Type test report no. VR/R/VM/M 6E 002e

Dielectric tests of tap selector and change-over selector

Product Approval CTTP/Wag 10.02.2017

Type test for types:

Test specification:
Test samples:

Manufacturer:

Date of test:
Places of test:

Tests performed:

Full wave lightning impulse tests (LI):

Chopped wave lightning impulse tests (LIC):
Switching impulse tests (SI):

Applied voltage tests (AV):
Test voltages and tested insulation distances:

Test results:

Tap selectors of size "RD" without change-over selector, with reversing change-over selector or with coarse change-over selector, designed with 1 , 2 or 3 current paths (connected in parallel) for use in combination with single phase, 2 phase or 3 phase diverter switches type VACUTAP ${ }^{\circledR}$ VR, VACUTAP ${ }^{\circledR}$ VM, OILTAP ${ }^{\circledR}$ R or OILTAP ${ }^{\circledR}$ M.

IEC 60214-1:2014, sub-clause 5.2.8: "Dielectric tests".
1: VACUTAP ${ }^{\circledR}$ VM III 650 Y - 170/RD - 1835 3G, S/N: 1596238.
2: VACUTAP ${ }^{\circledR}$ VM III 650 Y - 123/RDE - 1019 3W, S/N: 1525714.
Maschinenfabrik Reinhausen GmbH, Regensburg, Germany.
March to April 2015.
Maschinenfabrik Reinhausen GmbH, Regensburg, Germany.

Impulse 1.2/50 $\mu \mathrm{s}$:
Each 3 applications performed with positive and negative polarity. Impulse 1.2/50/3 $\mu \mathrm{s}$:
Each 3 applications performed with positive and negative polarity.
Impulse 250/2500 $\mu \mathrm{s}$:
Each 3 applications performed with positive and negative polarity.
Performed with single-phase alternating voltage ($50 \mathrm{~Hz} / 60 \mathrm{~s}$).

Sym.	LI $[\mathrm{kV}]$	LIC $[\mathrm{kV}]$	SI $[\mathrm{kV}]$	AV $[\mathrm{kV}]$	
Between any two adjacent contacts of the tap selector	a 1	150	165	100	30
Between first and last contacts of the tap selector or of the change-over selector.	a	500	550	325	145
Between phases	b	500	550	325	160
Between the (-) contact of the coarse change-over selector and the take-off contact of the same phase	c 1	590	649	385	210
Between the (-) contact of the coarse change-over selector of different phases	c 2	590	649	385	230

The requirements of IEC 60214-1:2014 were met. All test voltages were withstood without discharge. Details see sub-clause 7.

This report contains 22 pages.

i. V. Dr. Thomas Strof [valid without signature]

Maschinenfabrik Reinhausen GmbH - PRODUCT APPROVAL -

Page 2 of 22 / VR/R/VM/M 6E 002e

1. Test specification

The type test was performed in accordance with IEC 60214-1:2014 "Tap-changers - Part 1: Performance requirements and test methods", sub-clause 5.2.8: "Dielectric tests".

2. Data of test samples

Test sample no.:	$\mathbf{1}$
On-load tap changer:	VACUTAP $^{\circledR}$ VM III 650 Y - 170/RD - 18353
Serial no.:	1596238
IBASE:	487056566
Year of manufacture:	2015
Part of test:	Tap selector
Test sample no.:	$\mathbf{2}$
On-load tap changer:	VACUTAP $^{\circledR}$ VM III 650 Y - 123/RDE - 1019 3W
Serial no.:	1525714
IBASE:	467020172
Year of manufacture:	2014
Part of test:	Tap selector

3. Specification of the insulating distances of the tap selector and change-over selector and the corresponding voltage stress of the transformer windings

Specification of the insulating distances of the tap selector and change-over selector:

Symbol	Definition of the insulation distances of the transformer windings
a1	Between fine tap selector contacts of the winding of one tap position (connected or not connected).
a	Between start and end of a tapped winding and, in version with coarse winding, also between start and end of a coarse winding. Note for coarse tap selector connection in (-) position of the change-over selector: When loading with impulse voltage, note the permissible withstand voltage "a" between the end of a coarse winding connected with the K fine tap selector contact and the fine tap selector contact at the end of the tapped winding of the same phase.
b	Between the fine tap selector contacts of different phases and between change-over selector contacts of different phases, which are connected with the beginning/end of a tapped winding or with a fine tap selector contact.

Additionally for coarse tap selector connection in (+) position of the change-over selector:

Symbol	Definition of the insulation distances of the transformer windings
c1	From (-) change-over selector contact to take-off lead of the same phase.
c2	Between (-) change-over selector contacts of different phases.

Page 3 of 22 / VR/R/VM/M 6E 002e

Figure 1: Insulating distances of the transformer windings.

a) Tap selector with reversing change-over selector (exemplary for connection arrangement 1835 1W resp. 18353 W).

b) Tap selector with coarse change-over selector (exemplary for connection arrangement 1835 1G resp. 1835 3G).

Figure 2: Insulating distances on the tap selector and the change-over selector of type RD.

Note:
In case of several insulating distances of the same design all distances were tested, figure 2 shows only examples of these distances.

Page 5 of 22 / VR/R/VM/M 6E 002e

4. Scope of application

Tap selectors of size "RD" with reversing change-over selector, with coarse change-over selector or without change-over selector are designed on the principle of a modular system for use in combination with diverter switches type VACUTAP ${ }^{\circledR}$ VR, VACUTAP ${ }^{\circledR} V M$, OILTAP ${ }^{\circledR}$ R or OILTAP ${ }^{\circledR}$ M.
The modular design allows a wide range of different features, like basic connection of selector, number of tap selector contacts, number of phases, number of current paths connected in parallel per phase and number of contact planes.

The insulation distances specified in sub-clause 2 are of the same design for all tap selectors and changeover selectors of size "RD", independent of:

- Maximum rated through-current
- Number of parallel current paths per phase (1, 2 or 3)
- Number of phases (1, 2 or 3)

The insulation distances within a single contact plane do not depend on:

- Selector size ("RC", "RD" or "RDE")
- Number of tap selector contacts (10, 12, 14, 16 or 18)

The insulation distances " c 1 " and "c2" are existent both on the coarse change-over selector and the reversing change-over selector but are only relevant for the coarse change-over selector.

The different insulation distances specified in sub-clause 2 were tested on two samples, see sub-clause 3. Insulation distances within a single contact plane, which do not depend on the selector size, were tested on test sample 2. All other insulation distances were tested on test sample 1.
The tests cover the complete range of possible dielectric stresses within the type range of VACUTAP ${ }^{\circledR} \mathrm{VR}$, VACUTAP ${ }^{\circledR}$ VM, OILTAP ${ }^{\circledR}$ R or OILTAP ${ }^{\circledR}$ M.

Therefore this type test report is valid for all tap selectors with following characteristics:

- Selector size:
- Change-over selector:
- Combined diverter switch:
- Number of tap selector contacts:
- Number of phases:
- Parallel current paths per phase:
"RD"
without, reversing or coarse change-over selector VACUTAP ${ }^{\circledR}$ VR, VACUTAP ${ }^{\circledR}$ VM, OILTAP ${ }^{\circledR}$ R or OILTAP ${ }^{\circledR}$ M $10,12,14,16$ or 18
1, 2 or 3
1, 2 or 3

5. Test arrangement

Treatment before testing:

Test tank oil filling:

Test setup:

The test samples were vacuum dried in accordance with the instructions of the manufacturer.
Plexiglas tank (22,000 liters) filled with clean transformer oil (Nynas 4000x) at room temperature. The breakdown strength of the transformer oil was between $63 \mathrm{kV} / 2.5 \mathrm{~mm}$ and $80 \mathrm{kV} / 2.5 \mathrm{~mm}$.
The test samples were placed in a Plexiglas test tank and connected to test voltages (test sample see appendix, pictures $3 \mathrm{a} / \mathrm{b}$).
The tests were performed on permanently installed measuring chains for alternating voltage (see appendix, picture 1) and impuls voltage (see appendix, picture 2).
The tap selectors were tested alone (without diverter switch).

6. Tests performed

6.1 Full wave lightning impulse test (LI)

Test standards:
Impulse voltage generator:
Voltage waveform $\left(T_{1} / T_{2}\right)$:
Voltage value $\left(\mathrm{U}_{\mathrm{p}}\right)$:
Oscillograms:
Wiring and connections:
Number of applications:

IEC 60214-1:2014, sub-clause 5.2.8.5
Impuls generator (max. charging: 1800 kV), see appendix, picture 2.
$1.2 / 50 \mu \mathrm{~s}$.
See tables 1...5.
See figures 3a/b...7a/b.
See appendix, figures 24... 28.
Three applications with positive and three with negative polarity.

6.1.1 Insulating distance "a"

Tested insulating distance	$\begin{aligned} & \text { Test } \\ & \text { no. } \end{aligned}$	Peak amplitude $\left(\mathrm{U}_{\mathrm{p}}\right)$$[\mathrm{kV} \text { peak }]$		Front time $\left(\mathrm{T}_{1}\right)$ [$\mu \mathrm{s}$]		Time to half-value (T_{2}) [$\mu \mathrm{s}$]	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
a	1	-500	-498.1	1.2	1.239	50	52.09
	2		-500.3		1.239		52.08
	3		-500.1		1.238		52.05
	4	500	499.4		1.248		52.01
	5		500.0		1.247		52.06
	6		500.3		1.244		52.08

Table 1: Test results of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance " a ".

Figures $3 \mathrm{a} / 3 \mathrm{~b}$: Oscillograms of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance " a ".

Page 7 of 22 / VR/R/VM/M 6E 002e

6.1.2 Insulating distance "a1"

Tested insulating distance	$\begin{aligned} & \text { Test } \\ & \text { no. } \end{aligned}$	Peak amplitude (U_{p}) [kV peak]		$\begin{gathered} \text { Front time }\left(\mathrm{T}_{1}\right) \\ {[\mu \mathrm{s}]} \\ \hline \end{gathered}$		Time to half-value $\left(\mathrm{T}_{2}\right)$ [$\mu \mathrm{s}$]	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
a1	1	-150	-148.6	1.2	1.198	50	51.28
	2		-150.2		1.196		51.23
	3		-149.8		1.193		51.27
	4	150	151.4		1.199		51.26
	5		149.9		1.197		51.22
	6		150.0		1.196		51.20

Table 2: Test results of full wave lightning impulse test (1.2/50 $\mu \mathrm{s}$) on insulating distance "a1".

Figures $4 \mathrm{a} / 4 \mathrm{~b}$: Oscillograms of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance "a1".

6.1.3 Insulating distance "b"

Tested insulating	Test no.	Peak amplitude $\left(\mathrm{U}_{\mathrm{p}}\right)$ [kV peak]		Front time $\left(\mathrm{T}_{1}\right)$ [$\mu \mathrm{s}$]		Time to half-value $\left(\mathrm{T}_{2}\right)$ [$\mu \mathrm{s}$]	
distance		Nominal	Tested	Nominal	Tested	Nominal	Tested
b	1	-500	-497.7	1.2	1.284	50	51.90
	2		-500.7		1.284		51.86
	3		-499.8		1.283		51.96
	4	500	500.9		1.297		51.96
	5		499.7		1.300		51.88
	6		499.8		1.300		51.88

Table 3: Test results of full wave lightning impulse test $(1.2 / 50 \mu s)$ on insulating distance "b".

Figures $5 \mathrm{a} / 5 \mathrm{~b}$: Oscillograms of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance " b ".

Page 8 of 22 / VR/R/VM/M 6E 002e

6.1.4 Insulating distance "c1"

Tested insulating distance	$\begin{aligned} & \text { Test } \\ & \text { no. } \end{aligned}$	Peak amplitude (U_{p}) [kV peak]		Front time (T_{1}) [$\mu \mathrm{s}$]		Time to half-value $\left(\mathrm{T}_{2}\right)$ [$\mu \mathrm{s}$]	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
c1	1	-590	-588.5	1.2	1.236	50	51.80
	2		-589.9		1.237		51.79
	3		-589.8		1.235		51.82
	4	590	589.4		1.245		51.90
	5		589.8		1.244		51.89
	6		590.0		1.247		51.90

Table 4: Test results of full wave lightning impulse test (1.2/50 $\mu \mathrm{s}$) on insulating distance "c1".

Figures $6 a / 6 \mathrm{~b}$: Oscillograms of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance "c1".

6.1.5 Insulating distance "c2"

Tested insulating distance	Test no.	Peak amplitude $\left(\mathrm{U}_{\mathrm{p}}\right)$ [kV peak]		Front time $\left(\mathrm{T}_{1}\right)$ [$\mu \mathrm{s}$]		Time to half-value $\left(\mathrm{T}_{2}\right)$ [$\mu \mathrm{s}$]	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
c2	1	-590	-588.6	1.2	1.242	50	51.80
	2		-590.1		1.242		51.78
	3		-590.1		1.243		51.82
	4	590	590.9		1.257		51.88
	5		589.5		1.254		51.86
	6		590.3		1.258		51.88

Table 5: Test results of full wave lightning impulse test (1.2/50 $\mu \mathrm{s}$) on insulating distance "c2".

Figures $7 \mathrm{a} / 7 \mathrm{~b}$: Oscillograms of full wave lightning impulse test $(1.2 / 50 \mu \mathrm{~s})$ on insulating distance "c2".

6.2 Chopped wave lightning impulse test (LIC)

Test standard:
Impulse voltage generator:
Voltage waveform $\left(T_{1} / T_{2} / T_{c}\right)$:
Voltage value $\left(\mathrm{U}_{\mathrm{p}}\right)$:
Oscillograms:
Wiring and connections:
Number of applications:

IEC 60214-1:2014, sub-clause 5.2.8.6.
Impuls generator (max. charging: 1800 kV), see appendix, picture 2.
$1.2 / 50 / 3 \mu \mathrm{~s}$.
See tables 6... 10 .
See figures 8a/b...12a/b.
See appendix, figures 24... 28 .
Three applications with positive and three with negative polarity.

6.2.1 Insulating distance "a"

Tested insulating distance	Test no.	Peak amplitude $\left(\mathrm{U}_{\mathrm{p}}\right)$ [kV peak]		Front time $\left(\mathrm{T}_{1}\right)$$[\mu \mathrm{s}]$		Time to chopping (T_{C}) [$\mu \mathrm{s}$]	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
a	1	-550	-548.0	1.2	1.251	4	3.680
	2		-548.1		1.255		3.794
	3		-548.1		1.253		3.802
	4	550	550.0		1.266		3.738
	5		549.9		1.266		3.759
	6		549.9		1.267		3.755

Table 6: Test results of chopped wave lightning impulse test (1.2/50/3 $\mu \mathrm{s}$) on insulating distance "a".

Figures 8a/8b: Oscillograms of chopped wave lightning impulse test (1.2/50/3 $\mu \mathrm{s}$) on insulating distance "a".

6.2.2 Insulating distance "a1"

Tested insulating distance	Test no.	Peak amplitude $\left(\mathrm{U}_{\mathrm{p}}\right)$ [kV peak]		Front time (T_{1}) [$\mu \mathrm{s}$]		Time to chopping (T_{C}) [$\mu \mathrm{s}$]	
		Nominal		Nominal	Tested	Nominal	Tested
a1	1	-165	-164.6	1.2	1.201	4	3.891
	2		-164.5		1.201		3.885
	3		-164.6		1.199		3.880
	4	165	165.8		1.200		3.886
	5		165.9		1.203		3.859
	6		165.6		1.199		3.862

Table 7: Test results of chopped wave lightning impulse test (1.2/50/3 $\mu \mathrm{s})$ on insulating distance "a1".

Figures 9a/9b: Oscillograms of chopped wave lightning impulse test (1.2/50/3 $\mu \mathrm{s}$) on insulating distance "a1".

6.2.3 Insulating distance "b"

Tested insulating	Test no.	Peak amplitude $\left(\mathrm{U}_{\mathrm{p}}\right)$ [kV peak]		Front time $\left(\mathrm{T}_{1}\right)$ [$\mu \mathrm{s}$]		Time to chopping (T_{C}) $[\mu \mathrm{s}]$	
distance		Nominal		Nominal	Tested	Nominal	Tested
b	1	-550	-548.0	1.2	1.289	4	3.832
	2		-548.1		1.289		3.811
	3		-548.1		1.287		3.824
	4	550	551.3		1.303		3.795
	5		551.5		1.304		3.786
	6		551.2		1.302		3.789

Table 8: Test results of chopped wave lightning impulse test (1.2/50/3 $\mu \mathrm{s}$) on insulating distance "b".

Figures 10a/10b: Oscillograms of chopped wave lightning impulse test (1.2/50/3 $\mu \mathrm{s}$) on insulating distance "b".

Page 11 of 22 / VR/R/VM/M 6E 002e

6.2.4 Insulating distance "c1"

Tested insulating distance	Test no.	Peak amplitude (U_{p}) [kV peak]		Front time (T_{1}) [$\mu \mathrm{s}$]		Time to chopping (T_{C}) [$\mu \mathrm{s}$]	
		Nominal		Nominal	Tested	Nominal	Tested
c1	1	-649	-647.2	1.2	1.241	4	3.613
	2		-647.3		1.239		3.545
	3		-647.3		1.241		3.743
	4	649	648.8		1.250		3.727
	5		648.7		1.250		3.712
	6		648.7		1.251		3.704

Table 9: Test results of chopped wave lightning impulse test (1.2/50/3 $\mu \mathrm{s}$) on insulating distance "c1".

Figures $11 \mathrm{a} / 11 \mathrm{~b}$: Oscillograms of chopped wave lightning impulse test $(1.2 / 50 / 3 \mu \mathrm{~s})$ on insulating distance "c1".

6.2.5 Insulating distance "c2"

Tested insulating distance	Test no.	Peak amplitude (U_{p}) [kV peak]		Front time $\left(\mathrm{T}_{1}\right)$ [$\mu \mathrm{s}$]		Time to chopping (T_{c}) [$\mu \mathrm{s}$]	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
c2	1	-649	-648.3	1.2	1.246	4	3.825
	2		-648.7		1.248		3.575
	3		-648.5		1.244		3.618
	4	649	649.4		1.265		3.757
	5		649.6		1.266		3.745
	6		649.6		1.265		3.746

Table 10: Test results of chopped wave lightning impulse test $(1.2 / 50 / 3 \mu \mathrm{~s})$ on insulating distance "c2".

Figures 12a/12b: Oscillograms of chopped wave lightning impulse test (1.2/50/3 $\mu \mathrm{s}$) on insulating distance "c2".

6.3 Switching impulse test (SI)

Test standard:
Impulse voltage generator:
Voltage waveform (T_{p} / T_{2}):
Voltage value $\left(\mathrm{U}_{\mathrm{p}}\right)$:
Oscillograms:
Wiring and connections:
Number of applications:

IEC 60214-1:2014, sub-clause 5.2.8.7.
Impuls generator (max. charging: 1800 kV), see appendix, picture 2.
$250 / 2500 \mu \mathrm{~s}$.
See tables 11... 15.
See figures 13a/b...17a/b.
See appendix, figures 24... 28 .
Three applications with positive and three with negative polarity.

6.3.1 Insulating distance "a1"

Tested insulating distance	Test no.	Peak amplitude (U_{p}) [kV peak]		Time to peak (T_{P}) [$\mu \mathrm{s}$]		Time to half-value (T_{2}) [$\mu \mathrm{s}$]	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
a1	1	-100	-100.00	250	265.7	2500	2975
	2		-97.92		265.4		2974
	3		-97.95		265.6		2973
	4	100	98.53		265.7		2975
	5		97.94		265.7		2974
	6		97.92		265.9		2974

Table 11: Test results of switching impulse test ($250 / 2500 \mu \mathrm{~s}$) on insulating distance "a1".

Figures 13a/14b: Oscillograms of switching impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance "a1".

Page 13 of 22 / VR/R/VM/M 6E 002e

6.3.2 Insulating distance "a"

Tested insulating distance	$\begin{aligned} & \text { Test } \\ & \text { no. } \end{aligned}$	Peak amplitude (U_{p}) [kV peak]		Time to peak (T_{p}) [$\mu \mathrm{s}$]		Time to half-value $\left(\mathrm{T}_{2}\right)$ [$\mu \mathrm{s}$]	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
a	1	-325	-328.3	250	230.3	2500	2681
	2		-325.4		230.3		2680
	3		-324.8		230.3		2681
	4	325	325.8		231.2		2681
	5		325.3		231.4		2682
	6		324.6		231.1		2681

Table 12: Test results of switching impulse test $(250 / 2500 \mu s)$ on insulating distance " a ".

Figures $14 a / 14 b$: Oscillograms of switching impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance " a ".

6.3.3 Insulating distance "b"

Tested insulating distance	Test no.	Peak amplitude (U_{p}) [kV peak]		Time to peak (T_{P}) [$\mu \mathrm{s}$]		Time to half-value $\left(\mathrm{T}_{2}\right)$ [$\mu \mathrm{s}$]	
		Nominal	Tested	Nominal	Tested	Nominal	Tested
b	1	-325	-325.0	250	234.5	2500	2687
	2		-325.0		234.4		2687
	3		-325.0		234.3		2686
	4	325	325.9		235.3		2688
	5		325.4		235.4		2689
	6		324.8		235.5		2688

Table 13: Test results of switching impulse test ($250 / 2500 \mu \mathrm{~s}$) on insulating distance "b".

Figures $15 \mathrm{a} / 15 \mathrm{~b}$: Oscillograms of switching impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance "b".

Page 14 of 22 / VR/R/VM/M 6E 002e

6.3.4 Insulating distance "c1"

Tested insulating	Test	Peak	$e\left(U_{p}\right)$		$\left(T_{P}\right)$	Time to	$\text { lue }\left(T_{2}\right)$
distance		Nominal	Tested	Nominal	Tested	Nominal	Tested
c1	1	-385	-384.3	250	225.7	2500	2673
	2		-383.7		225.5		2675
	3		-384.3		225.7		2673
	4	385	384.6		226.4		2675
	5		383.8		226.5		2675
	6		384.3		226.3		2675

Table 14: Test results of switching impulse test (250/2500 $\mu \mathrm{s}$) on insulating distance "c1".

Figures 16a/16b: Oscillograms of switching impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance "c1".

6.3.5 Insulating distance "c2"

Tested insulating distance	Test no.	Peak amplitude (U_{p}) [kV peak]		Time to peak (T_{p}) [$\mu \mathrm{s}$]		Time to half-value $\left(\mathrm{T}_{2}\right)$ [$\mu \mathrm{s}$]	
		Nominal		Nominal	Tested	Nominal	Tested
c2	1	-385	-384.4	250	224.3	2500	2673
	2		-383.9		224.3		2675
	3		-383.9		224.4		2674
	4	385	385.0		225.1		2676
	5		383.9		225.2		2676
	6		384.0		225.3		2676

Table 15: Test results of switching impulse test (250/2500 $\mu \mathrm{s}$) on insulating distance "c2".

Figures 17a/17b: Oscillograms of switching impulse test $(250 / 2500 \mu \mathrm{~s})$ on insulating distance "c2".

6.4 Applied voltage test (AV)

Test standards:
Voltage generator:
Voltage waveform:
Voltage value ($\mathrm{U}_{\text {r.m.s. }}$):
Oscillograms:
Wiring and connections:
Test duration (t_{D}):

IEC 60214-1:2014, sub-clause 5.2.8.8.
Applied voltage generator (max. Voltage 700 kV), see appendix, picture 1
Sine-shaped (frequency: 50 Hz)
See tables 15... 19
See figures 18... 22 .
See appendix, figures 24... 28 .
60 s

6.4.1 Insulating distance "a"

Tested insulating distance	Applied voltage (50 Hz) $[\mathrm{kV}$ r.m.s]		Test duration $[\mathrm{s}]$	
	Nominal	Tested	Nominal	Tested
a	145	145	60	62

Table 15: Test results of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance "a".

Figure 18: Oscillogram of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance " a ".

6.4.2 Insulating distance "a1"

Tested insulating distance	Applied voltage $(50 \mathrm{~Hz})$ $[\mathrm{kV}$ r.m.s]		Test duration $[\mathrm{s}]$	
	Nominal	Tested	Nominal	Tested
a1	30	30	60	60

Table 16: Test results of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance "a1".

Figure 19: Oscillogram of applied voltage test (50 Hz) on insulating distance "a1".

6.4.3 Insulating distance "b"

Tested insulating distance	Applied voltage $(50 \mathrm{~Hz})$ $[\mathrm{kV}$ r.m.s]		Test duration $[\mathrm{s}]$	
	Nominal	Tested	Nominal	Tested
b	160	160	60	62

Table 17: Test results of applied voltage test (50 Hz) on insulating distance "b".

Figure 20: Oscillogram of applied voltage test (50 Hz) on insulating distance "b".

Page 17 of 22 / VR/R/VM/M 6E 002e

6.4.4 Insulating distance "c1"

Tested insulating distance	Applied voltage $(50 \mathrm{~Hz})$ $\left[\mathrm{kV}\right.$ r.m.s 2		Test duration $[\mathrm{s}]$	
	Nominal	Tested	Nominal	Tested
c1	210	230	60	63

Table 18: Test results of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance "c1".

Figure 21: Oscillogram of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance "c1".

6.4.5 Insulating distance "c2"

Tested insulating distance	Applied voltage (50 Hz) [kV		Test duration [s] $]$	
	Nominal	Tested	Nominal	Tested
c2	230	250	60	63

Table 19: Test results of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance "c2".

Figure 22: Oscillogram of applied voltage test $(50 \mathrm{~Hz})$ on insulating distance "c2".

7. Test result

The requirements according to IEC 60214-1:2014 "Tap-changers - Part 1: Performance requirements and test methods", sub-clause 5.2.8: "Dielectric tests" were met.

The full wave lightning impulse voltage tests (LI), the chopped wave lightning impulse tests (LIC), the switching impulse tests (SI) as well as the applied voltage tests (AV) were withstood without any discharge. The confirmed values are shown in table 20.

Tested insulating distance (Symbol see figures 1 and 2)	Full wave lightning impulse test (LI) 1.2/50 $\mu \mathrm{s}$ [$\mathrm{k} \mathrm{V}_{\text {peak }}$]	Chopped wave lightning impulse test (LIC) 1.2/50/3 $\mu \mathrm{s}$ [$\mathrm{K} \mathrm{V}_{\text {peak }}$]	$\begin{aligned} & \text { Switching } \\ & \text { impulse } \\ & \text { test (SI) } \\ & 250 / 2500 \mu \mathrm{~s} \\ & {[\mathrm{kV} \text { peak }]} \end{aligned}$	Power-frequency voltage tests $50 \mathrm{~Hz} / 60 \mathrm{~s}$ [kV r.m.s.]
a1	150	165	100	30
a	500	550	325	145
b	500	550	325	160
c1	590	649	385	210
c2	590	649	385	230

Table 20: Confirmed withstand voltages of defined insulation distances.

8. Appendix

Figure 23: Dimension drawing the test sample (VACUTAP ${ }^{\circledR}$ VM III 650 Y - 170/RD - 1835 3G).

Picture 1: Test setup for applied voltage test

Pictures 3a/b: Test sample prepared for the test.

Figure 24: Wiring for testing insulating distancees "a".

Figures 25: Wiring for testing insulating distance "a1".

Figure 26: Wiring for testing insulating distance "b".

Figure 27: Wiring for testing insulating distancees "c1".

Figure 28: Wiring for testing insulating distancees "c2".

