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Trabecular lattice ®TRASER

“Mimicking the nature of bone to provide 
bone ingrowth and osseointegration for long-
term implant stability”

“Highly porous trabecular network 
characterized by open fully interconnected 
irregular pores to promote fast bone 
ingrowth”





Porosity
Void volume - Porosity: 70%.

Random irregular shaped pores.

Complete permeabily.

Pore interconnectivity: 100%.

Pore size range: 100-2000 µm.
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Traser pore size range

Mean 0,520
StDev 0,381

Wide pore size range

Isotropy

Random pore sizes and random 

irregular trabeculae orientation 

and distribution along the 3-

dimensions.

Isotropic uniform highly-porous 

lattice.
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“Highly osteoconductive properties”



A glimpse on the topography of the trabeculae reveals a uniform microroughned surface (Ra, 2 µm) which 

optimize osteointegration (bone on-growth).

Superficial topography

It has been demonstrated that the bone response is influenced by the implant surface topography at the 
micrometer level. Surface roughness affects the physiological processes of bone tissue synthesis and 
osseointegration. Osteoblasts response in terms of cell adhesion, proliferation and osteosynthesis local 
factor production, as well as implant-to-bone direct contact have been proven to be increased by  
moderately-roughened surfaces (Ra, 1 to 6 µm)  [1-11]. 

New bone formation is promoted by a pore size range of 150-500 µm. Smaller pore sizes leads to fibrous 
tissue ingrowth and prevent the mineralization of the osteoid matrix. Greater pore sizes lead to a slower 
bone ingrowth and incomplete pore filling [15-20].

Surface Roughness

Fully interconnected open  irregular-shaped pores

Cell/tissue ingrowth behavior depends on the pore size, porosity and pore interconnectivity in different 
ways. Pores have to be open and fully interconnected to allow cell migration and to permit vascularization 
for cell viability and proliferation. Formation of new bone into an interconnected network of pores provide 
mechanical interlocking between implant and the surrounding bone [9,10].

Mean pore size of  500 micron

Higher porosity means higher bone ingrowth. A large consensus suggests a minimum porosity of 60% to 
maximize bone ingrowth while maintaining at the same time adequate mechanical properties of the 
porous structure [12,13,14].

High porosity



Mechanical Properties
Compressive strenght of 
TRASER® lattice: 38 Mpa
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Traser® is not a porous coating. 
The solid and the porous 
portions of the cup are built up 
in a one continuos process, 
thus creating a single piece 
without interface layers 
between different portions 
and, consequently, without 
shear forces.

is not a coating®TRASER

1.0 - 1.9 mm

Thickness of the 
trabecular lattice

High friction coefficient of 
TRASER® lattice with cancellous 
bone to improve implant primary 
fixation [21-24].

Coefficient of friction of TRASER® 
lattice with cancellous bone: 2.1
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Jump System ®TRASER Cup



Selective Laser Melting

SLM



Additive manufacturing (or 3D printing) is a 
technology that allows to produce three-
dimensional solid objects from a digital model 
using as a raw material metal powder.
Does not replace completely but rather 
complements the traditional machining 
processes.
The objects are created by adding the material in 
successive layers one over the other up to 
completion of the object. 
This differs from traditional machining process 
with machine tools, in which the object is 
obtained by subtracting material from the raw 
material.

Selective Laser Melting is an additive 
manufacturing technology that selectively melts 
and sinterizes by means of the thermal energy 
from a laser beam specific portions of titanium 
powder layer to create 3D solid parts

Selective Laser Melting process take place in an 
inert atmosphere (Argon) in order to avoid any 
titanium powder oxidation.

Additive Manufacturing Production
flow

Raw material®TRASER
Titanium powder - Ti6Al4V (ISO 5832/3)

CHEMICAL ANALYSIS

Element Result (Wt %)
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Traditional milling and 
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Thermal Treatment
Sandblasting

SLM

power diameter 
range: 16 - 76 µm



Customization

HISTORY
During the first consultancy in November 2015 in the hospital, 32y old male patient; dwarfism; 1.08m/30 
kg of bodyweight.
In the anamnesis continuous daily pain in the right hip with restricted range of movement. Important 
limitation in QDL (quality of daily living). Pain killers dipendent.

CLINICAL EXAM
Walk : limping right side; Duchenne/Trendelenburg negative; ROM : F/E 30-10-0, ER/IR 20-0-10, ABD/ADD 
10-0-20.
Radiologically : secondary osteoarthritis of the right hip (Crowe II, Paprovsky IIb).

SURGERY
April 17th, 2016, total hip replacement is performed, using an allograft out of the femoral head, fixed with 
several screws to build up the lateral acetabular rim. Then a TRASER® Trabecular Titanium custom made 
cup (Permedica Orthopaedics, Merate, Italy) is inserted.
On the femoral side, a customized selective laser melted femoral stem is implanted; reposition with a 
metal femoral head.

The final result is stable with a perfect covering of the cup implant and central seating of the TRASER® 
custom made cup.

FOLLOW UP
4 months after surgery perfect walk. No crutches since the second month postoperatively; no limping.
Joint function : F/E 120-0-20, ER/IR in 90° of flexion 40-0-30. Radiologically the implant is stable; bone 
graft is stable, the cup is integrated.

“Freedom of design to meet 
patient/surgeon requirements.”

A clinical case with custom made components 
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