.com

Web: http://www.wago.com

Technical Support

Phone: +49 (0) 571/8 87 -555 Fax: +49 (0) 571/8 87 -8555

E-Mail: support@wago.com

Every conceivable measure has been taken to ensure the accuracy and completeness of this documentation. However, as errors can never be fully excluded, we always appreciate any information or suggestions for improving the documentation.

E-Mail: documentation@wago.com

We wish to point out that the software and hardware terms as well as the trademarks of companies used and/or mentioned in the present manual are generally protected by trademark or patent.

Table of Contents

1	Notes about this Documentation	6
1.1	Validity of this Documentation	6
1.2	Copyright	<i>6</i>
1.3	Symbols	7
1.4	Number Notation	9
1.5	Font Conventions	9
2	Important Notes	. 10
2.1	Legal Bases	
2.1.1	Subject to Changes	
2.1.2	Personnel Qualifications	
2.1.3	Use of the WAGO-I/O-SYSTEM 750 in Compliance with	
	Underlying Provisions	. 10
2.1.4	Technical Condition of Specified Devices	
2.2	Safety Advice (Precautions)	
3	Device Description	. 14
3.1	View	
3.2	Connectors	
3.2.1	Data Contacts/Internal Bus	. 19
3.2.2	Power Jumper Contacts/Field Supply	
3.2.3	CAGE CLAMP® Connectors	
3.3	Display Elements	
3.4	Operating Elements	. 24
3.5	Schematic Diagram	. 25
3.6	Technical Data	. 26
3.6.1	Device Data	. 26
3.6.2	Supply	
3.6.3	Communication	
3.6.4	Interface	
3.6.5	Connection Type	
3.6.6	Climatic Environmental Conditions	
3.7	Approvals	. 29
3.8	Standards and Guidelines	. 31
4	Process Image	
4.1	Operating Modes for Serial Transmission	
4.2	Data Exchange Mode	. 34
5	Function Description	
5.1	Operating Modes for Serial Transmission	
5.1.1	Transmit Data	
5.1.1		
5.1.2	Receive Data	
5.1.2	1	
5.1.3	RS-232 Operating Mode	
5.1.3	ϵ	
5.1.3	$oldsymbol{arepsilon}$	
5.1.3	Flow Control Using RTS/CTS, RTS with Lead/Follow-on Time	. 38

5.1.4	RS-485 Operating Mode	38
5.1.5	RS-422 Operating Mode	39
5.1.6	DMX Operating Mode	39
5.1.6.1	Sending Data Packets in DMX Mode	39
5.1.6.2	Receiving Data Packets in DMX Mode	
5.2	Data Exchange Operating Mode	41
6 M	[ounting	42
6.1	Mounting Sequence	42
6.2	Inserting and Removing Devices	
6.2.1	Inserting the I/O Module	
6.2.2	Removing the I/O Module	
7 C	onnect Devices	45
7.1	Connecting a Conductor to the CAGE CLAMP [®]	
7.2	Connection Examples	
7.2.1	RS-232 Operating Mode	
7.2.2	RS-422 Operating Mode	
7.2.3	RS-485 Operating Mode	
7.2.4	DMX Operating Mode	
7.2.5	Data Exchange Mode	
8 C	ommissioning	
8.1	Configuration and Parameterization with WAGO-I/O-CHECK	
8.1.1	RS-232/RS-485 Serial Interface (Configuration Dialog)	
8.1.2	Toolbar on the Configuration Dialog	
8.1.3	Process Image Size	
8.1.4	Parameter Range	
8.1.5	Setting the RS-232/RS-485 Serial Interface	
8.2	Configuration and Parameterization via GSD File with PROFIBUS	
	DP and PROFINET IO	56
8.3	Data Transfer	
8.3.1	Example of Operating Modes for Serial Transmission	
8.3.2	Initialization	
8.3.3	Transmission of the Character String "Hello World!"	
8.3.4	Receiving the Character String "WAGO"	
8.3.5	Operation with Continuous Send.	
8.3.5.1	Transmission of a Block of One to 512 Bytes	60
8.3.5.2	Transmission of a Block of More than 512 Bytes	
8.3.6	DMX Application Example	
8.3.6.1	Operation with Deactivated Continuous Send	63
8.3.6.2	Operation with Activated Continuous Send	
8.3.6.3	Mode when Receiving DMX Data	
8.3.6.3.1		
8.3.6.3.2	"DMX Receive" Application Example	66
8.3.7	Data Exchange Operating Mode Application Example	
9 D	iagnostics	69
9.1	Serial Operating Modes RS-232, RS-422 and RS-485	69
9.2	DMX Operating Mode	
9.3	Data Exchange Operating Mode	70

10 Us	e in Hazardous Environments	7 1
10.1	Marking Configuration Examples	72
10.1.1	Marking for Europe According to ATEX and IEC-Ex	
10.1.2	Marking for America According to NEC 500	77
10.2	Installation Regulations	78
10.2.1	Special Conditions for Safe Use	
	(ATEX Certificate TÜV 07 ATEX 554086 X)	79
10.2.2	Special Conditions for Safe Use	
	(ATEX Certificate TÜV 12 ATEX 106032 X)	80
10.2.3	Special Conditions for Safe Use	
	(IEC-Ex Certificate TUN 09.0001 X)	81
10.2.4	Special Conditions for Safe Use	
	(IEC-Ex Certificate IECEx TUN 12.0039 X)	82
10.2.5	Special Conditions for Safe Use According to ANSI/ISA 12.12.01	83
11 Ap	pendix	84
11.1	Configuration and Parameterization via GSD File	84
11.1.1	Configuration of the RS-232/RS-485 Interface	84
11.1.1.1	PROFIBUS DP Fieldbus Coupler/Controller	
	750-333(/0xx-000), 750-833(/0xx-000),	
	PROFINET IO Fieldbus Coupler (750-370)	84
11.1.1.2	PROFINET IO Fieldbus Coupler 750-375(/025-000),	
	750-377(/025-000)	84
11.1.2	Configuration of the RS-232/RS-485 Serial Interface	85
11.1.2.1	All PROFIBUS DP and PROFINET IO Fieldbus	
	Couplers/Controllers	86
11.1.2.2	PROFIBUS DP Fieldbus Coupler/Controller	
	750-333(/0xx-000), 750-833(/0xx-000),	
	PROFINET IO Fieldbus Coupler 750-370	87
11.1.2.3	PROFINET IO Fieldbus Coupler 750-375(/025-000),	
	750-377(/025-000)	89
List of Figures		
List of T	'ables	91

1 Notes about this Documentation

Note

Always retain this documentation!

This documentation is part of the product. Therefore, retain the documentation during the entire service life of the product. Pass on the documentation to any subsequent user. In addition, ensure that any supplement to this documentation is included, if necessary.

1.1 Validity of this Documentation

This documentation is only applicable to the I/O module 750-652 (Serial Interface RS-232 / RS-485) and the variants listed in the table below.

Table 1: Variants

Item Number/Variant	Designation
750-652	Serial Interface RS-232 / RS-485
750-652/025-000	Serial Interface RS-232 / RS-485/T

Note

Documentation Validity for Variants

Unless otherwise indicated, the information given in this documentation applies to listed variants.

The I/O module 750-652 shall only be installed and operated according to the instructions in this manual and in the manual for the used fieldbus coupler/controller.

NOTICE

Consider power layout of the WAGO-I/O-SYSTEM 750!

In addition to these operating instructions, you will also need the manual for the used fieldbus coupler/controller, which can be downloaded at www.wago.com. There, you can obtain important information including information on electrical isolation, system power and supply specifications.

1.2 Copyright

This Manual, including all figures and illustrations, is copyright-protected. Any further use of this Manual by third parties that violate pertinent copyright provisions is prohibited. Reproduction, translation, electronic and phototechnical filing/archiving (e.g., photocopying) as well as any amendments require the written consent of WAGO Kontakttechnik GmbH & Co. KG, Minden, Germany. Non-observance will involve the right to assert damage claims.

1.3 Symbols

A DANGER

Personal Injury!

Indicates a high-risk, imminently hazardous situation which, if not avoided, will result in death or serious injury.

▲ DANGER

Personal Injury Caused by Electric Current!

Indicates a high-risk, imminently hazardous situation which, if not avoided, will result in death or serious injury.

⚠ WARNING

Personal Injury!

Indicates a moderate-risk, potentially hazardous situation which, if not avoided, could result in death or serious injury.

⚠ CAUTION

Personal Injury!

Indicates a low-risk, potentially hazardous situation which, if not avoided, may result in minor or moderate injury.

NOTICE

Damage to Property!

Indicates a potentially hazardous situation which, if not avoided, may result in damage to property.

NOTICE

Damage to Property Caused by Electrostatic Discharge (ESD)!

Indicates a potentially hazardous situation which, if not avoided, may result in damage to property.

Note

Important Note!

Indicates a potential malfunction which, if not avoided, however, will not result in damage to property.

Information

Additional Information:

Refers to additional information which is not an integral part of this documentation (e.g., the Internet).

1.4 Number Notation

Table 2: Number Notation

Number Code	Example	Note
Decimal	100	Normal notation
Hexadecimal	0x64	C notation
Binary	100'	In quotation marks, nibble separated with
-	'0110.0100'	dots (.)

1.5 Font Conventions

Table 3: Font Conventions

Font Type	Indicates		
italic	Names of paths and data files are marked in italic-type.		
	e.g.: C:\Program Files\WAGO Software		
Menu	Menu items are marked in bold letters.		
	e.g.: Save		
>	A greater-than sign between two names means the selection of a		
	menu item from a menu.		
	e.g.: File > New		
Input	Designation of input or optional fields are marked in bold letters,		
	e.g.: Start of measurement range		
"Value"	Input or selective values are marked in inverted commas.		
	e.g.: Enter the value "4 mA" under Start of measurement range .		
[Button]	Pushbuttons in dialog boxes are marked with bold letters in square		
	brackets.		
	e.g.: [Input]		
[Key]	Keys are marked with bold letters in square brackets.		
	e.g.: [F5]		

2 Important Notes

This section includes an overall summary of the most important safety requirements and notes that are mentioned in each individual section. To protect your health and prevent damage to devices as well, it is imperative to read and carefully follow the safety guidelines.

2.1 Legal Bases

2.1.1 Subject to Changes

WAGO Kontakttechnik GmbH & Co. KG reserves the right to provide for any alterations or modifications that serve to increase the efficiency of technical progress. WAGO Kontakttechnik GmbH & Co. KG owns all rights arising from the granting of patents or from the legal protection of utility patents. Third-party products are always mentioned without any reference to patent rights. Thus, the existence of such rights cannot be excluded.

2.1.2 Personnel Qualifications

All sequences implemented on WAGO-I/O-SYSTEM 750 devices may only be carried out by electrical specialists with sufficient knowledge in automation. The specialists must be familiar with the current norms and guidelines for the devices and automated environments.

All changes to the coupler or controller should always be carried out by qualified personnel with sufficient skills in PLC programming.

2.1.3 Use of the WAGO-I/O-SYSTEM 750 in Compliance with Underlying Provisions

Fieldbus couplers, fieldbus controllers and I/O modules found in the modular WAGO-I/O-SYSTEM 750 receive digital and analog signals from sensors and transmit them to actuators or higher-level control systems. Using programmable controllers, the signals can also be (pre-) processed.

The devices have been developed for use in an environment that meets the IP20 protection class criteria. Protection against finger injury and solid impurities up to 12.5 mm diameter is assured; protection against water damage is not ensured. Unless otherwise specified, operation of the devices in wet and dusty environments is prohibited.

Operating the WAGO-I/O-SYSTEM 750 devices in home applications without further measures is only permitted if they meet the emission limits (emissions of interference) according to EN 61000-6-3. You will find the relevant information in the section "Device Description" > "Standards and Guidelines" in the manual for the used fieldbus coupler/controller.

Appropriate housing (per 2014/34/EU) is required when operating the WAGO-I/O-SYSTEM 750 in hazardous environments. Please note that a prototype test certificate must be obtained that confirms the correct installation of the system in a housing or switch cabinet.

2.1.4 **Technical Condition of Specified Devices**

The devices to be supplied ex works are equipped with hardware and software configurations, which meet the individual application requirements. WAGO Kontakttechnik GmbH & Co. KG will be exempted from any liability in case of changes in hardware or software as well as to non-compliant usage of devices.

Please send your request for modified and new hardware or software configurations directly to WAGO Kontakttechnik GmbH & Co. KG.

2.2 Safety Advice (Precautions)

For installing and operating purposes of the relevant device to your system the following safety precautions shall be observed:

A DANGER

Do not work on devices while energized!

All power sources to the device shall be switched off prior to performing any installation, repair or maintenance work.

DANGER

Install the device only in appropriate housings, cabinets or in electrical operation rooms!

The WAGO-I/O-SYSTEM 750 and its components are an open system. As such, install the system and its components exclusively in appropriate housings, cabinets or in electrical operation rooms. Allow access to such equipment and fixtures to authorized, qualified staff only by means of specific keys or tools.

NOTICE

Replace defective or damaged devices!

Replace defective or damaged device/module (e.g., in the event of deformed contacts), since the long-term functionality of device/module involved can no longer be ensured.

NOTICE

Protect the components against materials having seeping and insulating properties!

The components are not resistant to materials having seeping and insulating properties such as: aerosols, silicones and triglycerides (found in some hand creams). If you cannot exclude that such materials will appear in the component environment, then install the components in an enclosure being resistant to the above-mentioned materials. Clean tools and materials are imperative for handling devices/modules.

NOTICE

Clean only with permitted materials!

Clean soiled contacts using oil-free compressed air or with ethyl alcohol and leather cloths.

NOTICE

Do not use any contact spray!

Do not use any contact spray. The spray may impair contact area functionality in connection with contamination.

NOTICE

Do not reverse the polarity of connection lines!

Avoid reverse polarity of data and power supply lines, as this may damage the devices involved.

NOTICE

Avoid electrostatic discharge!

The devices are equipped with electronic components that may be destroyed by electrostatic discharge when touched. Please observe the safety precautions against electrostatic discharge per DIN EN 61340-5-1/-3. When handling the devices, please ensure that environmental factors (personnel, work space and packaging) are properly grounded.

3 **Device Description**

The I/O module 750-652 (Serial Interface RS-232 / RS-485) allows the optional connection of devices with a RS-485, RS-422 or RS-232 interface.

It also provides gateways between the serial interface and the fieldbus systems supported by the WAGO-I/O-SYSTEM 750.

No higher protocol level is required by the module. Communication to the associated fieldbus master is completely transparent. This provides for a broader application scope for the serial interface module. If required, communication protocols can be configured via fieldbus master.

The 2560 byte input buffer provides for high data baud rates. At lower baud rates, the data received in lower priority tasks is evaluated without data loss.

The 512-byte output buffer provides fast transmission of larger data strings.

The operating mode of the I/O module can be configured using the WAGO-I/O-*CHECK* startup tool. Learn what version on WAGO-I/O-*CHECK* you need in the table "WAGO-I/O-*CHECK* Minimum Requirements" in the "Commissioning" section.

Note

NOTE

The default operating mode is RS-485 half-duplex. The default data transmission rate is 9600 baud. 1 start bit, 8 data bits and 1 stop bit are sent. There is no parity generation and dataflow control.

Before starting operation, the connections of the I/O module 750-652 must be cabled appropriately (see section "Connect Devices" > ... > "Connection Examples").

In RS-232 mode, the interface works in accordance with the TIA/EIA-232-F and CCITT V.28/DIN 66259-1 standards.

In RS-485/RS-422 mode, the interface works in accordance with the TIA/EIA-485-A, DIN 66259 standards.

The connected device can communicate directly with the control unit via the fieldbus coupler/controller used.

The active communication channel works independent of the fieldbus system used in full or half-duplex operation at up to 115200 baud.

In the data flow control through RTS/CTS in RS-232 mode, a lead time or follow-on time can be configured for the I/O module for the RTS signal. This function is available with firmware version 03 or higher.

Direct data exchange between different fieldbus nodes of the 750 series is possible in conjunction with a second I/O module 750-652. This function is available with firmware version 03 or higher.

The I/O module 750-652 can be configured as a DMX device with a baud rate of 250 kBits/s. This function is available with firmware version 03 or higher.

The I/O module 750-652 can be configured as a DMX device at a baud rate of 250 kBits/s. This function is available with firmware version 03 or higher. The I/O module can be operated as a DMX sender with firmware version 03 or higher and as a DMX receiver with firmware version 06 or higher.

The wiring to the communication partner takes place in RS-232 mode via the TxD, RxD connections, if necessary RTS/CTS and ground and in the RS-485/ RS-422 mode via the connections A, B, X, Y, and ground.

The shield connection is fed directly to the carrier rail and contact is made automatically by snapping the module onto the rail.

The assignment of the connections is described in the "Connectors" section. Connection examples are shown in section "Connect Devices" > ... > "Connection Example(s)".

Multi-color LEDs indicate the operating status and the trouble-free internal bus communication as well as the status of the signal transmission. The meaning of the LEDs is described in the "Display Elements" section.

The I/O module 750-652 (Serial Interface RS-232 / RS-485) receives the 24 V voltage supply for the field level from an upstream I/O module or from the fieldbus coupler/controller via blade-formed power jumper contacts. It then provides these potentials to subsequent I/O modules via spring-formed power jumper contacts.

The field voltage and the system voltage are electrically isolated from each other.

With consideration of the power jumper contacts, the individual modules can be arranged in any combination when configuring the fieldbus node. An arrangement in groups within the group of potentials is not necessary.

The 750-652 module can be used with the fieldbus couplers and controllers of the WAGO-I/O-SYSTEM 750 of the specified version or higher listed in the "Compatibility list" table.

Table 4: Compatibility List 750-652

Bus System	Fieldbus Couplers/Controllers	Item No.	Firmware Revision Status	
PROFINET	Fieldbus coupler	750-370	02	
		750-375	01	
		750-377	01	
PROFIBUS	Fieldbus coupler	750-333	14	
	Controller	750-833	14	
ETHERNET	Fieldbus coupler	750-341	07	
		750-342	17	
		750-352	02	
	Controller	750-841	18	
		750-842	18	
		750-843	02	
		750-852	09	
		750-871	07	
		750-872	03	
		750-873	03	
		750-880	02	
		750-881	02	
		750-882	01	
		750-885	09	
	PFC100 controller	750-810x	05	
	PFC200 controller	750-820x	01	
	BA application controller	750-884	09	
	I/O-IPC	758-870/000-xxx	05	
		758-874/000-xxx	05	
		758-875/000-xxx	05	
		758-876/000-xxx	05	
DeviceNet	Fieldbus coupler	750-306	4K	
	ECO fieldbus coupler	750-346	10	
	Controller	750-806	10	
CANopen	Fieldbus coupler	750-337	19	
		750-338	19	
	ECO fieldbus coupler	750-347	08	
		750-348	08	
	Controller	750-837	14	
		750-838	14	

Table 4: Compatibility List 750-652

Bus System	Fieldbus	Item No.	Firmware Revision	
	Couplers/Controllers		Status	
MODBUS	Fieldbus coupler	750-315/300-000	01	
		750-316/300-000	01	
	Controller	750-815/300-000	01	
		750-816/300-000	01	
EtherCat	Fieldbus coupler	750-354	03	
sercos III	Fieldbus coupler	750-351	04	
BACnet	Controller	750-829	07	
		750-830	03	
		750-831	07	
KNX Controller		750-849	04	
		750-889	07	

Other fieldbus couplers/controllers on request.

3.1 View

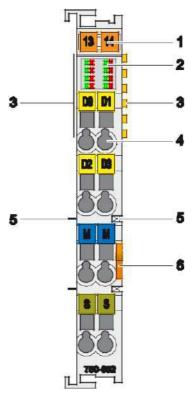


Figure 1: View

Table 5: Legend for Figure "View"

Pos.	Description	Details See Section
1	Marking possibility with Mini-WSB	
2	Status LEDs	"Device Description" > "Display Elements"
3	Data contacts	"Device Description" > "Connectors"
4	CAGE CLAMP® connectors	"Device Description" > "Connectors"
5	Power jumper contacts	"Device Description" > "Connectors"
6	Release tab	"Mounting" > "Inserting and Removing
		Devices"

3.2 Connectors

3.2.1 **Data Contacts/Internal Bus**

Communication between the fieldbus coupler/controller and the I/O modules as well as the system supply of the I/O modules is carried out via the internal bus. It is comprised of 6 data contacts, which are available as self-cleaning gold spring contacts.

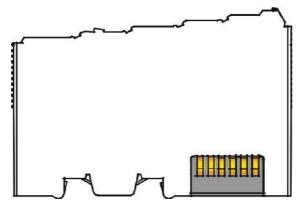


Figure 2: Data Contacts

Do not place the I/O modules on the gold spring contacts!

Do not place the I/O modules on the gold spring contacts in order to avoid soiling or scratching!

Ensure that the environment is well grounded!

The devices are equipped with electronic components that may be destroyed by electrostatic discharge. When handling the devices, ensure that the environment (persons, workplace and packing) is well grounded. Avoid touching conductive components, e.g. data contacts.

3.2.2 Power Jumper Contacts/Field Supply

△ CAUTION

Risk of injury due to sharp-edged blade contacts!

The blade contacts are sharp-edged. Handle the I/O module carefully to prevent injury.

The I/O module 750-652 has 2 self-cleaning power jumper contacts that supply and transmit power for the field side. The contacts on the left side of the I/O module are designed as blade contacts and those on the right side as spring contacts.

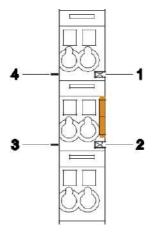


Figure 3: Power Jumper Contacts

Table 6: Legend for Figure "Power Jumper Contacts"

Contact	Туре	Function
1	Spring contact	Potential transmission (U _v) for field supply
2	Spring contact	Potential transmission (0 V) for field supply
3	Blade contact	Potential feed-in (0 V) for field supply
4	Blade contact	Potential feed-in (U _v) for field supply

NOTICE

Do not exceed maximum current via power jumper contacts!

The maximum current to flow through the power jumper contacts is 10 A. Greater currents can damage the contacts.

When configuring your system, ensure that this current is not exceeded. If exceeded, insert an additional supply module.

Note

Use supply modules for ground (earth)!

The I/O module has no power jumper contacts for receiving and transmitting the earth potential. Use a supply module when an earth potential is needed for the subsequent I/O modules.

3.2.3 CAGE CLAMP® Connectors

Note

Use shielded signal lines!

Only use shielded signal lines for analog signals and I/O modules which are equipped with shield clamps. Only then can you ensure that the accuracy and interference immunity specified for the respective I/O module can be achieved even in the presence of interference acting on the signal cable.

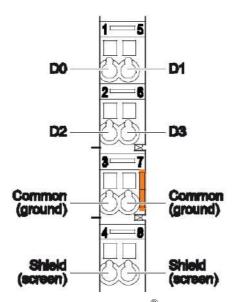


Figure 4: CAGE CLAMP® Connectors

Table 7: Legend for Figure "CAGE CLAMP® Connectors"

Designation	Connector	Function
D0	1	RTS (RS-232)
Du	1	Z / TxD+ (RS-485/RS-422)
D1	5	TxD (RS-232)
DI	3	Y / TxD- (RS-485/RS-422)
D2	2	CTS (RS-232)
DZ		B / RxD+ (RS-485/RS-422)
D3	6	RxD (RS-232)
D3		A / RxD- (RS-485/RS-422)
Common	3	Common (ground)
(ground) 7		Common (ground)
Shield	4	Shield (screen)
(screen) 8 Shield (screen)		Shield (screen)

Display Elements 3.3

Figure 5: Display Elements

Table 8: Legend for Figure "Display Elements"

Designation	LED	Status	Function				
	A	Green	Ready for operation and undisturbed internal				
Function			bus communication				
runction	A	Red	Not ready for operation or no or disturbed				
		Red	internal bus communication				
		OFF	No signal transmission TxD				
		Green	Signal transmission TxD present ¹⁾				
TxD	В		I/O module has received XOFF character, the				
(transmit)		Yellow	transmission is inactive ²⁾ CTS line has fallen, the transmission is inactive				
		1 CHOW	3)				
		OFF	No signal transmission RxD or input open				
RxD		Green	Signal transmission RxD present ¹⁾				
(receive)	С	~ 1	Signal transmission RxD present ¹⁾ , but some				
		Red	characters received are defective (parity, data				
		OFF	frame or overrun error has occurred) 4)				
		OFF	No transmission error				
		Green	Output buffer is full				
Transmission status	D		Input buffer is full (LED lights up if there are more than 2304 characters in the input buffer.				
Status			Yellow	LED does not light up if there are fewer than			
		Green	RS-485 half-duplex, DMX				
Mode	Е	Yellow	RS-422 full-duplex, data exchange				
		Red	RS-232				
		OFF	No data flow control				
Data flavo	F	Green	RTS/CTS data flow control active ³⁾				
Data flow control		Yellow	XON/XOFF data flow control active ²⁾				
COHHOI		Red	RTS with lead time and follow-on time is active 5)				

Designation	LED	Status	Function
		OFF	Data exchange mode is OFF ⁵⁾
Data		Yellow	Data exchange mode is initialized
exchange	G	Green	Data exchange mode is ON
mode ⁵⁾		Yellow	Data exchange mode is ON, but there is no
		flashing	communication (timeout)
DMX ⁵⁾	Н	OFF	DMX is OFF
DMX		Green	DMX is ON

Table 8: Legend for Figure "Display Elements"

3.4 **Operating Elements**

The I/O module 750-652 has no operating elements.

With high baud rates, the pulses are so short that the on state cannot or can hardly be detected with the naked eye.

XON/XOFF data flow control active

³⁾ RTS/CTS data flow control active

⁴⁾ Defective characters are not transmitted by the I/O module to the fieldbus coupler/controller.

Firmware version 03 or higher

Schematic Diagram 3.5

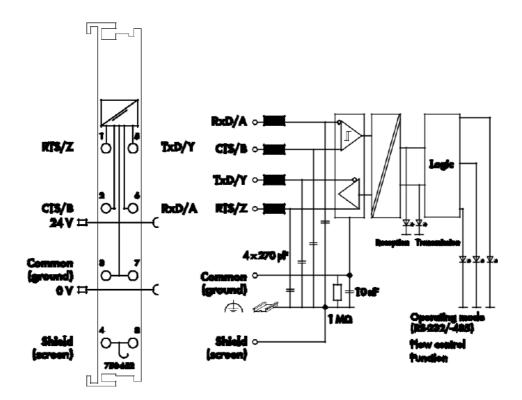


Figure 6: Schematic Diagram

3.6 Technical Data

3.6.1 Device Data

Table 9: Technical Data – **D**evice Data

Width	12 mm
Height (from upper edge of DIN 35 rail)	64 mm
Length	100 mm
Weight	Approx. 51 g
Degree of protection	IP20

3.6.2 Supply

Table 10: Technical Data - Supply

Power supply	Via system voltage internal bus (5 VDC)			
Current consumption (internal)	Max. 85 mA			
Current via power jumper contacts max.	10 A			
Isolation (peak value)	500 V system/supply			

3.6.3 Communication

Table 11: Technical Data - Communication

Table 11. Technical Data	Communication					
Transmission	1 TxD/1 RxD, full-duplex, half-duplex,					
channels	7 or 8 bit data,					
	1 or 2 stop bits					
Mode	• RS-232					
(configurable)	RS-485 half-duplex*					
	RS-422 full-duplex					
	• Data exchange RS-422 1)					
	• DMX half-duplex/250k ²⁾					
Data flow control	RTS/CTS ³⁾ depending on mode, XON/XOFF ⁴⁾					
Baud rate	300 115200 baud					
Data width, internal	8, 24 ^{*)} or 48 bytes (configurable)					
Line length	RS-485/RS-422: max. approx. 1000 m ⁵⁾					
	RS-232: max. 40 m					
	Data exchange mode/					
	DMX: max. 100 m ⁶⁾					
Buffer	2560 bytes for receive / 512 bytes for send ⁷)					

^{*)} Factory default setting

- 2) Firmware version 03 or higher: Sending DMX packets possible
- Firmware version 06 or higher: Receiving DMX packets possible

 3) Activation of flow control RTS/CTS is only possible for "RS-232" mode;
 Flow control RTS/CTS with lead/follow-on time possible with firmware version 03 or higher.
- 4) Activation of flow control XON/XOFF is only possible for "RS-232" and "RS-422 full-duplex"
- 5) Depending on baud rate, bus system and cable type (use of a twisted-pair cable is recommended)
- 6) A twisted-pair cable must be used in "DMX" mode.
- 7) "RS-232", "RS-485 half-duplex", "RS-422 full-duplex" modes

3.6.4 Interface

Table 12: Technical Data - Interface

Number of interfaces	1
RS-485/RS-422 or DMX	24 kΩ (1/2 Unit Load) Defined receiver state with short- circuited or isolated inputs (true fail-safe)
Isolation	500 V system/supply

Connection Type 3.6.5

Table 13: Technical Data – Field Wiring

Wire connection	CAGE CLAMP [®]
Cross section	0.08 mm ² 2.5 mm ² , AWG 28 14
Stripped lengths	8 mm 9 mm / 0.33 in

¹⁾ Firmware version 03 or higher

Table 14: Technical Data – Power Jumper Contacts

Power jumper contacts	Blade/spring contact, self-cleaning
-----------------------	-------------------------------------

Table 15: Technical Data – Data Contacts

Data contacts	Slide contact, hard gold plated, self-
	cleaning

Climatic Environmental Conditions 3.6.6

Table 16: Technical Data – Climatic Environmental Conditions

Operating temperature range	0°C55°C
Operating temperature range for components with extended temperature range (750-xxx/025-xxx)	−20 °C +60 °C
Storage temperature range	−25 °C +85 °C
Storage temperature range for components with extended temperature range (750-xxx/025-xxx)	−40 °C +85 °C
Relative humidity	Max. 5 % 95 % without condensation
Resistance to harmful substances	Acc. to IEC 60068-2-42 and IEC 60068-2-43
Maximum pollutant concentration at relative humidity < 75 %	$SO_2 \le 25 \text{ ppm}$ $H_2S \le 10 \text{ ppm}$
Special conditions	Ensure that additional measures for components are taken, which are used in an environment involving: – dust, caustic vapors or gases – ionizing radiation

3.7 Approvals

The following approvals have been granted to the basic version and all variants of 750-652 I/O modules:

((Conformity Marking

Korea Certification MSIP-REM-W43-SIM750

The following Ex approvals have been granted to the basic version and all variants of 750-652 I/O modules:

TÜV 07 ATEX 554086 X

I M2 Ex d I Mb II 3 G Ex nA IIC T4 Gc II 3 D Ex tc IIIC T135°C Dc

IECEx TUN 09.0001 X

Ex d I Mb Ex nA IIC T4 Gc Ex tc IIIC T135°C Dc

CULUS ANSI/ISA 12.12.01

Class I, Div2 ABCD T4

The following ship approvals have been granted to the basic version and all variants of 750-652 I/O modules listed in the table:

Table 17: Ship Approvals

	ABS	MANAGEMENT FOR SETS CHOTT GIVES CHOO MEDIODIC SERVICE	0	DNV-GL MARITIME DNV	DNV-GL MARITME	KR COMAN ELECTRIC	SJOOMAN SEE	AR Commen	THE WAY	
750-652	X	X	X	X	X	X	X	X	X	X
/025-000		X			X					

ABS (American Bureau of Shipping)

Federal Maritime and Hydrographic Agency

BV (Bureau Veritas)

DNV (Det Norske Veritas) Class B

GL (Germanischer Lloyd) Cat. A, B, C, D (EMC 1)

KR (Korean Register of Shipping)

LR (Lloyd's Register) Env. 1, 2, 3, 4

NKK (Nippon Kaiji Kyokai)

PRS (Polski Rejestr Statków)

RINA (Registro Italiano Navale)

•

3.8 Standards and Guidelines

All variations of 750-652 I/O modules meet the following requirements on emission and immunity of interference:

EMC CE-Immunity to interference EN 61131-2

EMC CE-Immunity to interference EN 61000-6-2

EMC CE-Emission of interference EN 61000-6-3

EMC marine applications-Emission

of interference acc. to DNV GL

EMC marine applications-Immunity

to interference acc. to DNV GL

4 Process Image

Note

Mapping of process data in the process image of fieldbus systems

The representation of the I/O modules' process data in the process image depends on the fieldbus coupler/controller used. Please take this information as well as the particular design of the respective control/status bytes from the section "Fieldbus Specific Design of the Process Data" included in the description concerning the process image of the fieldbus coupler/controller used.

4.1 Operating Modes for Serial Transmission

The data to be sent and received will be stored in up to 46 input and output bytes (D0 ... D45). Data flow is controlled with control and status bytes C0 and S0 or C1 and S1. The input bytes form the memory area for up to 46 characters, which were received by the interface. The characters to be transmitted are sent via the output bytes.

Table 18: Process Data for Serial Transmission

Process Image Length	Inpu	t Data	Output Data			
8 bytes	SO	0 Status byte 0		Control byte 0		
	S1	Status byte 1	C1	Control byte 1		
	D0	Data byte 0	D0	Data byte 0		
	D1	Data byte 1	D1	Data byte 1		
	D2	Data byte 2	D2	Data byte 2		
	•••					
	D5	Data byte 5	D5	Data byte 5		
24 bytes	D6	Data byte 6	D6	Data byte 6		
	D21	Data byte 21	D21	Data byte 21		
48 bytes	D22	Data byte 22	D22	Data byte 22		
	D45	Data byte 45	D45	Data byte 45		

The structure of the control and status bytes is described in the tables below.

Table 19: Control Byte C0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RC	OL2	OL1	OL0	SC	IR	RA	TR
TR	Trans	Transmit request					
RA	Recei	ve acknowle	dge				
IR	Initial	ization reque	est				
SC	Send	Send continuous (of data from the FIFO)					
OL 0		Output length (number of characters to be sent that were stored in the output data, bit 0)					
OL1		Output length (number of characters to be sent that were stored in the output data, bit 1)					
OL2		Output length (number of characters to be sent that were stored in the output data, bit 2)					
RC	Reser	Reserved for internal communication					

Table 20: Status Byte S0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RC	BUF_F	IL2	IL1	IL0	IA	RR	TA
TA	Transi	Transmit acknowledge					
RR	Recei	ve request					
IA	Initial	ization ackno	owledge				
IL0	Input bit 0)	Input length (number of characters received that are available in the input data, bit 0)					
IL1	Input bit 1)	Input length (number of characters received that are available in the input data, bit 1)					
IL2	Input bit 2)	Input length (number of characters received that are available in the input data, bit 2)					
BUF_F	Buffer	Buffer full (message: input buffer is full)					
RC	Reser	Reserved for internal communication					

Table 21: Control Byte C1

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	0		0		OL5	OL4	OL3	
OL3 Output length (number of characters to be sent that were stored in the output data, bit 3)								
OL4		Output length (number of characters to be sent that were stored in the output data, bit 4)						
OL5		Output length (number of characters to be sent that were stored in the output data, bit 5)						
0	This constant must be set to 0.							

