## Type test report no. VR 4E 002e

## Transition impedance test

|  | Product Approval CTTP/Wag 31.05.2017 |
| :---: | :---: |
| Type test for types: | Diverter switches VACUTAP ${ }^{\circledR}$ VRM with <br> - maximum rated through-current 700 A, 1000 A or 1300 A / 2600 A $^{1}$, <br> - maximum rated step voltage 4500 V . |
| Test specification: | IEC 60214-1:2014, sub-clause 5.2.5: "Transition impedance test". |
| Test samples: | 1: Resistor value: $1.51 \Omega$ / Cross-section: $12.0 \mathrm{~mm}^{2}$ <br> 2: Resistor value: $2.50 \Omega$ / Cross-section: $8.0 \mathrm{~mm}^{2}$ |
|  | Test samples mounted in diverter switch: VACUTAP ${ }^{\circledR}$ VRM III 1300 Y - 72.5, S/N: 1734908. |
| Manufacturer: | Maschinenfabrik Reinhausen GmbH, Regensburg, Germany. |
| Date of test: | August 2016 to September 2016. |
| Place of test: | Maschinenfabrik Reinhausen GmbH, Regensburg, Germany. |
| Tests performed: | Power pulse currents in acc. with IEC 60214-1:2014, Annex C. |
|  | Test series 1: With each test sample 34 current pulses were carried out in intervals of 2.2 s equivalent to one-half of a cycle of operation of an on-load tap-changer with 18 contacts and change-over selector. The values of current and current duration corresponded to the loading of a diverter switch with 1.5 times the maximum rated through-current at relevant rated step voltage. |
|  | Test series 2: With each test sample one current pulse was performed corresponding to the loading of a diverter switch with twice the maximum rated through-current at relevant rated step voltage. |
| Test results: | The requirements of IEC 60214-1:2014 were met, i.e.: <br> - The temperature rise of the tested transition resistors did not exceed 350 K at the end of the test. Parts adjacent to the transition resistors were not affected. <br> - The test samples withstood the stresses at twice the maximum rated through-current and the relevant rated step voltage without any wear on the mechanical parts or deterioration of the insulation material. The measured values of the transition resistors before and after the test were within the permissible tolerance of $\pm 10 \%$. |
|  | ${ }^{1}$ Single phase design with two current paths of identical design $(2 \times 1300 \mathrm{~A})$ for applications with enforced current splitting. |

This report contains 10 pages.

i. V. Dr. Thomas Strof<br>[valid without signature]<br>Maschinenfabrik Reinhausen GmbH<br>- PRODUCT APPROVAL .

Page 2 of 10 / VR 4E 002e

## 1. Test specification

The type test was performed in accordance with IEC 60214-1:2014 "Tap-changers - Part 1: Performance requirements and test methods", sub-clause 5.2.5 "Transition impedance test" and Annex C.

## 2. Data of test samples

## Test sample no. 1

Transition resistor variant: 86
Dimension of meander: $\quad 6.0 \mathrm{~mm} \times 1.0 \mathrm{~mm}$
Cross section:
Resistor value
$12.0 \mathrm{~mm}^{2}$
$1.51 \Omega$

## Test sample no.

2
Transition resistor variant:
69
Dimension of meander: $\quad 4.0 \mathrm{~mm} \times 1.0 \mathrm{~mm}$
Cross section: $\quad 8.0 \mathrm{~mm}^{2}$
Resistor value $\quad 2.50 \Omega$

## Test samples mounted in diverter switch:

Type designation:
Type characteristics:
Serial number:
Year of manufacture:
Manufacturer:

VACUTAP ${ }^{\circledR}$ VRM III 1300 Y - 72.5
Diverter switch
1734908
2016
Maschinenfabrik Reinhausen GmbH, Regensburg, Germany.

## 3. Scope of application

Various transition resistors, depending on rated through-current and the relevant rated step voltage of the custom-designed operation point, are used for diverter switches type VACUTAP ${ }^{\circledR}$ VRM. The basic design of the transition resistors is alike, i.e. equivalent material of resistors, fixations, identical resistor connecting leads and same position in diverter switch. The only differences are the cross-sections and the number of single meanders connected in series or in parallel.
In order to cover all transition resistor variants according to the step capacity diagram of VACUTAP ${ }^{\circledR}$ VRM, the maximum thermal stresses of the transition resistors with the highest expectable heating values were calculated. Based on these calculations, the transition impedance test was performed on following test samples, in accordance with IEC 60214-1:2014, Annex C, with 34 current pulses equivalent to one-half cycle of operation of an on-load tap-changer with 18 contacts and change-over selector:

- Test sample $1(1.51 \Omega)$ : Designated for VACUTAP ${ }^{\circledR}$ VRM to operate in the loading point with maximum rated through-current and relevant rated step voltage.
- $\quad$ Test sample $2(2.50 \Omega)$ : Designated for VACUTAP ${ }^{\circledR} V R M$; variant with the highest calculated thermal stress per operation among all transition resistors for VACUTAP ${ }^{\circledR}$ VRM.
Hence, testing the chosen test samples covers the complete application range of all transition resistors used for diverter switches type VACUTAP ${ }^{\circledR}$ VRM.
Therefore this type test report is valid for diverter switches type VACUTAP ${ }^{\circledR}$ VR with following characteristics:
- Diverter switch design variant:
- Maximum rated through-current:
- Maximum rated step-voltage:
VRM

$$
700 \mathrm{~A}, 1000 \mathrm{~A} \text { or } 1300 \mathrm{~A} / 2600 \mathrm{~A}^{1}
$$

$$
4500 \mathrm{~V}
$$

[^0]Page 3 of $10 / V R 4 E 002 e$

## 4. Test conditions / Test arrangement

Setup:

Oil compartment oil filling:
Oil cooling:
Condition of test samples:
Test circuit:
Measurement:

- Through-current:
- Step voltage:
- Temperature of resistor:
- Temperature of oil:

Measuring points (exemplary):

Switching sequence:
Recording:

The test was performed with power pulse currents in accordance with IEC 60214-1:2014, Annex C.
The transition resistors were mounted in diverter switch type VACUTAP ${ }^{\circledR}$ VRM III 1300 Y - 72.5 as follows:

- Sector S1A: Test sample 2
- Sector S2B: Test sample 1

Transformer oil according to the requirements of IEC 60296.
No oil cooling.
New, as manufactured.
See figure 1.

By means of current transformers.
By means of voltage transformers.
By means of thermocouples NiCr-Ni with $\varnothing 0.2 \mathrm{~mm}$.
By means of thermocouples NiCr-Ni with $\varnothing 0.2 \mathrm{~mm} ; 25 \mathrm{~mm}$ below the lowest point of the transition resistor.

See pictures 1 and 2.
See figure 2.
By transient recorder.


[^1]

MDC Disconnect switches, main path
MSV Main switching contacts, main path
(vacuum interrupters)
TTV Transition contacts, transition path (vacuum interrupters)
MC Main contacts
VDR Voltage dependat resistor

Figure 2: Switching sequence of diverter switch type VACUTAP ${ }^{\oplus}$ VRM.


Picture 1: Measuring point of transition resistor temperature (exemplary).


Picture 2: Measuring point of oil temperature (exemplary).

## 5. Tests performed

The test samples were loaded with power pulse currents in acc. with IEC 60214-1:2014, Annex C.
In test series 1 the resistor load was equivalent to the resistor loading during switching operations at 1.5 times maximum rated through-current and at relevant rated step voltage.
In test series 2 the resistor load was equivalent to the resistor loading during switching operations at 2.0 times maximum rated through-current and at relevant rated step voltage.

### 5.1 Resistor loading during tap-change operation in normal service

During one tap-change operation the transition resistor is loaded with through-current and circulating current (see switching sequence figure 2). The highest load of the transition resistor occurs during a "heavy" switching operation (vectorial addition of circulating current and part of through-current). During the following operation the same transition resistor is loaded by a "light" switching operation (vectorial subtraction of circulating current and part of through-current).

In order to cover all available transition resistor variants according to the step capacity diagram of VACUTAP ${ }^{\circledR}$ VRM, the maximum thermal stresses of the transition resistors with the highest expectable heating values were calculated. Based on these calculations, following variants were exemplary tested:

- Test sample $1(1.51 \Omega)$ : Designated for VACUTAP ${ }^{\circledR}$ VRM to operate in the loading point with maximum rated through-current and relevant rated step voltage.
- $\quad$ Test sample 2 ( $2.50 \Omega$ ): Designated for VACUTAP ${ }^{\circledR}$ VRM; variant with the highest calculated thermal stress per operation among all transition resistors for VACUTAP ${ }^{\circledR}$ VRM.
Table 1 shows the required calculated values as integral [ $\left.I_{r}{ }^{2} \times t_{r}\right]$ per operation when loaded with 1.5 times the rated through-current at relevant rated step voltage:

|  | Test sample 1 <br> $(1.51 \Omega)$ | Test sample 2 <br> $(2.50 \Omega)$ |
| :--- | :---: | :---: |
| Integral $\left[\mathrm{I}_{\mathrm{r}}{ }^{2} \times \mathrm{t}_{\mathrm{r}}\right]$ <br> Heavy switching direction | $137801 \mathrm{~A}^{2} \mathrm{~S}$ | $64878 \mathrm{~A}^{2} \mathrm{~S}$ |
| Integral $\left[\mathrm{I}_{r}^{2} \times \mathrm{t}_{\mathrm{r}}\right]$ <br> Light switching direction | $72847 \mathrm{~A}^{2} \mathrm{~S}$ | $25279 \mathrm{~A}^{2} \mathrm{~S}$ |

Table 1: Required calculated values as integral $\left[l_{r}{ }^{2} \times t_{r}\right]$ when loaded with 1.5 times the rated through-current at relevant rated step voltage.

Table 2 shows the required calculated values as integral $\left[I_{r}{ }^{2} \times t_{r}\right]$ per operation when loaded with 2.0 times the rated through-current at relevant rated step voltage.

|  | Test sample 1 <br> $(1.51 \Omega)$ | Test sample 2 <br> $(2.50 \Omega)$ |
| :--- | :---: | :---: |
| Integral $\left[\mathrm{l}^{2} \times \mathrm{t},\right]$ <br> Heavy switching direction | $229905 \mathrm{~A}^{2} \mathrm{~S}$ | $98713 \mathrm{~A}^{2} \mathrm{~S}$ |

Table 2: Required calculated values as integral [ $\left.l_{r}{ }^{2} \times t_{r}\right]$ when loaded with 2.0 times the rated through-current at relevant rated step voltage.
$I_{r}$ Resistor current
$t_{r}$ Duration of current flow

### 5.2 Resistor loading during test series 1 ( 34 current pulses equivalent to 1.5 times the maximum rated through-current at relevant rated step voltage)

Each test sample was loaded with 34 current pulses in time intervals equivalent to 1.5 times the rated through-current and relevant rated step voltage. The resistor current $\left(I_{r}\right)$ and the duration of current flow $\left(t_{r}\right)$ of each current pulse as well as the corresponding integral $\left[I_{r}{ }^{2} \times t_{r}\right]$ are documented in table 3.

| Current pulse no. | Test sample 1 (1.51 $\Omega$ ) |  |  | Test sample 2 (2.50 $\Omega$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{I}_{\mathrm{r}}$ (r.m.s) | $\mathrm{t}_{\mathrm{r}}$ | $\mathrm{I}_{\mathrm{r}}{ }^{2} \mathrm{t} \mathrm{t}_{\mathrm{r}}$ | $\mathrm{I}_{\text {r }}$ (r.m.s) | $\mathrm{t}_{\mathrm{r}}$ | $1_{r}^{2} \times t_{r}$ |
| 1 | 1493 A | 35.2 ms | $76719 \mathrm{~A}^{2} \mathrm{~S}$ | 1168 A | 22.4 ms | $27768 \mathrm{~A}^{2} \mathrm{~S}$ |
| 2 | 1470 A | 65.7 ms | $143081 \mathrm{~A}^{2} \mathrm{~S}$ | 1151 A | 49.1 ms | $66746 \mathrm{~A}^{2} \mathrm{~S}$ |
| 3 | 1477 A | 35.4 ms | $75923 \mathrm{~A}^{2} \mathrm{~S}$ | 1159 A | 22.1 ms | $27109 \mathrm{~A}^{2} \mathrm{~S}$ |
| 4 | 1465 A | 65.7 ms | $141886 \mathrm{~A}^{2} \mathrm{~S}$ | 1145 A | 49.3 ms | $66184 \mathrm{~A}^{2} \mathrm{~S}$ |
| 5 | 1476 A | 35.3 ms | $75183 \mathrm{~A}^{2} \mathrm{~S}$ | 1156 A | 22.6 ms | $27377 \mathrm{~A}^{2} \mathrm{~S}$ |
| 6 | 1465 A | 65.7 ms | $141601 \mathrm{~A}^{2} \mathrm{~S}$ | 1145 A | 49.0 ms | $66013 \mathrm{~A}^{2} \mathrm{~S}$ |
| 7 | 1475 A | 35.2 ms | $74955 \mathrm{~A}^{2} \mathrm{~S}$ | 1156 A | 22.6 ms | $27377 \mathrm{~A}^{2} \mathrm{~S}$ |
| 8 | 1465 A | 65.9 ms | $142512 \mathrm{~A}^{2} \mathrm{~S}$ | 1145 A | 49.5 ms | $66209 \mathrm{~A}^{2} \mathrm{~S}$ |
| 9 | 1475 A | 35.3 ms | $75467 \mathrm{~A}^{2} \mathrm{~S}$ | 1156 A | 22.3 ms | $27133 \mathrm{~A}^{2} \mathrm{~S}$ |
| 10 | 1464 A | 65.8 ms | $141942 \mathrm{~A}^{2} \mathrm{~S}$ | 1145 A | 49.2 ms | $66087 \mathrm{~A}^{2} \mathrm{~S}$ |
| 11 | 1475 A | 35.4 ms | $75467 \mathrm{~A}^{2} \mathrm{~S}$ | 1156 A | 22.2 ms | $27035 \mathrm{~A}^{2} \mathrm{~S}$ |
| 12 | 1464 A | 65.9 ms | $142284 \mathrm{~A}^{2} \mathrm{~S}$ | 1143 A | 49.5 ms | $66013 \mathrm{~A}^{2} \mathrm{~S}$ |
| 13 | 1474 A | 35.4 ms | $75581 \mathrm{~A}^{2} \mathrm{~S}$ | 1155 A | 22.4 ms | $27133 \mathrm{~A}^{2} \mathrm{~S}$ |
| 14 | 1463 A | 65.9 ms | $142056 \mathrm{~A}^{2} \mathrm{~S}$ | 1144 A | 49.5 ms | $66038 \mathrm{~A}^{2} \mathrm{~S}$ |
| 15 | 1473 A | 35.3 ms | $75297 \mathrm{~A}^{2} \mathrm{~S}$ | 1155 A | 22.2 ms | $26962 \mathrm{~A}^{2} \mathrm{~S}$ |
| 16 | 1465 A | 65.8 ms | $142113 \mathrm{~A}^{2} \mathrm{~S}$ | 1144 A | 49.2 ms | 65916 A $^{2} \mathrm{~S}$ |
| 17 | 1474 A | 35.3 ms | $75354 \mathrm{~A}^{2} \mathrm{~S}$ | 1155 A | 22.1 ms | $26962 \mathrm{~A}^{2} \mathrm{~S}$ |
| 18 | 1463 A | 65.9 ms | $142227 \mathrm{~A}^{2} \mathrm{~S}$ | 1143 A | 49.3 ms | $65916 \mathrm{~A}^{2} \mathrm{~S}$ |
| 19 | 1473 A | 35.2 ms | $74671 \mathrm{~A}^{2} \mathrm{~S}$ | 1154 A | 22.2 ms | $26987 \mathrm{~A}^{2} \mathrm{~S}$ |
| 20 | 1463 A | 65.7 ms | $141089 \mathrm{~A}^{2} \mathrm{~S}$ | 1143 A | 49.3 ms | $65867 \mathrm{~A}^{2} \mathrm{~S}$ |
| 21 | 1473 A | 35.1 ms | $74329 \mathrm{~A}^{2} \mathrm{~S}$ | 1154 A | 22.4 ms | $27035 \mathrm{~A}^{2} \mathrm{~S}$ |
| 22 | 1463 A | 65.7 ms | $141146 \mathrm{~A}^{2} \mathrm{~S}$ | 1142 A | 49.3 ms | $65818 \mathrm{~A}^{2} \mathrm{~S}$ |
| 23 | 1473 A | 35.2 ms | $74728 \mathrm{~A}^{2} \mathrm{~S}$ | 1153 A | 22.6 ms | $27182 \mathrm{~A}^{2} \mathrm{~S}$ |
| 24 | 1464 A | 65.9 ms | $142113 \mathrm{~A}^{2} \mathrm{~S}$ | 1143 A | 49.1 ms | $65818 \mathrm{~A}^{2} \mathrm{~S}$ |
| 25 | 1474 A | 35.2 ms | $74557 \mathrm{~A}^{2} \mathrm{~S}$ | 1154 A | 22.2 ms | $26962 \mathrm{~A}^{2} \mathrm{~S}$ |
| 26 | 1462 A | 65.9 ms | $141886 \mathrm{~A}^{2} \mathrm{~S}$ | 1142 A | 49.1 ms | $65623 \mathrm{~A}^{2} \mathrm{~S}$ |
| 27 | 1472 A | 35.3 ms | $74898 \mathrm{~A}^{2} \mathrm{~S}$ | 1154 A | 22.2 ms | $26938 \mathrm{~A}^{2} \mathrm{~S}$ |
| 28 | 1462 A | 66.0 ms | $142398 \mathrm{~A}^{2} \mathrm{~S}$ | 1142 A | 49.1 ms | $65623 \mathrm{~A}^{2} \mathrm{~S}$ |
| 29 | 1473 A | 35.3 ms | $74898 \mathrm{~A}^{2} \mathrm{~S}$ | 1153 A | 22.4 ms | $27035 \mathrm{~A}^{2} \mathrm{~s}$ |
| 30 | 1463 A | 65.8 ms | $141772 \mathrm{~A}^{2} \mathrm{~S}$ | 1142 A | 49.3 ms | $65720 \mathrm{~A}^{2} \mathrm{~S}$ |
| 31 | 1473 A | 35.3 ms | $75012 \mathrm{~A}^{2} \mathrm{~S}$ | 1153 A | 22.6 ms | $27255 \mathrm{~A}^{2} \mathrm{~S}$ |
| 32 | 1462 A | 65.7 ms | $141430 \mathrm{~A}^{2} \mathrm{~S}$ | 1143 A | 49.5 ms | $65916 \mathrm{~A}^{2} \mathrm{~S}$ |
| 33 | 1472 A | 35.4 ms | $75297 \mathrm{~A}^{2} \mathrm{~S}$ | 1154 A | 22.6 ms | $27231 \mathrm{~A}^{2} \mathrm{~S}$ |
| 34 | 1462 A | 65.8 ms | $141430 \mathrm{~A}^{2} \mathrm{~S}$ | 1142 A | 49.5 ms | $65794 \mathrm{~A}^{2} \mathrm{~S}$ |
| Mean values out of 34 current pulses: |  |  |  |  |  |  |
| "light" | 1475 A | 35.3 ms | $75196 \mathrm{~A}^{2} \mathrm{~S}$ | 1156 A | 22.4 ms | $27146 \mathrm{~A}^{2} \mathrm{~S}$ |
| "heavy" | 1464 A | 65.8 ms | 141939 AS | 1144 A | 49.3 ms | $65959 \mathrm{~A}^{2} \mathrm{~S}$ |

Table 3: Tested series 1 (Current pulse no. 1 ... 34).
Table 3 shows that the mean values of integrals $\left[I_{r}^{2} \times t_{r}\right]$ (heavy and light switching direction) of each test sample were above the required calculated values (see table 1).
Figures 5 a and 5 b show oscillograms of the performed tests with current pulses and the progression of temperature rises for each test sample. Figures $6 a$ and $6 b$ show the last current pulse no. 34 more detailed with extrapolation of the temperature rise.

Page 8 of $10 / V R 4 E 002 e$


Figure 5a: Current pulses and temperature rise of test sample $1(1.51 \Omega)$.


Figure 5b: Current pulses and temperature rise of test sample $2(2.50 \Omega)$.

Page 9 of $10 / V R 4 E 002 e$



Figure 6b: Current pulse no. 34 performed on test sample $2(2.50 \Omega)$ with extrapolation.

Table 4 shows the maximum temperature rises at the moment of the end of current flow after the last current pulse no. 34 (determined by extrapolations, see figures $6 a$ and 6b).

|  | Test sample 1 <br> $(1.51 \Omega)$ | Test sample 2 <br> $(2.50 \Omega)$ |
| :--- | :---: | :---: |
| Maximum temperature rise at the moment of the end of current <br> flow after the last current pulse no. 34 <br> (determined by extrapolations, see figures 6a and 6b) | 265 K | 277 K |

Table 4: Temperature rises of the test samples after current pulse no. 34.

### 5.3 Resistor loading during test series 2 (single current pulse equivalent to 2.0 times the maximum rated through-current at relevant rated step voltage)

Each test sample was loaded with one (heavy) current pulse equivalent to 2.0 times the rated throughcurrent and relevant rated step voltage. The resistor current $\left(I_{r}\right)$ and the duration of current flow $\left(t_{r}\right)$ of each current pulse as well as the corresponding integral $\left[l_{r}^{2} \times t_{r}\right]$ are documented in table 5.

| Current <br> pulse <br> no. | Test sample 1 <br> $(1.51 \Omega)$ |  |  | Test sample 2 <br> $(2.50 \Omega)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{I}_{\mathrm{r}}($ r.m.s $)$ | $\mathrm{t}_{\mathrm{r}}$ | $\mathrm{I}_{\mathrm{r}}{ }^{2} \times \mathrm{t}_{\mathrm{r}}$ | $\mathrm{I}_{\mathrm{r}}($ r.m.s $)$ | $\mathrm{t}_{\mathrm{r}}$ | $\mathrm{I}_{\mathrm{r}}{ }^{2} \times \mathrm{t}_{\mathrm{r}}$ |
|  | 1263 A | 108.3 ms | $232680 \mathrm{~A}^{2} \mathrm{~S}$ | 1149 A | 74.8 ms | $106353 \mathrm{~A}^{2} \mathrm{~s}$ |

Table 5: $\quad$ Tested series 2.
Table 5 shows that the value of integral $\left[l_{r}{ }^{2} \times t_{r}\right]$ (heavy switching direction) of each test sample was above the required calculated value (see table 2).

The tests carried out, prove that the transition resistors withstand the stresses at 2.0 times the rated through-current and relevant rated step voltage without any wear on the mechanical parts or deterioration of the insulation material. Table 6 shows the measured resistance values of the test samples before and after the test.

|  | Test sample 1 <br> $(1.51 \Omega)$ | Test sample 2 <br> $(2.50 \Omega)$ |
| :--- | :---: | :---: |
| Value of the transition resistor before the test | $1.50 \Omega$ | $2.50 \Omega$ |
| Value of the transition resistor after the test | $1.56 \Omega$ | $2.60 \Omega$ |

Table 6: Measurement of the value of the transition resistor before and after the test.

## 6. Test results

The requirements of IEC 60214-1:2014 "Tap-changers - Part 1: Performance requirements and test methods". sub-clause 5.2.5: "Transition impedance test" were met.

- The temperature rise of the transition resistors was below the maximum permissible value of 350 K for liquid environment on-load tap-changers. Parts adjacent to the transition resistors were not affected.
- The test samples withstood the stresses at twice the maximum rated through-current and the relevant rated step voltage without any wear on the mechanical parts or deterioration of the insulation material. The measured values of the transition resistors before and after the test were within the permissible tolerance of $\pm 10 \%$.


[^0]:    ${ }^{1}$ Single phase design with two current paths of identical design $(2 \times 1300 \mathrm{~A})$ for applications with enforced current splitting.

[^1]:    Figure 1: $\quad$ Schematic test circuit.

