

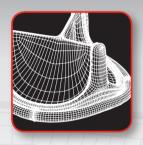
WHEN THE MOMENT MATTERS:

MAKE THE CHOICE YOU WOULD MAKE FOR YOURSELF

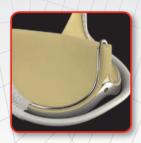
CARPENTIER-EDWARDS PERIMOUNT MAGNA EASE PERICARDIAL AORTIC BIOPROSTHESIS

With the Magna Ease valve, you can choose with confidence, knowing you are getting an industry-leading valve from Edwards Lifesciences, the worldwide leader in heart valve therapy.

Built upon the unique and proven PERIMOUNT design, the Magna Ease valve gives you and your patients:


- Excellent & stable Hemodynamics
- Exceptional Long-Term Durability
- A low profile, supra-annular valve that is Easy to Implant

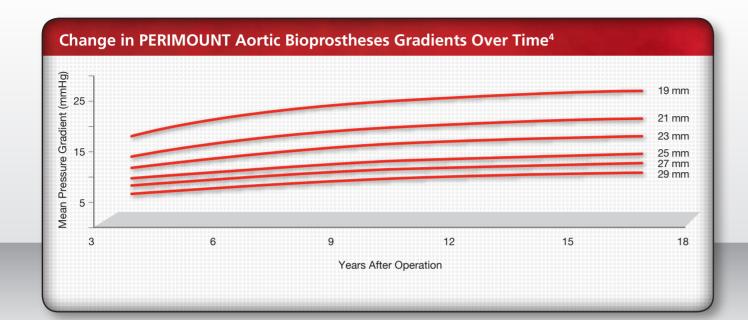
It is no wonder that surgeons choose the Magna Ease valve more than any other.


It all starts with the

Proven PERIMOUNT Design

The Magna Ease valve is built upon the proven, time-tested PERIMOUNT valve design, with unique design elements including:

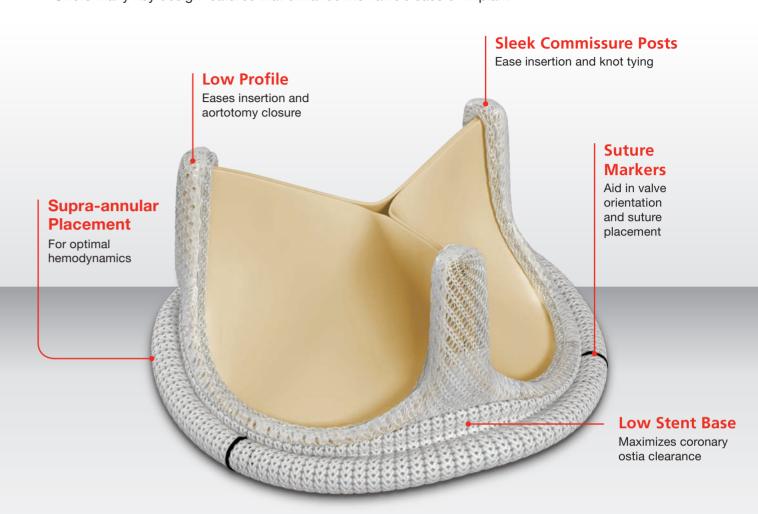
Mathematically modeled, bioengineered design
 Optimized for hemodynamics, durability and implantability

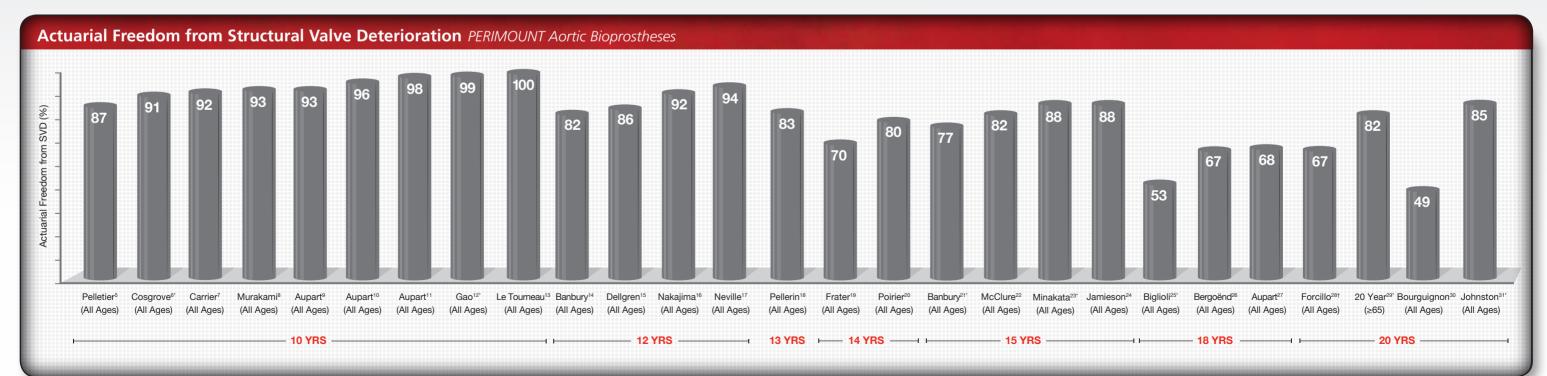

Flexible cobalt-chromium alloy stent
 Absorbs energy to reduce leaflet stress

Three independent bovine pericardial leaflets
 Matched for thickness and elasticity to optimize stress distribution

EXCELLENT AND STABLE HEMODYNAMICS

- Excellent EOAs and low gradients documented in published studies1-3
- Documented hemodynamic stability up to 17 years post-implantation




EXCEPTIONAL LONG-TERM DURABILITY

• Built on the proven performance of the PERIMOUNT valve design, with published clinical durability of up to 20 years

EASE OF IMPLANT

• Offers many key design features that enhance the valve's ease of implant

↑ REFERENCES **↑**

To learn more about the Magna Ease valve, please contact your Edwards Lifesciences sales representative, or visit edwards.com.

Model 3300TFX Nominal Specifications (mm)

Size	19 mm	21 mm	23 mm	25 mm	27 mm	29 mm
A. Stent Diameter (TAD*)	19	21	23	25	27	29
B. Internal Diameter (Stent I.D.)	18	20	22	24	26	28
C. Profile Height	13	14	15	16	17	18
D. External Sewing Ring Diameter	24	26	28	30	32	34

^{*} Tissue Annulus Diameter

For professional use. See instructions for use for full prescribing information, including indications, contraindications, warnings, precautions, and adverse events.

Edwards Lifesciences devices are placed on the European market, meeting the essential requirements referred to in Article 3 of the Medical Device Directive 93/42/EEC, bearing the CE marking of conformity.

Any quotes used in this material are taken from independent third-party publications and are not intended to imply that such third party reviewed or endorsed any of the products of Edwards Lifesciences.

Edwards, Edwards Lifesciences, the stylized E logo, Carpentier-Edwards, Magna, Magna Ease, PERIMOUNT and PERIMOUNT Magna are trademarks of Edwards Lifesciences Corporation. All other trademarks are the property of their respective owners.

 $\ensuremath{\mathbb{C}}$ 2015 Edwards Lifesciences Corporation. All rights reserved. E5508/04-15/HVT

REFERENCES FOR THE CARPENTIER-EDWARDS PERIMOUNT MAGNA EASE VALVE BROCHURE

- Dalmau M, et al. The Carpentier-Edwards Perimount Magna aortic xenograft: a new design with an improved hemodynamic performance. Interactive Cardiovasc and Thoracic Surgery 2006;5:263–267.
- Ruzicka D, et al. The Complete Supraannular Concept, In Vivo Hemodynamics of Bovine and Porcine Aortic Bioprostheses. Circulation 2009;120(11 Suppl):S139-45.
- 3. Wendt D, et al. The new St Jude Trifecta versus Carpentier-Edwards Magna and Magna Ease aortic bioprosthesis: Is there a hemodynamic superiority? J Thorac Cardiovasc Surg. 2014;147(5):1553-1560.
- Banbury MK et al. Hemodynamic Stability During 17 Years of the Carpentier-Edwards Aortic Pericardial Bioprosthesis.
 Ann Thorac Surg 2002;73:1460-65. (Cohort size = 267. mean age = 65 yrs.)
- 5. Pelletier LC, Carrier M, Leclerc Y, et al. The Carpentier-Edwards Pericardial Bioprosthesis: Clinical Experience with 600 Patients.

 Ann Thorac Surg. 1995;60:S297-302. (Cohort size = 416, mean age = 63 yrs. Number at risk for Primary Valve Dysfunction at last follow-up = 18)
- Cosgrove DM, Lytle BW, Taylor PC, et al. The Carpentier-Edwards Pericardial Aortic Valve. Ten-year results.
 J Thorac Cardiovasc Surg. 1995;110(3):651 662. (Cohort size = 310; mean age = 64.2 ± 10.8 yrs.
 Number at risk for Structural Valve Deterioration at last follow-up = 63)
- 7. Carrier M, Pellerin M, Perrault LP, et al. Aortic Valve Replacement with Mechanical and Biologic Prosthesis in Middle-aged Patients.

 Ann Thorac Surg. 2001;71:S253-256. (Cohort size = 158, mean age = 61 ± 3 yrs. Number at risk for Valve Dysfunction at last follow-up not reported)
- 8. Murakami T, et al. Aortic and Mitral Valve Replacement with the Carpentier-Edwards Pericardial Bioprosthesis: 10-year Results.

 J Heart Valve Dis. 1996 Jan;5(1):45-9. (Cohort size = 49, mean age = 58.6 ± 15.1 yrs. Number at risk for SVD at last follow-up = 1)
- 9. Aupart MR, Babuty DG, Guesnier L, et al. Double Valve Replacement with the Carpentier-Edwards Pericardial Valve: 10-year Results.

 J Heart Valve Dis. 1996;5(3):312-316. (Cohort size = 71, mean age = 63.4 yrs. Number at risk for Valve Structural Failure at last follow-up not reported)
- 10. Aupart MR, Sirinelli AL, Diemont FF, et al. The Last Generation of Pericardial Valves in the Aortic Position: Ten-year Follow-up in 589 Patients.

 Ann Thorac Surg. 1996;61(2):615-620. (Cohort size = 589, mean age = 67.5 ± 11.2 yrs. Number at risk for Structural Valve Failure at last follow-up not reported)
- 11. Aupart M, Simonnot I, Sirinelli A, et al. Pericardial Valves in Small Aortic Annuli: Ten Years' Results.

 Eur J Cardiothorac Surg. 1996;10(10):879-883. (Cohort size = 90, mean age = 72.2 ± 10.1 yrs. Number at risk for Valve Failure at last follow-up not reported)
- 12. Gao G, Wu Y, Grunkemeier GL, et al. Durability of Pericardial Versus Porcine Aortic Valves.

 J Am Coll Cardiol. 2004;44(2):384-388. (Cohort size = 1,021, mean age = 74 yrs. Number at risk for Explant for SVD at last follow-up = 6)
- Le Tourneau T, Vincentelli A, Fayad G, et al. Ten-year Echocardiographic and Clinical Follow-up of Aortic Carpentier-Edwards Pericardial and Supraannular Prosthesis: a Case-match Study. Ann Thorac Surg. 2002;74(6):2010-2015. (Cohort size = 75, mean age = 72 ± 9 yrs.
 Number at risk for SVD or reoperation at last follow-up = 18)
- 14. Banbury MK, Cosgrove DM III, Lytle BW, Smedira NG, Sabik JF, Saunders CR. Long-term Results of the Carpentier-Edwards Pericardial Aortic valve: A 12-year Follow-up. Ann Thorac Surg 1998;66:S73–6. (Cohort size = 310, mean age = 64.2 ± 10.8 yrs. Number at risk for Structural Deterioration at last followup = 111)
- 15. Dellgren G, David TE, Raanani E, Armstrong S, Ivanov J, Rakowski H. Late Hemodynamic and Clinical Outcomes of Aortic Valve Replacement with the Carpentier-Edwards Perimount Pericardial Bioprosthesis. J Thorac Cardiovasc Surg 2002;124:146-54. (Cohort size = 254, mean age = 71 yrs. Number at risk for Structural Valve Dysfunction at last follow-up = 6)
- 16. Nakajima H, Aupart MR, Neville PH, Sirinelli AL, Meurisse YA, Marchand MA. Twelve-year Experience with the 19 mm Carpentier-Edwards Pericardial Aortic Valve. J Heart Valve Dis 1998;7:534-539. (Cohort size = 121, mean age = 73.2 ± 9.4 yrs. Number at risk for Structural Valve Deterioration at last follow-up = 4)
- 17. Neville PH, et al. Carpentier-Edwards Pericardial Bioprosthesis in Aortic or Mitral Position: a 12-year Experience.

 Ann Thorac Surg. 1998;66(6 Suppl):S143-7. (Cohort size = 787, mean age = 68.83± 10.8` yrs. Number at risk for Structural Deterioration at last follow-up = 13)
- 18. Pellerin M, Mihaileanu S, Couetil JP, Relland JYM, Deloche A, Fabiani JN, Jindani A, Carpentier AF. Carpentier-Edwards Pericardial Bioprosthesis in Aortic Position: Long-term Follow-up 1980 to 1994.

 Ann Thorac Surg. 1995;60:S292-6. (Cohort size = 124, mean age = 65 yrs. Number at risk for Structural Valve Deterioration at last follow-up = 8)
- Frater RWM, Furlong P, Cosgrove DM, Okies JE, Colburn LQ, Katz AS, Lowe NL, Ryba EA.
 Long-term Durability and Patient Functional Status of the Carpentier-Edwards Perimount Pericardial Bioprosthesis in the Aortic Position.
 J Heart Valve Dis. 1998;7:48-53. (Cohort size = 267, mean age = 64.9 ± 11.8 yrs. Number at risk for Valve Dysfunction at last follow-up = 28)
- 20. Poirier NC, et al. 15-year Experience with the Carpentier-Edwards Pericardial Bioprosthesis.

 Ann Thorac Surg. 1998;66:S57-61. (Cohort size = 598, mean age = 65 yrs. Number at risk for Structural Deterioration at last follow-up = 8)
- 21. Banbury MK, Cosgrove DM III, White JA, et al. Age and Valve Size Effect on the Long-term Durability of the Carpentier-Edwards Aortic Pericardial Bioprosthesis. Ann Thorac Surg. 2001;72(3):753-757. (Cohort size = 267, mean age = 65 ± 12 yrs. Number at risk for Explant for SVD at last follow-up not reported)

- 22. McClure RS, Narayanasamy N, Wiegerinck E, et al. Late Outcomes for Aortic Valve Replacement with the Carpentier-Edwards Pericardial Bioprosthesis: Up to 17-year Follow-up in 1,000 Patients.

 Ann Thorac Surg. 2010;89(5):1410-1416. (Cohort size = 1,000, mean age = 74.1 ± 0.29 yrs. Number at risk for SVD at last follow-up not reported)
- 23. Minakata K et al. Long-Term Outcome of the Carpentier-Edwards Pericardial Valve in the Aortic Position in Japanese Patients.

 Circulation Journal 2014;78:882-889. (Cohort size = 574, mean age = 71.9 yrs. Number at risk for Structural Deterioration at 15-year follow-up = 54)
- 24. Jamieson WR, Germann E, Aupart MR, et al. 15-year Comparison of Supra-annular Porcine and PERIMOUNT Aortic Bioprostheses. Asian Cardiovasc Thorac Ann. 2006;14(3):200-205. (Cohort size = 1,430, mean age = 69.5 ± 10.4 yrs. Number at risk for SVD at last follow-up = 33)
- 25. Biglioli P, Spampinato N, Cannata A, et al. Long-term outcomes of the Carpentier-Edwards pericardial valve prosthesis in the aortic position: effect of patient age.

 J Heart Valve Dis. 2004;13(1):S49-51. (Cohort size = 327, mean age = 67.2 ± 10.6 yrs. Number at risk for Prosthesis Replacement at last follow-up not reported)
- 26. Bergoënd E, Aupart MR, Mirza A, et al. 20 years' durability of Carpentier-Edwards Perimount stented pericardial aortic valve. In: Yankah CA, Weng Y, Hetzer R, eds. Aortic Root Surgery The Biological Solution. Berlin: Springer; 2010:441-451. (Cohort size = 1,857, mean age = 69.8 yrs, Number at risk for Structural Valve Deterioration at last follow-up not reported)
- 27. Aupart MR, Mirza A, Meurisse YA, et al. Perimount Pericardial Bioprosthesis for Aortic Calcified Stenosis: 18-year Experience with 1133 Patients. J Heart Valve Dis. 2006;15(6):768-775. (Cohort size = 1,133, mean age = 72.6 yrs. Number at risk for SVD at last follow-up = 2)
- 28. Forcillo J et al. Carpentier-Edwards Pericardial Valve in the Aortic Position: 25-Years Experience.

 Ann Thorac Surg 2013;96:486-93. (Cohort size = 2,405, mean age = 71 yrs. Number at risk for Structural Deterioration at last follow-up = 30)
- 29. Carpentier-Edwards PERIMOUNT Aortic Pericardial Bioprosthesis 20-year Results. Data on file at Edwards Lifesciences, 2003. (Cohort size = 267, mean age = 65 ± 12 yrs. For patients ≥65, number at risk for explant due to SVD at last follow-up = 2)
- 30. Bourguignon T et al. Very Long-Term Outcomes of the Carpentier-Edwards Perimount Valve in Aortic Position.

 The Annals of Thoracic Surgery. doi:10.1016/j.athoracsur.2014.09.030. (Cohort size = 2,659, mean age = 71 yrs.

 Number at risk for Structural Deterioration at last follow-up = 27)
- 31. Johnston RD et al. Long-Term Durability of Bioprostetic aortic Valves: Implications From 12,569 Implants.

 Ann Thorac Surg 2015. (Cohort size = 12,569, mean age = 71 yrs. Number at risk for Structural Deterioration at last follow-up = 54)

PERIMOUNT Aortic Literature Search Methodology and References

Methodology: Comprehensive literature searches were conducted utilizing a combination of key words: "Carpentier-Edwards," "PERIMOUNT," "aortic," "structural valve deterioration/degeneration" and "durability." The searches resulted in 490 unique citations published between 1977-2014. The citations were filtered for English language article, clinical study, human study, full-text article, on-indication use, non-transcatheter and PERIMOUNT aortic valves as primary study premise. Single patient or small case studies, foreign language publications, duplications, meta-analyses, in-vitro studies, cadaver studies were excluded. This resulted in 25 unique, relevant articles published on the PERIMOUNT aortic valve durability. Additionally, the Edwards' 20 Year Clinical Communique on PERIMOUNT durability was included.

For professional use. See instructions for use for full prescribing information, including indications, contraindications, warnings, precautions, and adverse events.

Edwards Lifesciences devices are placed on the European market, meeting the essential requirements referred to in Article 3 of the Medical Device Directive 93/42/EEC, bearing the CE marking of conformity.

Any quotes used in this material are taken from independent third-party publications and are not intended to imply that such third party reviewed or endorsed any of the products of Edwards Lifesciences.

Edwards, Edwards Lifesciences, the stylized E logo, Carpentier-Edwards, Magna, Magna Ease, PERIMOUNT and PERIMOUNT Magna are trademarks of Edwards Lifesciences Corporation. All other trademarks are the property of their respective owners.

© 2015 Edwards Lifesciences Corporation. All rights reserved. E5508/04-15/HVT

