

TEST REPORT

INFORMATION SHEET

KERI(Korea Electrotechnology Research Institute) issues a Type Test Certificate and a Test Report as below.

1. Type Test Certificate

A Certificate contains a record of a series of type tests carried out strictly in accordance with IEC, and/or regional standard and national standard that are identical to IEC standard. The test object has fulfilled the requirements of this standard and the relevant ratings assigned by the manufacturer are endorsed by KERI. The Certificate is applicable only to the test object. KERI is responsible for the validity and the contents of the Certificate. The responsibility for conformity of any apparatus having the same designation as the one tested rests with the manufacturer. The certificate contains the essential drawings and a description of the equipment tested. Detailed rules are given in KERI's Type Test Certification Procedure.

2. Test Report

2.1 Type Test Report

A Type Test Report contains a record of a series of type tests carried out strictly in accordance with a standard recognized by KERI. The test object has fulfilled the requirements of this standard and the relevant ratings assigned by the manufacturer are endorsed by KERI. The Type Test Report is applicable only to the test object. KERI is responsible for the validity and the contents of the Type Test Report. The responsibility for conformity of any apparatus having the same designation as the one tested rests with the manufacturer. The Type Test Report contains the essential drawings and a description of the equipment tested. Detailed rules are given in KERI's Test Procedure.

2.2 Performance Test Report

A Performance Test Report contains a record of one or more tests which have been carried out according to a recognized standard and/or the client's instructions. These tests are not necessarily in accordance with a recognized standard. The test results do not verify ratings of the test object. Detailed rules are given in KERI's Test Procedure.

KERI issues three types of Performance Test Report.

2.2.1 The tests have been carried out strictly in accordance with a recognized standard. The test object has complied with the relevant requirements.

This sentence will appear on the front page of Performance Test Report if the tests have been performed in accordance with a recognized standard, but the series of tests does not completely fulfill the requirements for a Certificate of Compliance (for example, if the number of test series is not a complete series of type tests). The Report contains verified drawings and a description of the test object. The condition of the test object after the tests is assessed and recorded in the Report.

2.2.2 The tests have been carried out in accordance with the client's instructions. Test procedure and test parameters were based on a recognized standard.

This sentence will appear on the front page of Performance Test Report if the number of test duties, the test procedure and the test parameters are based on a recognized standard and related to the ratings assigned by the manufacturer. Verification of the drawings (if submitted) and assessment of the condition after the tests is only done on the client's request.

2.2.3 The tests have been carried out according to the client's instructions.

This sentence will appear on the front page of Performance Test Report if the test shots, test procedure and/or test parameters are not in accordance with a recognized standard.

3 KERI is a member of STL(Short-circuit Testing Liaison) and the accredited testing laboratory under Clause 2 of Article 2 in "Guidelines on certified testing criteria and methods for electrical equipment" (Public Notice No. 2008-120, Ministry of Knowledge Economy, Korea).

2013TS03269

1/16

CLASSIFICATION

Type Test

TEST OBJECT

Heat shrinkable cable termination

DESIGNATION

THSY-1/4(3+1).4

0.6/1.0(1.2) kV 3C×300 mm² + 1C×150 mm² Type I

RECEIPT No.

TRD13S00643 (February 18, 2013)

APPLICANT

SHANGHAI JIAMENG INTERNATIONAL TRADING Co., Ltd.

No.346 Qinwan Road, Jinshanwei Town, Jinshan District, Shanghai, China

MANUFACTURER

JIANGSU JIAMENG ELECTRICAL EQUIPMENT Co., Ltd.

No.5 Zhongli Road, Binhai Industrial Zone, Qidong City, Jiangsu Province, China

DATE OF TESTS

May 13, 2013 ~ October 10, 2013

DATE OF ISSUE

November 13, 2013

The test object, constructed in accordance with the description, essential drawings and photographs incorporated in this Type Test Report has been subjected to the series of proving tests in accordance with

BS EN 50393:2006

This Type Test Report has been issued by KERI.

The results are shown in the record of Proving Tests and the oscillograms attached hereto. The values obtained and the general performances are considered to comply with the above Standard and to justify the ratings assigned by the manufacturer as listed on page No. 3.

The Type Test Report applies only to the test object. The responsibility for conformity of any apparatus having the same designations with that tested rests with the Manufacturer.

Only integral reproduction of this Report are permitted without written permission from KERI. Electronic copies in PDF-format or scanned version of this Report may be available and have the status "for information only". The sealed version of the Report is only the valid version.

TOTAL No. OF PAGES (16):

records (8), photographs (2), circuit diagrams (0),

drawings & descriptions (2), attachments(2), oscillograms (2)

Prepared by

Kim . Ji-Hwan

Verified by

(Technical manager)

Ahn , Sang-Pil

alm Song-Pil

book manuk

Approved by

Park , Nam-Ok

Power Apparatus Testing & Evaluation Division

KERI

KOREA ELECTROTECHNOLOGY RESEARCH INSTITUTE(ANSAN)

111, Hanggaul-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 426-910, Republic of Korea Tel: +(0)82-(0)31-8040-4114, Fax: +(0)82-(0)31-8040-4499, www.keri.re.kr

※ 74856

DF-CA-21/03/10

Table of contents

Items	Sheet No.
Table of contents	. 2/16
Ratings	3/16
List of the tests	4/16
Test results	5/16~8/16
Photographs	9/16~10/16
Circuit diagrams and parameters	-
Drawings	11/16~12/16
Attachments	13/16~14/16
Oscillograms	15/16~16/16

Tested by:

Kim Ji-hwan

KERI

Witnessed by :

Zhangjie Tang

Kristall Liu

SHANGHAI JIAMENG INTERNATIONAL TRADING Co., Ltd.
JIANGSU JIAMENG ELECTRICAL EQUIPMENT Co., Ltd.

Drawings:

The manufacturer guarantees that the test object submitted is manufactured in accordance with the following drawings. KERI verified that these drawings adequately represented the test object.

The following drawing is included in this test report.

Reference No.	Drawing No.	Revision No.	Date
001	CAK-300BS-12	B1	2013.05.14
002	CAK-150A-12	B1.0	2013.03.27

Heat shrinkable cable termination

Applied standard BS EN 50393:2006

Manufacturer JIANGSU JIAMENG ELECTRICAL EQUIPMENT Co., Ltd.

Designation THSY-1/4(3+1).4

Date of manufacture May 1, 2013

Cable used for testing

Conductor Stranded aluminium

Insulation

Rated voltage $U_o/U(U_m)$ 0.6/1.0(1.2) kV

Nominal cross-sectional area $3C \times 300 \text{ mm}^2 + 1C \times 150 \text{ mm}^2$

Number of cores 4

Ratings of the test object assigned by manufacturer and proved by tests:

Rated voltage $U_o/U(U_m)$ 0.6/1.0(1.2) kV

Nominal cross-sectional area $3C \times 300 \text{ mm}^2 + 1C \times 150 \text{ mm}^2$

Number of cores 4

Type of termination

Ratings of the test object assigned by manufacturer :

Terminal lug material

Bimetal (AI / Cu)

List of the tests

Test	items	Standard	and cl	auses	Test date	Sheet No.
1 A	C voltage withstand test in air	BS EN	50393	8.3	May 13, 2013	5/16
2 In	sulation resistance test in air	BS EN	50393	8.4	May 13, 2013	5/16
3 H	eating cycle test in air	BS EN	50393	8.6	July 12, 2013 ~Aug. 3, 2013	
4 H	eating cycle test in water	BS EN	50393	8.6	Aug. 5, 2013 ~Sep. 4, 2013	
5 A	C voltage withstand test in water	BS EN	50393	8.3	Oct. 10, 2013	7/16
6 In	nsulation resistance test in water	BS EN	50393	8.4	Oct. 10, 2013	7/16
7 E:	xamination (for information only)	BS EN	50393	8.8	Oct. 10, 2013	7/16
8 D	escription of tests		-		-	8/16

1 AC voltage withstand test in air

Test voltage kV	Test frequency Hz	Test duration min	Requirement	Voltage applied to	Earth connected to	Test result
				RYGB	Metallic sheath	No failure
			4	R	Y G B Metallic sheath	No failure
4 kV	60	1	No failure	Y	R G B Metallic sheath	No failure
				G	R Y B Metallic sheath	No failure
				В	R Y G Metallic sheath	No failure

* Atmospheric condition: 26.5 °C, 44 % RH, 1 011 hPa

* Phase conductor : R, Y, G

* Neutral conductor : B

2 Insulation resistance test in air

Test voltage kV	Test d <mark>uration</mark> min	Requirement	Measu	uring points	Test result
			RYGB	Metallic sheath	\geq 99.9 G Ω
			R	Y G B Metallic sheath	≥ 99.9 GΩ
DC 1 kV	1	\geq 50 M Ω	Υ	R G B Metallic sheath	≥ 99.9 GΩ
	j e		G	R Y B Metallic sheath	⁵≥ 99.9 GΩ
			В	R Y G Metallic sheath	≥ 99.9 GΩ

* Atmospheric condition: 26.5 °C, 44 % RH, 1 011 hPa

* Phase conductor : R, Y, G

* Neutral conductor : B

3 Heating cycle in air

Test method and requirement	Test result
The temperature of the phase conductor shall be raised to (95 \sim 100) $^{\circ}$ C by heating the assembly, by passing current through the cables.	
A steady conductor temperature shall be maintained for not less than 2 h. After the 2 h minimum steady temperature period the current shall be switched off and the cable allowed to cool naturally to within 10 K of ambient within a period not less than 3 h.	Refer to the test results of 5 and 6
The test assembly shall be subjected to 63 cycles in air.	
* Refer to the Osc. ET01	

4 Heating cycle in water

Test method	Test result
The assembly shall be placed in a water bath and the water height over the crutch shall be (300 ± 100) mm.	
During the heating cycle temperature of the water shall be (20 \pm 15) $^{\circ}$ C.	
The temperature of the phase conductor shall be raised to $(95\sim100)$ °C by heating the assembly, by passing current through the cables.	Refer to the test results of
A steady conductor temperature shall be maintained for not less than 2 h. After the 2 h minimum steady temperature period the current shall be switched off and the cable allowed to cool naturally to within 10 K of ambient within a period not less than 3 h.	5 and 6
The test assembly shall be subjected to 63 cycles in water.	
* Refer to the Osc. ET02	

5 AC voltage withstand test in water

Test voltage	Test frequency	Test duration	Requirement	Voltage applied to	Earth connected to	Test result
				RYGB	Metallic sheath & Water	No failure
				R	Y G B Metallic sheath & Water	No failure
4 kV	60 Hz	1 min	No failure	Y	R G B Metallic sheath & Water	No failure
				G	R Y B Metallic sheath & Water	No failure
				В	R Y G Metallic sheath & Water	No failure

* Atmospheric condition: 25.3 °C, 62 % RH, 1 014 hPa

* Phase conductor : R, Y, G

* Neutral conductor : B

6 Insulation resistance test in water

Test voltage	Test duration	Requirement	N	Measuring points	Test result
			RYGB	Metallic sheath & Water	254 M Ω
			R	Y G B Metallic sheath & Water	33.3 GΩ
DC 1 kV	1 min	≥ 50 MΩ	Υ	R G B . Metallic sheath & Water	24.4 GΩ
			G	R Y B Metallic sheath & Water	2.9 GΩ
		SI SI	В	R Y G Metallic sheath & Water	436 M Ω

* Atmospheric condition: 25.3 °C, 62 % RH, 1 014 hPa

* Phase conductor : R, Y, G

* Neutral conductor : B

7 Examination (for information only)

T = = 1 -= = = 1 -=		Test result
assembly shall be dismantle	d vithin water-proofing components.	Trace of moisture

8 Description of tests

- 8.1 The above tests were carried out on the test objects submitted by the applicant in accordance with BS EN 50393:2006 (Test methods and requirements for accessories for use on distribution cables of rated voltage 0.6/1.0 (1.2) kV).
- 8.2 The above tests were carried out on one test sample in sequence.
- 8.3 When examined the joint after completing the tests, there was water inside crutch. The end.

Photographs

<Before assembling>

<After assembling>

Apparatus: Heat shrinkable cable termination

Designation: THSY-1/4(3+1).4

Ratings : 0.6/1.0(1.2) kV $3C \times 300 \text{ mm}^2 + 1C \times 150 \text{ mm}^2$ Type I Manufacturer: JIANGSU JIAMENG ELECTRICAL EQUIPMENT Co., Ltd.

Photo. ET01: Test object

Photographs

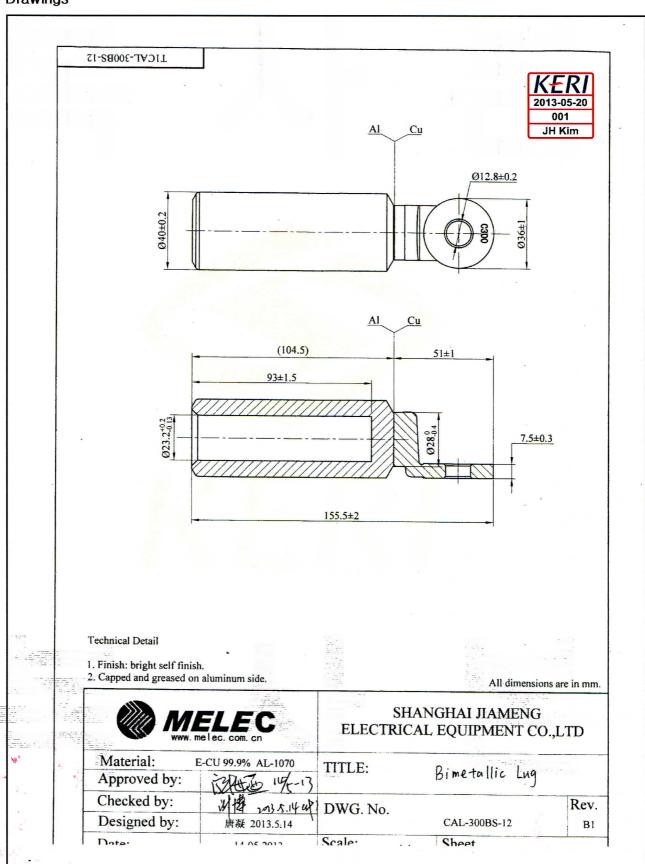
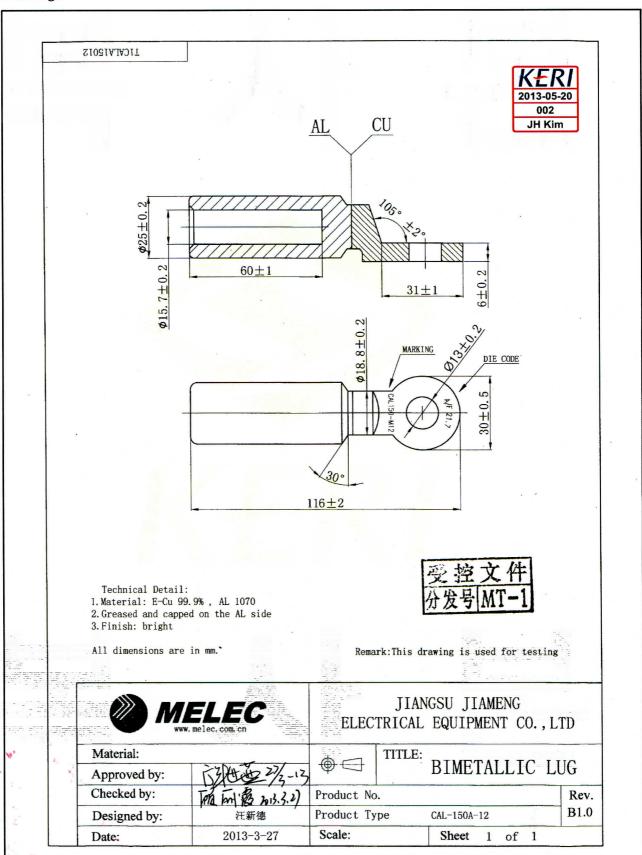
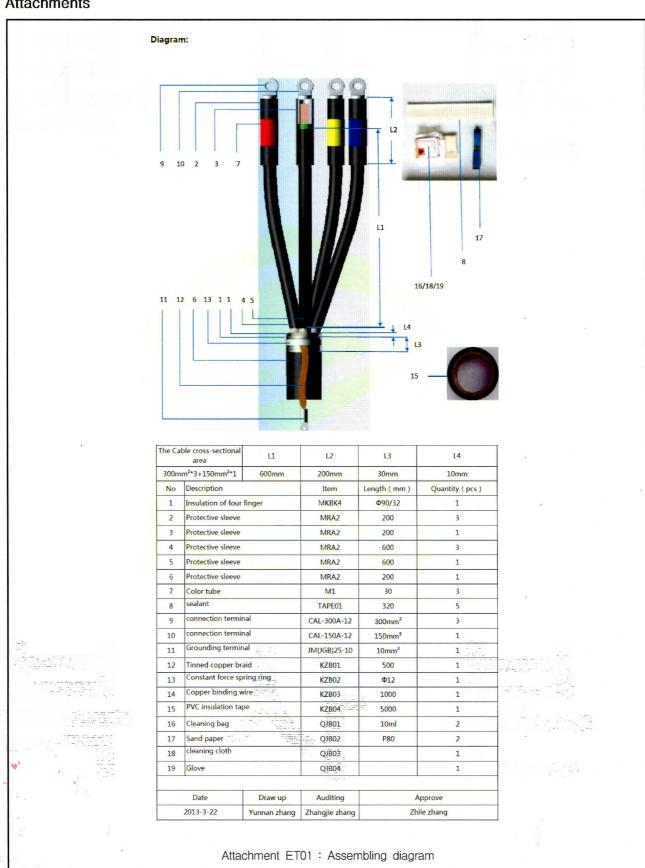


Photo. ET02: Examination after completing the test



Drawings

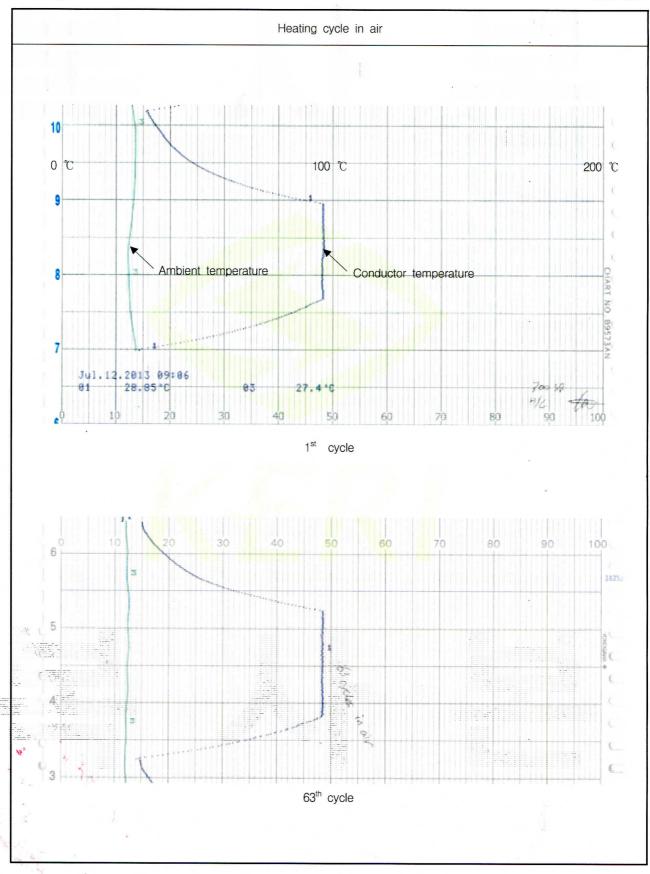


Drawings



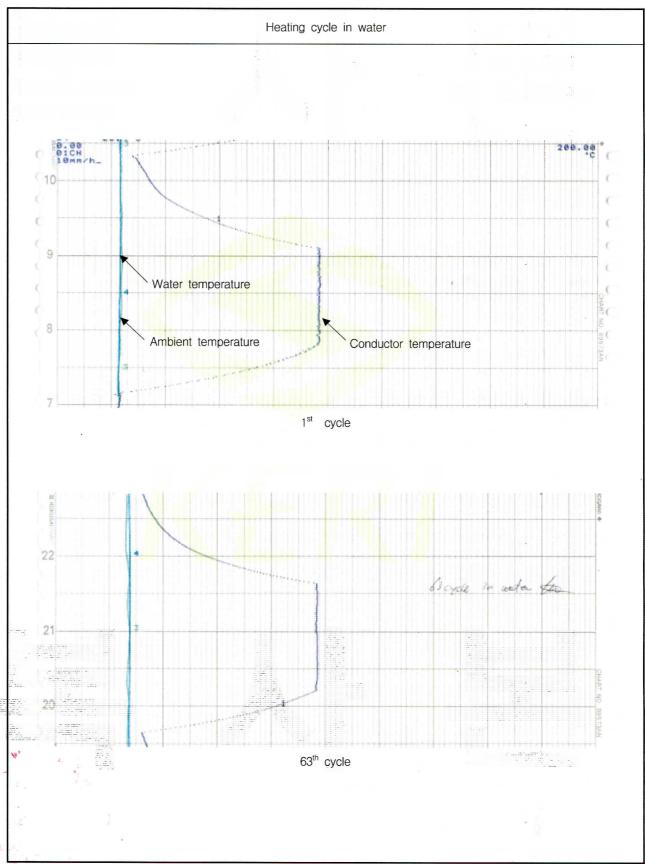
Attachments

Attachments


Type:	YJLV22	Voltage: 0.6/1kV	Standard:	GB/T12706-2008
- ,				

SN	1	STRUCTURE	UNIT	D.F	ATA	
		size		3x300+1x150		
	1	nominal area	mm2	300	150	
1 conductor	piece/single core diameter	NO./mm	61/2.5	37/2, 25		
		the max resistance at 20°C	Ω/km	0. 0607	0.124	
2		material		XLPE		
2	insulation	nominal thickness	mm	1.8	1. 4	
		wrapping material	non-woven fabrics			
3	3 laying up	laying up layers/thickness		2/	0. 2	
		laying up thickness	mm	51	51.2	
		material	PVC			
4	bedding	nominal thickness	mn	1,	70	
_		material	galv	anized steel s	trip	
5	armour	layers/thickness	mm	2/	0. 5	
		material	4.7.	PVC		
	sheath	nominal thickness	mm	3.	1 .	
D		cable diameter	mn	67	. 0	
		2000	kg/km	574	7.0	

Attachment ET02: Construction of cable used for testing



Oscillograms Osc. ET01

Oscillograms Osc. ET02

