# WATO EX-65 Anesthesia System

**Operator's Manual** 



© 2021 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. All rights Reserved. For this Operator's Manual, the issue date is March, 2021.

### 4.4 Input Fresh Gas

#### 4.4.1 Set O<sub>2</sub>, N<sub>2</sub>O and Air Inputs

- 1. Connect the gas supplies correctly and ensure adequate gas pressure.
- 2. You can control the O<sub>2</sub>, N<sub>2</sub>O and Air flows in the fresh gas through the O<sub>2</sub>, N<sub>2</sub>O and Air flow controls. Readings of the gas flow can be seen on the respective screen of electronic flowmeter below the main screen. On the left hand of the pressure gauges is the total flowmeter showing the flow rate of the mixed gas.

The O<sub>2</sub> and N<sub>2</sub>O flow controls constitute a chain linkage:

- ◆ Turn the N<sub>2</sub>O flow control counterclockwise to increase the N<sub>2</sub>O flow to some extent. Then continuing turning the N<sub>2</sub>O flow control will cause the O<sub>2</sub> flow control to turn counterclockwise together to increase the O<sub>2</sub> flow, keeping the O<sub>2</sub> concentration in the mixed gas above 25%.
- ◆ Turn the O<sub>2</sub> flow control clockwise to decrease the O<sub>2</sub> flow to some extent. Then continuing turning the O<sub>2</sub> flow control will cause the N<sub>2</sub>O flow control to turn clockwise together to decrease the N<sub>2</sub>O flow, keeping the O<sub>2</sub> concentration in the mixed gas above 25%.

#### **NOTE**

- This anesthesia system can be used alone as a ventilator. You can adjust O<sub>2</sub> concentration in the breathing system through the O<sub>2</sub> flow control.
- The O<sub>2</sub> concentration in the fresh gas may be quite different from that in the breathing system.
- The total flowmeter is calibrated based on 100% O<sub>2</sub>. The accuracy of the flowmeter may degrade with other gas or mixed gas.
- When viewing the readings on the total flowmeter, keep your visual angle at the same level as the level of the float. The reading of a same scale may vary when viewed at a different angle.
- If the readings shown on the electronic flowmeters differ from that on the total flowmeter, the former shall prevail and the latter is an approximate value.

# 6 Preoperative Test

# **6.1 Preoperative Test Schedules**

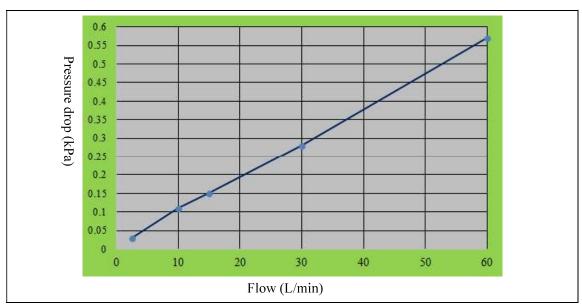
Perform the preoperative tests listed below at these events:

- 1. When required after a maintenance or service procedure.
- 2. Every day before the first patient.
- 3. Before each patient.

| Test Item                                    | Test Intervals                     |
|----------------------------------------------|------------------------------------|
| Pipeline tests                               | Every day before the first patient |
| Cylinder tests                               |                                    |
| Backup oxygen supply tests                   |                                    |
| Flow control system tests                    |                                    |
| Vaporizer back pressure test                 |                                    |
| Inspect the system                           | Before each patient                |
| Alarm tests                                  |                                    |
| Power failure alarm test                     |                                    |
| Breathing system tests                       |                                    |
| Preoperative preparations                    |                                    |
| Inspect the AGSS                             |                                    |
| Inspect the negative pressure suction device |                                    |

#### **NOTE**

- Read and understand the operation and maintenance of each component before using the anesthesia system.
- Do not use the anesthesia system if a test failure occurs. Contact us immediately.
- A checklist of the anesthetic system should be provided including anesthetic gas
  delivery system, monitoring device, alarm system and protective device which are
  intended to be used for the anesthetic system, whether they are used alone or
  assembled together.


## 9.3 Agent Usage Calculation

The system can calculate the usage of the agents when configured with AG module. The agent usage displays on the screen in standby mode. The agent usage accumulates from 0 when the system exits the standby mode. When the system enters standby, the agent usage stops accumulating. If restarting the machine within not more than 60s after accidental power failure in the case of non-standby mode, the agent usage continues accumulation until the system enters standby.



**NOTE** 

- When the breathing tube is disconnected, the system stops the calculation of the agent usage.
- When an alarm as below occurs, the system stops the calculation of the agent usage.
  - ◆ Flow Sensor Failure
  - ◆ Check Flow Sensors
  - ◆ AG Hardware Error
  - ◆ AG Hardware Malfunction
  - ◆ AG Init Error
  - ◆ AG No Watertrap
  - ♦ AG Comm Stop
  - ◆ AG Airway Occluded
  - External AG Self Test Error



<sup>\*</sup> Adopt Medisorb<sup>TM</sup> absorbent to test breathing system flow resistance and compliance.

# **B.8 Ventilator Specifications**

| Ventilator parameters |                                                                       |                                                                        |  |  |  |
|-----------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|
| Parameter             | Range                                                                 | Step                                                                   |  |  |  |
| Plimit                | 10 to 100 cmH <sub>2</sub> O                                          | 1 cmH <sub>2</sub> O                                                   |  |  |  |
| Pinsp                 | 5 to 80 cmH <sub>2</sub> O                                            | 1 cmH2O                                                                |  |  |  |
| Δ Psupp               | 3 to 60 cmH <sub>2</sub> O (SIMV)                                     | 1 cmH <sub>2</sub> O                                                   |  |  |  |
|                       | 0, 3 to 60 cmH <sub>2</sub> O (CPAP/PS, " Δ Psupp=0" means CPAP mode) |                                                                        |  |  |  |
| PEEP                  | OFF, 3 to 30 cmH <sub>2</sub> O                                       | 1 cmH <sub>2</sub> O                                                   |  |  |  |
| Vt                    | 10 to 1500 ml (VCV, SIMV-VC)                                          | , , , , , , , , , , , , , , , , , , ,                                  |  |  |  |
|                       | 5 to 1500 ml (PCV-VG, SIMV-VG)                                        | 5 mL (20 to 100 mL)<br>10 mL (100 to 300 mL)<br>25 mL (300 to 1500 mL) |  |  |  |
| Min Rate              | 2 to 60 bpm                                                           | 1 bpm                                                                  |  |  |  |
| Tslope                | 0.0 to 2.0 s                                                          | 0.1 s                                                                  |  |  |  |
| Rate                  | 2 to 100 bpm                                                          | 1 bpm                                                                  |  |  |  |
| I:E                   | 4:1 to 1:8                                                            | 0.5                                                                    |  |  |  |
| Tpause                | OFF, 5 to 60 % of Tinsp                                               | 5%                                                                     |  |  |  |
| Apnea I:E             | 4:1 to 1:8                                                            | 0.5                                                                    |  |  |  |
| Trig Window           | 5 to 90 %                                                             | 5%                                                                     |  |  |  |
| Tinsp                 | 0.2 to 10 s                                                           | 0.1 s                                                                  |  |  |  |

| threshold <sup>7</sup> | primary agent >10% | 5% REL (10% REL for Isoflurane) of primary agent |
|------------------------|--------------------|--------------------------------------------------|
|------------------------|--------------------|--------------------------------------------------|

| AG alarm limits               | Range                                                  | Step | Unit |
|-------------------------------|--------------------------------------------------------|------|------|
| EtCO <sub>2</sub> High Limit  | tCO <sub>2</sub> High Limit OFF, (low limit + 2) to 99 |      | mmHg |
| EtCO <sub>2</sub> Low Limit   | OFF, 0 to (high limit – 2)                             |      |      |
| FiCO <sub>2</sub> High Limit  | OFF, 1 to 99                                           |      |      |
| EtN <sub>2</sub> O High Limit | O High Limit OFF, (low limit + 2) to 100               |      | %    |
| EtN <sub>2</sub> O Low Limit  | OFF, 0 to (high limit – 2)                             |      |      |
| FiN <sub>2</sub> O High Limit | OFF, (low limit + 2) to 100                            |      |      |
| FiN <sub>2</sub> O Low Limit  | OFF, 0 to (high limit – 2)                             |      |      |
| EtHal High Limit              | OFF, (low limit + 0.2) to 5.0 0.1                      |      | %    |
| EtHal Low Limit               | OFF, 0.0 to (high limit – 0.2)                         |      |      |
| FiHal High Limit              | OFF, (low limit $+$ 0.2) to 5.0                        |      |      |
| FiHal Low Limit               | OFF, 0.0 to (high limit – 0.2)                         |      |      |
| EtEnf High Limit              | OFF, (low limit + 0.2) to 5.0 0.1                      |      | %    |
| EtEnf Low Limit               | OFF, 0.0 to (high limit – 0.2)                         |      |      |
| FiEnf High Limit              | OFF, (low limit + 0.2) to 5.0                          |      |      |
| FiEnf Low Limit               | OFF, 0.0 to (high limit – 0.2)                         |      |      |
| EtIso High Limit              | OFF, (low limit + 0.2) to 5.0 0.1                      |      | %    |
| EtIso Low Limit               | OFF, 0.0 to (high limit – 0.2)                         |      |      |
| FiIso High Limit              | OFF, (low limit $+$ 0.2) to 5.0                        |      |      |
| FiIso Low Limit               | OFF, 0.0 to (high limit – 0.2)                         |      |      |
| EtSev High Limit              | OFF, (low limit + 0.2) to 8.0                          | 0.1  | %    |
| EtSev Low Limit               | OFF, 0.0 to (high limit – 0.2)                         |      |      |
| FiSev High Limit              | OFF, (low limit + 0.2) to 8.0                          |      |      |
| FiSev Low Limit               | OFF, 0.0 to (high limit – 0.2)                         |      |      |
| EtDes High Limit              | mit OFF, (low limit + 0.2) to 18.0 0.1                 |      | 0/0  |
| EtDes Low Limit               | OFF, 0.0 to (high limit – 0.2)                         |      |      |
| FiDes High Limit              | OFF, (low limit + 0.2) to 18.0                         |      |      |
| FiDes Low Limit               | OFF, 0.0 to (high limit – 0.2)                         |      |      |
| MAC High Limit                | imit OFF, (low limit + 0.2) to 12.0 0.1 /              |      | /    |
| MAC Low Limit                 | OFF, 0.0 to (high limit – 0.2)                         |      |      |

#### Effect of interfering gas on AG measured value

7 For Halothane: Increase in threshold by 0.1% ABS.