



# eSens EBV QT PCR kit



# Instructions for Use

#### 1 INTENDED USE

**eSens EBV QT PCR kit** is an *in vitro* nucleic acid amplification test for qualitative and quantitative detection of the *Epstein-Barr virus* (*EBV*) DNA in the clinical material (peripheral blood plasma, amniotic fluid, cerebrospinal fluid (liquor), saliva, oropharyngeal swabs, bronchoalveolar lavage, whole human blood, white blood cells, and viscera biopsy material) by using real-time hybridization-fluorescence detection.

NOTE: The results of PCR analysis are taken into account in complex diagnostics of disease.

### 2 PRINCIPLE OF PCR DETECTION

*EBV* detection by the polymerase chain reaction (PCR) is based on the amplification of pathogen genome specific region using special *EBV* primers. In real-time PCR the amplified product is detected using fluorescent dyes. These dyes are usually linked to oligonucleotide probes which bind specifically to the amplified product during thermocycling. The real-time PCR monitoring of the fluorescence intensities during the real-time PCR allows the detection of accumulating product without re-opening the reaction tubes after the PCR run.

**eSens EBV QT PCR kit** is a qualitative and quantitative test which is used with two internal controls: exogenous and endogenous.

The Internal Control STI-87 (IC) – the internal exogenous control – must be used in the extraction procedure of peripheral blood plasma, amniotic fluid, cerebrospinal fluid (liquor), saliva, oropharyngeal swabs, bronchoalveolar lavage in order to monitor test stages of each individual sample and to identify possible reaction inhibition.

When the clinical material containing cells (whole human blood, white blood cells, and viscera biopsy material) is extracted then the DNA fragment of  $\beta$ -globin gene is amplified. DNA fragment of  $\beta$ -globin gene is used as an internal endogenous control (a human genome fragment). Thus, the use of an endogenous internal control makes it possible not only to monitor test stages (DNA extraction and amplification) but also to assess the adequacy of sampling and storage of clinical material.

**eSens EBV QT PCR kit** uses "hot-start", which greatly reduces the frequency of nonspecifically primed reactions. "Hot-start" is guaranteed by using a chemically modified polymerase (TaqF). The chemically modified polymerase (TaqF) is activated by heating at 95 °C for 15 min.

The PCR kit contains the system for prevention of contamination by amplicons using the enzyme uracil-DNA-glycosylase (UDG) and dUTP. The enzyme UDG recognizes and catalyzes the destruction of the DNA containing deoxyuridine, but has no effect on DNA containing deoxythymidine. Deoxyuridine is absent in the authentic DNA, but is always present in amplicons, because dUTP is a part of dNTP mixture in the reagents for the amplification. Due to the deoxyuridine containing contaminating amplicons are sensitive to the destruction by UDG before the DNA-target amplification. So, the amplicons cannot be amplified.

The enzyme UDG is thermolabile. It is inactivated by heating at temperature above 50 °C. Therefore, UDG does not destroy the target amplicons which are accumulated during PCR.

The results of amplification are registered in the following fluorescence channels:

#### Table 1

| Channel for fluorophore | FAM                               | JOE                                | ROX                                     |
|-------------------------|-----------------------------------|------------------------------------|-----------------------------------------|
| DNA-target              | DNA (IC) Glob                     | Human<br>gammaherpesvirus 4<br>DNA | Internal Control STI-<br>87L (IC) DNA   |
| Target gene             | DNA fragment of the β-globin gene | DNA fragment of the<br>LMP gene    | Artificially<br>synthesized<br>sequence |

## **3 CONTENT**

eSens EBV QT PCR kit (ES3203A) includes:

| Reagent                             |                | Description                                          | Volume, ml | Quantity |
|-------------------------------------|----------------|------------------------------------------------------|------------|----------|
| PCR-mix-1-FL <i>EBV</i> sc          | reen/monitor   | clear liquid from colorless to<br>light lilac colour | 0.6        | 2 tubes  |
| PCR-mix-2-FRT                       |                | colorless clear liquid                               | 0.3        | 2 tubes  |
| Polymerase (TaqF)                   |                | colorless clear liquid                               | 0.03       | 2 tubes  |
| RNA-buffer                          |                | colorless clear liquid                               | 0.6        | 1 tube   |
| DNA calibrators                     | KSG1           | colorless clear liquid                               | 0.2        | 1 tube   |
|                                     | KSG2           | colorless clear liquid                               | 0.2        | 1 tube   |
| RNA-buffer                          |                | colorless clear liquid                               | 1.2        | 1 tube   |
| Negative Control (C-)               | *              | colorless clear liquid                               | 1.2        | 2 tubes  |
| Positive Control DNA<br>human DNA** | <i>EBV</i> and | colorless clear liquid                               | 0.1        | 2 tubes  |
| Internal Control STI-8              | 37 (IC)***     | colorless clear liquid                               | 0.6        | 2 tubes  |

<sup>\*</sup> must be used in the extraction procedure as Negative Control of Extraction (C-).

eSens EBV QT PCR kit is intended for 110 reactions, including controls and DNA calibrators.

# **4** ADDITIONAL REQUIREMENTS

- Hemolytic.
- DNA extraction kit.
- Disposable powder-free gloves and a laboratory coat.
- Pipettes (adjustable).
- Sterile RNase-free pipette tips with aerosol filters (up to 200 μl).
- Tube racks.
- Vortex mixer.
- Desktop centrifuge with rotor for 2-ml reaction tubes.
- PCR box.
- Real-time instruments (for example, Rotor-Gene Q (QIAGEN, Germany), CFX 96 Touch, CFX 96 Opus (Bio-Rad, USA), QuantStudio 5 (Thermo Fisher Scientific), or equivalent).
- Disposable polypropylene PCR tubes (0.1- or 0.2-ml)
  - o 0.2-ml PCR tubes with optical transparent domed or flat caps if a plate-type instrument is used;
  - o 0.2-ml PCR tubes with flat caps or strips of four 0.1-ml Rotor-Gene PCR tubes if a rotor-type instrument is used.
- Refrigerator for 2-8 °C.
- Deep-freezer at the temperature from minus 24 to minus 16 °C.
- Reservoir for used tips.

<sup>\*\*</sup> must be used in the extraction procedure as Positive Control of Extraction (PCE).

add **10 µI** of **Internal Control STI-87 (IC)** during the DNA extraction procedure directly to the sample/lysis mixture.

#### **5 GENERAL PRECAUTIONS**

The user should always pay attention to the following:

- Use sterile pipette tips with aerosol barriers and use a new tip for every procedure.
- Store all extracted positive material (specimens, controls and amplicons) away from all other reagents and add it to the reaction mix in a distantly separated facility.
- Thaw all components thoroughly at room temperature before starting detection.
- When thawed, mix the components and centrifuge briefly.
- Use disposable protective gloves and laboratory cloths, and protect eyes while samples and reagents handling. Thoroughly wash hands afterward.
- Do not eat, drink, smoke, apply cosmetics, or handle contact lenses in laboratory work areas.
- Do not use a kit after its expiration date.
- Dispose of all specimens and unused reagents in compliance with local regulations.
- Samples should be considered potentially infectious and handled in a biological cabinet in accordance with appropriate biosafety practices.
- Clean and disinfect all samples or reagent spills using a disinfectant, such as 0.5 % sodium hypochlorite, or other suitable disinfectant.
- Avoid samples and reagents contact with the skin, eyes, and mucous membranes. If these
  solutions come into contact, rinse the injured area immediately with water and seek medical
  advice immediately.
- Safety Data Sheets (SDS) are available on request.
- Use of this product should be limited to personnel trained in DNA amplification techniques.
- Workflow in the laboratory must be one-directional, beginning in the Extraction Area and moving to the Amplification and Detection Area. Do not return samples, equipment and reagents to the area in which the previous step was performed.

Some components of this kit contain sodium azide as a preservative. Do not use metal tubing for reagent transfer.

#### **6 SAMPLING AND HANDLING**

**eSens EBV QT PCR kit** is intended for the analysis of DNA extracted using DNA extraction kits from the clinical material (peripheral blood plasma, amniotic fluid, cerebrospinal fluid (liquor), saliva, oropharyngeal swabs, bronchoalveolar lavage, whole human blood, white blood cells, and viscera biopsy material).

#### 7 WORKING CONDITIONS

eSens EBV QT PCR kit should be used at 18-25 °C.

#### 8 PROTOCOL

#### 8.1 DNA extraction

Any commercial nucleic acid extraction kit, if IVD-CE validated for the indicated specimen types, could be used.

Ecoli Dx, s.r.o. recommends:

- For the manual extraction
  - **RIBO-prep** (K2-9-Et-100-CE)

- For the automatic extraction
  - ePure Viral Nucleic acid Extraction Kit (E2003)

The DNA extraction of each clinical sample is carried out in the presence of **Internal Control STI-87** (add **10**  $\mu$ **I** of **Internal Control STI-87** into each sample).

In the extraction procedure it is necessary to carry out the control reaction:

| C- | Add 100 µl of Negative Control (C-) to the tube labelled C- (Negative Control of |
|----|----------------------------------------------------------------------------------|
| C- | Extraction).                                                                     |

PCE Add 90  $\mu$ I of Negative Control and 10  $\mu$ I of Positive Control DNA EBV and human DNA to the tube labeled PCE (Positive Control of Extraction).

#### 8.2 Preparing PCR

The total reaction volume is **25 \muI**, the volume of DNA sample is **10 \muI**.

#### 8.2.1 Preparing tubes for PCR

The type of tubes depends on the PCR instrument used for analysis. Use disposable filter tips for adding reagents, DNA and control samples into tubes.

- 1. Prepare the mixture of **PCR-mix-2-FRT** and **polymerase (TaqF)**. For this purpose transfer **30 µl** of **polymerase (TaqF)** into the tube with **PCR-mix-2-FRT** and vortex without foam forming.
  - NOTE: The prepared mixture is intended for analysis of 60 samples. The mixture is to be stored at the temperature 2-8 °C for 3 months and used as needed.
    - If the mixture cannot be used up for 3 months, it is necessary to prepare a mixture for fewer reactions. For example, mix 150  $\mu$ l of PCR-mix-2-FRT and 15  $\mu$ l of polymerase (TaqF). The obtained mixture is intended for 30 reactions.
- 2. Prepare the reaction mixture.
  - NOTE: Even for analysis of **one** DNA sample in the **qualitative format**, it is necessary to run **two controls** of amplification: the Positive Control of Amplification (**KSG2**) and the Negative Control of Amplification (**RNA-buffer**). And even for analysis of **one** DNA sample in the **quantitative format**, it is necessary to run **five controls** of amplification: two calibrators (**KSG1** and **KSG2**) in two replicates and the Negative Control of Amplification (**RNA-buffer**). In addition, you should take reagents for one extra reaction.
- 3. Mix PCR-mix-1-FL *EBV* screen/monitor and the mixture of PCR-mix-2-FRT and polymerase (TaqF) prepared before in the individual tube in the following proportion:
- 10 µl of PCR-mix-1-FL EBV screen/monitor,
- 5 µl of mixture of PCR-mix-2-FRT and polymerase (TaqF).

Calculate the required reaction number including clinical and control samples (see Table 2).

# Scheme of reaction mixture preparation

| Total reaction volume is 25 μl,            |                             |                         |                                    |  |  |  |
|--------------------------------------------|-----------------------------|-------------------------|------------------------------------|--|--|--|
| including the volume of DNA sample - 10 μl |                             |                         |                                    |  |  |  |
| Reagent volume for 1 reaction (µI)         |                             | 10.0                    | 5.0                                |  |  |  |
| Quantity of clinical samples               |                             | PCR-mix-1-FL <i>EBV</i> | Mixture of PCR-mix-2-FRT           |  |  |  |
| For quantitative analysis                  | For qualitative<br>analysis | screen/monitor*         | and polymerase (TaqF) <sup>1</sup> |  |  |  |
| 1                                          | 4                           | 70                      | 35                                 |  |  |  |
| 2                                          | 5                           | 80                      | 40                                 |  |  |  |
| 3                                          | 6                           | 90                      | 45                                 |  |  |  |
| 4                                          | 7                           | 100                     | 50                                 |  |  |  |
| 5                                          | 8                           | 110                     | 55                                 |  |  |  |
| 6                                          | 9                           | 120                     | 60                                 |  |  |  |
| 7                                          | 10                          | 130                     | 65                                 |  |  |  |
| 8                                          | 11                          | 140                     | 70                                 |  |  |  |
| 9                                          | 12                          | 150                     | 75                                 |  |  |  |
| 10                                         | 13                          | 160                     | 80                                 |  |  |  |
| 11                                         | 14                          | 170                     | 85                                 |  |  |  |
| 12                                         | 15                          | 180                     | 90                                 |  |  |  |
| 13                                         | 16                          | 190                     | 95                                 |  |  |  |
| 14                                         | 17                          | 200                     | 100                                |  |  |  |
| 15                                         | 18                          | 210                     | 105                                |  |  |  |
| 16                                         | 19                          | 220                     | 110                                |  |  |  |
| 17                                         | 20                          | 230                     | 115                                |  |  |  |
| 18                                         | 21                          | 240                     | 120                                |  |  |  |
| 19                                         | 22                          | 250                     | 125                                |  |  |  |
| 20                                         | 23                          | 260                     | 130                                |  |  |  |
| 21                                         | 24                          | 270                     | 135                                |  |  |  |
| 22                                         | 25                          | 280                     | 140                                |  |  |  |
| 23                                         | 26                          | 290                     | 145                                |  |  |  |

| 24 | 27 | 300 | 150 |
|----|----|-----|-----|
| 25 | 28 | 310 | 155 |
| 30 | 33 | 360 | 180 |

<sup>\*</sup> Values are given with account of one extra reaction and five controls (2 DNA-calibrators KSG1 and KSG2 (in two replicates), negative control (RNA-buffer) for quantitative analysis of *EBV* DNA, and two controls (positive and negative) for qualitative analysis of *EBV* DNA.

NOTE:

If 60 samples are analyzed simultaneously, you can use a simplified variant of mixture preparation: transfer the content of one tube with PCR-mix-2-FRT and the content of one tube with polymerase (TaqF) into the tube with PCR-mix-1-FL EBV screen/monitor.

- 4. Take the required number of tubes for amplification for the clinical and control samples. Transfer **15 µl** of the prepared mix into each tube.
- 5. Add **10 µl** of **DNA** obtained at the DNA extraction stage into tubes with the reaction mixture.
- 6. Carry out the control amplification reactions:

#### For qualitative analysis:

| NCA | — Add <b>10 μl</b> of <b>RNA-buffer</b> to the tube labeled NCA (Negative Control of Amplification).                                                                        |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C+  | <ul> <li>Add 10 μl of KSG2 to the tube labeled C+ (Positive Control of Amplification).</li> </ul>                                                                           |
| C-  | <ul> <li>Add 10 µl of the sample extracted from the Negative Control (C-) reagent to the<br/>tube labeled C- (Negative control of Extraction).</li> </ul>                   |
| PCE | <ul> <li>Add 10 µl of the sample extracted from the Positive control DNA EBV and human<br/>DNA reagent to the tube labeled PCE (Positive control of Extraction).</li> </ul> |

#### For quantitative analysis:

| NCA       | <ul> <li>— Add 10 μl of RNA-buffer to the tube labeled NCA (Negative Control of<br/>Amplification)</li> </ul>                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KSG1 KSG2 | — Add 10 $\mu l$ of KSG1 to two tubes and 10 $\mu l$ of KSG2 to other two tubes                                                                                             |
| C-        | <ul> <li>Add 10 μl of the sample extracted from the Negative Control (C-) reagent<br/>to the tube labeled C- (Negative control of Extraction).</li> </ul>                   |
| PCE       | <ul> <li>Add 10 μl of the sample extracted from the Positive control DNA EBV and<br/>human DNA reagent to the tube labeled PCE (Positive control of Extraction).</li> </ul> |

#### 8.2.2 Amplification

1. Create a temperature profile on your instrument as follows:

#### eSens-1 amplification program

|      | Rotor-type Instruments (e.g Rotor-Gene Q or equivalent) |                      |        | Plate-type Instruments  (e.g CFX 96 Touch, CFX 96 Opus, QuantStudio 5 or equivalent.) |                       |        |
|------|---------------------------------------------------------|----------------------|--------|---------------------------------------------------------------------------------------|-----------------------|--------|
| Step | Temperature, °C                                         | Time                 | Cycles | Temperature, °C                                                                       | Time                  | Cycles |
| 1    | 95                                                      | 15 min               | 1      | 95                                                                                    | 15 min                | 1      |
|      | 95                                                      | 5 s                  |        | 95                                                                                    | 5 s                   |        |
| 2    | 60                                                      | 20 s                 | 5      | 60                                                                                    | 20 s                  | 5      |
|      | 72                                                      | 15 s                 |        | 72                                                                                    | 15 s                  |        |
|      | 95                                                      | 5 s                  |        | 95                                                                                    | 5 s                   |        |
| 3    | 60                                                      | 20 s FAM,JOE,<br>ROX | 40     | 60                                                                                    | 30 s FAM, JOE,<br>ROX | 40     |
|      | 72                                                      | 15 s                 |        | 72                                                                                    | 15 s                  |        |

Fluorescent signal is detected in the channels for the FAM, JOE and ROX fluorophores (when another tests are performed simultaneously the detection in another channels is enabled).

- 2. Adjust the fluorescence channel sensitivity.
- 3. Insert tubes into the reaction module of the device.
- 4. Run the amplification program with fluorescence detection.
- 5. Analyze results after the amplification program is completed.

### 9 DATA ANALYSIS

Analysis of results is performed by the software of the real-time PCR instrument used by measuring fluorescence signal accumulation in three channels:

- The signal of  $\beta$ -globin gene DNA (IC Glob) amplification product is detected in the channel for the FAM fluorophore,
- The signal of *EBV* DNA (Positive Control DNA *EBV* and human DNA) amplification product is detected in the channel for the JOE fluorophore,
- The signal of Internal Control STI-87 (IC) DNA amplification product is detected in the channel for the ROX fluorophore.

The results are interpreted by the software of the used instrument by the crossing (or not crossing) of the fluorescence curve with the threshold line.

9.1 Interpretation of results for DNA extracted from cell suspension (whole human blood, white blood cells, viscera biopsy material)

The results are analysed in two channels:

• the signal of β-globin gene DNA (IC Glob) amplification product is detected in in the channel for the FAM fluorophore,

• the signal of *EBV* DNA (Positive Control DNA *EBV* and human DNA) amplification product is detected in the in the channel for the JOE fluorophore.

# If the total DNA is extracted from cell suspension (whole human blood, white blood cells, viscera biopsy material) the principle of interpretation is the following:

- 1. *EBV* DNA is **detected** if the *Ct* value determined in the results grid in the channel for the JOE fluorophore does not exceed the threshold value of the positive. Moreover, the fluorescence curve of the sample should cross the threshold line in the area of typical exponential growth of fluorescence.
- 2. *EBV* DNA is **not detected** if the *Ct* value is not determined (absent) in the results grid in the channel for the JOE fluorophore (the fluorescence curve does not cross the threshold line), whereas the *Ct* value in the channel for the FAM fluorophore does not exceed the boundary *Ct* value specified in the *Technical Sheet* (for qualitative analysis) or the quantity of IC Glob DNA is more than 2000 copies/reaction (for quantitative analysis).
- 3. The result is **invalid** if the *Ct* value is not determined (absent) in the channel for JOE fluorophore, whereas the *Ct* value in the channel for the FAM fluorophore is greater than the boundary *Ct* value specified in the *Technical Sheet* (for qualitative analysis) or the quantity of IC Glob DNA is less than 2000 copies/reaction (for quantitative analysis). In such case the PCR analysis should be repeated for required sample.
- 4. The result is **equivocal** if the *Ct* value in the channel for JOE fluorophore exceeds the boundary *Ct* value specified in the *Technical Sheet*. In that case, it is necessary to conduct additional analysis for that DNA sample with two repeats. If the repeated positive *Ct* value is obtained, the result is considered positive. If the positive *Ct* value can't be reproduced in two repeats, the result is considered **equivocal**.
- 5. The negative result is considered **unreliable** if the *Ct* value in the channel for **FAM** fluorophores is greater than the boundary value specified in the *Technical Sheet* (for qualitative analysis). The quantitative positive or negative results are considered **unreliable** if the quantity of IC Glob DNA is less than 2000 copies/reaction.

The result of the analysis is considered reliable only if the results obtained for Positive and Negative Controls of amplification as well as for the Negative Control of extraction are correct (see Table 4). For quantitative analysis the results for Positive Control should fall in the concentration range specified in the *Technical Sheet*.

Version 01\_04/2022

# Results for controls for DNA extracted from cell suspension (whole human blood, white blood cells, and viscera biopsy material)

|               |                        | Ct in the channel for fluorophore |                                                   |                       |                                                                                        |  |
|---------------|------------------------|-----------------------------------|---------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------|--|
| Control       | Stage for control      | F                                 | FAM                                               |                       | OE                                                                                     |  |
|               |                        | Qualitative<br>format             | Qualitative<br>format                             | Qualitative<br>format | Qualitative<br>format                                                                  |  |
| <b>C</b> -    | DNA extraction,<br>PCR | Absent                            | Absent                                            | Absent                | Absent                                                                                 |  |
| PCE           | DNA extraction,<br>PCR | < boundary<br>value               | < boundary<br>value                               | < boundary<br>value   | concentration<br>value falls in<br>the range<br>specified in<br>the Technical<br>Sheet |  |
| NCA           | PCR                    | Absent                            | Absent                                            | Absent                | Absent                                                                                 |  |
| C+            | PCR                    | < boundary value                  | _                                                 | < boundary<br>value   |                                                                                        |  |
| KSG1,<br>KSG2 | PCR                    | _                                 | Ct value and calculated concentration are defined | _                     | Ct value and calculated concentration are defined                                      |  |

For quantitative analysis the concentration in logarithm of *EBV* DNA copies per standard cell quantity (10<sup>5</sup>) in control and clinical samples (whole human blood, white blood cells, and viscera biopsy material) is calculated according to the following formula:

$$\frac{\text{number of } EBV \text{ DNA copies in PCR sample}}{\text{number of Glob DNA copies in PCR sample}} \times 2.10^{5} = \lg \{EBV \text{ DNA copies/}10^{5} \text{ cells}\}$$

To express relative concentration of *EBV* DNA in copies per standard cells quantity (for example, 10<sup>5</sup>), use the scaling ratio:

## 10<sup>5</sup> of cells = 2⋅10<sup>5</sup> human genomes

9.2 Interpretation of results for DNA extracted from peripheral blood plasma, amniotic fluid, cerebrospinal fluid (liquor), saliva, oropharyngeal swabs, bronchoalveolar lavage with internal control sample

The results are analysed in two channels:

- the signal of the *EBV* DNA (Positive Control DNA *EBV* and human DNA) amplification product is detected in the channel for the JOE fluorophore,
- the signal of the Internal Control STI-87 (IC) DNA amplification product is detected in the channel for the ROX fluorophore.

If the total DNA is extracted from peripheral blood plasma, amniotic fluid, cerebrospinal fluid (liquor), saliva, oropharyngeal swabs, bronchoalveolar lavage with internal control sample, principle of interpretation is the following:

- 1. *EBV* DNA is **detected** if the *Ct* value determined in the results grid in the channel for the JOE fluorophore does not exceed the threshold value of the positive result. Moreover, the fluorescence curve of the sample should cross the threshold line in the area of typical exponential growth of fluorescence.
- 2. *EBV* DNA is **not detected** if the *Ct* value is not determined (absent) in the results grid in the channel for the JOE fluorophore (the fluorescence curve does not cross the threshold line), whereas the *Ct* value in the channel for the ROX fluorophore does not exceed the boundary *Ct* value specified in the *Technical Sheet*.
- 3. The result is **invalid** if the *Ct* value is not determined (absent) in the channel for the JOE fluorophore, whereas the *Ct* value in the channel for the ROX fluorophore is not determined (absent) or greater than the boundary *Ct* value specified in the *Technical Sheet*. In such cases, the PCR analysis should be repeated for required sample.
- 4. The result is considered to be **equivocal** if the Ct value in the channel for the JOE fluorophore exceeds the boundary Ct value specified in the Technical Sheet. In that case, it is necessary to conduct additional analysis for that DNA sample with two repeats. If the repeated positive Ct value is obtained, the result is considered positive. If the positive Ct value can't be reproduced in two repeats, the result is considered **equivocal**.

The result of the analysis is considered reliable only if the results obtained for Positive and Negative Controls of amplification as well as for the Negative Control of extraction are correct (see Table 5). For quantitative analysis the results for Positive Control should fall in the concentration range specified in the *Technical Sheet*.

Table 5

Results for controls for DNA extracted from peripheral blood, amniotic fluid, cerebrospinal fluid (liquor), saliva, oropharyngeal swabs, bronchoalveolar lavage with internal control

|               |                        |                       | el for fluorophor                                            | orophore              |                         |
|---------------|------------------------|-----------------------|--------------------------------------------------------------|-----------------------|-------------------------|
| Control       | Stage for control      | JOE                   |                                                              | R                     | ОХ                      |
|               |                        | Qualitative<br>format | Qualitative<br>format                                        | Qualitative<br>format | Qualitative<br>format   |
| <b>C</b> -    | DNA extraction,<br>PCR | Absent                | Absent                                                       | < boundary<br>value   | < boundary<br>value     |
| PCE           | DNA extraction,<br>PCR | < boundary<br>value   | Ct value falls in the range specified in the Technical Sheet | < boundary<br>value   | < boundary<br>value     |
| NCA           | PCR                    | Absent                | Absent                                                       | Absent                | Absent                  |
| C+            | PCR                    | < boundary<br>value   | _                                                            | < boundary<br>value   | _                       |
| KSG1,<br>KSG2 | PCR                    | _                     | Ct value and calculated                                      | _                     | Ct value and calculated |

|  | concentration | concentration |
|--|---------------|---------------|
|  | are defined   | are defined   |
|  |               |               |

For quantitative analysis the concentration of *EBV* DNA (**CS** *EBV* DNA) per ml of sample (peripheral blood plasma, amniotic fluid, cerebrospinal fluid (liquor), saliva, oropharyngeal swabs, urine samples, and bronchoalveolar lavage) is calculated according to the following formula:

 $CS_{EBVDNA} = [K_{EBVDNA}/K_{STI-87}] \times IC coefficient (copies/ml)$ 

K<sub>EBV DNA</sub> – quantity of EBV DNA copies in DNA-sample;

K<sub>STI-87</sub> – quantity of STI-87 DNA copies in DNA-sample;

IC coefficient - quantity of Internal Control STI-87 DNA copies in DNA-sample.

IC coefficient, Positive Control DNA EBV and human DNA, Internal Control STI-87 and DNA calibrators' concentrations as well as boundary Ct values are specified in the Technical Sheet.

### 10 TROUBLESHOOTING

Results of analysis are not taken into account in the following cases:

- 1. If any Ct value appears in the channel for ROX fluorophore for the Negative Control of Amplification (NCA), in the channels for FAM and JOE fluorophores for Negative Control of Amplification (NCA) and Negative Control of Extraction (C-). The results testify the presence of contamination of reagents or samples. In that case the PCR analysis (beginning with the extraction stage) should be repeated for all samples, in which DNA was found,
- 2. If Ct value is absent or greater than the threshold in the results grid for the Positive Control of Amplification (C+) **KSG2** in the channel for JOE (EBV), FAM or ROX fluorophores, the amplification should be repeated for all samples where **EBV DNA** was not detected.
- 3. If the Ct value is absent or greater than threshold for the Positive Control of Extraction (PCE) Positive Control DNA EBV and human DNA in the channel for JOE (EBV), FAM or ROX fluorophores, the results of analysis must be considered as **invalid** for all samples. PCR should be repeated for all samples.
- 4. If the *Ct* value is absent or is greater than the specified boundary value in channel for JOE and the *Ct* value in the channels for FAM or ROX fluorophore is greater than the maximal value for **IC**, the experiment should be repeated starting from DNA extraction stage.
- 5. If the Ct value is greater than the specified boundary value in channel for JOE and the Ct value in the channels for FAM or ROX is less than the specified boundary value, the results of analysis must be considered as **equivocal**. In that case, it is necessary to conduct additional analysis for that DNA sample with two repeats. If the repeated positive Ct value is obtained, the result is considered positive. If the positive Ct value can't be reproduced in two repeats, the result is considered **equivocal**.
- 6. If in quantitation analysis the copies/reaction values in DNA calibrators differ by more than for 30 % from the set values, it is necessary to check the tube order in the rotor (calibrators should be placed in the wells indicated as **Standard** in sample table, concentration should correspond to concentration specified in the *Technical Sheet*, well no.1 must be filled with some test tube (not empty)).
- 7. If the correlation coefficient R in **Standard Curve** window is less than 0.9 (in case of quantitative analysis), it means that calibration failed. Check the settings of calibrators and correct inaccuracies, if no effect, repeat PCR for all samples and calibrators.

#### 11 TRANSPORTATION

eSens EBV QT PCR kit should be transported at 2-8 °C for no longer than 5 days.

# 12 STABILITY AND STORAGE

All components of the **eSens EBV QT PCR kit** are to be stored at 2-8 °C when not in use (except for PCR-mix-1-FL *EBV* screen/monitor, PCR-mix-2-FRT, and polymerase (TaqF)). All components of the **eSens EBV QT PCR kit** are stable until the expiration date on the label. The shelf life of opened reagents is the same as that of unopened reagents, unless otherwise stated.

NOTE:

PCR-mix-1-FL EBV screen/monitor, PCR-mix-2-FRT and polymerase (TaqF) are to be stored at temperature from minus 24 to minus 16 °C

PCR-mix-1-FL EBV screen/monitor is to be kept away from light.

#### 13 SPECIFICATIONS

#### 13.1 Analytical sensitivity

The linear range of **eSens EBV QT PCR kit** is **500 – 10.000.000 copies/ml**. If the result is more than 10.000.000 copies/ml, it is indicated as **the result is more than 10.000.000 EBV DNA copies/ml**. If the result is less than 500 copies/ml, it is indicated as **the result is less than 500 EBV DNA copies/ml**.

| Clinical material                                                                                                          | DNA extraction kit                                      | Analytical sensitivity                               |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|
| Peripheral blood plasma, amniotic fluid, cerebrospinal fluid (liquor), saliva, oropharyngeal swabs, bronchoalveolar lavage | RIBO-prep<br>ePure Viral Nucleic<br>acid Extraction Kit | 400 copies/ml                                        |
| Whole human blood, white blood cells, viscera biopsy material                                                              | RIBO-prep ePure Viral Nucleic acid Extraction Kit       | 5 <i>EBV</i> DNA copies<br>per 10 <sup>5</sup> cells |

#### 13.2 Analytical specificity

The analytical specificity of **eSens EBV QT PCR kit** is ensured by the selection of specific primers and probes as well as stringent reaction conditions. The primers and probes have been checked for possible homologies to all sequences published in gene banks by sequence comparison analysis.

eSens EBV QT PCR kit is intended for Epstein-Barr virus DNA fragment detection. The specific activity of eSens EBV QT PCR kit is proved by analyzing QCMD panels as well as by analyzing clinical material with subsequent confirmation of results by sequencing the amplification fragments. The activity of PCR kit components with respect to DNA of other viruses (human cytomegalovirus, herpes simplex virus types 1 and 2, human herpes virus types 6 and 8, Varicella Zoster Virus, Parvovirus B19 and others), bacterial pathogens (Staphylococcus aureus, Streptococcus pyogenes, Streptococcus agalactiae and others), and human DNA is absent.

The clinical specificity of eSens EBV QT PCR kit was confirmed in laboratory clinical trials.

8. by Federal Budget Institute of Science "Central Research Institute for Epidemiology".

# **14 QUALITY CONTROL**

The production process, including batch release, is carried out in accordance with an established quality management system certified according to ISO 13485.

## **15 KEY TO SYMBOLS USED**

| REF      | Catalogue number                                    | Σ             | Contains sufficient for <n> tests</n> |
|----------|-----------------------------------------------------|---------------|---------------------------------------|
| LOT      | Batch code                                          |               | Use-by Date                           |
| IVD      | In vitro diagnostic medical device                  | <u></u> i     | Consult instructions for use          |
| VER      | Version                                             | 淡             | Keep away from sunlight               |
| 1        | Temperature limit                                   | NCA           | Negative control of amplification     |
|          | Manufacturer                                        | C-            | Negative control of extraction        |
| $\sim$   | Date of manufacture                                 | C+            | Positive control of amplification     |
| EC REP   | Authorized representative in the European Community | IC            | Internal control                      |
| <u> </u> | Caution                                             | PCE           | Positive Control of Extraction        |
|          |                                                     | KSG1,<br>KSG2 | DNA calibrators                       |

## **List of Changes Made in the Instruction Manual**

| VER        | Location of changes | Essence of changes |
|------------|---------------------|--------------------|
| 01_04/2022 |                     |                    |

Ecoli Dx, s.r.o., Purkyňova 74/2

110 00 Praha 1, Česká republika Tel: +420 325 209 912

Mobil: +420 739 802 523