

Test report No. shd1018

EVALUATION OF BACTERICIDAL ACTIVITIES OF A DISINFECTANTS AND ANTISEPTICS USED IN THE MEDICAL AREA (EN 13727)

Name of the product:

Chemisept MED

Batch number:

196101017

Order number:

17028

Manufacturer:

Chemi-Pharm Ltd

Client, representative:

Chemi-Pharm Ltd., Põllu 132, Tallinn, 10917, ESTONIA

Maris Millner, +372-51-77-090

Date of delivery:

22.01.2018

Test material conditions:

No specific features, sample in the manufacturers tare

Storage conditions:

In room temperature, dark

Active substance – conc.:

Ethyl alcohol – 72.5 % wt; isopropyl alcohol – 7.5 % wt

Appearance of the product:

Transparent liquid

Test concentration:

Ready to use

Contact time:

15 sec, 30 sec

Interfering substance:

15 g/l bovine albumin + 15 ml/l sheep blood erythrocytes =

Dirty conditions; 1,5g/l bovine albumin = clean conditions

Neutralizer:

13-

Rinsing liquid:

Tryptone 1 g/l + NaCl, 9 g/l

Test organisms:

Pseudomonas aeruginosa ATCC 15442 Staphylococcus aureus ATCC 6538 Enterococcus hirae ATCC 10541 Escherichia coli K12, NTCT 10538

Staphylococcus aureus MRSA ATCC 33592 Enterococcus faecium VRE ATCC 700221

Testing method:

EVS-EN 13727:2012+A2:2015

Chemical disinfectants and antiseptics - Quantitative suspension test for the evaluation of bactericidal activity in the medical area - Test

method and requirements (phase 2, step 1)

Testing date:

17.02.2018 - 19.02.2018

Results:

look appendix 1-7

Diana Kaare, MSc Head of laboratory, microbiologist Date of test report: 21.02.2018

E-mail: info@ntl.ee

TEST RESULTS (bactericidal suspension test)

EVS-EN 13727:2012+A2:2015; Phase 2, step 1;

Membrane filtration method;

Rinsing liquid: tryptone, 1 g/l+ NaCl, 9 g/l;

Test organism: Staphylococcus aureus ATCC 6538;

Test temperature: +20° C; Incubation temperature: +37 °C

Interfering substance: 15 g/l bovine albumin + 15 ml/l sheep blood erythrocytes = Dirty conditions;

1,5g/l bovine albumin = clean conditions

Nordic Tersus Laboratory LLC.;

Date of test: 17.02.2018 – 19.02.2018 Responsible person: Diana Kaare

Validation and controls

Dirty and clean conditions

Valida	Validation suspension N_{vo}			Experimental conditions control (A)			Filtration control (B)			Method validation (C)		
V _{C1}	83	$\bar{x} = 86.5$	V _{C1}	72	$\bar{x} = 68.5$	V _{C1}	68	x̄ = 71.5	V _{C1}	81	$\bar{x} = 77$	
V_{C2}	90		V_{C2}	65		V _{C2} 75			V_{C2}	73		
30 ≤ 5	$30 \le \bar{x} N_{vo} \le 160$? yes X; no□			$\bar{x} A \text{ is } \ge 0,5 \bar{x} N_{vo}? \text{ yes X; no}$			\bar{x} B is $\geq 0.5 \bar{x} N_{vo}$? yesX; no			x̄ C is ≥ 0,5 x̄ N _{vo} ? yes X; no□		

Testsuspension:	N	V _{C1}	V_{C2}	$\bar{x}_{wm} = 2.45 \times 10^9$; $\log N = 9.39$
	10 ⁻⁷	257	224	$N_0 = N/100$; $\log N_0 = 7,39$
N and N₀	10-8	28	30	7,17≤ log <i>N</i> ₀ ≤7,70; yesX; no □

Concentration of the product %	Dilution step	V _{C1}	V_{C2}	Na (=x̄*10)	log Na	logR	Contact time	Conditions
Ready to use	-	<14	<14	<140	<2.15	>5.24	15 sec	dirty
Ready to use	-	<14	<14	<140	<2.15	>5.24	15 sec	clean
Ready to use	-	<14	<14	<140	<2.15	>5.24	30 sec	dirty
Ready to use	-	<14	<14	<140	<2.15	>5.24	30 sec	clean

Explanations:

 V_C = count per ml (one plate or more)

 \bar{x} = average of V_{C1} and V_{C2} (1. + 2. duplicate)

N = cfu/ml microbes in testsuspension

 N_0 = cfu/ml at the start of the contact time (t=0)

 N_{vo} = cfu/ml in the validation suspension (t=0)

Na = surviving microbes after the test

R = reduction factor (R= N_0/Na ; LogR=Log N_0 - Log Na)

TEST RESULTS (bactericidal suspension test)

EVS-EN 13727:2012+A2:2015; Phase 2, step 1;

Membrane filtration method;

Rinsing liquid: tryptone, 1 g/l+ NaCl, 9 g/l;

Test organism: Enterococcus hirae ATCC 10541;

Test temperature: +20° C; Incubation temperature: +37°C

Interfering substance: 15 g/l bovine albumin + 15 ml/l sheep blood erythrocytes = Dirty conditions;

1,5g/l bovine albumin = clean conditions

Nordic Tersus Laboratory LLC.;

Date of test: 17.02.2018 – 19.02.2018 Responsible person: Diana Kaare

Validation and controls

Dirty and clean conditions

Valid	ation su	spension <i>N_{vo}</i>	Experimental conditions control (A)			Filtration control (B)			Method validation (C)			
V _{C1}	62	x = 66	V _{C1}	47	x = 46	V _{C1}	52	x̄ = 53.5	V _{C1}	59	x = 61	
V_{C2}	70		V _{C2}	45		V_{C2}	55		V_{C2}	53		
30 ≤	$30 \le \bar{\mathbf{x}} N_{vo} \le 160$? yes X; no□		$\bar{\mathbf{x}} \mathbf{A} \text{ is } \geq 0,5 \bar{\mathbf{x}} N_{vo}$? yes X; no			\bar{x} B is $\geq 0.5 \bar{x}$ N_{vo} ? yesX; no			$\bar{\mathbf{x}}$ C is $\geq 0.5 \bar{\mathbf{x}} N_{vo}$? yes X; no			

Testsuspension:	N	V _{C1}	V_{C2}	$\bar{x}_{wm} = 2.15 \times 10^9$; $\log N = 9.33$
	10 ⁻⁷	203	224	$N_0 = N/100$; $\log N_0 = 7.33$
N and N_0	10 ⁻⁸	22	25	7,17≤ log N ₀≤7,70; yesX; no □

Concentration of the product %	Dilution step	V _{C1}	V _{C2}	Na (=x*10)	log Na	logR	Contact time	Conditions
Ready to use	-	<14	<14	<140	<2.15	>5.18	15 sec	dirty
Ready to use	-	<14	<14	<140	<2.15	>5.18	15 sec	clean
Ready to use	_	<14	<14	<140	<2.15	>5.18	30 sec	dirty
Ready to use	-	<14	<14	<140	<2.15	>5.18	30 sec	clean

Explanations:

 V_C = count per ml (one plate or more)

 \bar{x} = average of V_{C1} and V_{C2} (1. + 2. duplicate)

N = cfu/ml microbes in testsuspension

 N_0 = cfu/ml at the start of the contact time (t=0)

 N_{vo} = cfu/ml in the validation suspension (t=0)

Na = surviving microbes after the test

R = reduction factor (R= N_0 / Na; LogR=Log N_0 - Log Na)

TEST RESULTS (bactericidal suspension test)

EVS-EN 13727:2012+A2:2015; Phase 2, step 1;

Membrane filtration method;

Rinsing liquid: tryptone, 1 g/l+ NaCl, 9 g/l;

Test organism: *Pseudomonas aeruginosa* ATCC 15442 Test temperature: +20° C; Incubation temperature: +37°C

Interfering substance: 15 g/l bovine albumin + 15 ml/l sheep blood erythrocytes = Dirty conditions;

1,5g/l bovine albumin = clean conditions

Nordic Tersus Laboratory LLC.;

Date of test: 17.02.2018 – 19.02.2018 Responsible person: Diana Kaare

Validation and controls

Dirty and clean conditions

Valida	Validation suspension N_{vo}			Experimental conditions control (A)			Filtration control (B)			Method validation (C)		
V _{C1}	94	x = 87	V _{C1}	71	$\bar{x} = 72.5$	V _{C1}	66	x = 68	V _{C1}	75	$\bar{x} = 78.5$	
V _{C2}	80		V _{C2}	74		<i>V</i> _{C2} 70			<i>V</i> _{C2} 82			
30 ≤ 5	$30 \le \bar{x} N_{vo} \le 160$? yes X; no□			$\bar{\mathbf{x}} \mathbf{A} \text{ is } \geq 0,5 \; \bar{\mathbf{x}} \; N_{vo}$? yes X; no			\bar{x} B is $\geq 0.5 \bar{x}$ N_{vo} ? yesX; no			$\bar{\mathbf{x}}$ C is $\geq 0.5 \bar{\mathbf{x}}$ N_{vo} ? yes X; no		

Testsuspension:	N	V _{C1}	V _{C2}	$\bar{x}_{wm} = 2.74 \times 10^9$; $\log N = 9.44$
	10 ⁻⁷	284	266	$N_0 = N/100$; $\log N_0 = 7,44$
N and N_0	10-8	24	29	$7,17 \le \log N_0 \le 7,70$; yesX; no □

Concentration of the product %	Dilution step	V _{C1}	V _{C2}	Na (=x*10)	log Na	logR	Contact time	Conditions
Ready to use	-	<14	<14	<140	<2.15	>5.29	15 sec	dirty
Ready to use	_	<14	<14	<140	<2.15	>5.29	15 sec	clean
Ready to use		<14	<14	<140	<2.15	>5.29	30 sec	dirty
Ready to use	_	<14	<14	<140	<2.15	>5.29	30 sec	clean

Explanations:

 V_C = count per ml (one plate or more)

 \bar{x} = average of V_{C1} and V_{C2} (1. + 2. duplicate)

N = cfu/ml microbes in testsuspension

 N_0 = cfu/ml at the start of the contact time (t=0)

 N_{vo} = cfu/ml in the validation suspension (t=0)

Na = surviving microbes after the test

R = reduction factor (R= N_0/Na ; LogR=Log N_0 - Log Na)

TEST RESULTS (bactericidal suspension test)

EVS-EN 13727:2012+A2:2015; Phase 2, step 1;

Membrane filtration method;

Rinsing liquid: tryptone, 1 g/l+ NaCl, 9 g/l;

Test organism: Escherichia coli K12, NTCT 10538

Test temperature: +20° C; Incubation temperature: +37 °C

Interfering substance: 15 g/l bovine albumin + 15 ml/l sheep blood erythrocytes = Dirty conditions;

1,5g/I bovine albumin = clean conditions

Nordic Tersus Laboratory LLC.;

Date of test: 17.02.2018 – 19.02.2018 Responsible person: Diana Kaare

Validation and controls

Dirty and clean conditions

Valida	Validation suspension N_{vo}			Experimental conditions control (A)			Filtration control (B)			Method validation (C)		
V _{C1}	82	x̄ = 78.5	V _{C1}	68	x = 60	V _{C1}	69	$\bar{x} = 69.5$	V _{C1}	70	$\bar{x} = 68.5$	
V _{C2}	75		V _{C2}	52		V_{C2}	73		V _{C2} 67			
30 ≤ 5	30 ≤ x̄ <i>N_{vo}</i> ≤160? yes X; no□			\bar{x} A is $\geq 0,5 \bar{x}$ N_{vo} ? yes X; no			\bar{x} B is $\geq 0.5 \bar{x} N_{vo}$? yesX; no			$\bar{\mathbf{x}}$ C is $\geq 0.5 \bar{\mathbf{x}}$ N_{vo} ? yes X; no		

Testsuspension:	N	V _{C1}	V _{C2}	$\bar{x}_{wm} = 2.48 \times 10^9$; $\log N = 9.39$
PRO CONTRACTOR CONTRAC	10 ⁻⁷	241	257	$N_0 = N/100$; $\log N_0 = 7.39$
N and N ₀	10-8	22	26	7,17≤ $\log N_0$ ≤7,70; yesX; no □

Concentration of the product %	Dilution step	V _{C1}	V _{C2}	Na (=x̄*10)	log Na	logR	Contact time	Conditions
Ready to use	-	<14	<14	<140	<2.15	>5.24	15 sec	dirty
Ready to use	-	<14	<14	<140	<2.15	>5.24	15 sec	clean
Ready to use	-	<14	<14	<140	<2.15	>5.24	30 sec	dirty
Ready to use	-	<14	<14	<140	<2.15	>5.24	30 sec	clean

Explanations:

 V_C = count per ml (one plate or more)

 \bar{x} = average of V_{C1} and V_{C2} (1. + 2. duplicate)

N = cfu/ml microbes in testsuspension

 N_0 = cfu/ml at the start of the contact time (t=0)

 N_{vo} = cfu/ml in the validation suspension (t=0)

Na = surviving microbes after the test

R = reduction factor (R= N_0 / Na; LogR=Log N_0 - Log Na)

TEST RESULTS (bactericidal suspension test)

EVS-EN 13727:2012+A2:2015; Phase 2, step 1;

Membrane filtration method;

Rinsing liquid: tryptone, 1 g/l+ NaCl, 9 g/l;

Test organism: *Staphylococcus aureus* MRSA ATCC 33592 Test temperature: +20° C; Incubation temperature: +37°C

Interfering substance: 15 g/l bovine albumin + 15 ml/l sheep blood erythrocytes = Dirty conditions;

1,5g/l bovine albumin = clean conditions

Nordic Tersus Laboratory LLC.;

Date of test: 17.02.2018 – 19.02.2018 Responsible person: Diana Kaare

Validation and controls

Dirty and clean conditions

Validation suspension N _{vo}			Experii contro	mental cond I (A)	ditions	Filtration control (B)			Method validation (C)		
V _{C1}	66	x = 61.5	V _{C1}	42	x = 45.5	V _{C1}	49	$\bar{x} = 47.5$	V _{C1}	52	x̄ = 53
V _{C2}	57		V_{C2}	49		V_{C2}	46		V_{C2}	54	
30 ≤	$30 \le \bar{x} N_{vo} \le 160$? yes X; no□			0,5 x N _{vo} ?	yes X; no□	$\bar{x} B \text{ is } \ge 0.5 \bar{x} N_{vo}? \text{ yesX; no} \bar{x} C$			x̄ C is ≥	0,5 x̄ N v₀? yes X; no□	

Testsuspension:	N	V _{C1}	V _{C2}	$\bar{x}_{wm} = 1.99 \times 10^9$; $\log N = 9.30$
	10 ⁻⁷	204	191	$N_0 = N/100$; $\log N_0 = 7.30$
N and N₀	10-8	18	24	$7,17$ ≤ log N_0 ≤ $7,70$; yes X ; no \Box

Concentration of the product %	Dilution step	V _{C1}	V _{C2}	Na (=x̄*10)	log Na	logR	Contact time	Conditions
Ready to use	-	<14	<14	<140	<2.15	>5.15	15 sec	dirty
Ready to use	-	<14	<14	<140	<2.15	>5.15	15 sec	clean
Ready to use	=	<14	<14	<140	<2.15	>5.15	30 sec	dirty
Ready to use	-	<14	<14	<140	<2.15	>5.15	30 sec	clean

Explanations:

 V_C = count per ml (one plate or more)

 \bar{x} = average of V_{C1} and V_{C2} (1. + 2. duplicate)

N = cfu/ml microbes in testsuspension

 $N_0 = \text{cfu/ml}$ at the start of the contact time (t=0)

 N_{vo} = cfu/ml in the validation suspension (t=0)

Na = surviving microbes after the test

R = reduction factor (R= N_0 / Na; LogR=Log N_0 - Log Na)

TEST RESULTS (bactericidal suspension test)

EVS-EN 13727:2012+A2:2015; Phase 2, step 1;

Membrane filtration method;

Rinsing liquid: tryptone, 1 g/l+ NaCl, 9 g/l;

Test organism: *Enterococcus faecium* VRE ATCC 700221 Test temperature: +20° C; Incubation temperature: +37°C

Interfering substance: 15 g/l bovine albumin + 15 ml/l sheep blood erythrocytes = Dirty conditions;

1,5g/l bovine albumin = clean conditions

Nordic Tersus Laboratory LLC.;

Date of test: 17.02.2018 – 19.02.2018 Responsible person: Diana Kaare

Validation and controls

Dirty and clean conditions

Validation suspension N _{vo}			Experir contro	mental conc I (A)	litions	Filtration control (B)			Method validation (C)		
V _{C1}	62	x = 64	V _{C1}	52	$\bar{x} = 54.5$	V _{C1}	43	$\bar{x} = 47$	V _{C1}	58	$\bar{x} = 59$
V _{C2}	66		V_{C2}	57		V _{C2}	51		V_{C2}	60	
30 ≤ ₹	30 ≤ x̄ <i>N_{vo}</i> ≤160? yes X; no□		x̄ A is ≥	0,5 x N _{vo} ?	yes X; no□	\bar{x} B is $\geq 0.5 \bar{x}$ N_{vo} ? yesX; no		\bar{x} C is $\geq 0.5 \bar{x} N_{vo}$? yes X; no			

Testsuspension:	N	V _{C1}	V _{C2}	$\bar{x}_{wm} = 1.88 \times 10^9$; $\log N = 9.27$
	10 ⁻⁷	181	195	$N_0 = N/100$; $\log N_0 = 7.27$
N and N_0	10 ⁻⁸	22	18	$7,17$ ≤ log N_0 ≤ $7,70$; yes X ; no \Box

Concentration of the product %	Dilution step	V _{C1}	V_{C2}	Na (=x*10)	log Na	logR	Contact time	Conditions
Ready to use	-	<14	<14	<140	<2.15	>5.12	15 sec	dirty
Ready to use	-	<14	<14	<140	<2.15	>5.12	15 sec	clean
Ready to use	-	<14	<14	<140	<2.15	>5.12	30 sec	dirty
Ready to use	-	<14	<14	<140	<2.15	>5.12	30 sec	clean

Explanations:

 V_C = count per ml (one plate or more)

 \bar{x} = average of V_{C1} and V_{C2} (1. + 2. duplicate)

N = cfu/ml microbes in testsuspension

 N_0 = cfu/ml at the start of the contact time (t=0)

 N_{vo} = cfu/ml in the validation suspension (t=0)

Na = surviving microbes after the test

R = reduction factor (R= N_0/Na ; LogR=Log N_0 - Log Na)

Interpretation:

The product for surgical handrub Chemisept MED (batch no. 196101017) was tested according to the test method EVS-EN 13727:2012+A2:2015. The test was performed at 20 °C \pm 1 °C, under clean and dirty conditions with the contact times of 15 sec and 30 sec. The membrane filtration method was used for testing the products' effectiveness against the reference strains: *Pseudomonas aeruginosa* ATCC 15442, *Enterococcus hirae* ATCC 10541, *Staphylococcus aureus* ATCC 6538, Escherichia coli K12 NTCT 10538, Staphylococcus aureus MRSA ATCC 33592 and *Enterococcus faecium* VRE ATCC 700221. Under clean and dirty conditions the tested product was effective against all the reference strains within 15 and 30 sec of contact times.

Conclusion:

The surviving count of bacterial reference strains showed at least 5lg reduction meaning that under clean and dirty conditions the ready to use product Chemisept MED has a bactericidal effect in case of hand disinfection within 15 sec.

Diana Kaare, MSc

Head of laboratory, microbiologist