

Test report No. shd0718 SURGICAL HAND DISINFECTION (EN 12791)

Name of the product:	Chemisept MED
Batch number:	196101017
Order number:	17029
Manufacturer:	Chemi-Pharm Ltd.
Client, representative:	Chemi-Pharm Ltd., Põllu 132, Tallinn, 10917, ESTONIA
	Maris Millner, +372-51-77-090
Date of delivery:	10.01.2018
Test material conditions:	No specific features, sample in the manufacturers tare
Storage conditions:	In room temperature, dark
Active substance – conc.:	Ethyl alcolol 72,5% wt, isopropyl alcohol 7.5% wt
Appearance of the product:	Transparent liquid
Test concentration:	Ready to use
Contact time:	90 sec
Interfering substance:	-
Neutralizer:	Polysorbate 80 30g/l; saponin 30 g/l, lecithin 3 g/l
Rinsing liquid:	
Test organisms:	Normal skin flora
Testing method:	EVS-EN 12791:2016+A1:2017 Chemical disinfectants and antiseptics – Surgical hand disinfection – Test method and requirements (phase 2, step2)
Testing date:	06.02.2018 - 14.02.2018
Results:	look appendix 1-10
	CO LABORATOON

Diana Kaare, MSc

Head of laboratory, microbiologist Date of test report: 21.02.2018

Validations and controls

Neutralizer

validation:

The selected neutralizer is tested according to EN 13727:2012 + A2:2015 for *P. aeruginosa* ATCC 15442, *S. aureus* ATCC 6538, *E. hirae* ATCC 10541, *E. coli* K12, NCTC 10538 and according to EN 13624:20123 for *C. albicans* ATCC 10231. The neutralizer fulfilled all the criteria and passed the controls, therefore, the neutralizer is suitable for test.

P. aeruginosa ATCC 15442:

Valio	Validation suspension N_{vo}		Experimental conditions control (A)			Neutralizer control (B)			Method validation (C)		
V _{C1}	38	x = 36.5	V _{C1}	19	x = 21.5	V _{C1}	26	x = 27.5	V _{C1}	28	x = 24
V _{C2}	35		V _{C2}	24		V _{C2}	29		V _{C2}	20	
30 ≤	<i>x N_{vo} ≤16</i>	50 ? yes X; no	х А is	≥0,5 x N	vo? yes X; no	х В is	i≥0,5 x /	N ∞? yesX;	⊼ C is ≥	≥0,5 x N	"₀? yes X; no 🗆
						no 🗆					

Test suspension and test

Testsuspension:	N	V _{C1}	V _{C2}	x _{wm} = 1.63 x 10 ⁹ ; logN = 9.21
	10-7	167	156	$N_0 = N/100; \log N_0 = 7.21$
N and N₀	10-8	18	18	7,17≤ log <i>N₀</i> ≤7,70; yesX; no □

S. aureus ATCC 6538

Validation suspension		Experimental conditions control (A)			Neutralizer control (B)			Method validation (C)		
V_{C1} 35 $\bar{x} = 39$ V_{C2} 43	V _{C1} V _{C2}	27 25	x = 26	V _{C1} V _{C2}	20 29	x = 24.5	V _{C1} V _{C2}	32 38	x = 35	
30 ≤ x̄ N _{vo} ≤160 ? yes > □	$30 \le \overline{x} N_{vo} \le 160$? yes X; no $\overline{x} A$ is $\ge 0.5 \overline{x} N_{vo}$? yes X; no			⊼ B is no ⊡	≥0,5 x /	√vo? yesX;	x C is i	≥0,5 x <i>N</i> v	₀? yes X; no 🗆	

Test suspension and test

Testsuspension:	N	V _{C1}	V _{C2}	$\bar{x}_{wm} = 1.85 \times 10^9; \log N = 9.27$
	10-7	193	174	$N_0 = N/100; \log N_0 = 7.27$
N and No	10 ⁻⁸	22	18	7,17≤ log N₀ ≤7,70; yesX; no □

E. hirae ATCC 10541

Valio	Validation suspension N_{vo}		Experimental conditions control (A)			Neutralizer control (B)			Method validation (C)		
V _{C1}	42	x = 40.5	V _{C1}	34	x = 34	V _{C1}	30	x = 27.5	V _{C1}	36	x = 38.5
V _{C2}	39		V _{C2}	34		V _{C2}	25		V _{C2}	41	
30 ≤	$30 \le \overline{x} N_{vo} \le 160$? yes X;no \Box $\overline{x} A \text{ is } \ge 0.5 \overline{x} N_{vo}$?yes X;no \Box					$\bar{\mathbf{x}} \mathbf{C} \text{ is } \ge 0,5 \bar{\mathbf{x}} N_{vo}$? yes X; no \Box					

Test suspension and test

Testsuspension:	N	V _{C1}	V _{C2}	$\bar{x}_{wm} = 1.96 \times 10^9; \log N = 9.29$
	10-7	186	203	$N_0 = N/100; \log N_0 = 7.29$
N and No	10-8	19	24	7,17≤ log N₀ ≤7,70; yesX; no □

E. coli K12, NCTC 10538

Valio	dation su	uspension N _{vo}	· ·	rimental co ol (A)	onditions	Neut	tralizer o	ontrol (B)	Met	hod valid	ation (C)
V _{C1}	41	x = 44.5	V _{C1}	31	x = 37	V _{C1}	36	x = 34.5	V _{C1}	42	x = 41
V _{C2}	48		V _{C2}	43	_	V _{C2}	33		V _{C2}	40	
30 ≤	x N _{vo} ≤1	160 yes X; no □	ѫ́ А is	≥ 0,5	,? yesX;no□	ѫ В is	s≥0,5 x I	Vv₀? yesX;no 🗆	x C is	s≥0,5 x I	N∞? yes X; no 🗆

Test suspension and test

Testsuspension:	N	V _{C1}	V _{C2}	$\bar{x}_{wm} = 2.35 \times 10^9; \log N = 9.37$
	10-7	224	247	$N_0 = N/100; \log N_0 = 7.37$
N and No	10-8	20	26	7,17≤ log <i>N₀</i> ≤7,70; yesX; no □

C. albicans ATCC 10231

Valio	dation su	spension N _{vo}	Exper contr		onditions	Neut	tralizer o	control (B)	Met	hod valida	tion (C)
V _{C1}	32	x = 35	V _{C1}	24	x = 21.5	V _{C1}	21	x̄ = 25.5	V _{C1}	23	x = 29.5
V _{C2}	38		V _{C2}	19		V _{C2}	30		V _{C2}	36	
30 ≤	<i>x N</i> _{vo} ≤1	60? yes X;no 🗆	x A is	≥0,5 x N ,	"?yes X;no□	х В is	i≥0,5 ⊼ /	V ∞? yesX;no □	x C is	s≥0,5 x N	∞? yes X; no 🗆

Test suspension and test

Testsuspension:	N	V _{C1}	V _{C2}	$\bar{x}_{wm} = 1.60 \times 10^8; \log N = 8.21$
	10-6	158	161	$N_0 = N/100; \log N_0 = 6.21$
N and N₀	10-7	15	19	6,17≤ log N₀ ≤6,70; γesX; no □

Quality control on soft soap:

The soft soap met the quality criteria:

- 1. Identity: when sulphuric acid (10%) was added to an undiluted soft soap solution the free fatty acids separated out as a dense white precipitate which, when gently heated, melted into oily droplets and collected on the surface of the liquid.
- 2. Purity: 1g of soft soap dissolved in 2.0ml of warm water into clear liquid.
- 3. Alcohol-insoluble substances: 2.5g of soft soap contained 3 mg of alcohol-insoluble substances which meets the criterion (must be <5mg)
- 4. Loss on drying: 38.6% which is less than the maximum of 45% and therefore, passed the test.
- 5. Determination of content: after following the procedures described in EN12791 standard, the residue of soft soap weighed 1.152g, which meets the quality criterion (shall weight 1.125g to 1.25g, corresponding to a content of 45.0% to 50,0% of fatty acids)

Quality control of surgical gloves

Quality control of surgical gloves was carried out on the instructions given in EN12791. The tested gloves did not show any microbial growth, meaning the gloves were sterile and free from any microbial activity.

Reference surgical hand disinfection procedure – Experimental results

Preparation: "RP" Reference [propan-1-ol 60% (v/v)]

Date of test: 06.02.2018 - 14.02.2018

Application: Rubbing hands during 3 min

Volu	unteer				Numbe	r of cfu p	er plate f	rom dilut	ion 10 [×]		
	RP	Hand		Prevalues			diate postv			Postvalue	!S
No	Sequence	left or	-1	-2	-3	0	-1	-2	0	-1	-2
NO		right								-	
1	PP>RP	I	>330	>330	<u>109</u>				<u>105</u>	8	
		r	>330	>330	<u>91</u>	<u>157</u>	18	0			
2	PP>RP		>330	>330	<u>58</u>	<u>113</u>	15	3			
		r	>330	>330	<u>44</u>				<u>94</u>	14	2
3	PP>RP	1	>330	>330	<u>37</u>				<u>162</u>	12	4
		r	>330	>330	<u>55</u>	<u>180</u>	26	5			
4	PP>RP	1	>330	>330	<u>129</u>	<u>102</u>	12	3			
		r	>330	>330	<u>166</u>				<u>127</u>	15	4
5	PP>RP	1	>330	>330	<u>83</u>				<u>107</u>	5	0
		r	>330	>330	<u>91</u>	<u>124</u>	13	4			
6	PP>RP	1	>330	>330	<u>38</u>	<u>92</u>	7	2		10	
		r	>330	>330	<u>41</u>				<u>67</u>	10	4
7	PP>RP	1	>330	<u>206</u>	19				<u>181</u>	13	4
		r	>330	<u>242</u>	27	<u>203</u>	22	4			
8	PP>RP	<u> </u>	>330	>330	<u>65</u>	<u>62</u>	16	6	42	10	2
		r	>330	>330	<u>41</u>				<u>42</u>	10	2
9	PP>RP		>330	<u>153</u>	18		10		<u>103</u>	16	3
		r	>330	<u>191</u>	21	<u>85</u>	10	3			
10	PP>RP		>330	>330	<u>63</u>	<u>146</u>	20	6	122	14	2
		r	>330	>330	<u>49</u>				<u>123</u>	14	0
11	PP>RP	1	>330	>330	75	0.1	10	2	<u>73</u>	9	0
		r	>330	>330	92	<u>91</u>	12	2			
12	PP>RP		>330	>330	106	<u>86</u>	16	4	77	5	3
		r	>330	>330	<u>79</u>				143	16	2
13	RP >PP	L.	>330	>330	112	151	21	4	145	10	-
		r	>330	>330	134	<u>151</u>	17	2			
14	RP >PP	1	>330	<u>124</u>	<u> 14 </u> 14	<u>68</u>	1/	2	52	16	4
4.5		r	>330	<u>93</u> >330					104	14	2
15	RP >PP	1	>330		52	127	18	4	<u>104</u>	1.	-
4.6		r	>330	>330 >330	<u>44</u> <u>68</u>	139	16	3			
16	RP >PP		>330 >330	>330	33	135	10		99	10	0
17		r 	>330	>330	<u>41</u>				92	17	0
17	RP >PP		>330	>330	75	153	18	3			
18	RP >PP	r I	>330	>330	<u>37</u>	76	12	2			
10			>330	>330	<u>63</u>				61	4	0
		r	-						53	8	0
19	RP >PP	I	>330	276	24	75	10	2			
		r	>330	223	32 <u>69</u>	<u>75</u> <u>105</u>	10 19	3			
20	RP >PP		>330	>330	1.01.00	102	19	5	124	22	4
		r	>330	>330	<u>91</u>				134	22 4	4
21	RP >PP		>330	>330	<u>38</u>	20			22	4	0
100.000		r	>330	>330	31	28	4	0	C A	11	3
22	RP >PP		>330	>330	<u>79</u>				<u>64</u>	11	3
		r	>330	>330	<u>61</u>	75	9	0			
23	RP >PP		>330	>330	85	<u>133</u>	10	4	114	14	2
		r	>330	>330	<u>47</u>	20		0	<u>114</u>	14	2
24	RP >PP		>330	>330	<u>51</u> 37	<u>36</u>	5	0	55	8	2

Underlined = count used for further computation

Highlighted = indicates adjacent dilutions used for computation

Surgical hand rub procedure with test product – Experimental results Preparation: "PP" Chemisept MED Date of test: 06.02.2018 – 14.02.2018

Application: 2 x 3 ml, 90 s

	nteer				Numbe		er plate fi				~
F	р	Hand	Prevalues Immediate postvalues						3h	n Postvalue	S
No	Sequence	left or right	-1	-2	-3	0	-1	-2	0	-1	-2
1	RP >PP	I	>330	>330	42				67	5	1
		r	>330	>330	38	<u>53</u>	7	2			
2	RP >PP		>330	>330	99	22	6	0			
2		r	>330	>330	106				<u>16</u>	4	0
3	RP >PP	I	>330	>330	68				37	8	3
5		r	>330	>330	53	42	10	4			
4	RP >PP		>330	>330	82	46	3	0			
-4	NI ZI I	r	>330	>330	106				82	4	3
5	RP >PP		>330	>330	117				10	2	0
		r	>330	>330	129	12	0	0			
6	RP >PP		>330	>330	153	38	10	3			
	111 - 1 1	r	>330	>330	124				<u>51</u>	2	2
7	RP >PP	1	>330	>330	83				<u>94</u>	12	2
		r	>330	>330	52	<u>122</u>	19	2			
8	RP >PP	l	>330	180	23	8	<u>1</u>	0			
		r	>330	169	17				<u>7</u>	1	1
9	RP >PP	I	>330	<u>125</u>	17				<u>34</u>	7	0
		r	>330	>330	<u>31</u>	22	4	1			
10	RP >PP	1	>330	>330	<u>124</u>	<u>94</u>	16	8			
		r	>330	>330	<u>100</u>				<u>84</u>	10	3
11	RP >PP		>330	<u>164</u>	18				<u>50</u>	7	0
		r	>330	<u>138</u>	60	<u>62</u>	3	0			
12	RP >PP	1	>330	<u>93</u>	4	<u>36</u>	6	2			
		r	>330	<u>101</u>	14				<u>41</u>	6	0
13	PP>RP	1	>330	>330	<u>66</u>				<u>51</u>	8	0
		r	>330	>330	<u>94</u>	<u>21</u>	3	0			
14	PP>RP	I	>330	>330	<u>106</u>	<u>38</u>	10	0			
		r	>330	>330	<u>77</u>				<u>25</u>	4	0
15	PP>RP	1	>330	<u>234</u>	123				<u>66</u>	2	0
		r	>330	<u>167</u>	101	<u>84</u>	15	5			
16	PP>RP	1	>330	>330	<u>82</u>				<u>52</u>	9	2
		r	>330	>330	<u>54</u>	<u>93</u>	13	2			
17	PP>RP	1	>330	>330	76	<u>109</u>	14	3	00	10	0
		r	>330	>330	<u>91</u>			1	<u>90</u>	16	0
18	PP>RP	I	>330	>330	36	<u>55</u>	9	1		10	~
		r	>330	>330	<u>41</u>				<u>62</u>	16	3
19	PP>RP	1	>330	<u>169</u>	19				<u>6</u>	0	0
		r	>330	<u>143</u>	16	<u>34</u>	3	0			
20	PP>RP	1	>330	>330	<u>38</u>	<u>81</u>	10	3			
		r	>330	>330	<u>51</u>				77	12	2
21	PP>RP	1	>330	<u>184</u>	21	38	10	0			
		r	>330	<u>203</u>	23				<u>25</u>	4	0
22	PP>RP	I	>330	>330	<u>48</u>	<u>64</u>	8	0			
		r	>330	>330	<u>69</u>				<u>48</u>	8	0
23	PP>RP	1	>330	>330	<u>114</u>				<u>20</u>	5	0
		r	>330	>330	<u>137</u>	<u>28</u>	4	0		3	
			>330	>330	83				60		0

Underlined = count used for further computation

Highlighted = indicates adjacent dilutions used for computation

List of computed Ig values and Ig reductions

Preparation: "RP" Reference [propan-1-ol 60% (v/v)]

Volunteer	Sequence	Im	nmediate effe	ect		3h effect	
No		lg Prevalues	lg Postvalues	lg Reduction	lg Prevalues	lg Postvalues	lg Reduction
1	RP >PP	4.96	3.20	1.76	5.04	3.02	2.02
2	RP >PP	4.76	3.05	1.71	4.64	2.97	1.67
3	RP >PP	4.74	3.26	1.49	4.57	3.21	1.36
4	RP >PP	5.11	3.01	2.10	5.22	3.10	2.12
5	RP >PP	4.96	3.09	1.87	4.92	3.03	1.89
6	RP >PP	4.58	2.96	1.62	4.61	2.83	1.79
7	RP >PP	4.38	3.31	1.08	4.31	3.26	1.06
8	RP >PP	4.81	2.79	2.02	4.61	2.62	1.99
9	RP >PP	4.28	2.93	1.35	4.18	3.01	1.17
10	RP >PP	4.80	3.16	1.63	4.69	3.09	1.60
11	RP >PP	4.96	2.96	2.00	4.88	2.86	2.01
12	RP >PP	5.03	2.93	2.09	4.90	2.89	2.01
13	PP>RP	5.13	3.18	1.95	5.05	3.16	1.89
14	PP>RP	4.09	2.83	1.26	3.97	2.72	1.25
15	PP>RP	4.64	3.10	1.54	4.72	3.02	1.70
16	PP>RP	4.83	3.14	1.69	4.52	3.00	1.52
17	PP>RP	4.88	3.18	1.69	4.61	2.96	1.65
18	PP>RP	4.57	2.88	1.69	4.80	2.79	2.01
19	PP>RP	4.35	2.88	1.47	4.44	2.72	1.72
20	PP>RP	4.84	3.02	1.82	4.96	3.13	1.83
21	PP>RP	4.49	2.45	2.04	4.58	2.34	2.24
22	PP>RP	4.79	2.88	1.91	4.90	2.81	2.09
23	PP>RP	4.93	3.12	1.81	4.67	3.06	1.62
24	PP>RP	4.71	2.56	2.15	4.57	2.74	1.83
Mean		4.73	2.99	1.74	4.68	2.93	1.75
Standard de	viation	0.27	0.21	0.28	0.29	0.21	0.31
N		24	24	24	24	24	24

List of computed lg values and lg reductions

Preparation: "PP" Chemisept MED

Volunteer			mmediate effe	ct		3h effect	p
No		lg Prevalues	lg Postvalues	lg Reduction	lg Prevalues	lg Postvalues	lg Reduction
1	PP>RP	4.58	2.72	1.86	4.62	2.83	1.80
2	PP>RP	5.00	2.34	2.65	5.03	2.20	2.82
3	PP>RP	4.72	2.62	2.10	4.83	2.57	2.26
4	PP>RP	4.91	2.66	2.25	5.03	2.91	2.11
5	PP>RP	5.11	2.08	3.03	5.07	2.00	3.07
6	PP>RP	5.18	2.58	2.60	5.09	2.71	2.39
7	PP>RP	4.72	3.09	1.63	4.92	2.97	1.95
8	PP>RP	4.26	1.91	2.34	5.23	1.85	3.38
9	PP>RP	4.49	2.34	2.15	3.23	2.53	0.70
10	PP>RP	5.09	2.97	2.12	5.00	2.92	2.08
11	PP>RP	4.14	2.79	1.35	4.21	2.70	1.52
12	PP>RP	3.97	2.56	1.41	4.00	2.61	1.39
13	RP >PP	4.97	2.32	2.65	4.82	2.71	2.11
14	RP >PP	5.03	2.58	2.45	4.89	2.40	2.49
15	RP >PP	4.22	2.92	1.30	4.37	2.82	1.55
16	RP >PP	4.73	2.97	1.76	4.91	2.72	2.20
17	RP >PP	4.88	3.04	1.84	4.96	2.95	2.00
18	RP >PP	4.56	2.74	1.82	4.61	2.79	1.82
19	RP >PP	4.16	2.53	1.63	4.23	1.78	2.45
20	RP >PP	4.58	2.91	1.67	4.71	2.89	1.82
21	RP >PP	4.26	2.58	1.69	4.31	2.40	1.91
22	RP >PP	4.68	2.81	1.88	4.84	2.68	2.16
23	RP >PP	5.14	2.45	2.69	5.06	2.30	2.76
24	RP >PP	4.67	2.73	1.94	4.92	2.78	2.14
Mean		4.67	2.64	2.03	4.70	2.58	2.12
Standard de	viation	0.36	0.30	0.47	0.45	0.34	0.57
N		24	24	24	24	24	24

Test for sequence effects

Test of sequence of IgR "Immediate effect"

	Sequ	ience	Absolute difference		
Procedure	RP>PP	PP>RP	[RP>PP]-[PP>RP]		
	Mean s.d.N	Mean s.d.N			
RP (Propan-1-ol 60% v/v)	1.73 0.31 12	1.75 0.25 12			
PP	1.94 0.33 12	2.12 0.43 12			
Difference of Means					
RP - PP	0.21	0.37	0.16		
s.d. standard deviation					

Test of sequence of Ig R "3-hours effect"

	Sequ	ience	Absolute difference		
Procedure	RP>PP	PP>RP	[RP>PP]-[PP>RP]		
	Mean s.d.N	Mean s.d.N			
RP (Propan-1-ol 60% v/v)	1.72 0.36 12	1.78 0.27 12			
PP	2.12 0.33 12	2.12 0.75 12			
Difference of Means					
RP - PP	0.4	0.34	0.06		
s.d. standard deviation	A				

"RP>PP" means: RP tested before PP and "PP>RP" means: PP tested before RP

	lr	nmediate e	effect		3h effec	t
Volunteer	RP	PP	Difference RP-PP	RP	РР	Difference RP-PP
1	1.76	1.86	-0.10	2.02	1.80	0.22
2	1.71	2.65	-0.94	1.67	2.82	-1.15
3	1.49	2.10	-0.61	1.36	2.26	-0.90
4	2.10	2.25	-0.15	2.12	2.11	0.01
5	1.87	3.03	-1.16	1.89	3.07	-1.18
6	1.62	2.60	-0.98	1.79	2.39	-0.60
7	1.08	1.63	-0.55	1.06	1.95	-0.89
8	2.02	2.34	-0.32	1.99	3.38	-1.39
9	1.35	2.15	-0.80	1.17	0.70	0.47
10	1.63	2.12	-0.49	1.60	2.08	-0.48
11	2.00	1.35	0.65	2.01	1.52	0.49
12	2.09	1.41	0.68	2.01	1.39	0.62
13	1.95	2.65	-0.70	1.89	2.11	-0.22
14	1.26	2.45	-1.19	1.25	2.49	-1.24
15	1.54	1.30	0.24	1.70	1.55	0.15
16	1.69	1.76	-0.07	1.52	2.20	-0.68
17	1.69	1.84	-0.15	1.65	2.00	-0.35
18	1.69	1.82	-0.13	2.01	1.82	0.19
19	1.47	1.63	-0.16	1.72	2.45	-0.73
20	1.82	1.67	0.15	1.83	1.82	0.01
21	2.04	1.69	0.35	2.24	1.91	0.33
22	1.91	1.88	0.03	2.09	2.16	-0.07
23	1.81	2.69	-0.88	1.62	2.76	-1.14
24	2.15	1.94	0.21	1.83	2.14	-0.31

Individual differences of IgRs between RP and PP for immediate and 3 h effects

Acceptance criteria for test results

a) number of complete test results: 24

b) overall mean

of individual lg prevalues RP (immediate/3h effect): 4.73/4.68 (req. min 3.5/min 3.5) of individual lg prevalues PP (immediate/3h effect): 4.67/4.70 (req.min 3.5/min 3.5)

c) absolute differences of mean between RP and PP

c1) between groups RP>PP and PP<RP, immediate effect: 0.16 (<2.0)

c2) between groups PP>RP and RP<PP, immediate effect: 0.06 (<2.0)

d) all quotients of two adjacent dilutions used for computation i.e. counts highlighted in tables appendix 2 and appendix 3 are between 5 and 15

All acceptance criteria are fulfilled.

Computation of the Hodges – Lehmann 97.5 upper confidence limit

Computation of the Hodges Lehmann 97.5 upper confidence limit for immediate effect

Sorted differences				M	ean pairwis	e differenc	es (d _i +d _{ji}) /2	2			
of RP-PP (descending order)	0.68	0.65	0.35	0.24	0.21	0.15	0.03	-0.07	-0.10	-0.13	-0.15
0.68	0.68/1										
		0.65/3									
0.65	0.67/2	0.63/5	0.35/13								
0.35	0.52/4	0.30/3	0.30/16	0.24/30							
0.24	0.45/7	0.43/8	0.28/19	0.23/31	0.21/32						
0.21	0.43/7	0.43/3	0.25/29	0.20/33	0.18/36	0.15/38					
	0.36/12	0.34/14	0.19/34	0.14/39	0.12/42	0.09/49	0.03/65				
0.03		0.29/18	0.14/40	0.09/48	0.07/53	0.04/62	-0.02/75	-0.07			
-0.07	0.31/15	0.29/18	0.13/41	0.07/52	0.06/54	0.03/64	-0.04/78	-0.09	-0.1		
-0.1	0.29/17		0.11/43	0.05/56	0.04/61	0.01/70	-0.05/79	-0.1	-0.12	-0.13	
-0.13	0.28/21	0.26/24 0.25/26	0.11/43	0.05/50	0.03/63	0/71	-0.06/82	-0.11	-0.13	-0.14	-0.15
-0.15			0.10/45	0.04/58	0.03/66	0/72	-0.06	-0.11	-0.13	-0.14	-0.15
-0.15	0.27/23	0.25/27		0.04/58	0.03/67	-0.01/73		-0.12	-0.13	-0.15	-0.16
-0.16	0.26/25	0.25/28	0.10/46	-0.04/77	-0.05/80	-0.01/73	-0.15	-0.2	-0.21	-0.23	-0.24
-0.32	0.18/35	0.17/37	-0.02768	-0.13	-0.03/80	-0.17	-0.23	-0.28	-0.3	-0.31	0.2.1
-0.49	0.09/47	0.08/50		-0.13	-0.14	-0.2	-0.26	-0.31	-0.33	0.01	
-0.55	0.07/51	0.05/55	-0.10		-0.17	-0.2	-0.20	-0.31	.0.35		
-0.61	0.04/60	0.02/69	-0.13	-0.19		-0.23	-0.29	-0.54			
-0.7	-0.01/74		-0.18	-0.23	-0.25 -0.3	-0.28	-0.54				
-0.8	-0.06/81	-0.07	-0.23	-0.28		-0.33					┟─────┦
-0.88	-0.1	-0.12	-0.27	-0.32	-0.34						
-0.94	-0.13	-0.15	-0.3	-0.35						 	├ ───┤
-0.98	-0.15	-0.17	-0.32								
-1.16	-0.24	-0.26									
-1.19	-0.26									1	

The median of the difference between RP-PP is between 12^{th} and 13^{th} value: [(-0.15) + (-0.16)] /2 = = (-0.155) The numbers after the values represent ranks.

The mean pairwise differences that do not exceed the median (here -0.155) are computed. The critical values for Wilcoxin's matched-pair signed-ranks test the entry for n=24 and a one-sided P=0.025 level of significance the critical value is 81. Hence c = 81 + 1 = 82. The pairwise differences are sorted in descending order. The 82nd value is -0.06. Hence, the Hodges – Lehmann upper one-sided 97.5% confidence limit for the difference in IgRs between RP and PP is -0.06, which is below the agreed inferiority margin of 0.75.

Therefore, the hypothesis of inferiority of the immediate effect of PP versus RP can be rejected.

Sorted differences				М	ean pairwi	se differen	ces (d _i +d _{ji}) ,	/2			
of RP-PP (descending order)	0.62	0.49	0.47	0.33	0.22	0.19	0.15	0.01	0.01	-0.07	-0.22
0.62	0.62/1										
0.49	0.56/2	0.49/4									
0.47	0.55/3	0.48/6	0.47/7								
0.33	0.48/5	0.41/10	0.40/11	0.33/16							
0.22	0.42/8	0.36/13	0.35/14	0.28/23	0.22/30						
0.19	0.41/9	0.34/15	0.33/17	0.26/24	0.21/31	0.19/35					
0.15	0.39/12	0.32/20	0.31/21	0.24/29	0.19/36	0.17/37	0.15/41				
0.01	0.32/18	0.25/25	0.24/27	0.17/38	0.12/46	0.10/48	0.08/52	0.01/64			
0.01	0.32/19	0.25/26	0.24/28	0.17/39	0.12/47	0.10/49	0.08/53	0.01/65	0.01/66		
-0.07	0.28/22	0.21/32	0.20/34	0.13/45	0.07/56	0.06/57	0.04/60	-0.03/72	-0.03/73	-0.07/79	
-0.22	0.20/33	0.14/43	0.13/44	0.06/58	0/67	-0.02/70	-0.04/74	-0.11	-0.11	-0.15	-0.22
-0.31	0.16/40	0.09/50	0.08/51	0.01/63	-0.05/75	-0.06/78	-0.08	-0.15	-0.15	-0.19	-0.27
-0.35	0.14/42	0.07/55	0.06/59	-0.01/69	-0.07/80	-0.08	-0.1	-0.17	-0.17	-0.21	-0.29
-0.48	0.07/54	0.01/62	-0.01/68	-0.08/82	-0.13	-0.15	-0.17	-0.24	-0.24	-0.28	-0.35
-0.6	0.01/61	-0.06/77	-0.07/81	-0.14	-0.19	-0.21	-0.23	-0.3	-0.3	-0.34	
-0.68	-0.03/71	-0.1	-0.11	-0.18	-0.23	-0.25	-0.27	-0.34	-0.34		
-0.73	-0.06/76	-0.12	-0.13	-0.2	-0.26	-0.27	-0.29	-0.36			
-0.89	-0.14	-0.2	-0.21	-0.28	-0.34	-0.35	-0.37				
-0.9	-0.14	-0.21	-0.22	-0.29	-0.34	-0.36					
-1.14	-0.26	-0.33	-0.34	-0.41	-0.46						
-1.15	-0.27	-0.33	-0.34	-0.41							
-1.18	-0.28	-0.35	-0.36								
-1.24	-0.31	-0.38									
-1.39	-0.39										

Computation of the Hodges Lehmann 97.5% upper confidence limit for the 3 h effect

The median of the difference between RP-PP is between 12^{th} and 13^{th} value: [(-0.31) + (-0.35)] /2 = (-0.33) The numbers after the values represent ranks.

The mean pairwise differences that do not exceed the median (here -0.33) are computed. The critical values for Wilcoxin's matched-pair signed-ranks test the entry for n=24 and a one-sided P=0.025 level of significance the critical value is 81. Hence c = 81 + 1 = 82. The pairwise differences are sorted in descending order. The 82nd value is -0.08. Hence, the Hodges – Lehmann upper one-sided 97.5% confidence limit for the difference in IgRs between RP and PP is -0.08, which is below the agreed inferiority margin of 0.85.

Therefore, the hypothesis of inferiority of the immediate effect of PP versus RP can be rejected.

Conclusion: as both the immediate and 3h effects of RP are significantly inferior to those of PP the product fulfilled the requirements of EN 12791.

Interpretation:

Both, the reference substance and tested product (Chemisept MED, batch no. 196101017) fulfilled all acceptance criteria in case of number of complete test results, overall means of individual lg pre-values and absolute differences of mean between RP and PP (see appendix 7).

Conclusion:

According to the EVS-EN 12791:2016+A1:2017, the fulfilled validation criteria, test results, lg values and Hodges Lehmann system show that the tested product – Chemisept MED – is accepted in surgical hand disinfection procedures on the following application: rub 2x3 ml of the product onto the hands within 90 seconds.

Diana Kaare, MSc Head of laboratory, microbiologist