

VINCEIOE

Data sheet V1.12

Contents

1. System Overview	
1.1 Architecture	5
1.2 Applications	6
1.3 Imaging features	6
1.4 Standard features	7
1.5 Language support	8
2. Ergonomics	8
2.1 Keyboard	8
2.2 Image display screen	9
2.3 Wheels	9
2.4 Touch gestures	9
2.5 System boot-up	9
2.6 Comments	9
2.7 Bodymark	9
2.8 Peripherals	9
2.9 Dimensions and Weight	10
2.10 Electrical Power	10
2.11 Operating Environment	10
2.12 Storage & Transportation Environment	
3. Transducers	10
3.1 Transducer Technology	10
3.2 Transducer types	10
3.3 Transducer selection	10
4. Advanced Imaging controls	12
4.1 VFusion	
4.2 VSpeckle	12
4.3 VTissue	13
4.4 3D/4D	13
4.4.1 Inversion mode(optional)	13
4.4.2 Magic Cut(optional)	13
4.4.3 Free View(optional)	13
4.4.4 Volume Contrast Imaging(VCI)	13
4.4.5 Niche view(optional)	13
4.4.6 3D Smart Face(optional)	13
4.5 Next generation RF-based image processing	14
4.6 Stress Echo(optional)	14
4.7 Multi-angle M mode (optional)	14
5. Imaging modes	14
5.1 2D Imaging	
5.2 Harmonic Imaging	
5.3 M mode	15
5.4 Color Doppler mode	15

5.5 Power Doppler mode	16
5.6 Pulsed Wave (PW) Doppler	16
5.7 Continuous Wave Doppler (CWD)(optional)	17
5.8 3D/4D	17
5.9 PView (Optional)	18
5.10 TView	18
5.11 Auto	18
6. Touch Panel Interface	19
6.1 2D mode	19
6.2 M Mode	19
6.3 CF mode	19
6.4 PW/CW mode	20
6.5 3D mode	20
6.6 4D mode	20
7. System Feature	21
7.1 Display modes	21
7.2 Display annotation	21
7.3 Simple User Operation Interface	22
7.4 Cineloop	22
7.5 Quick save feature	
7.6 Archive	22
7.7 Report	22
7.8 Connectivity	23
7.9 Probes/application	23
7.10 Safety Conformance	23
8. Measurement and Analysis	24
8.1 Measurement in different modes	24
8.1.1 Generic Measurement in 2D mode	24
8.1.2 Generic Measurement in CFM mode	24
8.1.3 Generic Measurement in M mode	24
8.1.4 Measurement in PW mode	25
8.2 Measurement in different applications	25
8.2.1 Abdominal Measurement	25
8.2.2 Small Part Measurement	25
8.2.3 Vessel Measurement	25
8.2.4 Gynecology Measurement	26
8.2.5 Urology Measurement	26
8.2.6 Pediatric Measurement	26
8.2.7 Obstetrics Measurement	26
8.2.8 Cardiac Measurement	26
8.2.9 Auto NT (Nuchal Translucency) measurement(Optional)	26
8.2.10 Auto IMT (Intima-Media Thickness) measurement (Optional)	26
8.2.11 Live IMT (Intima-Media Thickness) measurement (Optional)	26
8.2.12 Auto IT (Intracranial translucency) measurement(Optional)	26
8.2.13 Auto Follicle(2D/3D)(Optional)	26

8.2.14 Smart 3D Volume Measurement(Optional)	27
8.2.15 VAim OB measurement (Optional)	27
8.2.16 VAim Hip measurement	
8.2.17 VAim Follicle(2D) measurement (Optional)	

VINNCEIGE

Ultrasound System Specifications

Mobile, solid and affordable VINNO E10E provides excellent value across the full range of general imaging and women healthcare applications. It is also perfect for regional nerve block, musculoskeletal, rheumatology applications by:

- Exceptional image quality including 3D/4D capability
- Versatile features and functions
- Easy to use workflow with touch panel and 21.5 inch monitor

1. System Overview

1.1 Architecture

- The revolutionary RF platform, The First In The World, allows for more accurate information. This platform transfers all RF data for computing without any information loss. It has a much better advantage in detail imaging than current advanced platforms
- Thanks to the RF platform, it allows the development of many RF-based processing algorithms, which have ultra-premium contrast and resolution imaging
- This unique platform is capable of

processing multiple data streams simultaneously up to 2 000 000 digital channels

- Up to 25MHz next generation digital broadband and high resolution acoustic beamforming
- The new 12 bit, low noise, digital circuitry, with up to 280 dB dynamic range has improved 2D performance and increased Doppler sensitivity
- Next generation adaptive image processing for noise and artifact reduction that improves tissue presentation and edge definition
- Fully independent, triplex multiple mode operation for easy in Doppler procedures
- Multi-processors allow simultaneous mode changes and support for advanced system functionality

- Zone Imaging technology can obtain high resolution and good penetration in the whole image zone through the adaptive dynamic beam control from the near field to the far field
- VLuminous Flow provides the color Doppler flow innovatively in a 3D view with excellent sensitivity, which can help understand the structure of blood flow and small vessels intuitively
- Sync ROI enables the width of 2D scan area is synchronized with the CF ROI, which effectively improves the frame rate
- Diverse customized tools make E10E a truly elite unit, which enhances efficiency dramatically
- Zscore analysis, provide a new way for fetal heart evaluation
- Support to export 3D data for 3D printer
- Support multiple DICOM server configuration
- Background transfer, supports background export without interrupting the actual scan
- VReport, a customer-centric tool for report templates design, makes the whole report procedure more smooth and individual
- Customized user interface, allows user to change the position of buttons on the touch screen, also the size of 'probe&app' UI window is adjustable
- · VWork, an intelligent feature, which

enables users to configure workflows for every application scenario. This leads to easy and effective adherence to a department protocol and saves operation time to a great extent

1.2 Applications

- Abdomen
- Obstetric
- Gynecology
- Cardiology
- Urology
- Vascular
- TCD
- Small Parts
- Pediatrics
- Breast

1.3 Imaging features

- 2D grayscale imaging
- Harmonic imaging both in tissue harmonic and pulse inversion harmonic technologies
- VFusion, directional-enhanced information compounding
- VSpeckle, specialized and adaptive imaging processing to remove speckle noise artifacts and enhance tissue edge for clarity and accuracy
- VTissue, the advanced adaptive image processing to compensate for sound and speed variation in different tissue
- Auto imaging optimization

- Easy Comparative Function to compare previous exam
- Color Doppler imaging
- Power Doppler imaging
- Pulse wave Doppler imaging
- Simultaneous 2D and M mode
- Duplex 2D/PW Doppler
- Triplex 2D/Color/PW Doppler
- High PRF pulsed wave Doppler
- Continuous Wave Doppler(optional)
- Pan/Zoom in real time and freez mode
- FULL screen imaging to enlarge imaging size
- Dual real time imaging without compromising imaging size
- PView for panoramic imaging (optional)
- TView for trapezoidal imaging
- Multi Angle M mode(optional)
- Needle Enhancement(optional)
- SGC (Scanline gain compensation)
- HSG
- 2D/3D auto follicle(optional)
- Free 3D (optional)
- · 3D imaging
- Real-time 4D
- Tomographic display (MCUT) (optional)
- Inversion Mode (Optional)
- Magic Cut(Optional)
- Free view (Optional)
- Stress echo(Optional)
- Auto NT(Nuchal translucency)
 (Optional)

- VLuminous flow, a feature which shows the blood flow in a 3-D view with excellent sensitivity
- Curved M mode, user can draw any curved sample line freely and get corresponding results(Optional)
- Sync B/C width, the width of B mode interest area is always be the same with the CF mode
- Multi-line Angular M-Mode, Up to 4 sample lines(Optional)
- Live IMT, display intima-media thickness in real time(Optional)
- VAim(Vinno Artificial Intelligent Measurement) for OB、Follicle、Hip、 pelvic(Optional)
- 3D Smart Face, an intelligent tool for fetal face optimization(Optional)
- Auto IT, automatic measurement of Intracranial translucency (Optional)

1.4 Standard features

- Up to 25Mhz high frequency in system platform.
- · RF platform and RF data processing
- Integrated black/white thermal video printer slot
- Patient information database
- Integrated HDD 500 Gb
- Quick store to USB memory stick
- Quick store to hard drive
- Quick print to B/W and color thermal video printer

- Network storage and printing
- Full measurement and analysis package
- Real time auto wave Doppler track and calculations
- Vascular calculations
- Cardiac calculations
- OB calculations and tables
- Gynecological calculations
- Urological calculations
- Renal calculations
- Volume calculations
- Wireless networking for easy data sharing, storage and printing(Optional)
- Up-to-date connectivity and data management solutions, wireless (optional), LAN 100 Mb, integrated database
- DICOM compatibility (Optional)
- 4 active probe ports
- 3 USB ports
- 8 TGC slides
- Average 5 multiple adjustable frequency in every probe and mode
- Up to 512 line density

1.5 Language support

- Software: Chinese, English, German,
 Greek, Malay, Portuguese, Romanian,
 Spanish, Swedish, Norwegian, Danish,
 Finnish, French, Polish, Russian, Uighur,
 Italian, Czech, Hungarian, Cambodia
- Keyboard input: Chinese, English,

German, Greek, Malay, Portuguese, Romanian, Spanish, Swedish, Polish, Norwegian, Danish, Finnish, French, Russian, Italian, Czech, Cambodia, Polski

- Control panel overlay: English
- User manual: Chinese, English,
 German, Russian, Portuguese, Spanish,
 Italian, French

2. Ergonomics

- Unique human oriented design for comfort and convenience
- Fully articulating 21.5 inch high resolution flat panel display
- Easy access DVD media drive
- 4 active transducer ports
- 3 transducer holders (removable for easy cleaning)
- 1 Gel holder
- USB DVDRW (Optional)
- B/W printer support
- Integrated touchable alphabetic keyboard
- Simple, easy and effective cable management structure
- Backlight retractable alphanumeric keyboard (Optional*)

2.1 Keyboard

- Highly sensitive 10.1 inch LED technology touch panel
- Resolution: 1280*800 pixels

- Intuitive, configurable and touchable interactive operation interface
- Ergonomic hard keys for general ultrasound operations
- 8 TGC slides, functionality at any depth
- Backlight keys

2.2 Image display screen

- 21.5 inch high resolution LED technology, pixel resolution: 1366x768
- Brightness, contrast and color temperature adjustment
- View angle: -178° ~ 178°
- Number of color: 16.7M
- Adjustable Gamma curve optimization for dedicated applications
- Multifunctional support arm design
- Independent tilt and swivel adjustment
 - Swivel range: \pm 180degrees
 - Tilt range: -20 ~ 90degrees
 - Up/down: 150mm

2.3 Wheels

- Diameter: 125mm
- Front castor (2 ea): Total lock
 Rear castor (2 ea): Total lock

2.4 Touch gestures

 Swipe down/up: display/remove projected image on touch screen

- Swipe horizontally: page up/down or review images/cine loops one by one
- Swipe from left edge to right: display hidden menu on projected image.
- · Image parameter adjustment
- Measurement on projected image on touch screen
- Rotate or erase on projected
 3D/4D image on touch screen

2.5 System boot-up

- Boot-up from shut-down: ≤62 sec
- Shut-down: ≤12 sec

2.6 Comments

- Supports text input and arrow
- Support freehand marking on touch screen
- Adjustable text size and arrow size
- Supports home position
- Covers various application
- User customizable

2.7 Bodymark

- More than 215 bodymarks for versatile application
- User customizable

2.8 Peripherals

• B&W thermal video printer: Sony UP-D898MD(optional)

Color thermal video printer:
 Sony UP-D25MD (optional)

Memory stick (optional)

2.9 Dimensions and Weight

Height: 1350mmWidth: 520mmDepth: 835mmWeight: 55kg

2.10 Electrical Power

Voltage: 100-240V ACFrequency: 50/60Hz

• Power: < 400VA for console only

2.11 Operating Environment

Ambient temperature: 10-40° C

• Relative humidity: 30-75%

 Atmospheric pressure: 700hPa-1060hPa

2.12 Storage & Transportation

Environment

Ambient temperature: -5-50° C

Relative humidity: 10%-80%

(no condensation)

• Atmospheric pressure:

700hPa-1060hPa

3. Transducers

3.1 Transducer Technology

- Xcen technology for wideband frequency
- Unique and high technical Xcen probe connector to adapt all different type of VINNO product models

3.2 Transducer types

- Convex array
- Linear array
- Phase array
- 4D probe
- Endocavity probe
- Micro-convex array

3.3 Transducer selection

- Electronic switching of transducers
- User customizable imaging presets for each transducer and application
- Automatic dynamic receiving focus in all transducers
- Multiple adjustable transmit focal zone, up to 8 focal zone

F2-5C Broadband Curved Array

• Field of view: 59 degree

Convex radius: 60mm

 Application: abdomen, OB/Gyn, urology, pediatric

Frequency range: 2.0 -6.5MHz

• Center frequency: 3.2 MHz

Physical footprint: 72mm x 27mm

- Transducer elements:128
- Pulsed wave Doppler, color Doppler, power Doppler, harmonic
- Multi-imaging frequency setting in
 2D, Harmonic, color Doppler and Wave
 Doppler modes
- Reusable biopsy guide available

D3-6C broadband curved array volume probe

Field of view: 75 degree

Convex radius: 40mm

Application: abdomen, OB/Gyn, urology

• Frequency range: 3.0 - 6.0MHz

Physical Footprint: 82mm x 53mm

Center frequency: 4.0 MHz

Transducer elements:128

- Pulsed wave Doppler, color Doppler, power Doppler, harmonic, 3D/4D grayscale and 3D color modes
- Multi-imaging frequency setting in
 2D, Harmonic, color Doppler and Wave
 Doppler modes

D3-6CE broadband curved array volume probe

Field of view: 68 degree

Convex radius: 40mm

Application: abdomen, ob/gyn, urology

• Center frequency: 4.5 MHz

Transducer elements:128

B-mode Frequency range: 3-5.5MHz

Physical footprint: 74mm x 51mm

 Pulsed wave Doppler, color Doppler, power Doppler, harmonic, 3D/4D grayscale and 3D color modes

G4-9M broadband micro convex array

Field of view: 138 degree

• Convex radius: 12mm

Application: pediatric, abdomen, cardiac

• Frequency range: 5.0 – 11.0MHz

Physical Footprint: 34mm x 29mm

Center frequency: 7.0MHz

Transducer elements:128

 Pulsed wave Doppler, color Doppler, power Doppler, harmonic

Multi-imaging frequency setting in
 2D, Harmonic, color Doppler and Wave
 Doppler modes

G4-9E broadband micro convex endocavity array

• Field of view: 138 degree

Convex radius: 11.5mm

• Application: Ob/Gyn, urology

• Frequency range: 5.0 - 11.0MHz

• Physical Footprint: 24mm x 18.8mm

Center frequency: 6.9MHz

Transducer elements:128

 Pulsed wave Doppler, color Doppler, power Doppler, harmonic

Multi-imaging frequency setting in
 2D, Harmonic, color Doppler and Wave
 Doppler modes

Reusable biopsy guide available

F4-9E broadband micro convex endocavity array

• Field of view: 150degree

Convex radius: 10mm

Application: Ob/Gyn, urology

• Frequency range: 5.0 - 11.0MHz

Center frequency: 3.2MHz

Physical footprint:

21.0mm (lens) x 19.0mm(lens)

Transducer elements:128

 Pulsed wave Doppler, color Doppler, power Doppler, harmonic

Multi-imaging frequency setting in
 2D, Harmonic, color Doppler and Wave
 Doppler modes

• Reusable biopsy guide available

G1-4P phased array

· Applications: cardiac, abdomen

• Field of view 90 degree

• Aperture size: 17.92mm

• Frequency range: 2.0-5.0Mhz

• Physical Footprint:

34.5mm x 28.5mm

Center frequency: 2.5MHz

Transducer elements: 64

 Pulsed wave Doppler, continuous wave Doppler, color Doppler, power Doppler, harmonic

Multi-imaging frequency setting in
 2D, Harmonic, color Doppler and Wave
 Doppler modes

• Reusable biopsy guide available

F4-12L broadband linear array

· Fine pitch, high resolution

• Applications: vascular, small parts

• Aperture size: 38.4mm

• Frequency range: 4.0 -16.0MHz

• Center frequency: 7.5MHz

Physical footprint: 50mm x 18.5mm

• Transducer elements:128

 Pulsed wave Doppler, color Doppler, power Doppler, harmonic

Multi-imaging frequency setting in
 2D, Harmonic, color Doppler and Wave
 Doppler modes

Reusable biopsy guide available

4. Advanced Imaging controls

4.1 VFusion

- Available on all transducers and for 2D, 3D/4D (except phase array probe)
- Operate in conjunction with VSpeckle, harmonic imaging

4.2 VSpeckle

- Available on all transducers and for 2D, 3D/4D
- Virtually eliminate speckle noise artifact and dynamically enhances tissue margins
- Selectable multiple levels of speckle noise reduction and smoothing
- Operates in conjunction with VFusion and harmonic imaging

4.3 VTissue

- Advanced imaging processing to adapt to the speed of the ultrasound variation in different tissue
- Improved detail resolution and conspicuity of lesions
- Presentable sound and speed in different applications
- One touch operation to ease diagnosis
- Better detection in diffuse lesions of organs

4.4 3D/4D

4.4.1 Inversion mode(optional)

- This render mode is used to display anechoic structures such as vessels
- It invert the gray values of the rendered image, such as black image information become white and vice versa

4.4.2 Magic Cut(optional)

- Ability to edit images, make possible to cut away structure obstructing the view in the ROI
- Several cutting methods available
- Have quality index to indicate if there is proper external force

4.4.3 Free View(optional)

- Provide any plane view to visualize the internal tissue information
- Improve the contrast resolution to facilitate the detection of diffuse lesions in organs

4.4.4 Volume Contrast Imaging(VCI)

- Increases the tissues demarcation inside the adjustable slab
- Renderes images with improved contrast resolution

4.4.5 Niche view(optional)

- Display 3 orthogonal planes centered on ROI
- Use Depth to translate the selected plane
- Each imaging plane or Niche image can be selected using image reference

4.4.6 3D Smart Face(optional)

An intelligent tool for fetal face optimization. This tool detects the fluid/tissue interface and smartly removes noise in front of the baby inside the ROI, to obtain an optimal baby face

- Use Auto key on the keyboard to remove the obstacle in front of the baby
- Only works on 3D Render
- · Can not use this feature together

with MagicCut

4.5 Next generation RF-based image

processing

- Available on all imaging transducers in 2D grayscale modes
- Virtually eliminates speckle noise artifact and dynamically enhance tissue edge
- Operates with other real-time processing algorithms

4.6 Stress Echo(optional)

- Stress echo is a non-invasice, dynamic evaluation of myocardial structure and its function under an external stress(exercise or pharmocology)
- 12 Ready to use templates
 (max 8 stages * 6 views) Editable
- User definable template
- Re-arrange & Select default template
- 8 View names available
- 9 Stage names are available (can add user defined stage name)
- One Touch Shuffle (Stage / View)
- Touch & Compare any view of stage
- Systole only review

4.7 Multi-angle M mode (optional)

- Sample on moving tissue from multi-angle
- Present wall motion spectrum

based on tissue moving

5. Imaging modes

5.1 2D Imaging

- Pre-defined ATGC (adaptive temporal gain compensation) curves optimized for consistently excellent imaging
- Display format: Single, Dual, Quad
- B/M acoustic output: 0-100%
- Select between 1 to 8 transmit focal zones
- Reverse function: on/off
- 2D optimization: on/off
- Centerline: on/off
- L/R flip and U/D flip: on/off
- VFusion : ≥ 7steps
- VSpeckle : ≥ 7 steps
- Harmonic imaging both tissue harmonic and phase inversion
- Cineloop image review
- Scanning Depth: 0-40 cm probe depending
- Dual imaging with independent cineloop
- 256(8 bit) gray level
- Up to 8 focus zone adjustable
- Multiple color maps with chroma imaging
- FULL screen imaging to larger image size
- Multi frequency: 5 levels, probe dependent

• Gray filter: ≥ 7 steps

• Persistence: ≥ 8steps

Selectable image angles, probe
 Dependent

• Gain: 0-100%

Dynamic range: 30-280 dB

VSharpen(enhance edge contrast):

≥ 8steps

• Smooth(improve spatial resolution):

≥ 11steps

VNear to enhance SNR of near field,
 4steps

• Gray Map: ≥ 32types

• Tint Map: ≥ 24types

• TGC: 8 slides on control pannel

• SGC: 8 ponds on touch pannel

• TI heat index: TIB, TIS, TIC

• Rotation: 0 $^{\circ}$,90 $^{\circ}$,180 $^{\circ}$,270 $^{\circ}$

Zoom(up to 10×)

5.2 Harmonic Imaging

- Supports both tissue harmonic and phase inversion imaging (transducer and frequency dependence)
- Second harmonic processing to reduce artifacts and improve image clarity
- Maximize detail resolution and enhance contrast
- Available on all imaging transducers
- Extends high performance imaging

capabilities to all patient body types

5.3 M mode

· Selectable sweeping rates,

≥ 10steps

• Time marks: 0.025 - 0.5 second

 Selectable display format prospective or retrospective (V2/3, V1/3, V1/2, H1/2, H3/4, full screen)

Chroma colorization with multiple color maps

• Cineloop review for retrospective analysis of M-mode data

256 gray levels

Acoustic output: 10%-100%

• Gray filter: ≥ 7steps

Dynamic range: 108db-128db,2db/step

• Vsharpen: ≥ 6steps

• Gray Map: ≥ 32types

• Tint Map: ≥ 24types

• Gain: 0-100%

MultiAngle: available

5.4 Color Doppler mode

Available on all imaging transducers

 Automatically adapts transmit and receive bandwidth processing based on the color box position

Cineloop review with full playback control

Steering on linear array transducers

- Color flow M mode display for tissue motion and flow velocity(optional)
- Selectable baseline, line density, flash reduction, persistence, maps, frequency, PRF, wall filter, packet size, color level, sensitivity, focus position, acoustic power, and smooth
- FULL screen imaging to larger image size
- L/R flip and U/D flip: on/off
- Frequency: ≥ 5 steps, depend on probes
- Baseline: 0-100%
- Acoustic power: 5%-100%
- Line density: ≥ 6 steps
- Flash reduction: ≥ 6 steps
- Persistence: ≥ 20 steps
- Smooth : ≥ 7steps
- Sensitivity: ≥ 5 steps
- Transparency: ≥ 6steps
- Color level: ≥ 14 steps
- Packet size: ≥ 10 steps
- Invert function: on/off
- Color gain: 0-100%
- Adjustable region of interest
- Region of interest
- Baseline invert
- Simultaneous mode during PW mode
- Zoom

5.5 Power Doppler mode

- High sensitive mode for small vessel visualization
- Available on all transducers
- Cineloop review
- Display format: Single, Dual,
 Quad
- Color maps: ≥ 24 types
- Color levels: ≥ 11 steps
- Sensitivity: ≥ 5steps
- Smooth: ≥ 7steps
- Persistence: ≥ 20steps
- Individual controls for gain
- Adjustable region of interest

5.6 Pulsed Wave (PW) Doppler

- Ultra high resolution spectral FFT rate
- Angle correction with automatic velocity scale adjustment
- Normal, invert display around horizontal zero line
- Auto optimization: on/off
- Invert: on/off
- Selectable display format prospective or retrospective (V2/3, V1/3, V1/2, H1/2, H3/4, full screen)
- Selectable gray filter, dynamic range, frequency, PRF, wall filter, baseline, angel correct, sample volume
- Gray filter: ≥ 6steps
- Dynamic range: 108db-128db
- Baseline: 5%-95%
- Sample volume: 0.5mm-10mm

Angle correct: -80° ~80°

• Sensitivity: ≥ 21steps

• Audio Volume: 0-20

• Spectrum Optimize: ≥ 28steps

• Gray map: ≥ 13types

• Tint map: ≥ 11types

• Selectable sweep speeds: ≥ 10 steps

• PW acoustic output: 5%-100%

 Trace direction: above, below, Both

Trace type: max, mean, both

Cardiac cycle: 1-5

 Selectable low frequency signal filtering with adjustable wall filter settings

 Selectable grayscale curve for optimal display

Selectable chroma colorization maps

 Auto function to optimize spectral Doppler display

Digitally enhanced stereo output

256 gray levels

 Post-processing in frozen mode includes map, baseline, invert and chroma

 Simultaneous or duplex mode of operation

 Simultaneous 2D, color Doppler, pulsed Doppler

• High PRF capability in all modes including duplex and triplex

5.7 Continuous Wave Doppler(CWD)(optional)

- Cardiac sector array transducer only
- User can measure distance and area
- Measurement can be made on individual frames during cineloop review

5.8 3D/4D

- 3D/4D rotation
- Grayscale imaging controls
- Selectable rendering approaches:
 Surf Texture, Surf Smooth, Grad Light,
 Surf HDR, Trans Max, X-ray, Transp
 Min, Light
- Review volume
- Volume Angle:15%-75%
- Quality:low,mid,good,high,best
- Threshold:256
- Transparency:0.1-2, 0.1/step
- Category:Face,Spine,Brain, Heart,Hi speed,Lip&plate,Limbs, Custom
- Display format: single,dual,MRP,Quad
- Image Reference:A,B,C,3D
- Flip: 0° ,90 $^{\circ}$,180 $^{\circ}$,270 $^{\circ}$
- View: Front/Back, Back/Front;
 Left/Right, Right/Left; Up/Down,
 Down/Up
- Rotation Direction: X, Y, Z

• 3D Map: ≥ 8types

• Tint maps: ≥ 24Types

• Gray maps: ≥ 32Types

• 2D VSpeckle: ≥ 3types

• 3D VSpeckle: ≥ 3types

Render Type: Gray, GrayInv

Inverse Avaliable

MCUT(Optional)

• Slice Number: 2×2 , 3×3 , 4×4 ,

 5×5

Max Slice Number: 25

• Tint Map: ≥ 24types

Cut plane: A,B,C

Rotation Direction: X, Y, Z

• Volume Angle: 15° - 75°

Interval: 1mm-20mm, 0.5mm/step

Quality: low,mid,good,high,best

Free view(optional)

• Direction: X, Y, Z

• Route: curve, straight line

• Reference image: A,B,C

Slice thickness: 0mm-20mm

• Active line: 1,2,3

• Mix: 10-90

Threshold: 256steps

Transparency: 0.1-2.0, 0.1/step

Magic cut(optional)

• Erase mode: inside lasso, outside

lasso, big circle, small circle

Erase type: trace, rectangle, ellipse

Rotation direction: X, Y, Z

VOCAL(optional)

• Vocal layers: 8, 12,16,20,24,28,32

· Display format: single, Quad

• Image reference: A, B, C

· Niche view(optional)

• Model type: upper, lower

• Display format: single, quad

Rotation direction: X, Y, Z

Image reference: A, B, C, N

5.9 PView (Optional)

Real time extended field of view composite imaging

 Ability to back up and realign the image during acquisition

Full zoom, cineloop review and image rotation capabilities

5.10 TView

· Expand view of scanning

Available on linear transducers

5.11 Auto

 Intelligent one button automatic optimization in 2D and Doppler modes

Automatically adjust PRF and baseline in Doppler

6. Touch Panel Interface

6.1 2D mode

- New patient
- BodyPattern
- Archive
- Comments
- End exam
- Sys setting
- Probe&App
- PView
- Fullscreen
- L/R
- U/D
- Center line
- VSpeckle
- VFusion
- Gray Filter
- Persistence
- Display Format
- Image reference
- Maps
- Frequency
- Focus position
- Focus
- Dynamic Range
- Line density
- VSharpen
- Biopsy
- Image angle
- · Focus width
- Smooth
- Acoustic power

6.2 M Mode

- New patient
- BodyPattern
- Archive
- Comments
- End exam
- Sys setting
- Probe&App
- L/R format
- U/D format
- Maps
- Dynamic range
- Acoustic power
- Sweep speed
- Gray filter
- VSharpen

6.3 CF mode

- New patient
- BodyPattern
- Archive
- Comments
- End exam
- Sys setting
- Probe&App
- Invert
- Full Screen
- L/R
- U/D
- Baseline
- Flash Reduction
- Line density

- Persistence
- Display format
- Image reference
- Maps
- Frequency
- PRF
- Wall filter
- Packet size
- Colorlevel
- Sensitivity
- Focus position
- Acoustic power
- Smooth

6.4 PW/CW mode

- New patient
- BodyPattern
- Archive
- Comments
- End exam
- Sys setting
- Probe&App
- Invert
- Triplex
- Display format
- Sweep speed
- Gray filter
- Dynamic range
- Trace sensitive
- Auto trace
- Mode/direction
- Maps
- Frequency
- PRF

- Wall filter
- Baseline
- Angle correct
- Sample volume
- Volume
- Spectrum optimize
- Acoustic power

6.5 3D mode

- Comments
- BodyPattern
- Back to B
- Start3D
- ROI shape
- Render resolution
- Render
- Display format
- Image reference
- View
- Gray map
- VSpeckle
- Quality
- Threshold
- Transparency
- Volume angle
- Movement step (after data

acquisition)

- Light position (after data acquisition)
- Rotation angle (after data acquisition)
- Rotation direction (after data acquisition)

6.6 4D mode

- Comments
- Body Pattern
- Back to B
- Start 4D
- ROI shape
- Movement step
- · Rotation direction
- Render
- Display format
- Image reference
- View
- Gray map
- Vspeckle
- Quality
- Threshold
- Transparency
- Volume angle

7. System Feature

7.1 Display modes

- Simultaneous capability
 - 2D/PW
 - 2D/CF or PDI
 - 2D/M
 - Dual, 2D/2D
 - Dual, 2D/2D+CF or PDI
 - Dual, duplex and triplex
 - Duplex and Triplex mode
 - Quad display in 3D/4D

application

25 slice images display in
 3D/4D application

- Time line display
 - Independent dual 2D/PW or

CW

• Timed based sweep update mode

7.2 Display annotation

- Institution/hospital name
- Date: 3 types selectable,
 Year-Month-Day, Day-Month-Year,
 Month-Day-Year
- Time: 2 types selectable, 24hours and 12 hours
- Operator identification
- Patient name, first, last
- Patient identification: 30 characters
- Gestational age from
- LMP/BBT/DOC/IVF/GA/Avg.USVINNO image symbol: Ginkgo leaf
- Power output index
 - MI: mechanical index
 - TIS: thermal index soft

tissue

TIC: thermal index cranial (Bone)

- TIB: thermal index bone
- Probe orientation marker: coincide with a probe orientation marking on the probe
- Gray/color bar
- Measurement result window
- Probe type
- Application name

- · Image depth
- Imaging parameters by mode
- 2D/M mode: acoustic power output, gain, frequency, frame rate, dynamic range
- Color mode: color acoustic power output, color gain, color flow frequency, PRF, wall filter
- PW mode: Doppler acoustic power output, Doppler gain, Doppler frequency, PRF, wall filter, sample depth
- Focus zone marker
- Body pattern
- PW scale markers: time/speed
- M scale markers: time/depth, time
- System measurement display
- System message display
- Biopsy guide line
- Heart rate

7.3 Simple User Operation Interface

 Simple user interface and easy workflow, allows one step on probe & application switch, and intuitive user parameter control

7.4 Cineloop

- Acquisition, storage in memory and display of up to 30000 frames, 1500 seconds long of 2D, color and PW/CW images for review
- Avaliable to decide StartFrame and EndFrame

- Frame by frame manual cine loop review or auto playback with variable speed:
- 400%, 200%, 100%, 60%, 50%, 40%, 20%
- Frame compare: displays one cine in dual format and allows frame by frame compare side by side
- Acquisition, storage and replay of Doppler audio

7.5 Quick save feature

- The system provides quick save function through USB stick, internal/external SSD or after exam
- Configurable saving file format, VRD (VINNO Raw Data), DICOM, JPEG, BMP, PNG, MP4 and AVI

7.6 Archive

- Patient data input which include patient ID, name, birth date, sex, exam physician, quality check, exam operator
- · Physical data such as weight, height
- Patient exam management
- Patient exam images storage and management
- Import VRD format data into the system from outside media, such as USB stick, external SSD
- Export patient data into outside medias

7.7 Report

- Automatically pull patient data into the report
- Automatically load measurement worksheet into the report
- Pull related exams' images into the report
- Write comments in the report
- Print report through network or local printer

7.8 Connectivity

- Standard connectivity features
- Local print to on-board or off-board video printers through USB port
 - Page report print
- Image export to removable media (external SSD, USB stick)
- Network linkage
- Image export to network storage servers
- Mobile data transfer solution by
 - Blue tooth(Optional)
 - email(Optional)
 - Hot point connection
- Vcloud (Optional)
- DICOM export and retrieve (Optional)
- Data storage formats include VRD, DICOM, JPEG,PNG,BMP AVI
- VRD and DICOM images stored in disc can be recalled on the VINNO system
 - JPEG ,BMP,PNG and AVI

images can be played on normal computers

- On-board patient exam storage
- Direct digital storage of static image or cineloop images to internal hard disk drives
- Fully integrated user interface

7.9 Probes/application

- Selectable multiple applications
- Edit exist application preset
- Edit user defined preset
- Rename preset
- Return to factory preset
- Quick save user defined parameters in related application

7.10 Safety Conformance

- Regulatory Notice: This device is tested to meet all applicable requirements in relevant. According to 93/42 EEC, it is class IIa medical device.
- · Conformity to Standards:
- IEC 60601-1 : 2012 Medical electrical equipment Part 1: General requirements for basic safety and essential performance
- IEC 60601-1-2:2007
 Electromagnetic compatibility Requirements and tests
 - IEC 60601-1-6:2010 Usability
- IEC 60601-2-37:2007 Medical electrical equipment Particular

requirements for the safety of ultrasonic medical diagnostic and monitoring equipment

- IEC 61157:2007 Declaration of acoustic output parameters
- ISO 10993-1:2009 Biological evaluation of medical devices
- IEC 62304:2006 Medical device software – Software life cycle processes
- IEC 62366:2007 Medical devices -Application of usability engineering to medical devices
- •Council Directive 93/42/EEC on Medical Device
 - WEEE according to 2012/19/EU
 - RoHS according to 2011/65/EU

8. Measurement and Analysis

8.1 Measurement in different modes

8.1.1 Generic Measurement in 2D mode

- Depth
- Distance
- Perimeter
 - Length and width method
 - Ellipse method
 - Polygon method
 - Spline method
 - Tracing method

- Area
- Length and width method
- Ellipse method
- Polygon method
- Spline method
- Tracing method
- Volume
 - Single line method
 - Dual line method
 - Triple line method
 - · Single ellipse method
 - Single ellipse and single

line method

- Angle
- Stenosis
 - · Diameter method
 - Square meter method
- A and B ratio
 - Diameter ratio
 - Square meter ratio

8.1.2 Generic Measurement in CFM mode

- CFV
- point
- profile

8.1.3 Generic Measurement in M

mode

- Depth
- Distance
- Time
- Speed

- Heart rate
- Stenosis
- A and B ratio
 - Diameter ratio
 - Time ratio
 - Speed ratio

8.1.4 Measurement in PW mode

- Speed (include PV (Peak Velocity))
- Time (include AT (Accelerate Time))
- Acceleration
- PS (Peak Speed in systole period)
- ED (The speed in the end of diastole period)
- MD (Minimum speed in diastole period)
- TAMAX (maximum speed in time average)
- TAMEAN (mean speed in time average)
- TAMIN (minmum speed in time average)
- PI (Pulsatility Index)
- RI (Resistance Index)
- PS and ED ratio
- ED and PS ratio
- A and B ratio (A/B ratio)
 - Speed ratio
 - Time ratio
 - Acceleration ratio
- FLOWVOL (Flow Volume)
- MaxPG (maximum pressure gradient)
- MeanPG (Mean pressure gradient)

- SV (Stroke Volume)
 - · Each volume diameter

cardiac

• Time mean speed in each

stroke volume

- Cardiac output
- Heart rate
- SV(LVOT)/SV(RVOT)

8.2 Measurement in different

applications

8.2.1 Abdominal Measurement

- General abdomen
- Difficult abdomen
- Kidney
- Renal vessel
- Abdominal trauma

8.2.2 Small Part Measurement

- Thyroid
- Breast
- Testis
- Musculoskeletal
- Upper and lower extremity joint
- Nerve block

8.2.3 Vessel Measurement

- Carotid artery
- Upper artery
- Upper vein
- Lower artery
- Lower vein
- Vessel puncture
- Transcranial Doppler

8.2.4 Gynecology Measurement

- Uterus and Plevis
- Follicle

8.2.5 Urology Measurement

- Bladder
- Prostate
- Renal
- Kidney and ureter
- Pelvic Floor dysfunction

8.2.6 Pediatric Measurement

- Neonatal Head
- Neonatal Abdomen
- Pediatric Abdomen
- Pediatric Hip

8.2.7 Obstetrics Measurement

- OB Early
- OB Mid
- OB Late
- Fetal Heart

8.2.8 Cardiac Measurement

- General
- LV
- MV
- Ao
- AV
- LA
- RV
- TV
- PV
- RA

8.2.9 Auto NT (Nuchal Translucency)

measurement(Optional)

- Automatically detect Nuchal Translucency in interest box
- Automatically report thickness result of NT

8.2.10 Auto IMT (Intima-Media

Thickness) measurement (Optional)

- Automatically detect intima media thickness in interest box
- Automatically report the result of IMT
- Available in linear probe

8.2.11 Live IMT (Intima-Media

Thickness) measurement (Optional)

- Real-time automatically display IMT items with the different ROI positions
- The IMT items include: max, min, average, SD, points (how many points are used for the result), size of ROI.
- Available in carotid application

8.2.12 Auto IT (Intracranial

translucency) measurement(Optional)

- Support Auto IT(Intracranial translucency) measurement
- Draw the ROI and the system analyses and displays the result

8.2.13 Auto Follicle(2D/3D)(Optional)

• Just click on the area of follicle in B mode, the area of this follicle will be reported automatically

• Report the area of different follicle in the volume data automatically

8.2.14 Smart 3D Volume

Measurement(Optional)

- Trace the margin of the irregular circle in different slices of volume data in irregular shape
- Automatically report the volume of the irregular object

8.2.15 VAim OB measurement (Optional)

- VAim OB is an intelligent tool for fetal growth calculation, just one touch to activate the measurement items

 (BPD, OFD, HC, AC, FL, HL) and get the results, helps to make clinical decisions quickly and confidently, improving the speed and ease of exams
- The intelligent results will be add into the worksheet and report automatically

8.2.16 VAim Hip measurement

(Optional)

VAim Hip is an intelligent solution in the assessment of DDH(Developmental Dysplasia of Hip) with one simple touch.

Based on 'Ped HIP' application

8.2.17 VAim Follicle (2D)

measurement (Optional)

An intelligent tool for follicle calculation, one touch to get the follicle status, dedicated for women's reproductive

• Choose left or right follicle

health.

• Automatically identity all the follicles with different colors and calculate follicle volume and diameter

Internal Revision: Rev1

VINNO Technology (Suzhou) Co., Ltd

VINNO is focusing on producing premium diagnostic ultrasound development to provide customer clinical value through Continuous Innovation, Excellent Performance and Accessible Solutions.

Thanks you for your interest in VINNO.

You can contact us by phone and email (below) or contact our local representatives.

♀ 5F, A Building, NO.27 Xinfa Rd, Suzhou Industrial Park, 215123, China(215.6123)

C Tel: +86 512 62873806

➡ Fax: +86 512 62873801

email address: vinno@vinno.com

website: www.vinno.com