

130253003M: 100 tests/kit
130653003M: 50 tests/kit
130753003M: 30 tests/kit

MAGLUMI® Total T3 (CLIA)

INTENDED USE

The kit is an *in vitro* chemiluminescence immunoassay for the quantitative determination of total triiodothyronine (Total T3) in human serum and plasma using the MAGLUMI series Fully-auto Chemiluminescence immunoassay analyzer and Biolumi series Integrated System, and the assay is used for an aid in diagnosis and treatment of individuals with suspected or confirmed thyroid diseases such as hyperthyroidism.

SUMMARY

Thyroid hormones (THs) are secreted by the thyroid gland which produces and releases into the circulation at least two potent hormones, thyroxine (T4) and triiodothyronine (T3)¹, and play key roles in the human endocrine system and control the overall metabolism of the body, protein synthesis, carbohydrate and fat metabolism, neural development, normal growth and maturation of bones, as well as cardiovascular and renal functions². In contrast, approximately 99.7% of Triiodothyronine (T3) is protein-bound, primarily to TBG^{3,4}. Protein-bound thyroid hormones do not enter cells and are thus considered to be biologically inert and function as storage reservoirs for circulating thyroid hormone. In contrast, the minute free hormone fractions readily enter cells by specific membrane transport mechanisms to exert their biological effects. In the pituitary, the negative feedback of thyroid hormone on TSH secretion is mediated primarily by T3 that is produced at the site from the free T4 entering the thyrotroph cells⁵. T3 thyrotoxicosis is an uncommon thyrotoxic condition that affects 5% of previously treated hyperthyroid patients¹. Although in iodine-sufficient areas about 80% of patients with hyperthyroidism have Graves' disease, toxic multinodular goitre and toxic adenoma account for 50% of all cases of hyperthyroidism in iodine-deficient areas and are more predominant in elderly people⁶. Serum T3 testing, interpreted in combination with T4T, is useful for evaluating hyperthyroidism symptoms⁷. Overt hyperthyroidism is characterized by low serum TSH concentrations and raised serum concentrations of thyroid hormones: thyroxine (T4), tri-iodothyronine (T3), or both, and subclinical hyperthyroidism is characterized by low serum TSH, but normal serum T4 and T3 concentrations⁸. In mild hyperthyroidism, serum T4 and free T4 can be normal, only serum T3 may be elevated, and serum TSH will be low or undetectable⁸.

TEST PRINCIPLE

Competitive chemiluminescence immunoassay.

The sample, ABEI labeled with anti-T3 antibody, buffer contained ANS are mixed thoroughly and incubated, and then magnetic microbeads coated with T3 antigen and buffer are added and incubated. T3 released from the binding proteins in the serum or plasma sample by ANS compete with T3 antigen immobilized on the magnetic microbeads for binding anti-T3 antibody labeled with ABEI, and form immuno-complexes. After precipitation in a magnetic field, decant the supernatant, and then perform a wash cycle. Subsequently, the Starter 1+2 are added to initiate a chemiluminescent reaction. The light signal is measured by a photomultiplier as relative light units (RLUs), which is inversely proportional to the concentration of total T3 present in the sample.

REAGENTS

Kit Contents

Component	Description	100 tests/kit	50 tests/kit	30 tests/kit
Magnetic Microbeads	Magnetic microbeads coated with T3 antigen conjugate (~5.71 µg/mL) in PBS buffer, Na ₃ (<0.1%).	2.5 mL	1.5 mL	1.0 mL
Calibrator Low	A low concentration of T3 antigen, BSA, Na ₃ (<0.1%).	1.0 mL	1.0 mL	1.0 mL
Calibrator High	A high concentration of T3 antigen, BSA, Na ₃ (<0.1%).	1.0 mL	1.0 mL	1.0 mL
Buffer	ANS PBS buffer, Na ₃ (<0.1%).	6.5 mL	4.0 mL	3.0 mL
ABEI Label	ABEI labeled with anti-T3 antibody (~0.200 µg/mL) in Tris-HCl buffer, Na ₃ (<0.1%).	6.5 mL	4.0 mL	3.0 mL
Control 1	A low concentration of T3 antigen (1.50 ng/mL), BSA, Na ₃ (<0.1%).	1.0 mL	1.0 mL	1.0 mL
Control 2	A high concentration of T3 antigen (4.00 ng/mL), BSA, Na ₃ (<0.1%).	1.0 mL	1.0 mL	1.0 mL

All reagents are provided ready-to-use.

The control barcode labels are provided.

Warnings and Precautions

- For *in vitro* diagnostic use.
- For professional use only.
- Exercise the normal precautions required for handling all laboratory reagents.
- Personal protective measures should be taken to prevent any part of the human body from contacting samples, reagents, and controls, and should comply with local operating requirements for the assay.
- A skillful technique and strict adherence to the package insert are necessary to obtain reliable results.
- Do not use kit beyond the expiration date indicated on the label.
- Do not interchange reagent components from different reagents or lots.
- Avoid foam formation in all reagents and sample types (specimens, calibrators and controls).
- All waste associated with biological samples, biological reagents and disposable materials used for the assay should be considered potentially infectious and should be disposed of in accordance with local guidelines.
- This product contains sodium azide. Sodium azide may react with lead or copper plumbing to form highly explosive metal azides. Immediately after disposal, flush with a large volume of water to prevent azide build-up. For additional information, see Safety Data Sheets available for professional user on request.

Note: If any serious incident has occurred in relation to the device, please report to Shenzhen New Industries Biomedical Engineering Co., Ltd. (Snibe) or our authorized representative and the competent authority of the Member State in which you are established.

Reagent Handling

- To avoid contamination, wear clean gloves when operating with a reagent kit and sample. When handling reagent kit, replace the gloves that have been in contact with samples, since introduction of samples will result in unreliable results.
- Do not use kit in malfunction conditions; e.g., the kit leaking at the sealing film or elsewhere, obviously turbid or precipitation is found in reagents (except for Magnetic Microbeads) or control value is out of the specified range repeatedly. When kit in malfunction conditions, please contact Snibe or our authorized distributor.
- To avoid evaporation of the liquid in the opened reagent kits in refrigerator, it is recommended that the opened reagent kits to be sealed with reagent seals contained within the packaging. The reagent seals are single use, and if more seals are needed, please contact Snibe or our authorized distributor.
- Over time, residual liquids may dry on the septum surface. These are typically dried salts and have no effect on assay efficacy.
- Use always the same analyzer for an opened reagent integral.
- For magnetic microbeads mixing instructions, refer to the Preparation of the Reagent section of this package insert.
- For further information about the reagent handling during system operation, please refer to Analyzer Operating Instructions.

Storage and Stability

- Do not freeze the integral reagents.
- Store the reagent kit upright to ensure complete availability of the magnetic microbeads.
- Protect from direct sunlight.

Stability of the Reagents

Unopened at 2-8°C	until the stated expiration date
Opened at 2-8°C	6 weeks
On-board	4 weeks

Stability of Controls

Unopened at 2-8°C	until the stated expiration date
Opened at 10-30°C	6 hours
Opened at 2-8°C	6 weeks
Frozen at -20°C	3 months
Frozen and thawed cycles	no more than 3 times

SPECIMEN COLLECTION AND PREPARATION

Specimen Types

Only the specimens listed below were tested and found acceptable.

Specimen Types	Collection Tubes
Serum	Tubes without additive/Accessory, or tubes containing clot activator or clot activator with gel.
Plasma	K2-EDTA

- The sample types listed were tested with a selection of sample collection tubes that were commercially available at the time of testing, i.e. not all available tubes of all manufacturers were tested. Sample collection systems from various manufacturers may contain differing materials which could affect the test results in some cases. Follow tube manufacturers' instructions carefully when using collection tubes.

Specimen Conditions

- Do not use grossly hemolyzed/hyperlipidaemia specimens and specimens with obvious microbial contamination.
- Ensure that complete clot formation in serum specimens has taken place prior to centrifugation. Some serum specimens, especially those from patients receiving anticoagulant or thrombolytic therapy, may exhibit increased clotting time. If the serum specimen is centrifuged before a complete clotting, the presence of fibrin may cause erroneous results.
- Samples must be free of fibrin and other particulate matter.
- To prevent cross contamination, use of disposable pipettes or pipette tips is recommended.

Preparation for Analysis

- Inspect all specimens for foam. Remove foam with an applicator stick for each specimen to prevent cross contamination.
- Frozen specimens must be completely thawed before mixing. Mix thawed specimens thoroughly by low speed vortexing or by gently inverting. Visually inspect the specimens. If layering or stratification is observed, mix until specimens are visibly homogeneous. If specimens are not mixed thoroughly, inconsistent results may be obtained.
- Specimens should be free of fibrin, red blood cells, or other particulate matter. Such specimens may give reliable results and must be centrifuged prior to testing. Transfer clarified specimen to a sample cup or secondary tube for testing. For centrifuged specimens with a lipid layer, transfer only the clarified specimen and not the lipemic material.
- The sample volume required for a single determination of this assay is 40 µL.

Specimen Storage

Specimens removed from the separator, red blood cells or clot may be stored up to 8 hours at 10-30°C, or 7 days at 2-8°C, or 1 month frozen at -20°C. Frozen specimens subjected to up to 1 freeze/thaw cycle have been evaluated.

Specimen Shipping

- Package and label specimens in compliance with applicable local regulations covering the transport of clinical specimens and infectious substances.
- Do not exceed the storage limitations listed above.

Specimen Dilution

- Samples, TT3 concentrations above the analytical measuring interval, can be diluted with manual dilution procedure. The recommended dilution ratio is 1:2. The concentration of the diluted sample must be >5.00 ng/mL.
- For manual dilution, multiply the result by the dilution factor.
- Please choose applicable diluents or ask Snibe for advice before manual dilution.

PROCEDURE

Materials Provided

Total T3 (CLIA) assay, control barcode labels.

Materials Required (But Not Provided)

- General laboratory equipment.
- Fully-auto chemiluminescence immunoassay analyzer Maglumi 600, Maglumi 800, Maglumi 1000, Maglumi 2000, Maglumi 2000 Plus, Maglumi 4000, Maglumi 4000 Plus, MAGLUMI X8, MAGLUMI X3, MAGLUMI X6, or Integrated System Biolumi 8000 and Biolumi CX8.
- Additional accessories of test required for the above analyzers include Reaction Module, Starter 1+2, Wash Concentrate, Light Check, Tip, and Reaction Cup. Specific accessories and accessories' specification for each model refer to corresponding Analyzer Operating Instructions.
- Please use accessories specified by Snibe to ensure the reliability of the test results.

Assay Procedure

Preparation of the Reagent

- Take the reagent kit out of the box and visually inspect the integral vials for leaking at the sealing film or elsewhere. If there is no leakage, please tear off the sealing film carefully.
- Open the reagent area door, hold the reagent handle to get the RFID label close to the RFID reader (for about 2s); the buzzer will beep; one beep sound indicates successful sensing.
- Keeping the reagent straight insert to the bottom along the blank reagent track.
- Observe whether the reagent information is displayed successfully in the software interface, otherwise repeat the above two steps.
- Resuspension of the magnetic microbeads takes place automatically when the kit is loaded successfully, ensuring the magnetic microbeads are totally resuspended homogenous prior to use.

Assay Calibration

- Select the assay to be calibrated and execute calibration operation in reagent area interface. For specific information on ordering calibrations, refer to the calibration section of Analyzer Operating Instructions.
- Execute recalibration according to the calibration interval required in this package insert.

Quality Control

- When new lot used, check or edit the quality control information.
- Scan the control barcode, choose corresponding quality control information and execute testing. For specific information on ordering quality controls, refer to the quality control section of the Analyzer Operating Instructions.

Sample Testing

- After successfully loading the sample, select the sample in interface and edit the assay for the sample to be tested and execute testing. For specific information on ordering patient specimens, refer to the sample ordering section of the Analyzer Operating Instructions.

To ensure proper test performance, strictly adhere to Analyzer Operating Instructions.

Calibration

Traceability: This method has been standardized against the USP reference standard (Catalog number: 1368008).

Test of assay specific calibrators allows the detected relative light unit (RLU) values to adjust the master curve.

Recalibration is recommended as follows:

- Whenever a new lot of Reagent or Starter 1+2 is used.
- Every 28 days.

- The analyzer has been serviced.
- Control values lie outside the specified range.

Quality Control

Controls are recommended for the determination of quality control requirements for this assay and should be run in singlicate to monitor the assay performance. Refer to published guidelines for general quality control recommendations, for example Clinical and Laboratory Standards Institute (CLSI) Guideline C24 or other published guidelines⁹.

Quality control is recommended once per day of use, or in accordance with local regulations or accreditation requirements and your laboratory's quality control procedures, quality control could be performed by running the Total T3 assay:

- Whenever the kit is calibrated.
- Whenever a new lot of Starter 1+2 or Wash Concentrate is used.

Controls are only applicable with MAGLUMI and Biolumi system and only used matching with the same top seven LOT numbers of corresponding reagents. For each target value and range refer to the label.

The performance of other controls should be evaluated for compatibility with this assay before they are used. Appropriate value ranges should be established for all quality control materials used.

Control values must lie within the specified range, whenever one of the controls lies outside the specified range, calibration should be repeated and controls retested. If control values lie repeatedly outside the predefined ranges after successful calibration, patient results must not be reported and take the following actions:

- Verify that the materials are not expired.
- Verify that required maintenance was performed.
- Verify that the assay was performed according to the package insert.
- If necessary, contact Snibe or our authorized distributors for assistance.

If the controls in kit are not enough for use, please order Total T3 (CLIA) Controls (REF: 160201242MT) from Snibe or our authorized distributors for more.

RESULTS

Calculation

- The analyzer automatically calculates the TT3 concentration in each sample by means of a calibration curve which is generated by a 2-point calibration master curve procedure. The results are expressed in ng/mL. For further information please refer to the Analyzer Operating Instructions.

- Conversion factors:
nmol/L x 0.651 = ng/mL
ng/mL x 1.536 = nmol/L

Interpretation of Results

The expected range for the TT3 assay was obtained by testing 549 apparently healthy individuals in China, gave the following expected value:

N	Mean (ng/mL)	2.5 th percentile (ng/mL)	97.5 th percentile (ng/mL)
549	1.363	0.75	2.10

Results may differ between laboratories due to variations in population and test method. It is recommended that each laboratory establish its own reference interval.

LIMITATIONS

- Results should be used in conjunction with patient's medical history, clinical examination and other findings.
- If the TT3 results are inconsistent with clinical evidence, additional testing is needed to confirm the result.
- Heterophilic antibodies in human serum can react with reagent immunoglobulins, interfering with *in vitro* immunoassays. Patients routinely exposed to animals or animal serum products can be prone to this interference and anomalous values may be observed¹⁰.
- Bacterial contamination of the specimens may affect the test results.
- The clinical evaluation of serum findings must take into consideration including age- or pregnancy-related differences as well as a potential influence of exogenously administered thyroid hormones, contraceptives, steroids, salicylates, diphenhydantoin or other drugs as well as changes of the binding capacities of serum proteins for thyroid hormones.
- Binding protein anomalies seen with FDH (Familial Dysalbuminemic Hyperthyroxinemia), for example, may cause values which, while characteristic of the condition, deviate from the expected results¹¹.

SPECIFIC PERFORMANCE CHARACTERISTICS

Representative performance data are provided in this section. Results obtained in individual laboratories may vary.

Precision

Precision was determined using the assay, samples and controls in a protocol (EP05-A3) of the CLSI (Clinical and Laboratory Standards Institute); duplicates at two independent runs per day for 5 days at three different sites using three lots of reagent kits (n = 180). The following results were obtained:

Sample	Mean (ng/mL) (n=180)	Within-Run		Between-Run		Reproducibility	
		SD (ng/mL)	%CV	SD (ng/mL)	%CV	SD (ng/mL)	%CV
Serum Pool 1	1.492	0.064	4.29	0.024	1.61	0.102	6.84
Serum Pool 2	4.065	0.136	3.35	0.035	0.86	0.263	6.47
Serum Pool 3	8.177	0.244	2.98	0.149	1.82	0.351	4.29
Plasma Pool 1	1.477	0.055	3.72	0.045	3.05	0.097	6.57
Plasma Pool 2	3.935	0.149	3.79	0.059	1.50	0.201	5.11
Plasma Pool 3	7.973	0.243	3.05	0.169	2.12	0.477	5.98
Control 1	1.480	0.058	3.92	0.036	2.43	0.109	7.36
Control 2	4.023	0.137	3.41	0.053	1.32	0.216	5.37

Linear Range

0.200-10.0 ng/mL (defined by the Limit of Quantitation and the maximum of the master curve).

Reportable Interval

0.150-20.0 ng/mL (defined by the Limit of Detection and the maximum of the master curve×Recommended Dilution Ratio).

Analytical Sensitivity

Limit of Blank (LoB) = 0.060 ng/mL.

Limit of Detection (LoD) = 0.150 ng/mL.

Limit of Quantitation (LoQ) = 0.200 ng/mL.

Analytical Specificity

Interference

Interference was determined using the assay, three samples containing different concentrations of analyte were spiked with potential endogenous and exogenous interferents in a protocol (EP7-A2) of the CLSI. The measurement deviation of the interference substance is within ±10%. The following results were obtained:

Interference	No interference up to	Interference	No interference up to
Bilirubin	40 mg/dL	Rheumatoid factor	1500 IU/mL
Hemoglobin	1000 mg/dL	ANA	398 AU/mL
Intralipid	2000 mg/dL	Biotin	0.5 mg/dL
Phenytoin	6.0 mg/dL	Methimazole	0.4 mg/dL
Phenylbutazone	32.1 mg/dL	Amiodarone	4.2 mg/dL
Acetylsalicylic acid	50 mg/dL	Propylthiouracil	4.0 mg/dL

Cross-Reactivity

Cross-reactivity was determined using the assay, three samples containing different concentrations of analyte were spiked with potential cross-reactants in a protocol (EP7-A2) of the CLSI. The measurement deviation of the interference substance is within ±10%. The following results were obtained:

Cross-reactant	No interference up to	Cross-reactant	No interference up to
L-thyroxine	500 ng/mL	D-thyroxine	500 ng/mL
Moniodothyrosine	1000 ng/mL	Diiodothyrosine	1000 ng/mL
Reverse triiodothyronine	500 ng/mL		

Method Comparison

A comparison of the Total T3 assay with a commercially available immunoassay, gave the following correlations (ng/mL):

Number of samples measured: 156

Passing-Bablok: $y=0.9888x+0.0265$, $r=0.943$.

The clinical specimen concentrations were between 0.270 and 10.960 ng/mL.

REFERENCES

1. Demers L M. Thyroid disease: pathophysiology and diagnosis [J]. Clinics in laboratory medicine, 2004, 24(1): 19-28.
2. Mondal S, Raja K, Schweizer U, et al. Chemistry and biology in the biosynthesis and action of thyroid hormones[J]. Angewandte Chemie International Edition, 2016, 55(27): 7606-7630.
3. Spencer C. Thyroid function tests: assay of thyroid hormones and related substances [M]. Thyroid Disease Manager, 2017.
4. Stockigt J R. Free thyroid hormone measurement: a critical appraisal [J]. Endocrinology and metabolism clinics of North America, 2001, 30(2): 265-289.
5. Baloch Z, Carayon P, Conte-Devolx B, et al. Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease[J]. Thyroid: official journal of the American Thyroid Association, 2003, 13(1): 3-126.
6. De Leo S, Lee SY, Braverman LE. Hyperthyroidism [J]. The Lancet, 2016, 388 (10047):906-918.
7. Carvalho G A D, Perez C L S, Ward L S. The clinical use of thyroid function tests [J]. Arq Bras Endocrinol Metabol, 2013, 57: 193-204.
8. Ross D S, Burch H B, Cooper D S, et al. 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis[J]. Thyroid, 2016, 26(10): 1343-1421.
9. CLSI. Statistical Quality Control for Quantitative Measurement Procedures: Principles and Definitions. 4th ed. CLSI guideline C24. Wayne, PA: Clinical and Laboratory Standards Institute; 2016.
10. Boscalo L M, Stuart M C. Heterophilic antibodies: a problem for all immunoassays [J]. Clinical Chemistry, 1988, 34 (1):27-33.
11. Wada N, Chiba H, Shimizu C, et al. A Novel Missense Mutation in Codon 218 of the Albumin Gene in a Distinct Phenotype of Familial Dysalbuminemic Hyperthyroxinemia in a Japanese Kindred. Journal of Clinical Endocrinology and Metabolism 1997; 82(10):3246-3250.

SYMBOLS EXPLANATIONS

	Consult instructions for use		Manufacturer
	Temperature limit (Store at 2-8 °C)		Use-by date
	Contains sufficient for <n> tests		Keep away from sunlight
	This way up		Authorized representative in the European Community
	<i>In vitro</i> diagnostic medical device		Kit component
	Catalogue number		Batch code
	CE marking with notified body ID number		

MAGLUMI® and Biolumi® are trademarks of Snibe. All other product names and trademarks are the property of their respective owners.

Shenzhen New Industries Biomedical Engineering Co., Ltd.
No.23, Jinxiu East Road, Pingshan District, 518122 Shenzhen, P.R. China
Tel: +86-755-21536601 Fax: +86-755-28292740

Shanghai International Holding Corp. GmbH (Europe)
Eiffelstrasse 80, 20537 Hamburg, Germany
Tel: +49-40-2513175 Fax: +49-40-255726