Innovative formulation^{1,2} drawing on the latest scientific knowledge^{3,4} of sperm function.

- High pH to mimic in vivo physiological conditions and stimulate higher motility
- High HSA concentration to support optimal sperm function
- Designed for use outside a CO₂ controlled environment
- Antioxidants to minimize Reactive Oxygen Species formation
- · Can be used for IUI, IVF and ICSI —

-SA

Product Specifications

- · Ready to use
- HSA 10mg/ml in Sperm Wash, 5mg/ml in gradients 90%, 80% and 40%
- pH 8-8.5 at room temperature
- HEPES buffered and requires no preequilibration*
- Higher bicarbonate levels to support motility and sperm function
- Osmolality differentiated through gradients to protect sperm during isolation^{3,4}
- Endotoxin ≤0.8 EU/ml for gradients, <0.15 EU/ml for wash
- · Shelf life after opening: 28 days

*used at room temp without the need for a CO₂ incubator function

Components

- · Physiological salts
- Pyruvate
- Glucose
- Bicarbonate
- · HEPES
- · EDTA
- · Taurine
- Citrate
- Gentamicin
- · HSA

Product Code	Product Name	Volume
84000060		60ml
84002060	ORIGIO Gradient™ 100	2 × 60ml
84004125		4 x 125ml
84010060	ORIGIO Gradient™ 90	60ml
84022060		2 x 60ml
84022010	ORIGIO Gradient™ 40/80	2 x 10ml
84021210		12 x 10ml
84050060		60ml
84055060	ORIGIO Sperm Wash	5 x 60ml - S
84051010		10 x 10ml

- Rossato, M., Balercia, G., Lucarelli, G., Foresta, C., & Mantero, F. (2002) Role of seminal osmolarity in the regulation of human. International Journal of Andrology, 230–235.
- 2 Yeung, C., Anapolski, M., Depenbusch, M., Zitzmann, M., & Cooper, T. (2003). Human sperm volume regulation. Response to physiological changes in osmolality, channel blockers and potential sperm osmolytes. Human Reproduction, 1029–1036.
- 3 Achikanu, C., Pendekanti, V., & Rebecca, T. (2018). Effects of pH manipulation, CatSper stimulation and Ca2+-store mobilization on [Ca2+]i and behaviour of human sperm. Human Reproduction, 1802-1811
- 4 DeRosa, N., Pooley, K., Kohut, T., Dissing, M., Campbell, B., Kirkman, & Jacks, J. (2015). Synergistic role of bicarbonate and pH on sperm motility and velocity in sperm preparations. (p. 70). Birmingham: British Fertility Society Association of Clinical Embryologists Society for Reproduction and Fertility.

