

- Aspirating has begun
 - Hold syringe

Selected mode: Syringe - S 65uL

RADIOMETER

ABL90 FLEX analyzer Specifications

Analyzer performance

Measuring system

Sample volume (all parameters)	65 μL
Measuring time (all parameters)	35 sec*)
Cycle time	60 sec*)
Throughput	44 samples/per hour*)
Average uptime	23.5 hours/per day**)

*) May vary during startup

**) May vary during startup; 2.5 min for system calibration is the longest activity

Sensor cassette

Lifetime and storage					
In-use lifetime	30 days (or until	max number of te	ests)		
Shelf life	4 months				
Storage temperature	2-8 °C / 35-46 °	F			
Automatic QC	Yes				
Parameter panels	50 tests	100 tests	300 tests	600 tests	900 tests
BG / OXI with QC	х	х	х	х	х
BG / LYT / OXI with QC	х	х	х	х	х
BG / LYT / MET / OXI with QC	х	х	х	х	х

Not all variants are available at the time of introduction and additional variants may be introduced

Solution pack

Lifetime and storage	
In-use lifetime	30 days (or until solution pack is empty, see table below)
Shelf life	4 months
Storage temperature	2-25 °C / 35-77 °F

Estimated lifetime of solution packs

No of tests per day	5	10	15	20	30	50
Estimated in-use lifetime (days)	30	30	24	20	15	10

Quality management

Automatic quality management system

3 dedicated QC solutions

Automatic detection and correction of failures Continuous system and analysis checks

Air detection

Automatic lockout of parameter that fails QC

Customizable QC schedule

Commonly used statistics (Levey Jennings plots)

Measured parameters

Туре	Parameter	Units	Range of indication
pН	pН	pH scale	6.3-8.0
Blood gas	pCO2	mmHg; Torr	5-250
		kPa	0.67-33.3
	pO2	mmHg; Torr	0-800
		kPa	0-107
Electrolyte	cK+	mmol/L	0.5-25
		meq/L	0.5-25
	cNa+	mmol/L	7-350
		meq/L	7-350
	cCa ²⁺	mmol/L	0.2-9.99
		meq/L	0.4-19.98
		mg/dL	0.8-40.04
	cCl	mmol/L	7-350
		meq/L	7-350
Metabolite	<i>c</i> Glu	mmol/L	0-60
		mg/dL	0-1081
	cLac	mmol/L	-0.1-31
		meq/L	-0.1-31
		mg/dL	-1-279
Oximetry	sO ₂	%	-2-102
		fraction	-0.02-1.02
	ctHb	g/dL	-0.48-27.7
		g/L	-4.8-277
		mmol/L	-0.30-17.2
	FO ₂ Hb	%	-2-103
		fraction	-0.02-1.03
	<i>F</i> COHb	%	-2-103
		fraction	-0.02-1.03
	<i>F</i> MetHb	%	-2-103
		fraction	-0.02-1.03
	<i>F</i> HHb	%	-2-102
		fraction	-0.02-1.02
	<i>F</i> HbF	%	-25-121
		fraction	-0.25-1.21
	ctBil	µmol/L	-20-1000
		mg/dL	-1.2-58.5
		ma/L	-12-585
			.2 000

Derived and input parameters

Derived parameters

Parameter	Description
pH(T)	pH of blood at patient temperature
$pCO_{2}(T)$	Carbon dioxide tension of blood at patient tempera-
pc02(!)	ture
$cHCO_{5}(P)$	Concentration of hydrogen carbonate in plasma
cBase(B)	Concentration of titrable base of blood (actual base
CDUSC(D)	
(Base(Blox)	Actual base excess at 100 % oxygen saturation
cBase(Ecf)	Concentration of titrable base of extracellular fluid
CDase(LCI)	(standard base excess)
cBase(Ecf.ox)	Standard base excess at 100 % oxygen saturation
	Concentration of hydrogen carbonate in plasma of
	concentration of hydrogen carbonate in plasma of
el I+	Concentration of hydrogen ions in blood
CH '	Concentration of hydrogen ions in blood
$CH^{+}(I)$	Concentration of hydrogen lons in blood
	at patient temperature
CTCO ₂ (P)	Concentration of total carbon dioxide in plasma
CTCO ₂ (B)	Concentration of total carbon dioxide of whole
	blood (CO ₂ content)
pH(st)	pH of standardized blood ($pCO_2 = 40 \text{ mmHg}$)
$pO_2(T)$	Oxygen tension of blood at patient temperature
$pO_2(A)$	Oxygen tension of alveolar air
pO ₂ (A,T)	Oxygen tension of alveolar air at patient temperature
<i>p</i> 50	Oxygen tension at 50 % saturation of blood
p50(T)	Oxygen tension at 50 % saturation of blood at
	patient temperature
p50(st)	Oxygen tension at 50 % saturation of blood at
	standard conditions for pH, pCO ₂ , FCOHb, FMetHb,
	<i>F</i> HbF at 37 ℃
pO ₂ (A–a)	Difference of oxygen tension of alveolar air and arte-
	rial blood
$pO_2(A-a,T)$	Difference of oxygen tension of alveolar air and arte-
	rial blood at patient temperature
$pO_2(a/A)$	Ratio of oxygen tension of arterial blood and alveolar
	air
$pO_2(a/A,T)$	Ratio of oxygen tension of arterial blood and alveolar
	air at patient temperature
$pO_2(a)/FO_2(I)$	Oxygen tension ratio of arterial blood to the fraction
	of oxygen in inspired air
$pO_2(a,T)/FO_2(I)$	Oxygen tension ratio of arterial blood at patient
, 20, , 20,	temperature to the fraction of oxygen in inspired air
$cCa^{2+}(pH=7.40)$	Concentration of ionized calcium in plasma at
(- · · ·	pH 7.40
Anion Gap(K ⁺)	Concentration difference of $K^+ + Na^+$ and $Cl^- +$
	HCO ₂
Anion Gap	Concentration difference of Na ⁺ and CI^- + HCO ₅
	Oxygen delivery
Hct	Eraction of the volume of erythrocytes in the volume
	of whole blood
$n \cap (x)$	Oxygen extraction tension of arterial blood
$pO_2(x)$	Oxygen extraction tension of arterial blood at natient
p0 ₂ (x, r)	temperature
$dO_{1}(\mathbf{R})$	Total oxygen concentration of blood
C(O ₂ (D)	
$dO(a, \bar{y})$	Total oxygon concentration difference between arte
C(O ₂ (a=v)	rial and mixed venous blood
DO	Owner consists of homoglabin. The maximum can
BO ₂	Oxygen capacity of hemoglobin. The maximum con-
	centration of oxygen bound to nemoglobin in blood,
	saturated so that all deoxynemoglobin is converted
10 ()	to oxynemoglobin
CTU ₂ (X)	Extractable oxygen concentration of arterial blood
FShunt	Volume fraction of shunted venous blood in arterial
FCI	blood
FShunt(T)	FShunt at patient temperature
KI	Respiratory Index

RI(T)	Respiratory Index at patient temperature
VO ₂	Oxygen consumption
mOsm	Plasma osmolality
Qx	Oxygen compensation factor of arterial blood
Qt	Cardiac output
V(B)	Volume of blood
sO ₂	Saturation
FO ₂ Hb	Fraction of oxyhemoglobin in total hemoglobin in
	blood

Input parameters

Туре	Definition
Patient ID	Patient identification number
Patient height	The height of the patient
Patient department	Which department the patient is from
Т	Patient temperature
Sample type	Arterial, venous, mixed venous, capillary, prof. test, cal. verification
Patient note	Notes about the patient or sample
Patient weight	The weight of the patient
Patient accession no.	Unique sample order number
Patient age	The age of the patient
Patient sex	Male or female
Draw time	When the sample was taken
Date of birth	Patient date of birth
Sample site	Not specified, brachial left/right, femoral left/right, radial left/right, finger left/right, heel left/right, umbilical cord
Patient birth weight	The weight of the newborn
Patient gestational age	Period of intrauterine fetal development from conception to birth
Patient name	Name of the patient
Physician	Name of the physician
Operator	Name of the operator
Operator department	Department where the operator is from
RQ	Respiratory quotient
FO ₂ (I)	Fraction of oxygen in dry inspired air
Q _t	Cardiac output
VO ₂	Total oxygen consumption
VCO	Volume of carbon monoxide, input value for measurement of V(B)
sO ₂ (v)	Oxygen saturation in mixed venous blood
$pO_2(\bar{v})$	Oxygen tension in mixed venous blood
ctHb	Total hemoglobin concentration (if not measured)
FCOHb(1)	Used for determining blood volume
FCOHb(2)	Used for determining blood volume

General information

Hardware

Computer specifications

Processor Intel Celeron® M 600 MHz with 512K L2 Cache 1 GB RAM

2 GB SolidState storage

- 8.4" color TFT-LCD, resolution 800 \times 600 SVGA Touch screen 4" thermal-sensitive printer

Sample mixer

Mixing time 7 sec For *safe*PICO samplers

Interface

Built-in barcode reader for operator & sampler ID Accepted codes: UPC/EAN, Code 128, Code 39, Code 93, I 2 of 5, Discrete 2 of 5, Codabar and more Serial interface RS232 with power for external barcode reader 3 USB connections Optional external keyboard Optional external mouse Optional external barcode reader

Inlet

Left/right hand operation Position for syringe as well as capillary and test tube Aspiration from capillary without adapter Aspiration time 5 seconds

Software

Software platform

Windows® XP Embedded Sybase® SQL Anywhere

Data capacity

Patient log: 2000 Activity log: 5000 Calibration adjustment log: 1000 Data secured by password protection 8 different user profiles Unlimited ID access verification

Printer display options

Auto print (on/off) Select derived parameters Select input variables Reference ranges with results

Security and QA features

Advanced planning of replacement and QC schedules Optional automatic QC at startup and after replacements Customizable QC and calibration schedule

Oximetry: 37±0.30 °C / 98.6±32.54 °F

Communication

HIS/LIS communication

High-level protocols: ASTM HL7 POCT1-A Low-level serial protocols: ASTM 1381-91, E1394-91 Serial RAW Low-level network protocols: TCP/IP

RADIANCE communication Interface via Ethernet adapter

Additional information

_ .

Dimensions			Other	
Height	45 cm	17.7 in	Startup time	1.5 hours average (less than 4 hours)
Width	25 cm	9.8 in	Operating environment	15-32 °C / 59-89.6 °F, 20-80% RH
Depth	29 cm	11.4 in	Altitude correction	Up to 4000 m / 13,124 feet above sea level
Weight	11 kg	24.4 lbs	Power	100-240 V; 50-60 Hz; 250VAC
			Thermostat control	Sensor cassette: 37±0.15 °C / 98.6±32.27 °F

Simpler, faster, better

Radiometer's products and services simplify and automate all phases of acute care testing, providing you with the speed and ease of use you want and the accuracy you need.

This is acute care testing truly made simpler, faster and better.

IVD

Contact us

Radiometer is represented in more than 100 countries. For the local Radiometer representative nearest you, please go to www.radiometer.com.

Patents and compliance

	CE	Compliance with IVD Directive 98/79/EC
	EMC Emission & Immunity	The equipment complies with the requirements for Class A equipment in IEC 61326-2-6: Electrical equipment for measurement, control and laboratory use – EMC requirements – Part 2.6: Particular requirements – In vitro diagnostic (IVD) medical equipment
	Approvals	UL/CSA IEC 61010-1, IEC 61010-2-81, IEC 61010-2-101 Instal- lation Category II: Safety requirements for electrical equipment for measurement, control, and laboratory use – Part 1: General requirements – Part 2-81: Particular requirements for automatic and semi-automatic analytical equipment for analysis and other purposes – Part 2-101: Particular requirements for in vitro diag- nostic (IVD) medical equipment
Patents O m U E E Ja G O U U U U U U U U U U U U U U U U U U		One or more of the following patents and patent applications may apply: US Patent Nos.: US6551480, US6805781, US6980285, US7384523 European Patent Nos.: EP1084398, EP1086366, EP1269172, EP1644725 Japanese Patent Nos.: JP3369547, JP3635263, JP4503599 German Patent Nos.: DE69938550, DE60138694, DE69942250, DE602004025243 US Patent Application Nos.: US2006-0013744, US2008- 0266545, US2008-0279487, US2009-0060789, US2010- 0015691, US2010-0155239 European Patent Application Nos.: EP1773495, EP2142922, EP2147307, EP2150804 Japanese Patent Application Nos.: JP2008-506129, JP2010- 525338, JP2010-525339, JP2010-525340 Chinese Patent Application No.: CN101005895, CN101688826, CN101688860, CN101715556 International Patent Application Nos.: WO2010/006603, WO2010/072223
	Languages	English, Chinese, Croatian, Czech, Danish, Dutch, Estonian,

English, Chinese, Croatian, Czech, Danish, Dutch, Estonian, French, German, Greek, Hungarian, Italian, Japanese, Latvian, Lithuanian, Norwegian, Polish, Portuguese, Romanian, Russian, Serbian, Spanish, Swedish, Turkish

Radiometer Medical ApS Åkandevej 21 2700 Brønshøj Denmark Tel: + 45 38 27 38 27 Fax: + 45 38 27 27 27 www.radiometer.com

