



mixed upside down for about 30 seconds, and then the reagent strip should be mixed upward for about 30 seconds. The reagent strip was then gently shaken so that the magnetic beads fell completely to the bottom of the strip.

#### Calibration

Every Test Device has a barcode label containing specific information for calibration of the particular reagent lot. The pre-defined master curve is adapted to the analyzer using the relevant CalSet.

Calibration frequency: Calibration must be performed before new lot of device is used.

Renewed calibration is recommended as follows:

- After 90 days (when using the same reagent lot on the analyzer).
- As required: e.g. quality control findings outside the defined limits.

Note: Refer to Instruction of Analyzer for the procedure of calibration.

#### Quality Control

For quality control, please use Control of REALY or Control Universal.

In addition, other suitable control material can be used. Controls for the various concentration ranges should be run individually at least once every 24 hours when the test is in use, once per reagent kit, and following each calibration.

The control intervals and limits should be adapted to each laboratory's individual requirements. Values obtained should fall within the defined limits. Each laboratory should establish corrective measures to be taken if values fall outside the defined limits.

#### Specimen Dilution Procedures

Specimens with a 25-OH VD concentration greater than 160 ng/mL will be flagged as "> 160.0 ng/mL" and may be diluted using Manual Dilution Procedure. Use the 1:10 or greater dilution is recommended. The operator must enter the dilution factor in the Patient or Control order screen. The system will use this dilution factor to automatically calculate the concentration of the sample before dilution.

#### EXPECTED VALUES

Currently there is no standard definition of the optimal vitamin D status.

Many specialists consider the commonly used population based reference values too low. Health based reference values are recommended to replace population based reference values.

Most experts agree that vitamin D deficiency should be defined as vitamin D (25-OH) of  $\leq 20$  ng/mL ( $\leq 50$  nmol/L). Vitamin D insufficiency is recognized as 21-29 ng/mL. Similarly, the US National Kidney Foundation considers levels  $< 30$  ng/mL to be insufficient or deficient. The preferred level for vitamin D (25-OH) by many experts is now recommended to be  $\geq 30$  ng/mL ( $\geq 75$  nmol/L).

$$\text{nmol/L} \times 0.40 = \text{ng/mL}$$

$$\text{ng/mL} \times 2.50 = \text{nmol/L}$$

#### INTERPRETATION OF RESULTS

As interpret the results, the patient's overall clinical situation, including symptoms, medical history and other related data, should be referred to.

#### LIMITATIONS

➤ Assay results should be utilized in conjunction with other clinical and laboratory data to assist the clinician in making individual patient management decisions. A skillful technique and strict adherence to the instructions are necessary to obtain reliable results. Procedural directions must be followed exactly and careful technique must be used to obtain valid results.

➤ If the 25-OH VD results are inconsistent with clinical evidence, additional testing is suggested to confirm the result.

➤ For diagnostic purposes, results should be used in conjunction with other data; e.g., symptoms, results of other tests, clinical impressions, etc.

➤ Specimens from patients who have received preparations of mouse monoclonal antibodies for diagnosis or therapy may contain human anti-mouse antibodies (HAMA). Specimens containing HAMA may produce anomalous values when tested with assay kits such as REALY 25-OH VD that employ mouse monoclonal

antibodies.

- Heterophilic antibodies in human serum can react with reagent immunoglobulins, interfering with in vitro immunoassays. Patients routinely exposed to animals or to animal serum products can be prone to this interference and anomalous results may be observed. Additional information may be required for diagnosis.
- Although the REALY 25-OH VD assay is specifically designed to minimize the effects of HAMA and heterophilic antibodies, assay results that are not consistent with other clinical observations may require additional information for diagnosis.

#### PERFORMANCE CHARACTERISTICS

##### Linearity

Linearity of the 25-Hydroxy Vitamin D Reagent Kit was determined by use 25-OH VD calibrator to prepare the 6 different specimens, measuring all these specimens follow the test instruction and then do linear fitting, the results show that the linear correlation coefficient(r) was better than 0.9900.

##### Precision/Reproducibility

Intra-assay coefficient of variation was evaluated on 3 different levels of control serum. Repeatedly measured 20 times, calculating the coefficient of variation.

| Intra-assay precision |              |            |       |
|-----------------------|--------------|------------|-------|
| Control               | Mean (ng/mL) | SD (ng/mL) | CV    |
| Level 1               | 7.6          | 0.56       | 7.37% |
| Level 2               | 29.5         | 2.12       | 7.19% |
| Level 3               | 80.76        | 5.56       | 6.88% |

Inter-assay coefficient of variation was evaluated on three batches of kits. Repeatedly measured 3 different levels of control serum 30 times, calculating the coefficient of variation.

| Inter-assay precision |              |            |       |
|-----------------------|--------------|------------|-------|
| Control               | Mean (ng/mL) | SD (ng/mL) | CV    |
| Level 1               | 8.1          | 0.41       | 5.39% |
| Level 2               | 31.2         | 1.89       | 6.41% |
| Level 3               | 79.95        | 6.50       | 8.13% |

##### Analytical Sensitivity

The sensitivity is defined as the concentration of 25-OH VD equivalent to the mean RLU of 20 replicates of the zero standard minus two standard deviations corresponding to the concentration from the standard curve. The analytical sensitivity is typically less than 3.5ng/mL.

##### Specificity

The specificity of the 25-OH VD assay system was assessed by measuring the apparent response of the assay to various potentially cross reactive analytes.

| Compound                      | Concentration | Cross-reactivity |
|-------------------------------|---------------|------------------|
| C3-epimer of 25-OH Vitamin D3 | 50 ng/mL      | 2.5%             |

##### Interfering Substances

The following compounds in both low-level specimen and high-level specimen with show no cross-reactivity when tested with the 25-Hydroxy Vitamin D Reagent Kit at a concentration show below:

| Compound      | Concentration |
|---------------|---------------|
| Bilirubin     | 66 mg/dL      |
| Hemoglobin    | 2 g/L         |
| Triglycerides | 400mg/dL      |

##### Method Comparison

A comparison of the 25-Hydroxy Vitamin D Reagent Kit (y) with a commercially available 25-OH VD test (x) using clinical samples gave the following correlations (ng/mL):

Linear regression

$$y = 1.0288x - 0.176$$

$$r = 0.9869$$

Number of samples measured: 121

The sample concentrations were between about 5.65 and 126.38 ng/mL.

#### WARNINGS AND PRECAUTIONS

- For *In Vitro* Diagnostic Use.
- Do not use expired or clearly damaged kits.
- Operating according to the steps described, can make the risk of daily handling patients' samples and blood products into a minimum, however, no matter what the source of the products, handling mode or the previous proof, these potentially infectious substances were used shall be in accordance with the unified considerations and Good Laboratory Practice (GLP).
- Proper disinfectant should be used to eliminate pollution.
- Follow local rules and regulations to keep and dispose of these items and containers for these items.
- The ProClin-300 is a potential skin sensitizer. Avoid dumping or splashing this reagent on your skin and clothing. In case of contact with this reagent, wash thoroughly with soap and water.
- Avoid foam formation in all reagents and sample types (specimens, calibrators and controls).
- Any modification of the procedure is likely to alter the results.
- Bacterial contamination or repeated freeze-thaw cycles may affect the test results.

#### BIBLIOGRAPHY

1. Turpeinen U, Hohenthal U, Stenman U, Hakan. Determination of 25-hydroxyvitamin D in serum by HPLC and immunoassay. *Clin Chem* 2003;49:1521-4.
2. Instruction Manual, Diasorin (formerly Incstar) 25-Hydroxy-vitamin D125I RIA. Stillwater, (MN): Diasorin (formerly Incstar) Corporation, 1994.
3. Hollis BW, Kamerud JQ, Selvaag SR, Lorenz JD, Napoli JL. Determination of vitamin D status by radioimmunoassay with an 125I-labeled tracer. *Clin chem.* 1993;39(3):529-33 .
4. Lore F, DiCaiano, Signorini AM, Caniggia A. Serum Level of 25-hydroxyvitamin D in postmenopausal osteoporosis. *Calcif Tissue Int* 1981;33:467 .
5. Ultraviolet Exposure Scenarios: Risks of Erythema from Recommendations on Cutaneous Vitamin D Synthesis. Advances in Experimental Medicine and Biology, 1, Volume 624, Sunlight, Vitamin D and Skin Cancer, 72-85.
6. Serum concentrations of vitamin D-binding protein (Group-specific component) in cystic fibrosis. *Human Genetics*, 1981, Volume 57, Number 4, 399-403.
7. Amphibian albumins as members of the albumin, alpha-fetoprotein, vitamin D-binding protein multigene family. *Journal of Molecular Evolution*, 1989, Volume 29, Number 4, 344-354.
8. Vitamin D receptor (VDR) allelic polymorphisms and bone mass in females: Influence of age and calcium supplementation. *BMC Medicine*, 2012, Volume 10, Number 1, 69.

#### SYMBOLS

| Symbol                                                                                | Meaning                            | Symbol                                                                                | Meaning                                                                 |
|---------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| IVD                                                                                   | In vitro diagnostic medical device |  | Storage temperature limit                                               |
|  | Manufacturer                       |  | Authorized representative in the European Community /European Union     |
|  | Date of Manufacture                |  | Use-by date                                                             |
|  | Do not re-use                      |  | Consult instructions for use or consult electronic instructions for use |
|  | Batch code                         |  | Do not use if package is damaged and consult instructions for use       |
|  | Catalogue number                   |  | Contains sufficient for <n> tests                                       |

#### Hangzhou Realy Tech Co., Ltd.

#2 Building, No. 763, Yuansha Village, Xinjie Street, Xiaoshan District, 311200 Hangzhou City, Zhejiang Province, PEOPLE'S REPUBLIC OF CHINA  
Website: [www.realytech.com](http://www.realytech.com)

#### EC REP

Luxus Lebenswelt GmbH  
Kochstr.1,47877, Willich, Germany

Number:1100049905  
Version:1.8  
Effective Date:2023-08-10