

Type test report no. VR/R/VM/M 6E 002e

Dielectric tests of tap selector and change-over selector

Product Approval CTTP/Wag 10.02.2017

Type test for types:	Tap selectors of size "RD" without change-over selector, with reversing change-over selector or with coarse change-over selector, designed with 1, 2 or 3 current paths (connected in parallel) for use in combination with single phase, 2 phase or 3 phase diverter switches type VACUTAP [®] VR, VACUTAP [®] VM, OILTAP [®] R or OILTAP [®] M.					
Test specification:	IEC 60214-1:2014, sub-clause 5.2.8: "Die	lectric t	ests".			
Test samples:	1: VACUTAP [®] VM III 650 Y – 170/RD – 18 35 3G, S/N: 1596238. 2: VACUTAP [®] VM III 650 Y – 123/RDE – 10 19 3W, S/N: 1525714.					
Manufacturer:	Maschinenfabrik Reinhausen GmbH, Regensburg, Germany.					
Date of test:	March to April 2015.					
Places of test:	Maschinenfabrik Reinhausen GmbH, Reg	ensbur	g, Geri	many.		
Tests performed:						
Full wave lightning impulse tests (LI):	Impulse 1.2/50 μs: Each 3 applications performed with positive and negative polarity.					
Chopped wave lightning impulse tests (LIC):	Impulse 1.2/50/3 µs: Each 3 applications performed with positiv	ve and	negativ	/e pola	arity.	
Switching impulse tests (SI):	Impulse 250/2500 µs: Each 3 applications performed with positiv	ve and	negativ	/e pola	arity.	
Applied voltage tests (AV):	Performed with single-phase alternating v	oltage	(50 Hz	/ 60 s)).	
Test voltages and tested insulation distances:		Sym.	LI [kV]	LIC [kV]	SI [kV]	AV [kV]
	Between any two adjacent contacts of the tap selector	a1	150	165	100	30
	Between first and last contacts of the tap selector or of the change-over selector.	а	500	550	325	145
	Between phases	b	500	550	325	160
	Between the (-) contact of the coarse change-over selector and the take-off contact of the same phase	c1	590	649	385	210
	Between the (-) contact of the coarse change-over selector of different phases	c2	590	649	385	230
Test results:	The requirements of IEC 60214-1:2014 v	were m	et. All	test vo	oltages	were

withstood without discharge. Details see sub-clause 7.

This report contains 22 pages.

i. V. Dr. Thomas Strof [valid without signature]

Maschinenfabrik Reinhausen GmbH - PRODUCT APPROVAL -

Maschinenfabrik Reinhausen GmbH Falkensteinstraße 8 93059 Regensburg, Germany Phone +49 941 40 90-0 info@reinhausen.com www.reinhausen.com Managing Directors: Dr. Nicolas Maier-Scheubeck Michael Rohde

F01106:20

Chairman of Supervisory Board: Hans-Jürgen Thaus Commercial register Regensburg HRB 3687 VAT reg. no.: DE133705195 Reinhausen Group

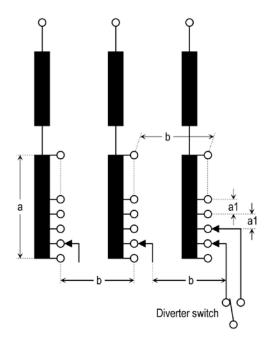
1. Test specification

The type test was performed in accordance with IEC 60214-1:2014 "Tap-changers - Part 1: Performance requirements and test methods", sub-clause 5.2.8: "Dielectric tests".

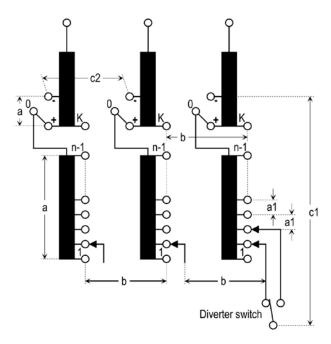
2. Data of test samples

Test sample no.:	1
On-load tap changer:	VACUTAP [®] VM III 650 Y – 170/RD – 18 35 3G
Serial no.:	1596238
IBASE:	487056566
Year of manufacture:	2015
Part of test:	Tap selector
Test sample no.:	2
On-load tap changer:	VACUTAP [®] VM III 650 Y – 123/RDE – 10 19 3W
Serial no.:	1525714
IBASE:	467020172
Year of manufacture:	2014
Part of test:	Tap selector

3. Specification of the insulating distances of the tap selector and change-over selector and the corresponding voltage stress of the transformer windings

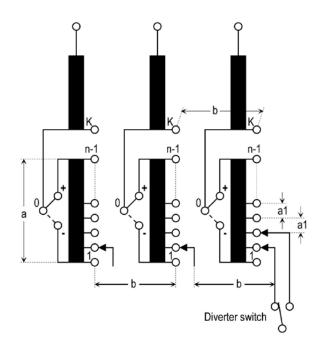

Specification of the insulating distances of the tap selector and change-over selector:

Symbol	Definition of the insulation distances of the transformer windings
a1	Between fine tap selector contacts of the winding of one tap position (connected or not connected).
а	Between start and end of a tapped winding and, in version with coarse winding, also between start and end of a coarse winding.
	Note for coarse tap selector connection in (-) position of the change-over selector: When loading with impulse voltage, note the permissible withstand voltage "a" between the end of a coarse winding connected with the K fine tap selector contact and the fine tap selector contact at the end of the tapped winding of the same phase.
b	Between the fine tap selector contacts of different phases and between change-over selector contacts of different phases, which are connected with the beginning/end of a tapped winding or with a fine tap selector contact.

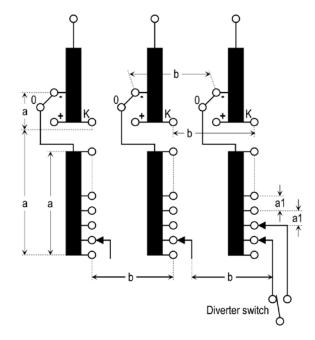

Additionally for coarse tap selector connection in (+) position of the change-over selector:

	Symbol	Definition of the insulation distances of the transformer windings						
ſ	c1	From (-) change-over selector contact to take-off lead of the same phase.						
	c2	Between (-) change-over selector contacts of different phases.						

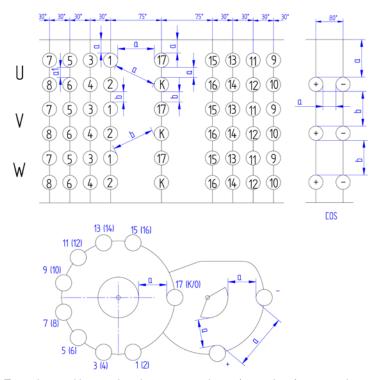
Page 3 of 22 / VR/R/VM/M 6E 002e

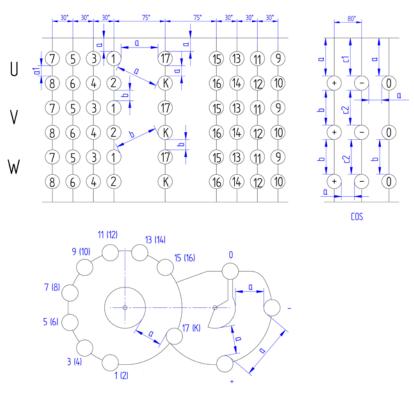


a) without change-over selector.



c) with coarse change-over selector in (+) position.


Figure 1: Insulating distances of the transformer windings.


b) with reversing change-over selector.

d) with coarse change-over selector in (-) position.

a) Tap selector with reversing change-over selector (exemplary for connection arrangement 18 35 1W resp. 18 35 3W).

b) Tap selector with coarse change-over selector (exemplary for connection arrangement 18 35 1G resp. 18 35 3G).

Figure 2: Insulating distances on the tap selector and the change-over selector of type RD.

Note:

In case of several insulating distances of the same design all distances were tested, figure 2 shows only examples of these distances.

Page 5 of 22 / VR/R/VM/M 6E 002e

4. Scope of application

Tap selectors of size "RD" with reversing change-over selector, with coarse change-over selector or without change-over selector are designed on the principle of a modular system for use in combination with diverter switches type VACUTAP® VR, VACUTAP® VM, OILTAP® R or OILTAP® M.

The modular design allows a wide range of different features, like basic connection of selector, number of tap selector contacts, number of phases, number of current paths connected in parallel per phase and number of contact planes.

The insulation distances specified in sub-clause 2 are of the same design for all tap selectors and changeover selectors of size "RD", independent of:

- Maximum rated through-current
- Number of parallel current paths per phase (1, 2 or 3)
- Number of phases (1, 2 or 3)

The insulation distances within a single contact plane do not depend on:

- Selector size ("RC", "RD" or "RDE")
- Number of tap selector contacts (10, 12, 14, 16 or 18)

The insulation distances "c1" and "c2" are existent both on the coarse change-over selector and the reversing change-over selector but are only relevant for the coarse change-over selector.

The different insulation distances specified in sub-clause 2 were tested on two samples, see sub-clause 3. Insulation distances within a single contact plane, which do not depend on the selector size, were tested on test sample 2. All other insulation distances were tested on test sample 1.

The tests cover the complete range of possible dielectric stresses within the type range of VACUTAP® VR, VACUTAP[®] VM, OILTAP[®] R or OILTAP[®] M.

Therefore this type test report is valid for all tap selectors with following characteristics:

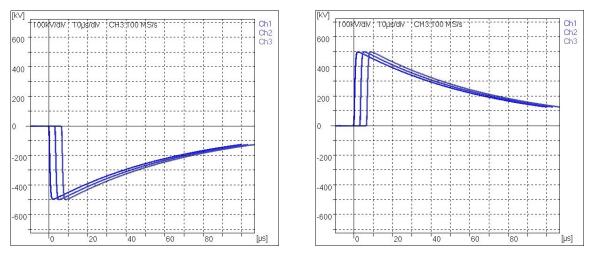
-	Selector size:	"RD"
-	Change-over selector:	without, reversing or coarse change-over selector
-	Combined diverter switch:	VACUTAP [®] VR, VACUTAP [®] VM, OILTAP [®] R or OILTAP [®] M
	Number of ten collector contacto:	$10 \ 12 \ 14 \ 16 \ or \ 19$

- Number of tap selector contacts: 10, 12, 14, 16 or 18 1, 2 or 3
- Number of phases: 1, 2 or 3
- Parallel current paths per phase:

5. **Test arrangement**

The test samples were vacuum dried in accordance with the Treatment before testing: instructions of the manufacturer. Test tank oil filling: Plexiglas tank (22,000 liters) filled with clean transformer oil (Nynas 4000x) at room temperature. The breakdown strength of the transformer oil was between 63 kV / 2.5 mm and 80 kV / 2.5 mm. The test samples were placed in a Plexiglas test tank and connected to Test setup: test voltages (test sample see appendix, pictures 3a/b). The tests were performed on permanently installed measuring chains for alternating voltage (see appendix, picture 1) and impuls voltage (see appendix, picture 2). The tap selectors were tested alone (without diverter switch).

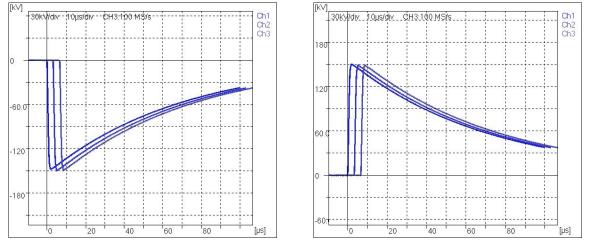
6. Tests performed


6.1 Full wave lightning impulse test (LI)

Test standards:	IEC 60214-1:2014, sub-clause 5.2.8.5
Impulse voltage generator:	Impuls generator (max. charging: 1800 kV), see appendix, picture 2.
Voltage waveform (T ₁ /T ₂):	1.2 / 50 μs.
Voltage value (U _p):	See tables 15.
Oscillograms:	See figures 3a/b7a/b.
Wiring and connections:	See appendix, figures 2428.
Number of applications:	Three applications with positive and three with negative polarity.

6.1.1 Insulating distance "a"

Tested insulating	ing ^{rest}		litude (U _p) _{peak}]	Front time (T ₁) [µs]		Time to half-value (T ₂) [µs]	
distance	no.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1		-498.1		1.239		52.09
	2	-500	-500.3		1.239		52.08
а	3		-500.1	1.2	1.238	50	52.05
a	4		499.4	1.2	1.248	50	52.01
	5	500	500.0		1.247		52.06
	6		500.3		1.244		52.08


Figures 3a/3b: Oscillograms of full wave lightning impulse test (1.2/50 µs) on insulating distance "a".

Page 7 of 22 / VR/R/VM/M 6E 002e

6.1.2 Insulating distance "a1"

Tested insulating	Test	Peak amplitude (U _p) [kV _{peak}]		Front time (T ₁) [µs]		Time to half-value (T ₂) [µs]	
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1		-148.6		1.198		51.28
	2	-150	-150.2		1.196		[µs] Tested
a1	3		-149.8	1.2	1.193	50	51.27
aı	4		151.4	1.2	1.199	50	51.26
	5	150	149.9		1.197		51.22
	6		150.0		1.196		51.20

Table 2: Test results of full wave lightning impulse test (1.2/50 µs) on insulating distance "a1".

Front time (T₁)

[µs]

Tested

1.284

1.284

1.283

1.297

1.300

40

60

80

Nominal

1.2

Time to half-value (T₂)

[µs]

Tested

51.90

51.86

51.96

51.96

51.88

Nominal

50

Figures 4a/4b: Oscillograms of full wave lightning impulse test (1.2/50 µs) on insulating distance "a1".

Tested

-497.7

-500.7

-499.8

500.9

499.7

				1.000	
	6	499.8	<u> </u>	1.300	5
ble 3: Test	results of full wav	e lightning impulse test	(1.2/50 µs) on ins	sulating distance "b".	
-90k\v/div 1.0µs	s/div CH3:100 MS/s	Ch1 Ch2 Ch3		//div 10µs/div СНЗ:100 М\$/s	
			540	1995	
			360		
,,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,			180		
			0		

180

6.1.3 Insulating distance "b"

Test

no.

1

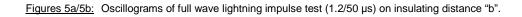
2

3

4

5

40


Tested

insulating

distance

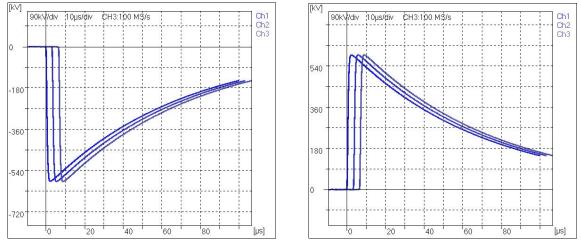
b

720

Peak amplitude (Up)

[kV

Nominal


-500

500

6.1.4 Insulating distance "c1"

Tested insulating	Test no.	Peak amplitude (U _p) [kV _{peak}]		Front time (T ₁) [µs]		Time to half-value (T ₂) [µs]	
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1		-588.5		1.236		51.80
	2	-590	-589.9		1.237		51.80 51.79 51.82
c1	3		-589.8	1.2	1.235	50	51.82
CI	4		589.4	1.2	1.245	50	51.90
	5	590	589.8]	1.244		51.79 51.82 51.90 51.89
	6		590.0		1.247		51.90

Table 4: Test results of full wave lightning impulse test (1.2/50 µs) on insulating distance "c1".

Front time (T₁)

[µs]

Tested

1.242

1.242

1.243

1.257 1.254

40

60

80

[µs]

20

Nominal

1.2

Time to half-value (T₂)

[µs]

Tested

51.80

51.78

51.82

51.88

51.86

Nominal

50

Figures 6a/6b: Oscillograms of full wave lightning impulse test (1.2/50 µs) on insulating distance "c1".

Tested

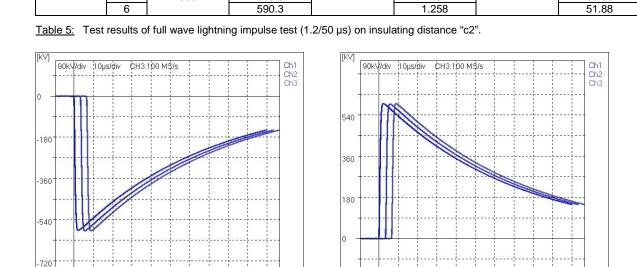
-588.6

-590.1

-590.1

590.9

589.5


Peak amplitude (Up)

[kV

Nominal

-590

590

6.1.5 Insulating distance "c2"

Test

no.

1

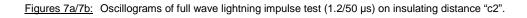
3

4

5

40

60


20

Tested

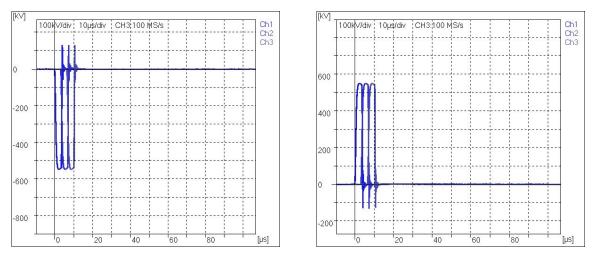
insulating

distance

c2

[µs]

80

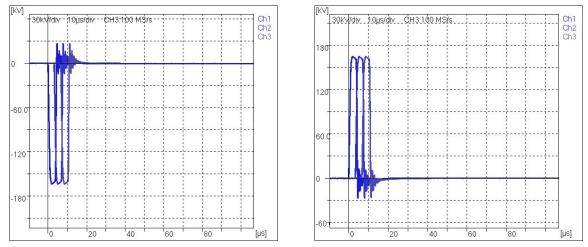

6.2 Chopped wave lightning impulse test (LIC)

Test standard:	IEC 60214-1:2014, sub-clause 5.2.8.6.
Impulse voltage generator:	Impuls generator (max. charging: 1800 kV), see appendix, picture 2.
Voltage waveform $(T_1/T_2/T_c)$:	1.2 / 50 / 3 μs.
Voltage value (U _p):	See tables 610.
Oscillograms:	See figures 8a/b12a/b.
Wiring and connections:	See appendix, figures 2428.
Number of applications:	Three applications with positive and three with negative polarity.

6.2.1 Insulating distance "a"

Tested insulating	ulating		Peak amplitude (U _p) [kV _{peak}]		Front time (T ₁) [µs]		Time to chopping (T _c) [µs]	
distance	no.	Nominal	Tested	Nominal	Tested	Nominal	Tested	
	1		-548.0		1.251		3.680	
	2	-550	-548.1		1.255		Tested	
	3		-548.1	1.2	1.253	4	3.802	
a	a <u>4</u>		550.0	1.2	1.266	4	3.738	
	5	550	549.9		1.266		3.759	
	6		549.9]	1.267		3.755	

Table 6: Test results of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "a".


Figures 8a/8b: Oscillograms of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "a".

Page 10 of 22 / VR/R/VM/M 6E 002e

6.2.2 Insulating distance "a1"

Tested insulating	Test	Peak amplitude (U _p) [kV _{peak}]		Front time (T₁) [µs]		Time to chopping (T _c) [µs]	
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1	-165	-164.6	1.2	1.201	4	3.891
	2		-164.5		1.201		3.885
a1	3		-164.6		1.199		3.880
di	4		165.8		1.200		3.886
	5		165.9		1.203		3.859
	6		165.6		1.199		3.862

Table 7: Test results of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "a1".

Figures 9a/9b: Oscillograms of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "a1".

Tested

-548.0

-548.1

-548.1

Peak amplitude (Up)

[kV

Nominal

-550

b	3		-548.1	1.2	1.287	4	3.824
D	4		551.3	1.2	1.303	4	3.795
	5	550	551.5		1.304		3.786
	6		551.2		1.302		3.789
able 8: Tes	st results c	of chopped wave li	ightning impulse t	est (1.2/50/3 µs	 on insulating distant 	ance "b".	
M				[kV]			
	10µ\$/div C	H3:100 MS/s	Ch1		//div 10µ\$/div CH3:100 N	/S/s	Ch1
			Ch2	+		{}}}-	Ch2
	1		Ch3				Ch3
111				600	200		1
			[
200				400 +	••••	<u> </u>	
+	·····						
400 +				200			

Front time (T₁)

[µs]

Tested

1.289

1.289

1.287

20

40

60

80

[µs]

Nominal

Time to chopping (T_c)

[µs]

Tested

3.832

3.811

3.824

Nominal

6.2.3 Insulating distance "b"

Test

no.

1

2

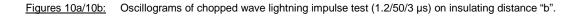
3

20

40

60

80


Tested

insulating

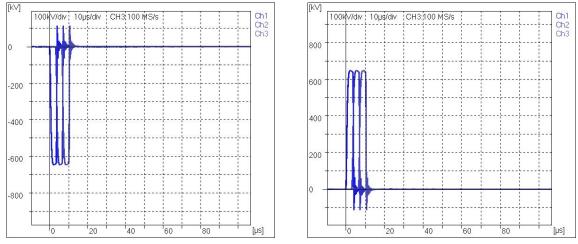
distance

-600

800

[µs]

-200


10

Page 11 of 22 / VR/R/VM/M 6E 002e

6.2.4 Insulating distance "c1"

Tested insulating	Test no.	Peak amplitude (U _p) [kV _{peak}]		Front time (T₁) [µs]		Time to chopping (T _c) [µs]	
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1	-649	-647.2		1.241	4	3.613
	2		-647.3		1.239		3.545
c1	3		-647.3	1.2	1.241		3.743
CI	4		648.8	1.2	1.250		3.727
	5	649	648.7		1.250		3.712
	6		648.7		1.251		3.704

Figures 11a/11b: Oscillograms of chopped wave lightning impulse test (1.2/50/3 µs) on insulating distance "c1".

Front time (T₁)

[µs]

Tested

1.246

1.248

1.244

20

40

60

80

[µs]

Nominal

1.2

Peak amplitude (U_p)

Tested

-648.3

-648.7

-648.5

[kV

Nominal

-649

40

60

80

Time to chopping (T_c)

[µs]

Tested

3.825

3.575

3.618

Nominal

4

	~~~	•		0.0		1 2					4		0.0.0
	c2	4		649.	4	1.2		1.2	265		4		3.757
		5	649	649.	6			1.2	266				3.745
		6		649.	6			1.2	265				3.746
able	<u>e 10:</u> Test	results o	f chopped wave	lightning im	ipulse t	est (1.2/50/	′3 µs) o	n insula	ting distar	nce "c2	2".		
V]					- 100000 T	[kV]							and a start of
	100kV/div _1	0µ\$/div Cl	H3:100 MS/s		Ch1		100kV/div	10µs/div	CH3:100 M	S/s			Ch1
-					Ch2 Ch3							1	Ch2 Ch3
						800 -		····-	. <b>.</b>			·	
												1	
-					0	-							
						600	<b>M</b>					·	
0						000							
	·····					8 <del></del>			i i i			÷	
						400							
0 -						400				1		1	
-	·····				2	-			++		·····		
						200 -			.iii				
00 -	W				1	200	- 111						
2						1							

#### 6.2.5 Insulating distance "c2"

Test

no.

2

3

Tested

insulating

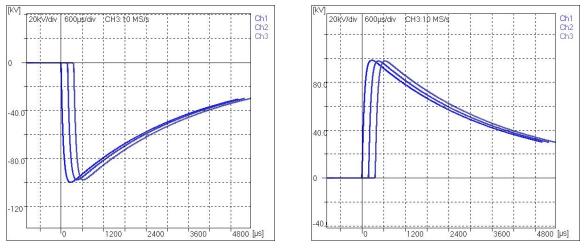
distance

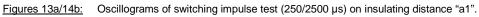
c2

-800



[us]

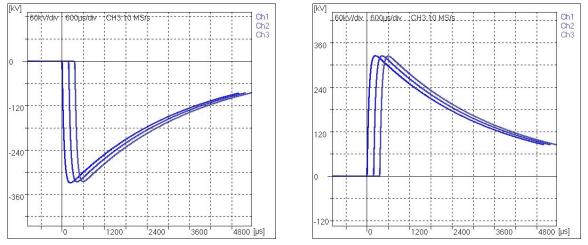

### 6.3 Switching impulse test (SI)


Test standard:	IEC 60214-1:2014, sub-clause 5.2.8.7.
Impulse voltage generator:	Impuls generator (max. charging: 1800 kV), see appendix, picture 2.
Voltage waveform $(T_P/T_2)$ :	250 / 2500 µs.
Voltage value (U _p ):	See tables 1115.
Oscillograms:	See figures 13a/b17a/b.
Wiring and connections:	See appendix, figures 2428.
Number of applications:	Three applications with positive and three with negative polarity.

# 6.3.1 Insulating distance "a1"

Tested insulating	Test no.	Peak amplitude (U _p ) [kV _{peak} ]		Time to peak (T _P ) [µs]		Time to half-value (T ₂ ) [µs]	
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1	-100	-100.00	250	265.7	2500	2975
	2		-97.92		265.4		2974
a1	3		-97.95		265.6		2973
ai	4		98.53	230	265.7		2975
	5	100	97.94		265.7		2974
	6		97.92		265.9		2974

<u>Table 11:</u> Test results of switching impulse test (250/2500  $\mu$ s) on insulating distance "a1".






#### 6.3.2 Insulating distance "a"

Tested insulating	Test no.	Peak amplitude (U _p ) [kV _{peak} ]		Time to peak (T _P ) [µs]		Time to half-value (T₂) [µs]	
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1	-325	-328.3	250	230.3	2500	2681
	2		-325.4		230.3		2680
	3		-324.8		230.3		2681
а	4		325.8	250	231.2		2681
	5	325	325.3		231.4		2682
	6		324.6		231.1		2681

Table 12: Test results of switching impulse test (250/2500 µs) on insulating distance "a".



Time to peak (T_P)

[µs]

Tested

234.5

234.4

234.3

1200

2400

3600

4800 [µs]

Nominal

250

120

Time to half-value (T₂)

[µs]

Tested

2687

2687

2686

Nominal

2500

Oscillograms of switching impulse test (250/2500 µs) on insulating distance "a". Figures 14a/14b:

Tested

-325.0

-325.0

-325.0

Peak amplitude (U_p)

[kV

Nominal

-325

b	•		020.0	250	20.10	2500	
D	4		325.9	250	235.3	2500	2688
	5	325	325.4		235.4		2689
	6		324.8		235.5		2688
	0		524.0		200.0		2000
ble 13: Tes	st results o	of switching impuls	se test (250/2500	µs) on insulating	distance "b".		
<u></u>				p.,			
1				0.0.0			
1 +60kV/div + 60	00µ\$/div CH:	3110 MS/5	Ch1	[KV]	600µ\$/div CH3:10 MS	3/5	Ch1
			Ch2	10003700	1 2000		Ch2
+			Ch3				Ch3
				360			1
					1280		
+							
			- Contraction of the Contraction	240			
,+ <b></b>	+						
+				120			
1 1 1				120			Contraction of the local division of the loc
o†		1					
1				0			1
		T E T T			1 1 1 1		

#### 6.3.3 Insulating distance "b"

Test

no.

1

2

3

1200

2400

3600

Tested

insulating

distance

b

360

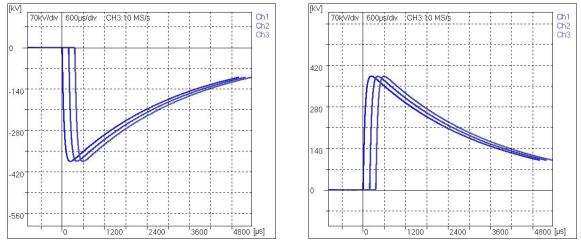
Oscillograms of switching impulse test (250/2500 µs) on insulating distance "b". Figures 15a/15b:

4800 [µs]

#### 6.3.4 Insulating distance "c1"

6.3.5 Insulating distance "c2"

1200


2400

3600

-560

Tested insulating	Test no.	Peak amplitude (U _p ) [kV _{peak} ]		Time to peak (T _P ) [µs]		Time to half-value (T₂) [µs]	
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1	-385	-384.3		225.7	2500	2673
	2		-383.7		225.5		2675
c1	3		-384.3	250	225.7		2673
CI	4		384.6	250	226.4		2675
	5	385	383.8		226.5		2675
	6		384.3		226.3		2675

Table 14: Test results of switching impulse test (250/2500 µs) on insulating distance "c1".

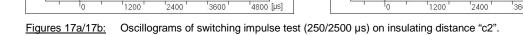


#### Figures 16a/16b: Oscillograms of switching impulse test (250/2500 $\mu s)$ on insulating distance "c1".

Tested	Teet	Peak amplitude (U _p ) [kV _{peak} ]		Time to peak (T _P )		Time to half-value (T ₂ )	
insulating	Test no.			[μ	[µs]		s]
distance	110.	Nominal	Tested	Nominal	Tested	Nominal	Tested
	1		-384.4		224.3	2500	2673
	2	-385	-383.9	250	224.3		2675
c2	3		-383.9		224.4		2674
62	4	385	385.0		225.1		2676
	5		383.9		225.2		2676
	6		384.0		225.3		2676

1200

2400


3600

4800 [µs]

Ch1 Ch2 Ch3

### [kV] [kV] Ch1 Ch2 Ch3 70kV/div 600µ\$/div CH3:10 MS/s 70k√/div 600µ\$/div CH3:10 MS/s 420 140 280 280 140 420

Table 15: Test results of switching impulse test (250/2500 µs) on insulating distance "c2".



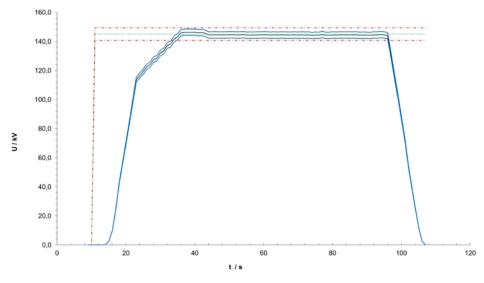
#### 6.4 Applied voltage test (AV)

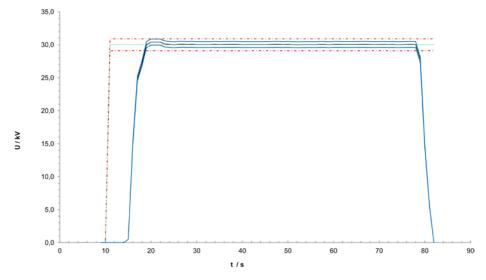
Test standards:	IEC 60214-1:2014, sub-clause 5.2.8.8.
Voltage generator:	Applied voltage generator (max. Voltage 700 kV), see appendix, picture 1
Voltage waveform:	Sine-shaped (frequency: 50 Hz).
Voltage value (U _{r.m.s} ):	See tables 1519.
Oscillograms:	See figures 1822.
Wiring and connections:	See appendix, figures 2428.
Test duration $(t_D)$ :	60 s

# 6.4.1 Insulating distance "a"

Tested insulating	Applied volt [kV	age (50 Hz) _{r.m.s} ]	Test duration [s]		
distance	Nominal	Tested	Nominal	Tested	
а	145	145	60	62	

Table 15: Test results of applied voltage test (50 Hz) on insulating distance "a".





Figure 18: Oscillogram of applied voltage test (50 Hz) on insulating distance "a".

#### Page 16 of 22 / VR/R/VM/M 6E 002e

#### 6.4.2 Insulating distance "a1"

Tested insulating distance	Applied voltage (50 Hz) [kV _{r.m.s} ]		Test duration [s]	
	Nominal	Tested	Nominal	Tested
a1	30	30	60	60

Table 16: Test results of applied voltage test (50 Hz) on insulating distance "a1".





#### 6.4.3 Insulating distance "b"

Tested insulating distance	Applied voltage (50 Hz) [kV _{r.m.s} ]		Test duration [s]	
	Nominal	Tested	Nominal	Tested
b	160	160	60	62

Table 17: Test results of applied voltage test (50 Hz) on insulating distance "b".

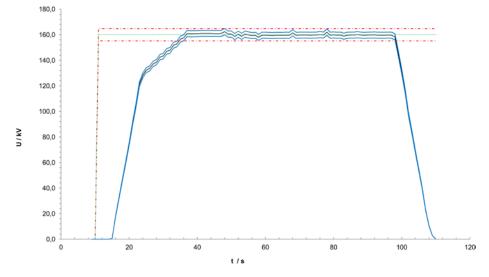



Figure 20: Oscillogram of applied voltage test (50 Hz) on insulating distance "b".

#### Page 17 of 22 / VR/R/VM/M 6E 002e

#### 6.4.4 Insulating distance "c1"

Tested insulating distance	Applied voltage (50 Hz) [kV _{r.m.s} ]		Test duration [s]	
	Nominal	Tested	Nominal	Tested
c1	210	230	60	63

Table 18: Test results of applied voltage test (50 Hz) on insulating distance "c1".

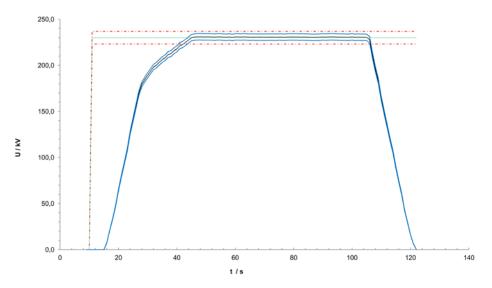



Figure 21: Oscillogram of applied voltage test (50 Hz) on insulating distance "c1".

#### 6.4.5 Insulating distance "c2"

Tested insulating distance	Applied voltage (50 Hz) [kV _{r.m.s} ]		Test duration [s]	
	Nominal	Tested	Nominal	Tested
c2	230	250	60	63

Table 19: Test results of applied voltage test (50 Hz) on insulating distance "c2".

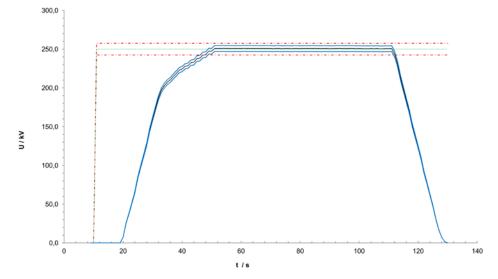



Figure 22: Oscillogram of applied voltage test (50 Hz) on insulating distance "c2".

#### 7. Test result

The requirements according to IEC 60214-1:2014 "Tap-changers - Part 1: Performance requirements and test methods", sub-clause 5.2.8: "Dielectric tests" were met.

The full wave lightning impulse voltage tests (LI), the chopped wave lightning impulse tests (LIC), the switching impulse tests (SI) as well as the applied voltage tests (AV) were withstood without any discharge. The confirmed values are shown in table 20.

Tested insulating distance	Full wave lightning impulse test (LI)	Chopped wave lightning impulse test (LIC)	Switching impulse test (SI)	Power-frequency voltage tests
(Symbol see figures 1 and 2)	1.2/50 µs [kV _{peak} ]	1.2/50/3 μs [kV _{peak} ]	250/2500 μs [kV _{peak} ]	50 Hz / 60 s [kV _{r.m.s.} ]
a1	150	165	100	30
а	500	550	325	145
b	500	550	325	160
c1	590	649	385	210
c2	590	649	385	230

Table 20: Confirmed withstand voltages of defined insulation distances.

#### 8. Appendix

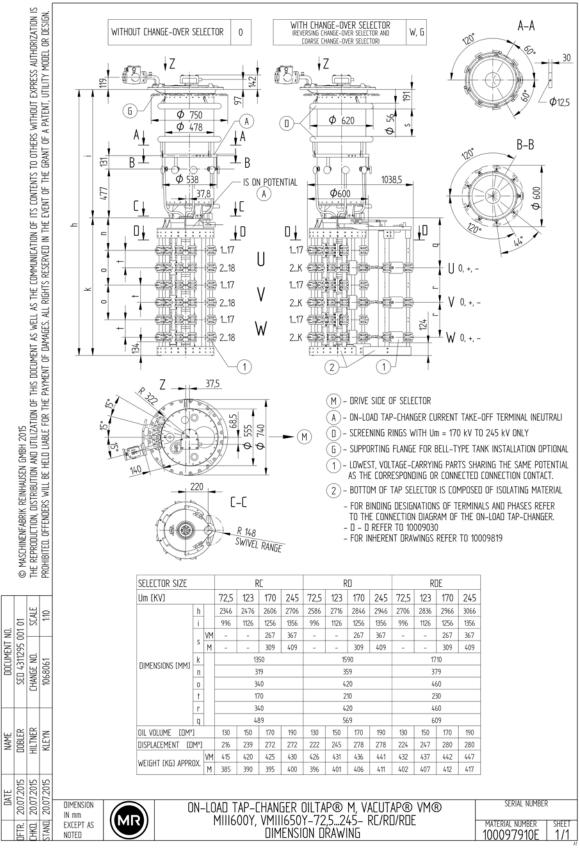
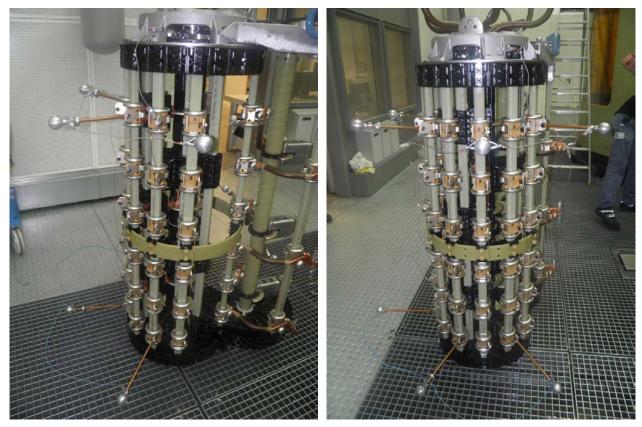



Figure 23: Dimension drawing the test sample (VACUTAP® VM III 650 Y - 170/RD - 18 35 3G).


# Page 20 of 22 / VR/R/VM/M 6E 002e



Picture 1: Test setup for applied voltage test



Figure 2: Test setup for impulse voltage tests.



Pictures 3a/b: Test sample prepared for the test.

#### Page 21 of 22 / VR/R/VM/M 6E 002e

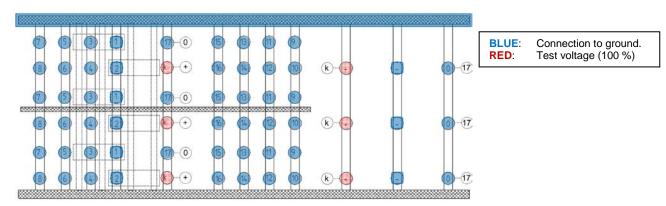
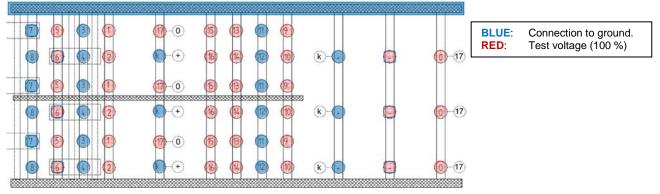




Figure 24: Wiring for testing insulating distancees "a".



Figures 25: Wiring for testing insulating distance "a1".

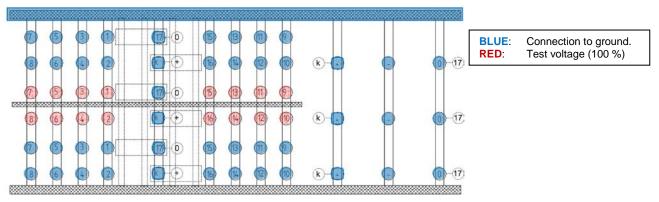
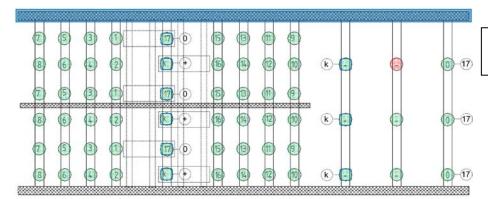
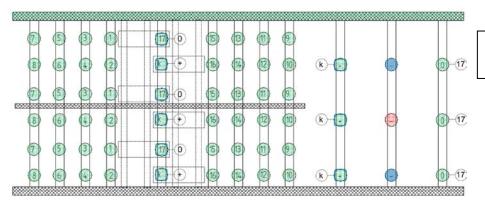





Figure 26: Wiring for testing insulating distance "b".



BLUE:Connection to ground.RED:Test voltage (100 %)GREEN:Test voltage (50%)

Figure 27: Wiring for testing insulating distancees "c1".



BLUE: Connection to ground. RED: Test voltage (100 %) GREEN: Test voltage (50%)

Figure 28: Wiring for testing insulating distancees "c2".