

TYPE TEST CERTIFICATE OF TEMPERATURE-RISE PERFORMANCE

OBJECT three-phase SF₆ gas/porcelain insulated high voltage circuit breaker

TYPE 120-SFM-32B **SERIAL
No.'s** X300650 and
X300540

Rated voltage (U_m) 145 kV Rated current 3150 A
Rated frequency 50 Hz

MANUFACTURER Crompton Greaves Ltd.
Nashik, India

CLIENT Crompton Greaves Ltd.
Nashik, India

TESTED BY KEMA HIGH-VOLTAGE LABORATORY
Arnhem, the Netherlands

DATES OF TESTS 25 until 27 September 2007

The apparatus, constructed in accordance with the description, drawings and photographs incorporated in this Certificate, has been subjected to the series of proving tests in accordance with

IEC 62271-100 clauses 6.4 and 6.5

This Type Test Certificate of temperature-rise performance has been issued by KEMA following exclusively the STL Guides.

The results are shown in the record of Proving Tests and the oscillograms attached hereto. The values obtained and the general performance are considered to comply with the above Standard and to justify the ratings assigned by the manufacturer as listed on page 3.

The Certificate applies only to the objects tested. The responsibility for conformity of any object having the same designations with that tested rests with the Manufacturer.

This Certificate consists of 20 sheets in total.

© Copyright: Only integral reproduction of this Certificate is permitted without written permission from KEMA. Electronic copies in e.g. PDF-format or scanned version of this Certificate may be available and have the status "for information only". The sealed and bound version of the Certificate is the only valid version.

KEMA Nederland B.V.

P.G.A. Bus
KEMA T&D Testing Services
Managing Director

Arnhem, 6 December 2007

TABLE OF CONTENTS

TABLE OF CONTENTS	2
1 Identification of the test object.....	3
1.1 Ratings assigned by the manufacturer	3
1.2 Description of the test objects	3
1.3 List of drawings	4
2 General information.....	5
2.1 The tests were witnessed by	5
2.2 The tests were carried out by	5
2.3 Reference to other reports	5
2.4 Purpose of the test	6
2.5 Measurement uncertainty.....	6
2.6 Applicable standards	6
3 General.....	7
4 Measurement of the resistance of the main circuit before the temperature-rise test.....	10
5 Temperature-rise test.....	11
6 Measurement of the resistance of the main circuit after the temperature-rise test.....	14
7 Temperature-rise test of the auxiliary and control equipment.....	15
APPENDIX A MEASUREMENT UNCERTAINTIES.....	16
APPENDIX B MANUFACTURER'S DRAWINGS	17

1 IDENTIFICATION OF THE TEST OBJECT

1.1 Ratings assigned by the manufacturer

Rated highest voltage for equipment (U _m)	145 kV
Rated current	3150 A
Rated frequency	50 Hz

1.2 Description of the test objects

Manufacturer	Crompton Greaves Ltd., Nashik, India
Type	120-SFM-32B
Serial numbers	X300650 (temperature-rise test and measurements of the resistance of the main circuit before and after) X300540 (temperature-rise test of the auxiliary and control circuits)
Rated highest voltage for equipment	145 kV
Rated frequency	50 Hz
Rated current	3150 A
Rated insulation level (AC/LI)	275/650 kV
Rated SF ₆ gas operating pressure	0,7 MPa (g) at 20 °C
Minimum SF ₆ gas operating pressure	0,6 MPa (g) at 20 °C
Drawing(s)	see appendix B, drawing no. 3942580 and chapter 1.3
Current transformers	not applicable
Spring charging motor	KPT, 230 V a.c., 300 W (elec. power)
Closing coil	CGL, 110 V d.c., 605 W
Opening coil 1	CGL, 110 V d.c., 637 W
Opening coil 2	CGL, 110 V d.c., 637 W
Year of manufacture	2007

1.3 List of drawings

The manufacturer has guaranteed that the equipment submitted for tests has been manufactured in accordance with the following drawings.

KEMA has verified that these drawings adequately represent the equipment tested.

The following drawings have been included in this Certificate:

Drawing No.	Revision	Title
3942580	0	General arrangement for 145 kV, 40 kA SP-SP GCB type-120-SFM-32B
4942581	0	Position of temperature sensors
4942584	0	Rating plate details for 145 kV, 40 kA SP-SP GCB type-120-SFM-32B

The following drawings are only listed for reference and are kept in KEMA's files:

Drawing No.	Revision	Title
3940645	3	Interrupter porcelain (for 31 mm per kV) 145 kV – 40 kA
2940583	7	Support porcelain (A/S) for 72,5/145 kV, SP-SP GCB
4944297	1	Pole unit assembly 145 kV, 40 kA SP-SP SF6 GCB
4942583	0	Mech. hsg detail for 145 kV, 40 kA SP-SP GCB type-120-SFM-32B
4942343	1	General arrangement for 66/145/170 kV.GO.SP-SP GCB
EH3-1947-02	0	Schematic diagram for 145kV, 40kA SP-SP GCB type 120-SFM-32B
EH3-1947-09	2	Wiring diagram for 145kV, 40kA SP-SP GCB type 120-SFM-32B

2 GENERAL INFORMATION

2.1 The tests were witnessed by

Name	Company
Mr S.S. Shete	Senior Manager – Design, Crompton Greaves Ltd.

2.2 The tests were carried out by

Name	Company
Mr. P. Kuijpers	KEMA Nederland B.V.,
Mr. H.J. Arnoldus	Arnhem, the Netherlands
Mr A.H. Minkhorst	

2.3 Reference to other reports

Report no.	Tests described
07-1038	Type test certificate of dielectric performance
07-1398	Report of performance for wet lightning impulse voltage withstand tests
2110125.01-QUA/INC	Tests of the degree of protection provided by the enclosure (IP55)
470-07	Mechanical operation test at ambient temperature (class M1, 2000 operations)

2.4 Purpose of the test

Purpose of the test was to verify whether the material complies with the specified requirements.

2.5 Measurement uncertainty

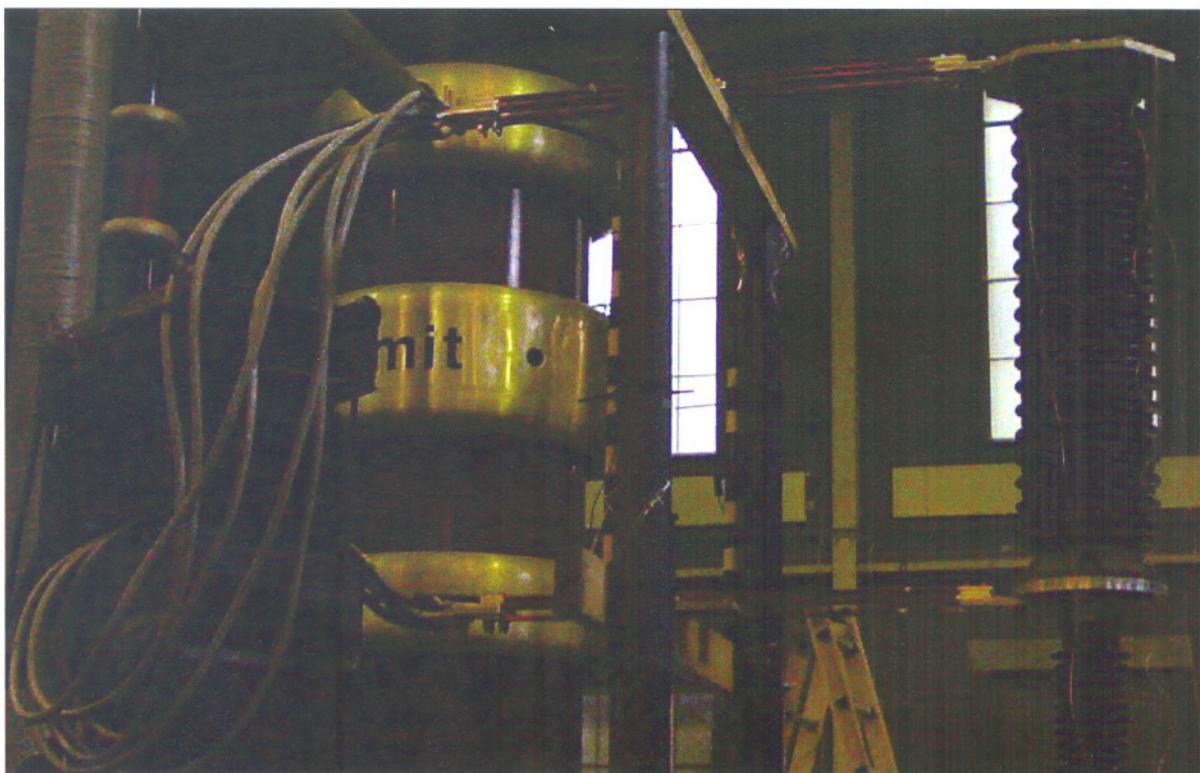
A table with measurement uncertainties is enclosed in appendix A. Unless otherwise indicated in the certificate, the measurement uncertainties of the results presented are as indicated in this table.

2.6 Applicable standards

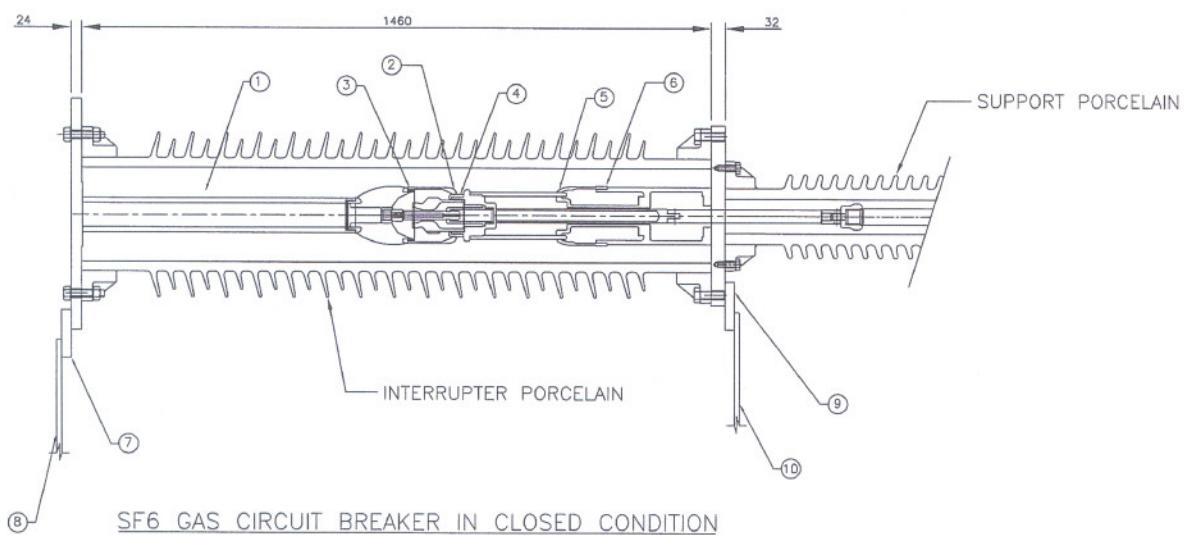
When reference is made to a standard and the date of issue is not stated, this applies to the latest issue, including amendments which have been officially published prior to the date of the tests.

Where reference was made in the standard IEC 62271-100 to IEC 60694, it was verified that testing was performed in accordance with both IEC 60694 and the final draft for IEC 62271-1 Ed.1 (17A/799/FDIS), which will cancel and replace IEC 60694 when it will be published in due time.

3 GENERAL


For the purpose of the temperature-rise test, one pole of the circuit breaker was assembled by the client on a base frame, which was put on the laboratory floor. The pole was mounted in vertical condition, replicating service conditions.

The current conducting test loop consisted of the circuit breaker and main conductors connected to its terminals. Each of both terminals conducted the full test current. The main conductors consisted of solid copper busbars (3 per terminal) of 75x12 mm (900 mm² cross-section each) and approximately 1,5 m in length. To the ends of these copper busbars, six insulated cables with flexible, copper conductors with a cross section of 300 mm² each were connected. These cables were led through an induction transformer, acting as a source, and through a current transformer which was used in combination with an ammeter for current measuring purposes.


The temperatures at various locations inside the circuit breaker were measured by means of thermocouples of the K type connected to a 30 channel temperature recorder. These thermocouples had been installed inside the circuit breaker pole by the client prior to the test.

The internal thermocouple wiring was brought outside of the circuit breaker compartment by means of specially sealed adapters in order to maintain the SF₆ gas pressure inside the compartment during the test. A photograph of the test setup and a drawing of the internal position of the thermocouples inside the circuit breaker are presented on the next page. The thermocouple positions are also shown in the client's drawing no. 4942581, which is included in appendix B of this certificate.

Furthermore, a table is presented with a description of the various measuring points.

Photograph of the test setup during the temperature-rise test

Drawing indicating the position of the various thermocouples in and on the test object

measuring point	description of measuring point
1	SF6 gas
2	stationary main contact tip
3	stationary main contact base
4	moving main contact base
5	fixed finger contact tip
6	fixed finger contact base
7	upper terminal pad
8	temporary connection (upper) – 1 m away from upper terminal
9	lower terminal pad
10	temporary connection (lower) – 1 m away from lower terminal

4 MEASUREMENT OF THE RESISTANCE OF THE MAIN CIRCUIT BEFORE THE TEMPERATURE-RISE TEST

Date of test: 1 October 2007

Before the temperature-rise test was carried out on the test object with serial no. X300650, the d.c. resistance value of the main circuit was determined as a reference in accordance with clause 6.4 of IEC 62271-100. The total resistance of the closed circuit breaker was measured from the upper to the lower flange.

The measurements were performed by injecting a d.c. current of 200 A through the current path and measuring the voltage across the flange locations. For the measurement, the average was taken of three readings.

Atmospheric conditions

Ambient temperature	22	°C
Temperature of test object	22	°C

measurement location	before test ($\mu\Omega$)			average ($\mu\Omega$)
from upper to lower flange	25	28	27	26,7

Requirement

No requirements are applicable. The obtained value served as a reference for the measurements after the temperature-rise test.

Result

The measurements do not give rise to remarks.

5 TEMPERATURE-RISE TEST

The test object with serial no. X300650 was subjected to a temperature-rise test on the main circuit. The test was carried out in accordance with clause 6.5 of IEC 62271-100.

As mentioned before, the temperature-rise test was performed on a single pole of the circuit breaker. The test was performed with the circuit breaker filled with SF₆ gas at the minimum operating gas pressure of 0,6 MPa (g).

The temperature-rise test was carried out by inducing current into the main circuit as described above under chapter 3.

A current of 3150 A, 50 Hz, was induced into the main circuit by means of the auxiliary cables, led through the induction transformer.

Care was given that no heat transfer to or from the test object was taking place, caused by the feeding circuit or by the auxiliary copper bars. This was done by monitoring the temperature-rise at the terminals of the test object and also at a distance of 1 m from these terminals on the auxiliary copper bars. The difference in temperature-rise between these locations was within 5 K.

The ambient temperature was measured at three locations at a distance of 1 m from the test object and at approximately half its height.

After achieving thermal equilibrium, in accordance with clause 6.5.2 of IEC 60694, the temperature-rise values were determined. For additional information, the temperature of the upper and lower flanges (at the opposite side from the terminal pads) and the temperature on the middle shed of the interrupter porcelain were measured by means of a contact thermometer.

Following this the current was switched off.

Results of the Temperature-Rise Test

Date of test: 2 October 2007

Atmospheric conditions

Ambient temperature at start of test 22 °C

Temperature of test object at start of test 22 °C

measuring point	- description of measuring point - classification - material	recorded temperature at thermal equilibrium (°C)	temp. rise (K)	requirement for maximum temp. rise (K)	result
1	- SF ₆ gas - gas temperature -	55,6	34	-	ok
2	- stationary main contact tip - contact in SF ₆ gas - copper, silver plated	61,2	39	65	passed
3	- stationary main contact base - contact in SF ₆ gas - copper, silver plated	61,6	40	65	passed
4	- moving main contact base - contact in SF ₆ gas - copper, silver plated	61,9	40	65	passed
5	- fixed finger contact tip - contact in SF ₆ gas - copper, silver plated	54,5	33	65	passed
6	- fixed finger contact base - contact in SF ₆ gas - copper, silver plated	57,2	35	65	passed
7	- upper terminal pad - terminal in air - bare aluminium	55,3	33	50	passed
8	- temporary connection (upper) – 1 m away from terminal - connection bar - bare copper	56,3	34	- (difference 7 - 8 should be ≤ 5 K)	ok
9	- lower terminal pad - terminal in air - bare aluminium	62,0	40	50	passed

Results of the Temperature-Rise Test (continued)

measuring point	- description of measuring point - classification - material	recorded temperature at thermal equilibrium (°C)	temp. rise (K)	requirement for maximum temp. rise (K)	result
10	- temporary connection (lower) – 1 m away from terminal - connection bar - bare copper	64,2	42	- (difference 9 - 10 should be \leq 5 K)	ok
ambient 1	- ambient temperature - air temperature -	21,8	-	-	-
ambient 2	- ambient temperature - air temperature -	22,6	-	-	-
ambient 3	- ambient temperature - air temperature -	21,4	-	-	-
11	- upper flange (opp. from terminal) - bare aluminium	47,0	25	for information only	-
12	- lower flange (opp. from terminal) - bare aluminium	47,1	25	for information only	-
13	- middle shed of interrupter porcelain - porcelain	31,0	9	for information only	-

Requirements

The requirements as mentioned in clause 6.5 of IEC 62271-100 and table 3 of IEC 60694.

Result

The values for temperature-rise of the various points do not exceed the allowed maximum values.

The test was passed.

6 MEASUREMENT OF THE RESISTANCE OF THE MAIN CIRCUIT AFTER THE TEMPERATURE-RISE TEST

Date of test: 2 October 2007

After the temperature-rise test had been carried out on the test object with serial no. X300650 and allowing the configuration to cool down to ambient temperature, the d.c. resistance value of the main circuit was determined again in accordance with clause 6.4 of IEC 62271-100. The total resistance of the closed circuit breaker was measured from the upper to the lower flange. The measurements were performed by injecting a d.c. current of 200 A through the current path and measuring the voltage across the flange locations. For the measurement, the average was taken of three readings. The results were compared with the measurements taken before the temperature-rise test.

Atmospheric conditions

Ambient temperature	22	°C
Temperature of test object	22	°C

measurement location	after test ($\mu\Omega$)			average ($\mu\Omega$)	difference between measurement before - after (%)
from upper to lower flange	26	27	26	26,3	- 1,3

Requirement

The difference between the measured resistance values before and after the temperature-rise test shall not be greater than 20%.

Result

The measured values are well within the allowed tolerances. The temperature-rise test was passed.

7 TEMPERATURE-RISE TEST OF THE AUXILIARY AND CONTROL EQUIPMENT

The auxiliary and control equipment of the test object with serial no. X300540 was subjected to a temperature-rise test. This unit was assembled by the client in a three-pole configuration for the purpose of a mechanical operations test (see chapter 2.3 for a reference to the report regarding this test). Prior to the mechanical operations test, the temperature-rise test of the auxiliary and control equipment was performed.

The test was carried out in accordance with clause 6.5.5 of IEC 62271-100 and reference is made here to IEC 60694 clause 6.5.5.

The auxiliary equipment was tested at its rated supply voltage. All switching devices were equipped with automatic breaking devices for interruption of the auxiliary circuit at the end of the operation. The circuits were energized 10 times, for either 1 second or until the automatic breaking device operated. The interval between the instant of each energizing was the lowest interval possible between two switching operations of the circuit breaker.

Before and immediately after this test sequence, the d.c. resistance of the internal coils of the equipment was measured.

Date of test: 5 October 2007

Atmospheric conditions

Ambient temperature 12 °C

Temperature of test objects
(at start of test) 12 °C

equipment	before test sequence (Ω)	after test sequence (Ω)	calculated temperature-rise (K)
closing coil	20,11	20,42	4
trip coil 1	19,24	19,38	2
trip coil 2	19,48	19,56	1
spring charging motor	14,73	15,78	18

Requirement

The requirements are as mentioned in clause 6.5.5 and table 3 of IEC60694.

Result

The test was passed.

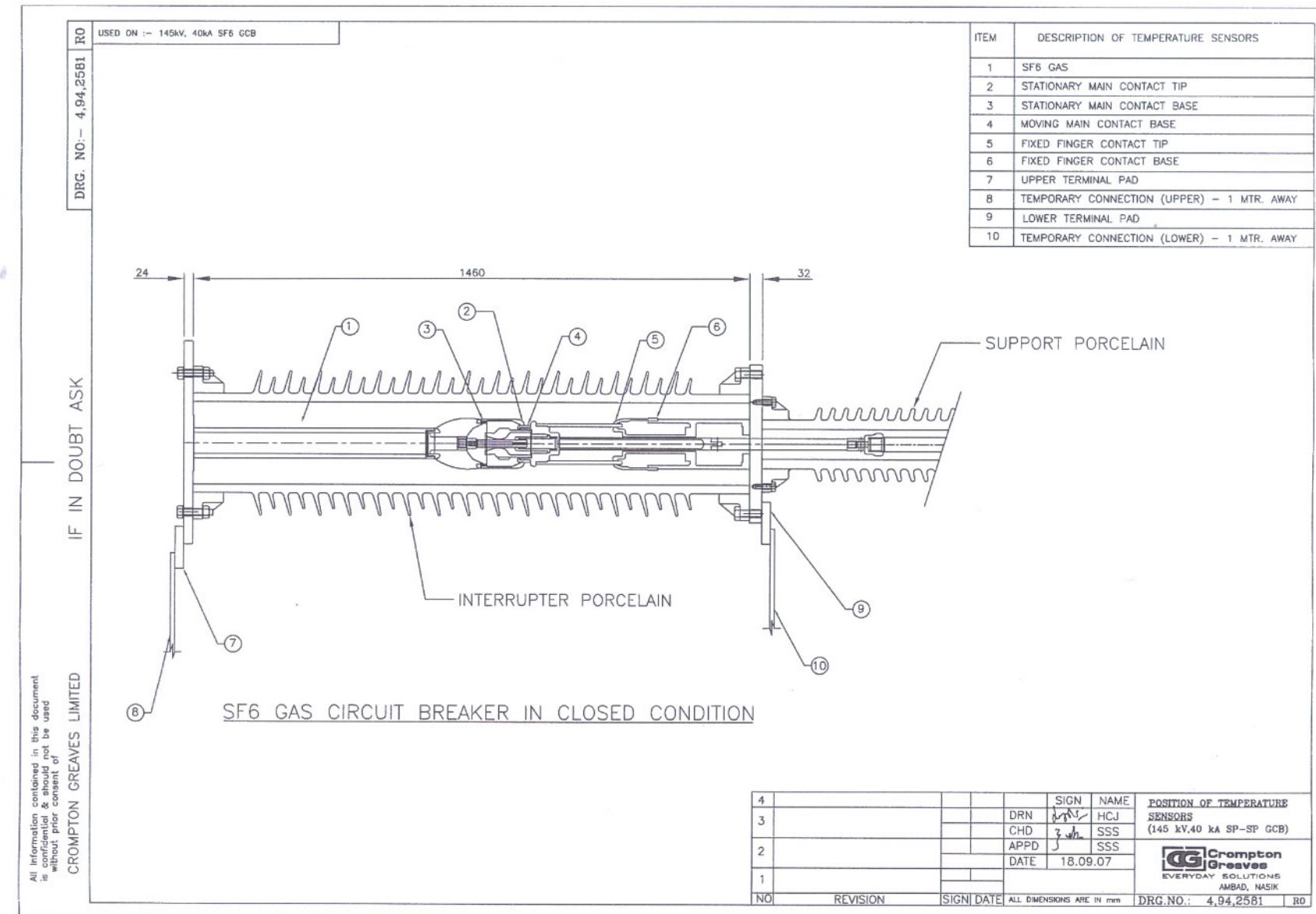
APPENDIX A MEASUREMENT UNCERTAINTIES

The measurement uncertainties in the results presented are as specified below unless otherwise indicated.

measurement	measurement uncertainty
dielectric tests and impulse current tests	peak value: $\leq 3\%$ time parameters: $\leq 10\%$
capacitance measurement	0,3%
$\tan \delta$ measurement	$\pm 0,5\% \pm 5 \times 10^{-5}$
partial discharge measurement	< 10 pC : 2 pC 10 - 100 pC : 5 pC - > 100 pC : 20 %
measurement of impedance ac-resistance measurement	$\leq 1\%$
measurement of losses	$\leq 1\%$
measurement of insulation resistance	$\leq 10\%$
measurement of dc resistance	1 $\mu\Omega$ - 5 $\mu\Omega$: 1% 5 $\mu\Omega$ - 10 $\mu\Omega$: 0,5% 10 $\mu\Omega$ - 200 $\mu\Omega$: 0,2%
radio interference test	2 dB
calibration of current transformers	$2,2 \times 10^{-4}$ Ii/Iu and 290 μ rad
calibration of voltage transformers	$1,6 \times 10^{-4}$ Ui/Uu en 510 μ rad
measurement of conductivity	5%
measurement of temperature	-50 °C - -40 °C: 3 K -40 °C - 125 °C : 2 K 125 °C - 150 °C : 3 K
tensile test	1%
sound level measurement	type 1 meter as per IEC 651 and ANSI S1.4.1971
measurement of voltage ratio	0,1%

APPENDIX B MANUFACTURER'S DRAWINGS

4 pages


Drawing no.	Description	Date	Rev.
3942580	General arrangement for 145 kV, 40 kA SP-SP GCB type-120-SFM-32B	19-9-2007	0
4942581	Position of temperature sensors	18-09-2007	0
4942584	Rating plate details for 145 kV, 40 kA SP-SP GCB type-120-SFM-32B	20-09-2007	0

APPENDIX B MANUFACTURER'S DRAWINGS

4 pages

Drawing no.	Description	Date	Rev.
3942580	General arrangement for 145 kV, 40 kA SP-SP GCB type-120-SFM-32B	19-9-2007	0
4942581	Position of temperature sensors	18-09-2007	0
4942584	Rating plate details for 145 kV, 40 kA SP-SP GCB type-120-SFM-32B	20-09-2007	0

<p style="margin: 0;">IF IN DOUBT ASK</p> <p style="margin: 0;">CROMPTON GREAVES LTD.</p> <p style="margin: 0; font-size: small;">All information contained in this document is confidential and should not be used without prior consent of CROMPTON GREAVES LTD.</p>	<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 10%; text-align: right; padding: 2px;">DRG.NO.:4,94,2584</td> <td style="width: 10%; text-align: right; padding: 2px;">REV 0</td> </tr> <tr> <td colspan="2" style="text-align: center; padding: 10px;"> Crompton Greaves EVERYDAY SOLUTIONS </td> </tr> <tr> <td colspan="2" style="text-align: center; padding: 10px;"> <h1>GAS CIRCUIT BREAKER</h1> </td> </tr> <tr> <td colspan="2" style="text-align: center; padding: 5px;"> <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;">TYPE 120-SFM-32B</td> <td style="width: 50%;">SR. NO. : YEAR 2007</td> </tr> <tr> <td>RATED VOLTAGE</td> <td>145 kV</td> </tr> <tr> <td>RATED NORMAL CURRENT</td> <td>3150 A</td> </tr> <tr> <td>RATED SHORT CIRCUIT BREAKING CURRENT</td> <td>40 kA</td> </tr> <tr> <td>RATED LIGHTNING IMPULSE WITHSTAND VOLTAGE</td> <td>650 kV_p</td> </tr> <tr> <td>RATED SF₆ GAS PRESSURE 7 kg/cm²-g(AT 20°C)</td> <td>GAS WT 8 Kg</td> </tr> <tr> <td colspan="2">RATED COIL VOLTAGE - CLOSING 110 V DC, TRIPPING 110 V DC</td> </tr> <tr> <td>MOTOR VOLTAGE 230 V AC</td> <td>AUX CIRCUIT VOLTAGE 1φ,230V AC,50 Hz</td> </tr> </table> </td> </tr> <tr> <td colspan="2" style="text-align: center; padding: 10px;"> <small>MATERIAL: STAINLESS STEEL 0.5THK</small> </td> </tr> </table>	DRG.NO.:4,94,2584	REV 0	Crompton Greaves EVERYDAY SOLUTIONS		<h1>GAS CIRCUIT BREAKER</h1>		<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;">TYPE 120-SFM-32B</td> <td style="width: 50%;">SR. NO. : YEAR 2007</td> </tr> <tr> <td>RATED VOLTAGE</td> <td>145 kV</td> </tr> <tr> <td>RATED NORMAL CURRENT</td> <td>3150 A</td> </tr> <tr> <td>RATED SHORT CIRCUIT BREAKING CURRENT</td> <td>40 kA</td> </tr> <tr> <td>RATED LIGHTNING IMPULSE WITHSTAND VOLTAGE</td> <td>650 kV_p</td> </tr> <tr> <td>RATED SF₆ GAS PRESSURE 7 kg/cm²-g(AT 20°C)</td> <td>GAS WT 8 Kg</td> </tr> <tr> <td colspan="2">RATED COIL VOLTAGE - CLOSING 110 V DC, TRIPPING 110 V DC</td> </tr> <tr> <td>MOTOR VOLTAGE 230 V AC</td> <td>AUX CIRCUIT VOLTAGE 1φ,230V AC,50 Hz</td> </tr> </table>		TYPE 120-SFM-32B	SR. NO. : YEAR 2007	RATED VOLTAGE	145 kV	RATED NORMAL CURRENT	3150 A	RATED SHORT CIRCUIT BREAKING CURRENT	40 kA	RATED LIGHTNING IMPULSE WITHSTAND VOLTAGE	650 kV _p	RATED SF ₆ GAS PRESSURE 7 kg/cm ² -g(AT 20°C)	GAS WT 8 Kg	RATED COIL VOLTAGE - CLOSING 110 V DC, TRIPPING 110 V DC		MOTOR VOLTAGE 230 V AC	AUX CIRCUIT VOLTAGE 1φ,230V AC,50 Hz	<small>MATERIAL: STAINLESS STEEL 0.5THK</small>															
DRG.NO.:4,94,2584	REV 0																																								
Crompton Greaves EVERYDAY SOLUTIONS																																									
<h1>GAS CIRCUIT BREAKER</h1>																																									
<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;">TYPE 120-SFM-32B</td> <td style="width: 50%;">SR. NO. : YEAR 2007</td> </tr> <tr> <td>RATED VOLTAGE</td> <td>145 kV</td> </tr> <tr> <td>RATED NORMAL CURRENT</td> <td>3150 A</td> </tr> <tr> <td>RATED SHORT CIRCUIT BREAKING CURRENT</td> <td>40 kA</td> </tr> <tr> <td>RATED LIGHTNING IMPULSE WITHSTAND VOLTAGE</td> <td>650 kV_p</td> </tr> <tr> <td>RATED SF₆ GAS PRESSURE 7 kg/cm²-g(AT 20°C)</td> <td>GAS WT 8 Kg</td> </tr> <tr> <td colspan="2">RATED COIL VOLTAGE - CLOSING 110 V DC, TRIPPING 110 V DC</td> </tr> <tr> <td>MOTOR VOLTAGE 230 V AC</td> <td>AUX CIRCUIT VOLTAGE 1φ,230V AC,50 Hz</td> </tr> </table>		TYPE 120-SFM-32B	SR. NO. : YEAR 2007	RATED VOLTAGE	145 kV	RATED NORMAL CURRENT	3150 A	RATED SHORT CIRCUIT BREAKING CURRENT	40 kA	RATED LIGHTNING IMPULSE WITHSTAND VOLTAGE	650 kV _p	RATED SF ₆ GAS PRESSURE 7 kg/cm ² -g(AT 20°C)	GAS WT 8 Kg	RATED COIL VOLTAGE - CLOSING 110 V DC, TRIPPING 110 V DC		MOTOR VOLTAGE 230 V AC	AUX CIRCUIT VOLTAGE 1φ,230V AC,50 Hz																								
TYPE 120-SFM-32B	SR. NO. : YEAR 2007																																								
RATED VOLTAGE	145 kV																																								
RATED NORMAL CURRENT	3150 A																																								
RATED SHORT CIRCUIT BREAKING CURRENT	40 kA																																								
RATED LIGHTNING IMPULSE WITHSTAND VOLTAGE	650 kV _p																																								
RATED SF ₆ GAS PRESSURE 7 kg/cm ² -g(AT 20°C)	GAS WT 8 Kg																																								
RATED COIL VOLTAGE - CLOSING 110 V DC, TRIPPING 110 V DC																																									
MOTOR VOLTAGE 230 V AC	AUX CIRCUIT VOLTAGE 1φ,230V AC,50 Hz																																								
<small>MATERIAL: STAINLESS STEEL 0.5THK</small>																																									
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="width: 10%;">NO</th> <th style="width: 10%;">REVISION</th> <th style="width: 10%;">SIGN</th> <th style="width: 10%;">NAME</th> <th style="width: 10%;">THIRD ANGLE PROJECTION</th> <th style="width: 10%;">RATING PLATE DETAILS</th> <th style="width: 10%;">GCB TYPE:120-SFM-32B</th> <th style="width: 10%;">Crompton Greaves</th> </tr> </thead> <tbody> <tr> <td>2</td> <td></td> <td>DRN</td> <td>HCJ</td> <td></td> <td>FOR 145kV,40kA SP-SP</td> <td></td> <td>EVERYDAY SOLUTIONS AMBAJAN NASHIK</td> </tr> <tr> <td>1</td> <td></td> <td>CHD</td> <td>SSS</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td></td> <td>APPD</td> <td>SSS</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td colspan="2"></td> <td colspan="2"></td> <td colspan="2">DATE 20.09.07</td> <td>ALL DIMENSIONS ARE IN mm</td> <td>DRG.NO.:4,94,2584 REV 0</td> </tr> </tbody> </table>		NO	REVISION	SIGN	NAME	THIRD ANGLE PROJECTION	RATING PLATE DETAILS	GCB TYPE:120-SFM-32B	Crompton Greaves	2		DRN	HCJ		FOR 145kV,40kA SP-SP		EVERYDAY SOLUTIONS AMBAJAN NASHIK	1		CHD	SSS							APPD	SSS									DATE 20.09.07		ALL DIMENSIONS ARE IN mm	DRG.NO.:4,94,2584 REV 0
NO	REVISION	SIGN	NAME	THIRD ANGLE PROJECTION	RATING PLATE DETAILS	GCB TYPE:120-SFM-32B	Crompton Greaves																																		
2		DRN	HCJ		FOR 145kV,40kA SP-SP		EVERYDAY SOLUTIONS AMBAJAN NASHIK																																		
1		CHD	SSS																																						
		APPD	SSS																																						
				DATE 20.09.07		ALL DIMENSIONS ARE IN mm	DRG.NO.:4,94,2584 REV 0																																		