TEST REPORT

INFORMATION SHEET

KERI(Korea Electrotechnology Research Institute) issues a Type Test Certificate and a Test Report as below.

1. Type Test Certificate

A Certificate contains a record of a series of type tests carried out strictly in accordance with IEC, and/or regional standard and national standard that are identical to IEC standard. The equipment tested has fulfilled the requirements of this standard and the relevant ratings assigned by the manufacturer are endorsed by KERI. The Certificate is applicable only to the equipment tested. KERI is responsible for the validity and the contents of the Certificate. The responsibility for conformity of any apparatus having the same designation as the one tested rests with the manufacturer. The certificate contains the essential drawings and a description of the equipment tested. Detailed rules are given in KERI's Type Test Certification Procedure.

2. Test Report

2.1 Type Test Report

A Type Test Report contains a record of a series of type tests carried out strictly in accordance with a standard recognized by KERI. The equipment tested has fulfilled the requirements of this standard and the relevant ratings assigned by the manufacturer are endorsed by KERI. The Type Test Report is applicable only to the equipment tested. KERI is responsible for the validity and the contents of the Type Test Report. The responsibility for conformity of any apparatus having the same designation as the one tested rests with the manufacturer. The Type Test Report contains the essential drawings and a description of the equipment tested. Detailed rules are given in KERI's Test Procedure.

2.2 Performance Test Report

A Performance Test Report contains a record of one or more tests which have been carried out according to the client's instructions. These tests are not necessarily in accordance with a recognized standard. The test results do not verify ratings of the test object. Detailed rules are given in KERI's Test Procedure.

KERI issues three types of Performance Test Report.

2.2.1 The tests have been carried out strictly in accordance with a recognized standard. The apparatus has complied with the relevant requirements.

This sentence will appear on the front page of Performance Test Report if the tests have been performed in accordance with a recognized standard, but the series of tests does not completely fulfil the requirements for a Certificate of Compliance (for example, if the number of test series is not a complete series of type tests). The Report contains verified drawings and a description of the equipment tested. The condition of the test object after the tests is assessed and recorded in the Report.

2.2.2 The tests have been carried out in accordance with the client's instructions. Test procedure and test parameters were based on a recognized standard.

This sentence will appear on the front page of Performance Test Report if the number of test duties, the test procedure and the test parameters are based on a recognized standard and related to the ratings assigned by the manufacturer. Verification of the drawings (if submitted) and assessment of the condition after the tests is only done on the client's request.

2.2.3 The tests have been carried out according to the client's instructions.

This sentence will appear on the front page of Performance Test Report if the test shots, test procedure and/or test parameters are not in accordance with a recognized standard.

3 KERI is a member of STL(Short-circuit Testing Liaison) and the accredited testing laboratory under Clause 2 of Article 2 in "Guidelines on certified testing criteria and methods for electrical equipment" (Public Notice No. 2008-120, Ministry of Knowledge Economy, Korea).

CLASSIFICATION

Type Test

APPARATUS

Heat shrinkable cable joint

DESIGNATION

JHSY-1/4.0

0.6/1.0(1.2) kV 10 mm 4C Type II

RECEIPT No.

TRD13S00640 (February 18, 2013)

APPLICANT

Shanghai Jiameng International Trading Co., Ltd.

No.346 Qinwan Road, Jinshanwei Town, Jinshan District, Shanghai, China

MANUFACTURER

Jiangsu Jiameng Electrical Equipment Co., Ltd.

No.5 Zhongli Road, Binhai Industrial Zone, Qidong City, Jiangsu Province, China

DATE OF TESTS

May 09, 2013 ~ July 03, 2013

DATE OF ISSUE

August 09, 2013

The test object, constructed in accordance with the description, essential drawings and photographs incorporated in this Type Test Report has been subjected to the series of proving tests in accordance with

BS EN 50393:2006

This Type Test Report has been issued by KERI.

The results are shown in the record of Proving Tests and the oscillograms attached hereto. The values obtained and general performances are considered to comply with the above Standard and to justify the ratings assigned by manufacturer as listed on page No. 3.

The Type Test Report applies only to the test object. The responsibility for conformity of any apparatus having the same designations with that tested rests with the Manufacturer.

Only integral reproduction of this Report are permitted without written permission from KERI. Electronic copies in PDF-format or scanned version of this Report may be available and have the status "for information only". The sealed version of the Report is only the valid version.

TOTAL No. OF PAGES (15):

records (9), photographs (1), circuit diagrams (0),

drawings & descriptions (1), attachments(2), oscillograms (2)

Prepared by

Kim , Ji-Hwan

Verified by (Technical manager)

Ahn , Sang-Pil

alm Sang-Pil

Approved by

park named

Power Apparatus Testing & Evaluation Division

KOREA ELECTROTECHNOLOGY RESEARCH INSTITUTE (ANSAN)

111, Hanggaul-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 426-910, Republic of Korea

Tel: +(0)82-(0)31-8040-4114, Fax: +(0)82-(0)31-8040-4499, www.keri.re.kr

Table of contents

Items	Sheet No.
Table of contents	2/15
Ratings	3/15
List of the tests	4/15
Test results	5/15~9/15
Photographs	10/15
Circuit diagrams and parameters	-
Drawings	11/15
Attachments	12/15~13/15
Oscillograms	14/15~15/15

Tested by :

Kim Ji-hwan

KERI

Witnessed by :

Zhangjie Tang

Kristall Liu

SHANGHAI JIAMENG INTERNATIONAL TRADING Co., Ltd.
JIANGSU JIAMENG ELECTRICAL EQUIPMENT Co., Ltd.

Drawings:

The manufacturer guarantees that the test object submitted is manufactured in accordance with the following drawings. KERI verified that these drawings adequately represented the test object.

The following drawing is included in this test report.

Reference No.

Drawing No.

Revision No.

Date

001

GTY-1-10

B1

2013.05.14

Heat shrinkable cable joint

Applied standard

BS EN 50393:2006

Manufacturer

JIANGSU JIAMENG ELECTRICAL EQUIPMENT Co., Ltd.

Designation

JHSY-1/4.0

Date of manufacture

May 1, 2013

Ratings of the test object assigned by manufacturer and proved by tests:

Rated voltage U_o/U(U_m)

0.6/1.0(1.2) kV

Nominal cross-sectional area

10 mm²

Number of cores

4

Type of joints

11

Ratings of the test object assigned by manufacturer :

Cable used for testing

Conductor

Stranded circular copper

Insulation

XLPE

Rated voltage Uo/U(Um)

0.6/1.0(1.2) kV

Nominal cross-sectional area

10 mm²

Number of cores

List of the tests

Test items	Standard and clauses	Test date	Sheet No.
1 AC voltage withstand test in air	BS EN 50393 8.3	May 9, 2013	5/15
2 Insulation resistance test in air	BS EN 50393 8.4	May 9, 2013	5/15
3 Impact at ambient temperature	BS EN 50393 8.5	May 9, 2013	5/15
4 AC voltage withstand test in water	BS EN 50393 8.3	May 10, 2013	6/16
5 Insulation resistance test in water	BS EN 50393 8.4	May 10, 2013	6/15
6 Heating cycle test in air	BS EN 50393 8.6	May 15, 2013 ~June 5, 2013	7/15
7 Heating cycle test in water	BS EN 50393 8.6	June 7, 2013 ~June 28, 2013	7/15
8 AC voltage withstand test in water	BS EN 50393 8.3	July 1, 2013	8/15
9 Insulation resistance test in water	BS EN 50393 8.4	July 1, 2013	8/15
10 Examination (for information only)	BS EN 50393 8.8	July 3, 2013	8/15
11 Description of tests	-	=	9/15

1 AC voltage withstand test in air

Test voltage	Test frequency	Test duration	Requirement	Voltage applied to	Earth connected to	Test result
			RYGB	Metallic sheath	No failure	
				R	Y G B Metallic sheath	No failure
4 kV 60 Hz 1 n	60 Hz 1 min	No failure	Y	R G B Metallic sheath	No failure	
	G		R Y B Metallic sheath	No failure		
			В	R Y G Metallic sheath	No failure	

^{*} Atmospheric condition: 22.3 °C, 59 % RH, 1 012 hPa

2 Insulation resistance test in air

Test voltage	Test duration	Requirement	Measi	uring points	Test result	
			RYGB	Metallic sheath	≥ 99.9 GΩ	
DC 1 kV		≥ 50 MΩ	R	Y G B Metallic sheath	≥ 99.9 GΩ	
	1 min		Υ	R G B Metallic sheath	≥ 99.9 GΩ	
			G	R Y B Metallic sheath	≥ 99.9 GΩ	
			В	R Y G Metallic sheath	≥ 99.9 GΩ	

^{*} Atmospheric condition: 22.3 °C, 59 % RH, 1 012 hPa

3 Impact at ambient temperature

Test method	Test result
The joint shall be placed on a hard surface.	
The impacting tool shall be a wedge-shaped steel block of 4 kg having 90 ° angle with a 2 mm radius impacting edge of minimum width 50 mm. The block shall be dropped on to the joint from a height of 1 000 mm so that the impacting edge is horizontal, at right angles to the axis of the accessory, and centered on the point of impact.	Refer to the test results of 4, 5, 6, 7, 8 and 9
The impact shall be made at each cable entry within 10 mm of the edge of the oversheath on the joint side. In addition one impact shall be made over the connector.	

^{*} Phase conductor : R, Y, G

^{*} Neutral conductor : B

[·] Phase conductor : R, Y, G

[·] Neutral conductor : B

4 AC voltage withstand test in water

Test voltage	Test frequency	Test duration	Requirement	Voltage applied to	Earth connected to	Test result
				RYGB	Metallic sheath & Water	No failure
				R	Y G B Metallic sheath & Water	No failure
4 kV 60 Hz	1 min	No failure	Y	R G B Metallic sheath & Water	No failure	
				G	R Y B Metallic sheath & Water	No failure
				В	R Y G Metallic sheath & Water	No failure

* Atmospheric condition: 23.4 °C, 68 % RH, 1 001 hPa

* Phase conductor : R, Y, G

* Neutral conductor : B

5 Insulation resistance test in water

Test voltage	Test duration	Requirement	N	Measuring points		
			RYGB	Metallic sheath & Water	≥ 99.9 GΩ	
			R	Y G B Metallic sheath & Water	≥ 99.9 GΩ	
DC 1 kV	1 min	\geq 50 M Ω	Υ	R G B Metallic sheath & Water	≥ 99.9 GΩ	
			G	R Y B Metallic sheath & Water	≥ 99.9 GΩ	
			В	R Y G Metallic sheath & Water	≥ 99.9 GΩ	

* Atmospheric condition: 23.4 °C, 68 % RH, 1 001 hPa

* Phase conductor : R, Y, G

* Neutral conductor : B

6 Heating cycle in air

Test method and requirement		
The temperature of the phase conductor shall be raised to $(95\sim100)$ °C by heating the assembly, by passing current through the cables.		
A steady conductor temperature shall be maintained for not less than 2 h. After the 2 h minimum steady temperature period the current shall be switched off and the cable allowed to cool naturally to within 10 K of ambient within a period not less than 3 h.	Refer to the test results of 8 and 9	
The test assembly shall be subjected to 63 cycles in air.		

7 Heating cycle in water

Test method	Test result
The cable cores shall be exposed at the entry to the joint by removing an oversheath together with any bedding or filling material of at least 50 mm length and between 50 mm and 150 mm from the exterior of the accessory. The exposure of cores shall be made on the side with the shorter sealing length between the sheath cut back and connectors.	
The assembly shall be placed in a water bath with a water height of 1 000 mm.	
During the heating cycle temperature of the water shall be (20 \pm 15) $^{\circ}$ C.	Refer to the
The temperature of the phase conductor shall be raised to $(95 \sim 100)$ °C by heating the assembly, by passing current through the cables.	test results of 8 and 9
A steady conductor temperature shall be maintained for not less than 2 h. After the 2 h minimum steady temperature period the current shall be switched off and the cable allowed to cool naturally to within 10 K of ambient within a period not less than 3 h.	
The test assembly shall be subjected to 63 cycles in water.	

8 AC voltage withstand test in water

Test voltage	Test frequency	Test duration	Requirement	Voltage applied to	Earth connected to	Test result
				RYGB	Metallic sheath & Water	No failure
				R	Y G B Metallic sheath & Water	No failure
4 kV 60 Hz 1 min	60 Hz	lz 1 min 1	No failure	lure Y	R G B Metallic sheath & Water	No failure
		G	R Y B Metallic sheath & Water	No failure		
				В	R Y G Metallic sheath & Water	No failure

* Atmospheric condition: 27.8 °C, 58 % RH, 1 008 hPa

* Phase conductor : R, Y, G

* Neutral conductor : B

9 Insulation resistance test in water

Test voltage	Test duration	Requirement	٨	Measuring points	Test result
			RYGB	Metallic sheath & Water	≥ 99.9 GΩ
			R	Y G B Metallic sheath & Water	≥ 99.9 GΩ
DC 1 kV	1 min	\geq 50 M Ω	Υ	R G B Metallic sheath & Water	≥ 99.9 GΩ
			G	R Y B Metallic sheath & Water	≥ 99.9 GΩ
			В	R Y G Metallic sheath & Water	≥ 99.9 GΩ

* Atmospheric condition: 27.8 ℃, 58 % RH, 1 008 hPa

* Phase conductor : R, Y, G

* Neutral conductor : B

10 Examination (for information only)

Test method	Test result
After completing the test, the assembly shall be dismantled. Examine the joint for the effectiveness of the moisture seals and corrosion of the amour bonds and other metalwork exposed within the joint.	No ingress of water

11 Description of tests

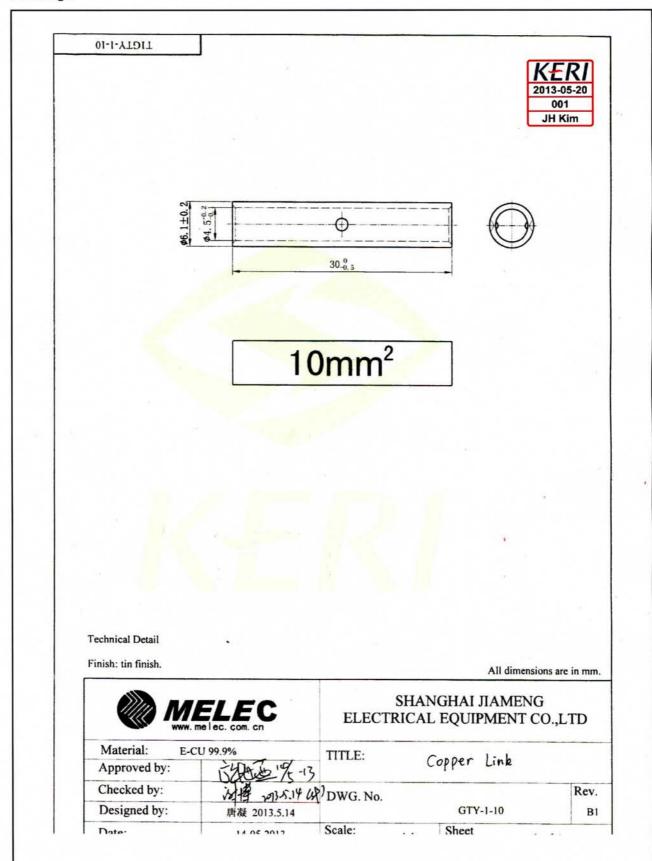
- 11.1 The above tests were carried out on the test objects submitted by the applicant in accordance with BS EN 50393:2006 (Test methods and requirements for accessories for use on distribution cables of rated voltage 0.6/1.0 (1.2) kV).
- 11.2 The above tests were carried out on one test sample in sequence. The end.

Photographs

<Before assembling>

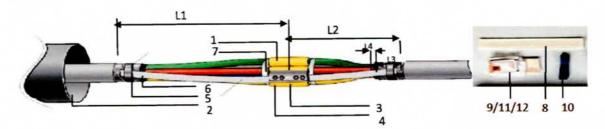
<After assembling>

Apparatus : Heat shrinkable cable joint


Designation: JHSY-1/4.0

Ratings: 0.6/1.0(1.2) kV 10 mm² 4C Type II

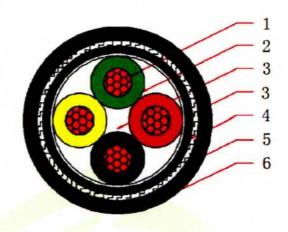
Manufacturer: JIANGSU JIAMENG ELECTRICAL EQUIPMENT Co., Ltd.


Photo. ET01: Test object

Drawings

Attachments

Diagram:

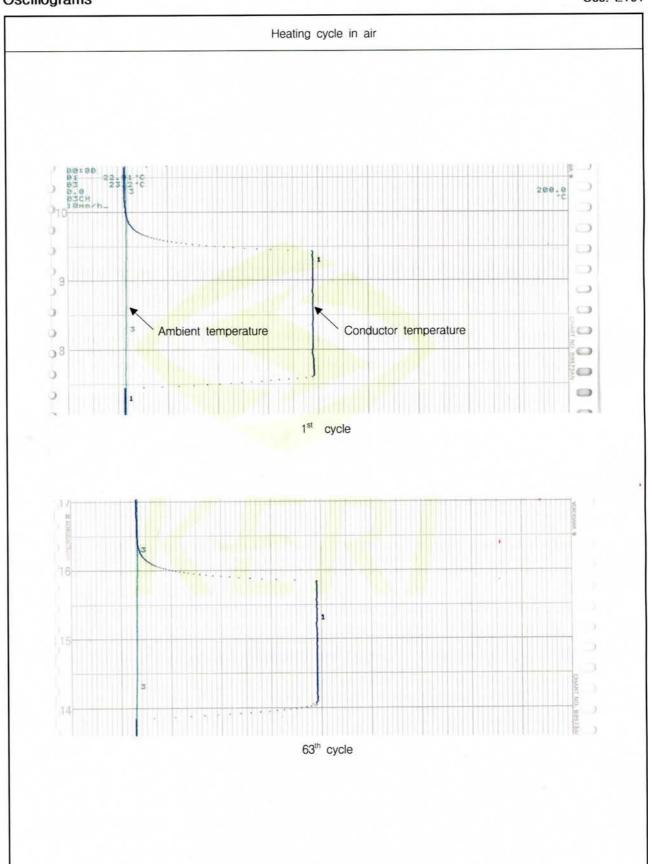


The Cabl	le cross-sectional area	LI	L2	L3	L4
	4*10mm²	350mm	200mm	30mm	10mm
No	Description		Item	Length (mm)	Quantity (pcs)
1	Protective sleeve		MRA2	200	4
2	Protective sleeve		MRA2	820	1
3	connection termi	nal	GTY-1-10	10mm ²	4
4	Grounding termin	nal	KZB01	800	1
5	Constant force sp	ring ring	KZB02	Ф12	2
6	Copper binding v	vire	KZB03	1000	2
7	PVC insulation ta	pe	KZB04	5000	1
8	sealant		TAPE01	320	2
9	Cleaning bag		QJB01	10ml	2
10	Sand paper		QJB02	P80	2
11	cleaning cloth		QJB03		1
12	Glove	8	QJB04		1
	Date	Draw up	Auditing		prove

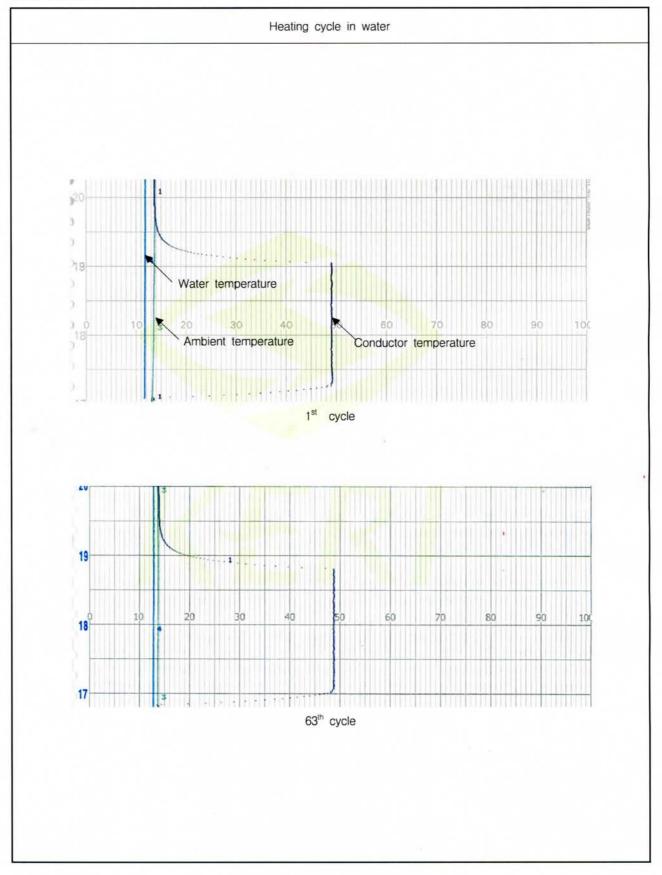
Date	Draw up	Auditing	Approve
2013-3-22	Yunnan zhang	Zhangjie zhang	Zhile zhang

Attachment ET01: Assembling diagram

Attachments



1	Type: YJV22	Voltage: 0. 6/1kV	Standard: GB	/T12706-2008
SN		STRUCTURE		DATA
1	conductor	nominal area	mm2	4x10
		piece/single core diameter	NO. /mm	7/1.35
		diameter	En.	4.00
		the max. resistance at 20℃	Ω/km	1,83
2	insulation	material	XLPE	
		nominal thickness	nn n	0.7
		insulation diameter	EE.	5. 4
3	laying up	rapping material non-woven fabric		n fabrics
		layers/thickness	NO. /mm/mm	1/0.2
		laying up thickness	nn.	13. 90
4	bedding	material		
		nominal thickness		1. 20
5	armour	material	galvanized steel strip	
		layers/thickness	πn	2/0.2
	a barrat	material	PVC	
		nominal thickness	an .	1.8
6	sheath	cable diameter	EE.	21. 7
		approximately weight	kg/km	787.0


Attachment ET02: Construction of cable used for testing

Oscillograms

Osc. ET01

Oscillograms Osc. ET02

