Bereich Hochspannungsprüftechnik

Institut für Elektroenergiesysteme und Hochspannungstechnik

Karlsruher Institut für Technologie (KIT) 76128 Karlsruhe – Engesserstr. 11 Tel.: +4972160843060 Fax: +49721691776

Test Report No. 2014-33

Type Test of a separable T-Form Connector, Type CTS 630A 24kV 95-240

Customer: Cellpack GmbH Carl-Zeiss-Straße. 20 79761 Waldshut-Tiengen

Reporter: Dr.-Ing. R. Badent Dr.-Ing. B. Hoferer

This report includes 32 numbered pages and is only valid with the original signature. Copying of extracts is subject to the written authorization of the test laboratory. The test results concern exclusively the tested objects.

1 Purpose of Test

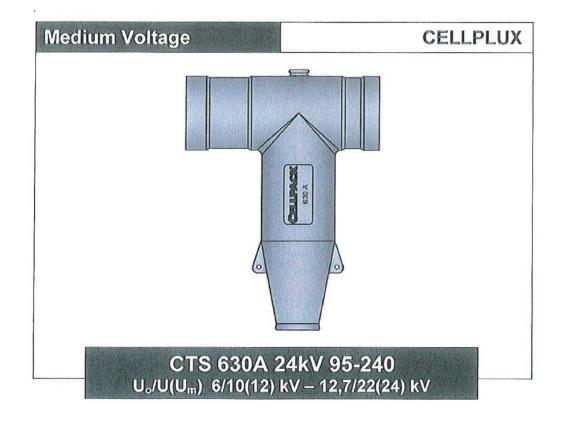
Several separable T-Form Connectors, type CTS 630A 24kV 95-240 for $U_0/U_n/U_m = 12,7/22(24)$ kV were subjected to a type test according to CENELEC HD 629.1 S2 02/2006 + A1:2008, table 7, test sequence D1, D2 and additional tests, position 17, 18, 19 and 21.

2 Miscellaneous Data

- Test object: Test sequences D1 and D2 4 resp. 3 separable T-Form Connectors, type CTS 630A 24kV 95-240 Installation instruction 333679, Figure 2.1 – 2.7 KIT Content 342350, Figure 2.8 Type of cable: The test objects were mounted on single core shielded XLPE-cables, type N2XSY 1x185RM/25 12/20 kV Südkabel 2005, Figure 2.9
 - Additional tests, Pos 17, 18, 19 and 21
 In each case 1 separable T-Form Connector, type CTS 630A 24kV 95-240
 Installation instruction 333679, Figure 2.1 – 2.7
 KIT Content 342350, Figure 2.8
- Manufacturer: Cellpack GmbH Carl-Zeiss-Straße. 20 79761 Waldshut-Tiengen
- Place of test: Institut für Elektroenergiesysteme und Hochspannungstechnik (IEH) Karlsruher Institut für Technologie (KIT) Engesserstr. 11 – 76128 Karlsruhe Accreditation No.: D-PL-11068-09-00
- Testing dates:
 Delivery:
 28.03.2014

 Mounting:
 28.03.2014

 Test date:
 28.03. 25.02.2015


 Atmospheric
 28.03. 25.02.2015

 conditions:
 Temperature:
 18°C 25°C

 Air pressure:
 980 1020 mbar

 rel. humidity:
 35% 70%

Representatives Customer's representatives: Dr.-Ing. I. Ovsyanko Representatives responsible for the tests Dr.-Ing. R. Badent Dr.-Ing. B. Hoferer Mr. O. Müller

Working Instruction

Separable T-Form Connector for single-core polymeric cables up to 24 kV

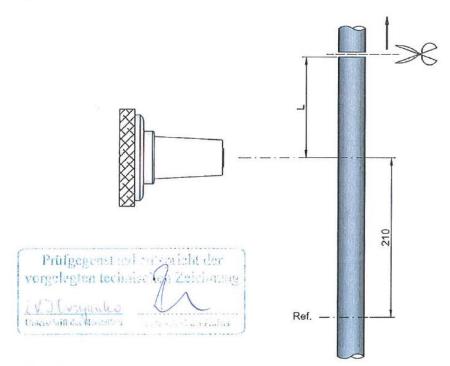
333679 Prüfgegenstand antspricht der vorgelegten technischen Meistang V. Dvsycentes CELLPACK GmbH CELLPACK AG **Electrical Products Electrical Products** D-79761 Waldshut-Tiengen CH-5612 Villmergen ELLPAC Tel. +41(0)56/618 12 34 Tel. +49(0)7741/60 07 11 Fax +49(0)7741/60 07 83 Fax +41(0)56/618 12 45 8850 www.cellpack.com **Electrical Products** e-mail: electrical.products@cellpack.com 333679 CTS 630A 24kV 95-240 1/7

Figure 2.1: Installation instruction, T-Form Connector

General remarks:

- · Check if the range and size of the accessories is appropriate to the cable.
- · Check the content of the kit as per packing list.
- · Thoroughly read the working instruction.

Installation must be executed by competent personnel only. The manufacturer accepts no liability for breakdowns or damages resulting from an incorrect installation.

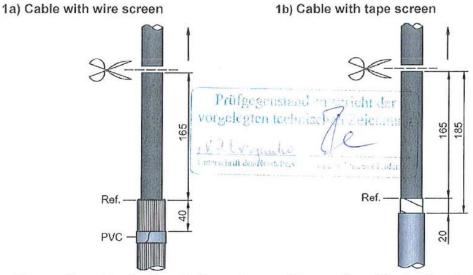

Separable T-Form Connector Type CTS 630A 24kV 95-240

Cross-Section Application

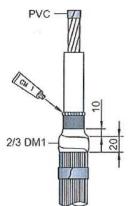
Voltage Uo/U(Um) kV	Cable Cross-Section (*) mm ²
6/10(12) - 6,35/11(12) kV	150 - 240
8,7/15(17,5) kV	120 - 240
12/20(24) - 12,7/22(24) kV	95 - 240

(*) Minimum diameter over cable insulation of 22,0 mm

Adjustment



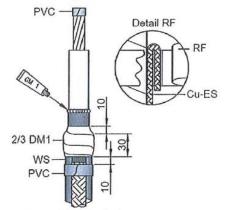
- Clean thoroughly the cable end up to 1 m.
- Adjust the cable overhanging in the middle of the bushing by L = 200 500 mm. Cut-off the
 excess of cable.
- · Make a mark 210 mm from the centre of the bushing onto the cable sheath (Ref.).


333679 CTS 630A 24kV 95-240

217

Figure 2.2: Installation instruction, T-Form Connector

- Remove the cable sheath up to the mark (Ref.).
- Bend back the screen wires of the cable and fix them on the cable sheath with PVC tape.
- Cut off the conductor at the length of 165 mm.
- Prepare the cable end according to the template (see page 4). Apply the PVC tape. Then check the dimensions.
- 2a) Cable with wire screen



- Clean the cable insulation.
- Wrap 2/3 of the length of sealing tape DM1 10mm on to the semi-conductive layer and 20mm on to the wire screen (stretch 50%).
- Apply at and around the cut edge of the semi-conductive layer lubricant and filling agent GM1 (forming a ring).

333679 CTS 630A 24kV 95-240

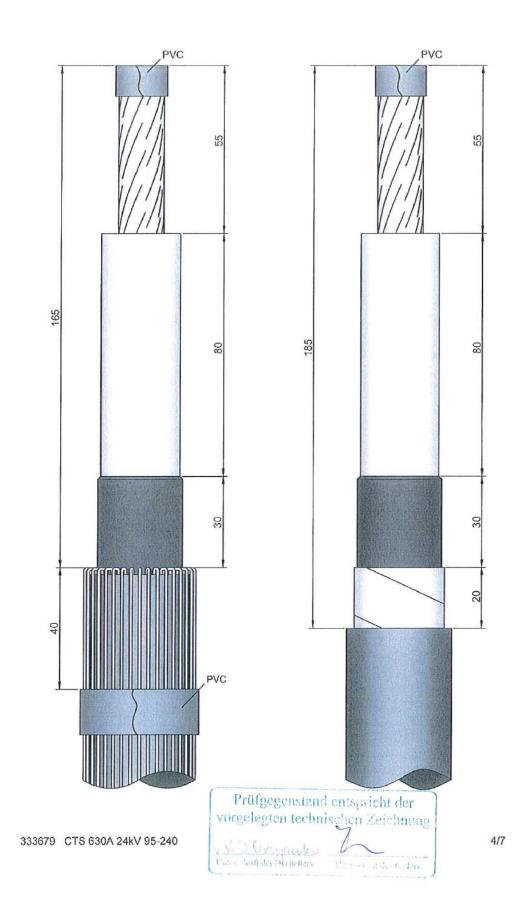
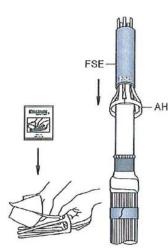
- Remove the cable sheath up to the mark (Ref.) + additional 20 mm.
- · Cut the cable according to the drawing.
- Remove carefully the tape screen up to 20 mm.
- Prepare the cable end according to the template (see page 4). Apply the PVC tape. Then check the dimensions.

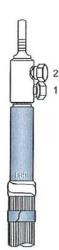
2b) Cable with tape screen

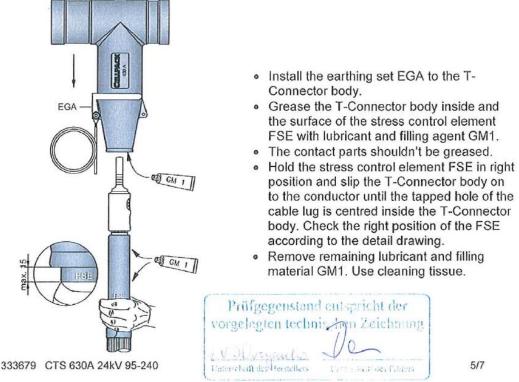
- Clean the cable insulation.
- Fix the flat Cu-braid tape Cu-ES with the pressure spring RF on to the tape screen (order the earthing kit separately).
- Wrap 2/3 of the length of sealing tape DM1 10mm on to the semi-conductive layer and 30mm on to the RF and Cu-ES up to the water stop WS (stretch 50%).
- Apply at and around the cut edge of the semi-conductive layer lubricant and filling agent GM1 (forming a ring).

3/7

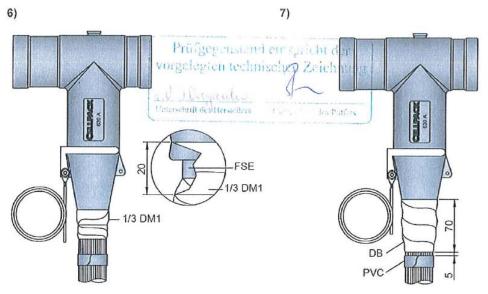
Figure 2.3: Installation instruction, T-Form Connector


Figure 2.4: Installation instruction, T-Form Connector


5)

- 0 Grease the tongues of the applicator AH with the silicon towel.
- Insert the applicator AH into the stress control element FSE and slip it onto the cable up to the sealing tape.
- Remove the applicator AH by pulling out 0 the tongues one by one.
- Adjust the position of the stress control 0 element FSE by turning it slightly (Fig. 4).



- Remove the PVC tape from the tip end of 0 the conductor.
- Install the shear-head screw cable lug according to the separate instruction. Tighten the screws alternately with an appropriate tool till the shear head breaks. Mind the sequence indicated on the drawing.
- Please note that the tapped hole of the 0 cable lug is in line with the bushing axle.
- Clean thoroughly the surface of the stress control element FSE.

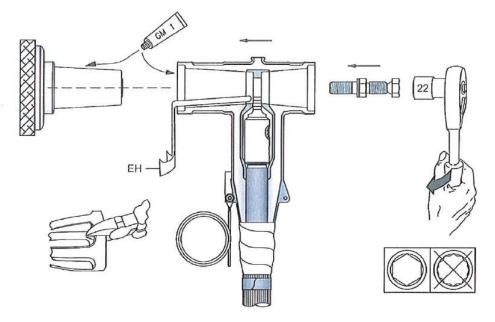
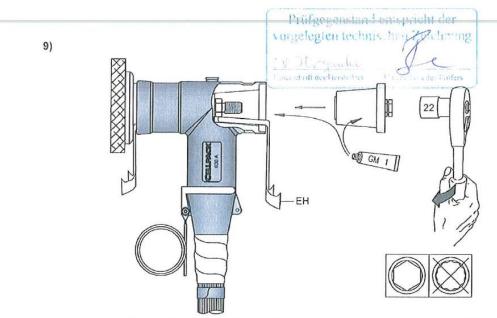

4)

Figure 2.5: Installation instruction, T-Form Connector

- Wrap the remaining 1/3 of sealing tape DM1 between the end of the T-Connector body and the sealing area.
- Wrap the sealing tape black DB adhesive side inwards according to the drawing (stretch 20%).



- Grease the surface of the bushing and inside of the T-Connector body with lubricant and filling agent GM1.
- · Cut out a tongue from the applicator AH (air decompression device EH).
- · Insert the decompression device EH into the T-Connector body and mark the right depth.
- · Attach the T-Connector straight on to the bushing and screw the contact screw manually.
- Tighten the contact screw with an appropriate tool till the shear head breaks (min. 50Nm). Attention: In case of re-connecting of the plugs use additional reconnecting set ZS-CTS.

333679 CTS 630A 24kV 95-240

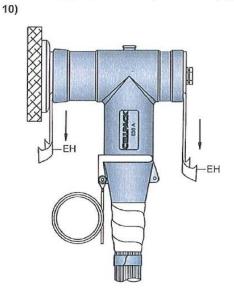
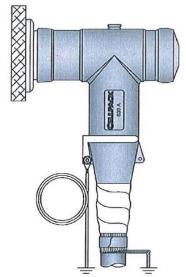

6/7

Figure 2.6: Installation instruction, T-Form Connector


- Grease the T-Connector body inside and the insulating plug with lubricant and filling agent GM1.
- Cut out the second tongue from the applicator AH (air decompression device EH).
- · Insert the decompression device EH into the T-Connector body and mark the right depth.
- Screw the insulating plug into the T-Connector body manually. Tighten the insulating plug with an appropriate tool up to the stop (max. 30Nm).

11)

- Pull out gently the air decompression devices EH.
- Remove remaining of lubricant and filling agent GM1. Use cleaning tissue.

333679 CTS 630A 24kV 95-240

- Insert the conductive protection cup over the T-Connector body. Please note a good contact between measuring point and the cap.
- · Ground the earthing set EGA.
- Further earthing measurements have to be carried out according to local regulations.

Figure 2.7: Installation instruction, T-Form Connector

Ar	tNr.:342	350	Packliste Packing Liste d'e	list P	lsta de carga aklijst ista kompletacyjna	a Elec	PACK trical Products
		ME	EDIUM VO	LTAGE		CELLPLUX	
T-\$	Steckans	chlu	SS			T-F	orm Connecto
Co	nnecteur	Sép	oarable en 1	•			nchufable en
T-\$	Stekker a	ansl	uiting			Głowica kone	ktorowa typu
					5 630A 24k		
				Int	terface Type	C	
	12/20(24)kV			-240 mm²	Isolation n	nin. Ø: 22,0 mm	
	3,7/15(17,5)k 6/10(12)kV -			240 mm² -240 mm²			1/
Pos.		pc.	Dimension			nte de la contrar de servicion desprésentents de la contrar de la contrar de la contrar de la contrar de la con	
1		3	CTS 630A 24kV	Steckanschluß Connecteur séparable Stekkeraansluiting		Plug-in connector Cuerpo de Conector Glowica konektorowa	
2	· · · · · · · · · · · · · · · · · · ·	3	CTS 630A	Schraubisolierstöpsel Connecteur isolé Schroefisolatiestop		Insulated plug Enchufe aislado Zatyczka izolacyjna	
3		3	FSE 20	Feldsteuerelement Elément répartiteur de d Veldstuurelement	champ	Field control element Elemento de control de campo Element sterujący	FSE-Set
4		3	AH3	Aufschiebehilfe Dispositif d'enfilage Opschuifhulpstuk		Applicator Aplicador Aplikator	
5		3	CTS 630A C95-240	Schraubkabelschuh + A Cosse à visser+ vis de Schroef kabelschoen m	contact	Screw cable lug with connecting bolt Terminal de cable con perno de conexión Końcówka śrubowa z śrubą mocującą	
6	10. C	3	EGA Set	Erdungs-Set Kit de mise à la terre Aardingkits		Earthing-kit Conjuntos de puesta a tierra Zestaw uziemiający	
7		3	DM1 25x200mm	Dichtband grau Ruban d'étanchéité gris Dichtband grijs		Sealing tape grey Cinta de estanqueidad gris Taśma uszczelniająca szara	
8		3	DB 50x350mm	Dichtband schwarz Ruban d'étanchéité noi Dichtband zwart	r	Sealing tape black Cinta de estanqueidad negra Taśma uszczelniająca czarna	
9	\bigcirc	1	Nr.128 5m	Isolierband Ruban isolant Isolatieband PVC		Insulation tape Cinta aisfante Taśma izolacyjna	ZK 9
10	-	4	GM1	Gleit- und Füllmittel Lubrifiant Glij- en vulmiddel		Lubrificant and filler Agente de destizamiento y relleno Smar uszczelniający	
11	RT	6	RT	Reinigungstuch Lingette nettoyante Reinigingsdoek		Cleaning tissue Toella de Limpieza Chusteczka czyszcząca	
12	Startas ST	3	ST	Tuch mit Silikonöl Lingette siliconée Siliconedoek		Tissue with silicon oil Toalla siliconada Chusteczka z olejem sil.	
13	m	3	SHS	Schutzhandschuhe Gants Handschoenen		Gloves Guantes Rękawiczki	
14		6	MA	Montageanleitung Instructions de montage Montagehandleiding	1	Working instruction Instrucciones de montaje Instrukcja montażu	

Prüfgegenstand entsmicht der vergelegten technischmZeichnung, A 1 V. D. Overpanders Hour stant developmenters Generalizett des Printers

Figure 2.8: KIT Content, T-Form Connector

DIN VDE 0278-629-1 (VDE 0278-629-1):2009-07 HD 629.1 S2:2006 + A1:2008 Anhang A (informativ) Dokumentation der Prüfkabel (siehe 5.1.1 und 8.2) Nennspannung $U_0/U(U_m)$: kV X 1-Leiter Kabelaufbau: 3-Leiter einzeln geschirmt gemeinsam geschirmt A X Cu Leiteraufbau: X mehrdrähtig massiv K Rundleiter Sektorleiter 120 mm² 150 mm² X 185 mm² mm² anderer Querschnitt: VPE Kabelisolation: EPR HEPR K fest extrudiert Äußere Leitschicht: abziehbar X Drähte Metallischer Schirm: Bänder extrudiert Draht Armierung: Band PVC Außenmantel: PE (Typ ist anzugeben) Wassersperre, wenn vorhanden: im Leiter unter Außenmantel Durchmesser: 16 mm Leiter 28 mm Isolierung 29,6 mm äußere Leitschicht Außenmante! 37,5 mm Kabelbezeichnung: Südkabel 2005 12/20KV N2XSY 1x185 RM/25 Prüfgegenstand entspricht der vorgelegten technischen Zeichnung 27 1.A. J. Duguantio Unterschrift des Prüfeis Unterschrift des Herstellers

Figure 2.9: Cable data Sheet

Tests: Test volume, chronological order and requirements conform to CENELEC HD 629.1 S2 02/2006 + A1:2008, table 7, test sequence D1, D2, Pos. 17, 18, 19 and 21. The PD-test was performed at 2 U_0 . The tests were carried out in accordance with the test methods described in IEC 61442 03/2005.

Test sequence D1:

Pos.1.	DC voltage withstand test U = 6 U ₀ = - 76 kV; t = 15 min		
Pos. 2.	AC voltage withstand test $\hat{u} / \sqrt{2} = 4,5 U_0 = 57 \text{ kV}; t = 5 \text{ min}$		
Pos. 3.	Partial discharge test $\hat{u} / \sqrt{2} = 2,0 \ U_0 = 25 \ kV$; PD ≤ 10 pC		
Pos. 4.	Impulse voltage withstand test at elevated temperature û = 125 kV; positive and negative polarity each 10 impulses		
Pos. 5.	Electrical heat cycling in air each loading cycle had a 5 hour heating period and a 3 hour no-load cooling period; test voltage: $\hat{u} / \sqrt{2} = 32 \text{ kV}$ Number of cycles: 63		
Pos. 6.	Electrical heat cycling in water each loading cycle had a 5 hour heating period and a 3 hour no-load cooling period; test voltage: $\hat{u} / \sqrt{2} = 32 \text{ kV}$ Water height: 1,0 m Number of cycles: 63		
Pos. 10.	Disconnection / Connection 5 complete operations		
Pos. 11.	Partial discharge test at ambient temperature and elevated temperature $\hat{u} / \sqrt{2} = 2,0 \ U_0 = 25 \ kV$; PD $\leq 10 \ pC$		
Pos. 12.	Impulse voltage withstand test, û = 125 kV; positive and negative polarity each 10 impulses		
Pos. 13.	AC voltage withstand test $\hat{u} / \sqrt{2} = 2.5 U_0 = 32 \text{ kV}; \text{ t} = 15 \text{ min}$		

Pos. 16. Examination

Test sequence D2:

Pos.1.	DC voltage withstand test U = 6 U ₀ = -76 kV; t =15 min
Pos. 2.	AC voltage withstand test $\hat{u} / \sqrt{2} = 4,5 \text{ U}_0 = 57 \text{ kV}; t = 5 \text{ min}$
Pos. 8.	Thermal short circuit test, conductor θ_{Sc} = 250°C; 2 stresses
Pos. 10.	Disconnection / Connection 5 complete operations
Pos .12.	Impulse voltage withstand test, û = 125 kV; positive and negative polarity each 10 impulses
Pos. 13.	AC voltage withstand test $\hat{u} / \sqrt{2} = 2.5 U_0 = 32 \text{ kV}; \text{ t} = 15 \text{ min}$
Pos. 16.	Examination

Additional tests according table 7:

Pos. 17.	Screen resistance measurement R max 5000 Ω
Pos. 18.	Leakage current measurement max 0,5 mA at U _m (= 24 kV)
Pos. 19.	Screen fault current initiation Unearthed / impedance earthed system
Pos. 21.	Capacitive test point performance

3 Mounting

Final assembling of the test objects was executed in the high-voltage laboratory of the IEH by technicians of Cellpack.

4 Test Setups

4.1 DC Voltage Withstand Test

The DC-voltage was generated according to Figure 4.1. The voltage measurement was carried out with an ohmic-capacitive divider (ratio 2000:1). The measurement uncertainty was 3%.

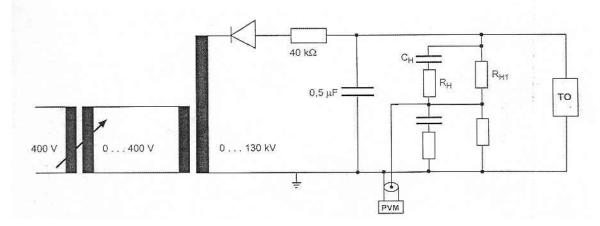


Figure 4.1: Scheme of DC voltage test circuit. $R_H = 3,6 \text{ k}\Omega, R_{H1} = 360 \text{ M}\Omega, C_H = 180 \text{ pF}, \text{ ratio } 2.000:1,$ PVM: Peak Voltmeter, measurement uncertainty 3% TO: Test object

4.2 AC Voltage Withstand Test

The test voltage was generated by an 60-kVA transformer. The voltage measurement was carried out with a capacitive divider (C_H = 180 pF; ratio = 2.000) and a peak voltmeter calibration $\hat{u} / \sqrt{2}$.

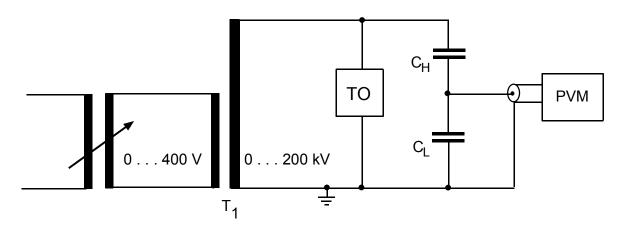


Figure 4.2:Scheme of AC test circuit
 T_1 : transformer 400V / 200000V; 60 kVA ; $u_K = 3,5 \%$; 50 Hz
 C_H : 180 pF ; ratio 2000:1 ; PVM : Peak-Voltmeter
TO: Test object; measurement uncertainty 3 %

4.3 Partial Discharge Test

The PD-measurement was performed with an analog bridge according to *Kreuger*, Figure 4.3. External PDs producing common mode signals at the detector are rejected by the differential amplifier. Internal PDs represent differential mode signals and are amplified. The background noise level at 25 kV_{rms} was 0,8 pC.

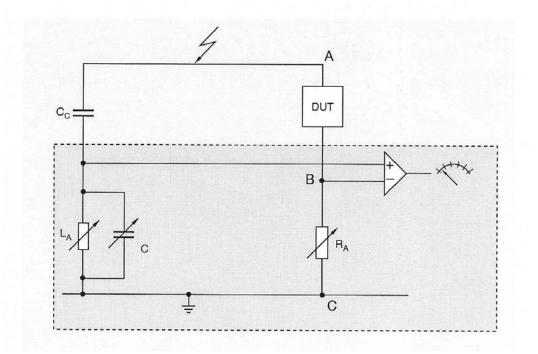


Figure 4.3: Scheme of PD test circuit C_C: Coupling capacitor DUT: Device under test

For balancing the bridge a calibrating impulse with $q_A = 100 \text{ pC}$ is applied bet-ween the terminals A (high-voltage) and C (ground) and the amplifier output is minimized. A pulse between the terminals A and C corresponds to an external PD. For the calibration a PD pulse, $q_A = 10 \text{ pC}$, is applied between A and B. Subsequently, the amplifier output of the PD measuring unit is adapted to the applied pulse.

Starting from zero the AC-voltage was steadily raised up to 28,1 kV (= 2,25 U_0) and kept constant for 10 s, then slowly reduced to 25 kV including PD-reading.

4.4 Impulse Voltage Withstand Test

For impulse testing a two-stage Marx generator (Haefely) was used with a maximum cumulative charging voltage of U = 400 kV and a maximum impulse energy of E_{max} = 20 kWs. At this test, the capacity of the energy storage capacitor was C_S = 0.25 µF. The crest value of the impulse voltage was measured by a damped capacitive divider and a subsequent impulse peak voltmeter. The front time and the time to half value were evaluated from the oscillographs.

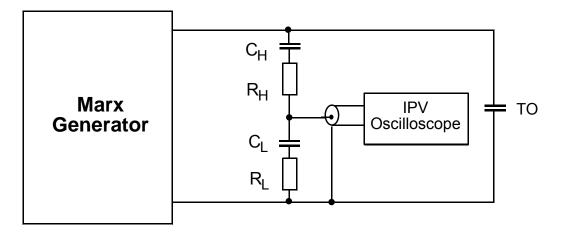


Figure 4.4: Scheme of impulse voltage test circuit C_{H} : 1200 pF ; R_{H} = 70 Ω ; ratio: 30780; IPV: impulse-peak-voltmeter – measurement uncertainty 3% Oscilloscope: Tektronix TDS 3044B – measurement uncertainty 2%

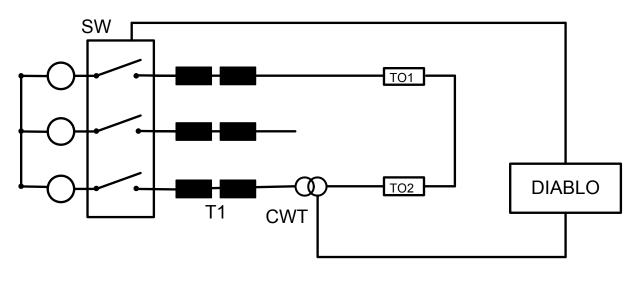
The waveform parameters were determined at reduced charging voltage.

Positive impulse:	T ₁ = 2,47 μs	T ₂ = 51,5 μs
Negative impulse:	T ₁ = 2,47 μs	T ₂ = 51,0 μs

4.5 Electrical Heat Cycling in Air

The test objects must be heated by a current which provides the permitted service temperature of the tested cable plus 5 K - 10 K, that means 95° C - 100° C, for XLPE-cable. The heating current I was determined with a dummy cable. The same cable as used for the test, with a length of 3 m, was drilled with a diameter of 0.8 mm up to the conductor. The temperature was measured with a thermo couple NiCr-Ni. The measurement uncertainty was ± 2 K

The maximum heating current for the test sequence D1 (Cu185) was 850 A. Current inception was accomplished by a transformer (U₁ = 400 V; U₂ = 10 V) which used the cable as secondary winding. The current was regulated by a control unit and measured by a current transformer, 1500/5, and a digital multimeter. The measurement uncertainty was 1%.


4.6 Electrical Heat Cycling in Water

The test objects were placed in a tank, which was filled with water, so that the test objects were completely covered with water. The water height above the test objects was 1000 mm. The conductivity of the water at 20°C was 63 mS/m.

4.7 Thermal Short Circuit Current Test, Conductor

According IEC 61442 03/2005 for Cu with q = 185 mm², the permitted limit integral is $I^{2}t = 1126 (kA)^{2}s$ with $\theta_{sc} = 250^{\circ}C$ and $\theta_{i} = 20^{\circ}C$.

Figure 4.7.1 illustrates the test setup. Via a vacuum circuit-breaker (SW) the 165 V - tapping of a 800 kVA - transformer is directly applied to two test objects. The current is measured by means of a Rogowski current transducer Type CWT600B (Sensitivity 0,05mV/A). The output signal of the current transformer is recorded by a digital measuring and controlling system (DIABLO), which switches also the circuit breaker "On" resp. "Off". The command variable of the controller was the limit integral $\int i^2 dt$. This controller measures on-line the current vs time, calculates from these values the $\int i^2 dt$ and switch off the current after reaching the specified value. The measurement uncertainty was 2%.

Figure 4.7.1:	Test setup	
	T1:	High Current Transformer, 20kV/165V
	SW:	Vacuum Circuit Breaker
	CWT:	Rogowski Sensor 50mV / kA
	DIABLO:	Control and Measuring Unit, Uncertainty 3%
	TO1, TO2:	Test Objects

4.8 Screen Resistance Measurement

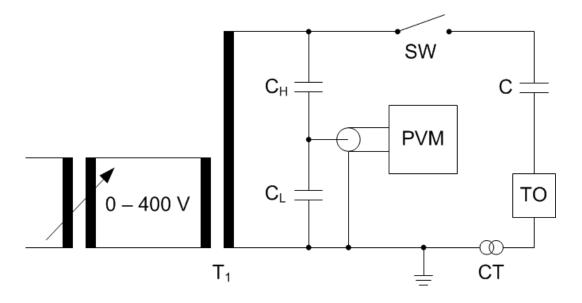
For measuring the screen resistance, silver painted electrodes were installed at each end of the connector. The resistance between the electrodes was then measured with a digital multimeter at ambient temperature.

The prepared connector was then placed in a climate chamber and stored at 120°C for 168 h (7 days).

The resistance measurement was then repeated at ambient temperature.

4.9 Leakage Current Measurement

For leakage current measurement, a connector was mounted on a cable and connected to its mating bushing. A metal foil ($50 \times 50 \text{ mm}^2$) was fixed without any gaps on the outer screen of the bushing as far as possible from the earthing points.


The metal foil was connected with a milliammeter and in series with a 2000 Ω -Resistor earthed. The leakage current was then measured with an AC voltage of U_m, applied between conductor and earth.

4.10 Screen Fault Current Initiation

Prior to the test a faulting wire of approx. 0,2mm was placed in the area of the connecting bolt through a drilled hole. The wire was coonnected with the inner and outer screens and did not protrude beyond the outer screen surface.

The test voltage was generated by a 630 kVA-transformer. A capacitor was connected in series to the test object resulting in a short circuit current of 10 A at test voltage U_0 , Figure 4.11. The sequence of test was:

- 1.) Voltage switched on for 1s
- 2.) Voltage switched off for 2 min
- 3.) Voltage switched on for 2 min
- 4.) Voltage switched off for 2 min
- 5.) Voltage switched on for 1 min
- 6.) Voltage switched off

- Figure 4.10: Scheme of AC test circuit
 - T1: Transformer 400V/20000V; 630 kVA
 - C_H: 300 pF; C_L: 300 nF; PVM: Peak Voltmeter
 - C: Current limiting capacitance
 - TO: Test object
 - CT: Current transformer

4.11 Capacitive Test Point Performance

One separable connector was installed on a cable and the outer screen was earthed. The connector was not mounted in a bushing. The cable length was as short as possible, app 0,5m.

The capacitances were measured with a bridge.

5 Results

5.1 Test Sequence D1

5.1.1 DC Voltage Withstand Test

This test was carried out as described in 4.

Test date:	28.03.2014
Test voltage:	U = - 76 kV ; t = 15 min

With each test object neither flashover nor breakdown occurred at the test objects during the DC voltage withstand test.

The test was passed successfully.

5.1.2 AC Voltage Withstand Test

This test was carried out as described in 4.

Test date:	28.03.2	2014
Test voltage:	û /√2	= 57 kV ; t = 5 min

With each test object neither flashover nor breakdown occurred at the test objects during the AC voltage withstand test.

The test was passed successfully.

5.1.3 Partial Discharge Test

This test was carried out as described in 4.

Test date:	28.03.2014
Test voltage:	$\hat{u} / \sqrt{2} = 28,1 \text{ kV}$; t = 10 s, thereafter
	$\hat{u}/\sqrt{2} = 25 \text{ kV}$ with PD-reading
PD magnitude (25 kV):	< 10 pC

5.1.4 Lightning Impulse Voltage Withstand Test at elevated Temperature

This test was carried out as described in 4.

Test date:	07.04.2014
Test voltage:	û = 125 kV
Max. heating current:	I = 850 A, regulated; t = 5 h
Temperature:	T = 97,2 °C
Impulse:	1-5 / 50 μs
Number of tests:	10 positive polarity, 10 negative polarity

With each test object neither flashover nor breakdown occurred at the test objects during the impulse voltage withstand test.

The test was passed successfully.

5.1.5 Electrical Heat Cycling in Air

This test was carried out as described in 4.

Test date:	08.04 30.04.2014
Test voltage:	û /√2 = 32 kV
Max. heating current:	I = 850 A, regulated; t = 5 h
Cycle:	5 h heating; 3 h cooling
Number of cycles:	63

Neither flashover nor breakdown occurred.

The test was passed successfully.

5.1.6 Electrical Heat Cycling in Water

This test was carried out as described in 4.

Test date:	30.04. – 22.05.2014
Test voltage:	û /√2 = 32 kV
Max. heating current:	I = 850 A, regulated; $t = 5 h$
Height of Water:	1000 mm
Cycle:	5 h heating; 3 h cooling
Number of cycles:	63

Neither flashover nor breakdown occurred.

5.1.7 Disconnection / Connection

Test date:	26.05.2014
No. of operations:	5

After 5 complete operations, there was no visible damage to the contacts.

The test was passed successfully.

5.1.8 Partial Discharge Test

5.1.8.1 Partial Discharge Test at ambient Temperature

This test was carried out as described in 4.

Test date:	27.05.2014
Test voltage:	$\hat{u} / \sqrt{2} = 28,1 \text{ kV}$; t = 10 s, thereafter
	$\hat{u}/\sqrt{2} = 25 \text{ kV}$ with PD-reading
PD magnitude (25 kV):	< 10 pC

The test was passed successfully.

5.1.8.2 Partial Discharge Test at elevated Temperature

This test was carried out as described in 4.

Test date:	27.05.2014
Test voltage:	$\hat{u} / \sqrt{2} = 28,1 \text{ kV}$; t = 10 s, thereafter
	$\hat{u}/\sqrt{2} = 25 \text{ kV}$ with PD-reading
Max. heating current:	I = 850 A, regulated; t = 5 h
Temperature:	T = 97,1 °C
PD magnitude (25 kV):	< 10 pC

5.1.9 Lightning Impulse Voltage Withstand Test

This test was carried out as described in 4.

Test date:	27.05.2014
Test voltage:	û = 125 kV
Impulse:	1-5 / 50 μs
Number of tests:	10 positive polarity, 10 negative polarity

With each test object neither flashover nor breakdown occurred at the test objects during the impulse voltage withstand test.

The test was passed successfully.

5.1.10 AC Voltage Withstand Test

This test was carried out as described in 4.

Test date:	27.05.2014
Test voltage:	$\hat{u} / \sqrt{2} = 32 \text{ kV}$; t = 15 min

With each test object neither flashover nor breakdown occurred at the test objects during the AC voltage withstand test.

The test was passed successfully.

5.1.11 Accessory Examination (For information only)

Test date: 03.06.2014

On completion of the electrical tests, the accessories were examined.

There was no cracking in the filling media, tape or tube components. There was no moisture path bridging a primary seal. There was no corrosion, no tracking and no erosion. There was no leakage of any insulating material.

5.2 Test Sequence D2

5.2.1 DC Voltage Withstand Test

This test was carried out as described in 4.

Test date:	02.01.2015
Test voltage:	U = - 76 kV ; t = 15 min

With each test object neither flashover nor breakdown occurred at the test objects during the DC voltage withstand test.

The test was passed successfully.

5.2.2 AC Voltage Withstand Test

This test was carried out as described in 4.

Test date:	10.01.2015	
Test voltage:	$\hat{u} / \sqrt{2} = 57 \text{ kV}$; t = 5 min	

With each test object neither flashover nor breakdown occurred at the test objects during the AC voltage withstand test.

5.2.3 Short Circuit Current Test, Conductor

This test was carried out as described in 4.

Test date:	21.01.2015
Number of SCC:	2
Time between two stresses:	2h

Table 5.2.3. shows all parameters of each short circuit current test.

No.	Test ojbects	I _{SC rms} / kA	t _{SC} / s	∫i²dt / (kA)²s	Calculated Temp. θ _{sc} in °C	Figure
1	all	22,64	2,243	1140	254	5.2.3.1
2	all	22,80	2,193	1140	254	5.2.3.1

Table 5.2.4: Short circuit current test objects

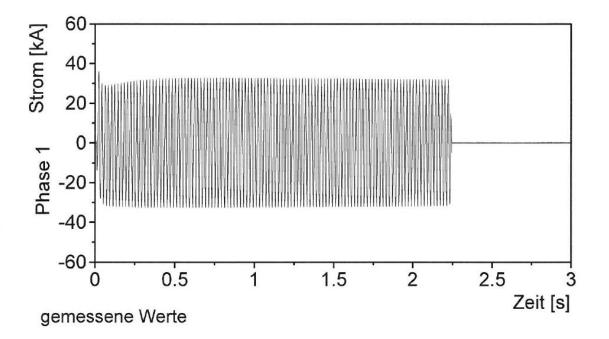


Figure 5.2.3.1 1st short circuit current test

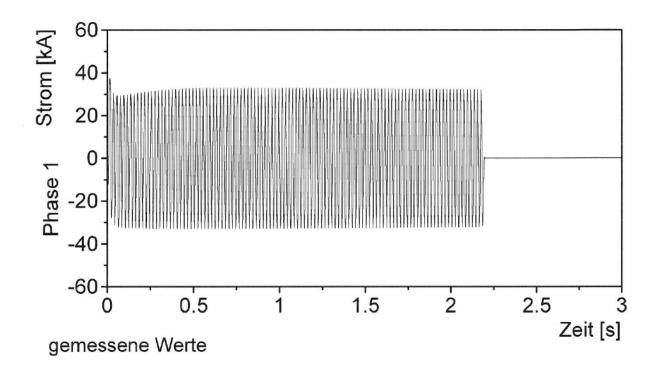


Figure 5.2.3.2 2nd short circuit current test

The test was passed successfully.

5.2.4 Disconnection / Connection

Test date:	11.02.2015
No. of operations:	5

After 5 complete operations, there was no visible damage to the contacts.

5.2.5 Lightning Impulse Voltage Withstand Test

This test was carried out as described in 4.

Test date:	12.02.2015
Test voltage:	û = 125 kV
Impulse:	1-5 / 50 μs
Number of tests:	10 positive polarity, 10 negative polarity

With each test object neither flashover nor breakdown occurred at the test objects during the impulse voltage withstand test.

The test was passed successfully.

5.2.6 AC Voltage Withstand Test

This test was carried out as described in 4.

Test date:	12.02.2015
Test voltage:	$\hat{u} / \sqrt{2} = 32 \text{ kV}$; t = 15 min

With each test object neither flashover nor breakdown occurred at the test objects during the AC voltage withstand test.

The test was passed successfully.

5.2.7 Accessory Examination (For information only)

Test date: 22.02.2015

On completion of the electrical tests, the accessories were examined.

There was no cracking in the filling media, tape or tube components. There was no moisture path bridging a primary seal. There was no corrosion, no tracking and no erosion. There was no leakage of any insulating material.

5.3 Additional Tests

5.3.1 Screen Resistance Measurement

This test was carried out as described in 4.

Test date:	14.01. – 26.01.2015
Initial Resistance:	R = 158 Ω
Ageing:	120°C; 168h
Final Resistance:	R = 95 Ω

Requirement: $R < 5 k\Omega$

The test was passed successfully.

5.3.2 Leakage Current Measurement

This test was carried out as described in 4.

Test date:	26.01.2015
Voltage:	$\hat{u}/\sqrt{2} = 24 \text{ kV}$
Leakage current:	I = 0,55 μA

Requirement: max 0,5 mA

5.3.3 Screen Fault Current Initiation

This test was carried out as described in 4.

Test date:	11.02.2015
Voltage:	$\hat{u} / \sqrt{2} = 12 \text{ kV}$
Short circuit current:	I = 10 A

The fault current was flowing continously

The test was passed successfully.

5.3.4 Capacitive Test Point Performance

This test was carried out as described in 4.

Test date:	28.01.2015
Capacitance C _{tc} :	C = 6,5 pF
Capacitance C _{te} :	C = 8,5 pF
Ratio:	$C_{te}/C_{tc} = 1,31$
Requirements:	C _{tc} > 1 pF C _{te} / C _{tc} < 12

6 Conclusion

The T-Form Connector, Type CTS 630A 24kV 95-240 for $U_0/U_n/U_m = 12,7/22(24)$ kV, manufactured by Cellpack GmbH, passed all tests described in Chapter 2 success-fully. The test object fulfilled the requirements according to CENELEC HD 629.1 S2 02/2006 + A1:2008, table 7, test sequence D1, D2 and additional tests, position 17, 18, 19 and 21.

Karlsruhe, 26.03.2015

(

Dr.-Ing. R. Badent Head of Department "High Voltage Dielectric Testing"

Dr.-Ing. B. Hoferer Vice-Head of Department "High Voltage Dielectric Testing"