

0

1

1.1

2

2.1

2.1.1

2.1.2

2.1.3

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

2.3

2.4

2.5

2.6

3

3.1

3.2

3.2.1

3.2.2

3.3

3.4

3.4.1

3.5

3.6

4

4.1

4.2

4.2.1

4.2.2

4.2.3

4.2.4

4.3

4.4

4.5

4.6

Table	of	Contents
Package	Developer	Guide

Getting	Started

System	Requirements

Create	Package

Preparation

Install	Toolkit

Prepare	Build	Environment

Prepare	GPG	Key

Hello	World	Package

Build	Stage

Pack	Stage

Sign	Package

Essential	Run	Time	Files

Summary

Compile	Open	Source	Project:	tmux

Compile	Open	Source	Project:	nmap

Compile	Kernel	Modules

Advanced

Synology	Package

Package	Structure

INFO

Necessary	Fields

Optional	Fields

package.tgz

scripts

Script	Environment	Variables

conf

WIZARD_UIFILES

Integrate	Your	Package	into	DSM

Manage	Storage	for	Application	Files

Integrate	Your	Package	into	DSM	Web	GUI

Startup

Config

Integrate	Help	Document	into	DSM	Help

Integrate	with	DSM	Web	Authentication

DSM	Backward	Compatibility

Show	Messages	to	Users

Create	PHP	Application

Run	Scripts	When	the	System	Boots

Synology	DSM6.0	Developer	Guide

2

4.7

4.8

4.9

4.9.1

4.9.2

4.9.3

4.9.3.1

4.10

4.10.1

4.10.2

4.10.3

4.10.4

4.10.4.1

4.10.4.2

4.10.4.3

4.10.4.4

4.10.4.5

4.10.4.6

4.10.4.7

4.10.4.8

5

5.1

5.2

5.3

6

6.1

7

7.1

7.2

7.3

7.4

Locale	Support

Install	Package	Related	Ports	Information	into	DSM

Lower	Privilege

Package	User	&	Group

Mechanism

Privilege	Specification

Categories

Resource	Acquisition

Resource	Specification

Timing

Config	Update

Available	Workers

/usr/local	linker

Apache	2.2	Config

Data	Share

Index	DB

Maria	DB

PHP	INI

Port	Config

Syslog	Config

Publish	Synology	Packages

Get	Started	with	Publishing

Submitting	the	Package	for	Approval

Responding	to	User	Issues

Appendix	A:	Platform	and	Arch	Value	Mapping	Table

Revision	History

Appendix	B:	Compile	Applications	Manually

Download	DSM	Tool	Chain

Compile

Compile	Open	Source	Projects

Compile	Kernel	Modules

Synology	DSM6.0	Developer	Guide

3

Synology	DSM6.0	Developer	Guide
THIS	DOCUMENT	CONTAINS	PROPRIETARY	TECHNICAL	INFORMATION	WHICH	IS	THE	PROPERTY	OF	SYNOLOGY
INCORPORATED	AND	SHALL	NOT	BE	REPRODUCED,	COPIED,	OR	USED	AS	THE	BASIS	FOR	DESIGN,
MANUFACTURING,	OR	SALE	OF	APPARATUS	WITHOUT	WRITTEN	PERMISSION	OF	SYNOLOGY	INCORPORATED

Copyright

Synology	Inc.	®	2016	Synology	Inc.	All	rights	reserved.

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted,	in	any	form	or	by	any	means,	mechanical,
electronic,	photocopying,	recording,	or	otherwise,	without	prior	written	permission	of	Synology	Inc.,	with	the	following	exceptions:
Any	person	is	hereby	authorized	to	store	documentation	on	a	single	computer	for	personal	use	only	and	to	print	copies	of	documentation
for	personal	use	provided	that	the	documentation	contains	Synology’s	copyright	notice.

The	Synology	logo	is	a	trademark	of	Synology	Inc.

No	licenses,	express	or	implied,	are	granted	with	respect	to	any	of	the	technology	described	in	this	document.	Synology	retains	all
intellectual	property	rights	associated	with	the	technology	described	in	this	document.	This	document	is	intended	to	assist	application
developers	to	develop	applications	only	for	Synology-labeled	computers.

Every	effort	has	been	made	to	ensure	that	the	information	in	this	document	is	accurate.	Synology	is	not	responsible	for	typographical
errors.

Synology	Inc.	3F-3,	No.	106,	Chang-An	W.	Rd.	Taipei	103,	Taiwan

Synology	and	the	Synology	logo	are	trademarks	of	Synology	Inc.,	registered	in	the	United	States	and	other	countries.

Marvell	is	registered	trademarks	of	Marvell	Semiconductor,	Inc.	or	its	subsidiaries	in	the	United	States	and	other	countries.

Freescale	is	registered	trademarks	of	Freescale.	Intel	and	Atom	is	registered	trademarks	of	Intel.

Semiconductor,	Inc.	or	its	subsidiaries	in	the	United	States	and	other	countries.

Other	products	and	company	names	mentioned	herein	are	trademarks	of	their	respective	holders.

Even	though	Synology	has	reviewed	this	document,	SYNOLOGY	MAKES	NO	WARRANTY	OR	REPRESENTATION,	EITHER
EXPRESS	OR	IMPLIED,	WITH	RESPECT	TO	THIS	DOCUMENT,	ITS	QUALITY,	ACCURACY,	MERCHANTABILITY,	OR
FITNESS	FOR	A	PARTICULAR	PURPOSE.	AS	A	RESULT,	THIS	DOCUMENT	IS	PROVIDED	“AS	IS,”	AND	YOU,	THE
READER,	ARE	ASSUMING	THE	ENTIRE	RISK	AS	TO	ITS	QUALITY	AND	ACCURACY.	IN	NO	EVENT	WILL	SYNOLOGY
BE	LIABLE	FOR	DIRECT,	INDIRECT,	SPECIAL,	INCIDENTAL,	OR	CONSEQUENTIAL	DAMAGES	RESULTING	FROM	ANY
DEFECT	OR	INACCURACY	IN	THIS	DOCUMENT,	even	if	advised	of	the	possibility	of	such	damages.

THE	WARRANTY	AND	REMEDIES	SET	FORTH	ABOVE	ARE	EXCLUSIVE	AND	IN	LIEU	OF	ALL	OTHERS,	ORAL	OR
WRITTEN,	EXPRESS	OR	IMPLIED.	No	Synology	dealer,	agent,	or	employee	is	authorized	to	make	any	modification,	extension,	or
addition	to	this	warranty.

Some	states	do	not	allow	the	exclusion	or	limitation	of	implied	warranties	or	liability	for	incidental	or	consequential	damages,	so	the
above	limitation	or	exclusion	may	not	apply	to	you.	This	warranty	gives	you	specific	legal	rights,	and	you	may	also	have	other	rights
which	vary	from	state	to	state.

Synology	DSM6.0	Developer	Guide

4Package	Developer	Guide

Getting	Started
Synology	offers	this	developer	guide	with	instructions	on	how	to	develop	and	install	3rd-party	applications	on	Synology	NAS	products
or	a	line	of	network	attached	storage	devices	developed	on	the	Linux	kernel.	With	this	guide,	you	can	familiarize	yourself	with	the
following	procedures:

Compile	programs	to	run	on	a	Synology	NAS.
Integrate	applications	with	Synology	DiskStation	Manager	(DSM).
Install	application	files	to	the	recommended	path	to	keep	them	intact	when	DSM	is	upgraded.
Integrate	applications	with	the	Synology	web	authentication	interface.
Create	a	package	file	for	manual	or	one-click	installation	in	Synology	Package	Center.

This	document	is	written	for	Synology	users	and	system	integrators	who	are	interested	in	adding	their	applications	to	their	Synology
NAS.	Those	who	read	this	document	are	assumed	to	have	some	basic	understanding	of	Linux	programming.

Synology	DSM6.0	Developer	Guide

5Getting	Started

System	Requirements

Toolkit	Requirements

In	order	to	compile	programs	to	run	on	the	Synology	NAS,	the	system	must	meet	the	following	requirements.

64bit	generic	linux	environment.	(For	example,	Ubuntu	16.04	LTS)
bash	(>=	4.1.5)
Python	(>=	2.7.3)
Require	root	permission.	(Our	toolkit	will	use		chroot		command)

Please	do	NOT	use	Synology	NAS	base	system	to	install	toolkit	as	your	development	environment.	NAS	system	is	specialized	for
storage,	not	for	generic	developing	purpose.

Instead,	you	can	install	Synology	Docker	package	on	NAS	and	setup	a	generic	linux	container	to	install	the	toolkit.

Package	Runtime	OS	Suggestions

The	resulting	package	(.spk)	will	have	best	compatibility	running	on

Synology	NAS	version	DSM6.0+

Synology	DSM6.0	Developer	Guide

6System	Requirements

Create	Package
In	this	section,	we	will	explain	how	to	create	a	Synology	Package	using	Package	Toolkit.

If	you	want	to	build	a	Synology	Package	without	using	Package	Toolkit,	you	must:

Prepare	a	cross	compile	tool	chain
Prepare	a	build	environment
Prepare	metadata
Compile	source	code
Create	and	sign	the	package

Creating	a	package	manually	can	be	very	complex	for	most	developers,	so	we	recommended	using	the	Package	Toolkit	to	make	the
package	creation	process	easier.	To	make	the	package	creation	process	go	smoothly,	you	will	still	need	to	write	some	scripts	describing
how	you	want	to	build	and	create	your	packages.

In	the	following	sub-sections,	the	necessary	scripts	will	be	stated	in	detail.

You	can	download	the	example	source	from	github:	Synology	OpenSource

Synology	DSM6.0	Developer	Guide

7Create	Package

https://github.com/SynologyOpenSource

Preparation:
In	this	section,	we	will	guide	you	through	how	to	set	up	an	environment	for	building	a	Synology	Package.	Detailed	steps	include:

Install	Toolkit
Prepare	Build	Environment
Prepare	GPG	Key

Synology	DSM6.0	Developer	Guide

8Preparation

Install	Toolkit
This	tutorial	consists	of	two	parts:

Pre-built	environment
Front-end	scripts

Toolkit	Installation:

To	install	the	tookit,	simply	refer	to	the	following	steps.	First,	you	need	to	clone	the	front-end	scripts	from	this	link	to	your	toolkit	base.
(For	DSM	5.x,	use	this	link	instead.)

We	will	use	/toolkit	as	toolkit	base	in	this	document	from	now	on.

mkdir	-p	/toolkit

git	clone	{{	book.externalLinks.pkgscripts	}}	pkgscripts

Pre-build	Environment:
For	faster	development,	we	have	prepared	several	build	environments	that	depend	on	different	architectures	for	package	developers.
You	don't	have	to	worry	about	the	necessary	built-time	libraries	(.a	and	.so)	and	header	files(.h	and	.hpp)	when	you	are	developing	your
package.	This	is	because	the	build	environments	already	contain	some	pre-built	projects	whose	executable	binaries	or	shared	libraries
are	built	on	DSM,	for	example,	zlib,	libxml2,	and	so	on.

Frond-end	Scripts:
We	have	also	provided	front-end	scripts	in	a	folder	named	“pkgscripts”	to	make	the	environment	deployment,	package	compilation,
and	creation	of	the	final	package	SPK	file	easier.	In	most	cases,	you	only	need	to	use	these	three	scripts	while	developing	a	package:

EnvDeploy
PkgCreate.py
include/pkg_utils.sh

The	next	section	will	guide	you	through	how	to	establish	a	build	environment	and	create	a	Synology	Package	by	using	Package	Toolkit.

Synology	DSM6.0	Developer	Guide

9Install	Toolkit

https://github.com/SynologyOpenSource/pkgscripts-ng
https://github.com/SynologyOpenSource/pkgscripts

Prepare	Build	Environment
You	can	download	and	set	up	pre-built	environments	by	using	EnvDeploy	with	the	following	commands.	Use		-v		to	specify	DSM
version,		-p		to	specify	desired	platform,	and		-t		to	specify	the	file	location	when	you	stored	the	toolkit	locally	on	your	development
machine.	If		-p		is	not	given,	all	available	platforms	for	given	versions	will	be	set	up.

cd	/toolkit/pkgscripts/

./EnvDeploy	-v	6.0	-p	x64	#	for	example

The	working	directory	will	look	like	the	following	figure.The	chroot	environment	to	build	your	own	projects	will	be	ds.${platform}-
${version}.	As	mentioned	before,	this	toolkit	contains	some	pre-built	libraries	and	headers	which	can	be	found	under	cross	gcc	sysroot.
Sysroot	is	default	search	path	of	compiler.	If	gcc	can	not	find	header	or	library	from	path	user	given,	gcc	will	search
sysroot/usr/{lib,include}.

Available	Platforms
You	can	use	one	of	the	following	commands	to	show	available	platforms.	If		-v		is	not	given,	available	platforms	for	all	versions	will
be	listed.

./EnvDeploy	-v	6.0	--list

./EnvDeploy	-v	6.0	--info	platform

Update	Environment
Use	EnvDeploy	again	to	update	your	environments.	For	example,	you	can	update	x64	for	DSM	6.0	by	using	the	following	command.

./EnvDeploy	-v	6.0	-p	x64

Remove	Environment
To	remove	a	build	environment,	you	need	to	apply	chroot	to	the	build	environment.	Unmount	the	/proc	folder	and	exit	chroot.	After
that,	remove	the	build	environment	folder.	The	following	commands	illustrate	how	to	remove	a	build	environment	with	version	6.0	and
platform	x64.

chroot	/toolkit/build_env/ds.x64-6.0	umount	/proc

rm	-rf	/toolkit/build_env/ds.x64-6.0

Synology	DSM6.0	Developer	Guide

10Prepare	Build	Environment

Prepare	GPG	Key
If	the	build	environment	is	5.0	or	above,	the	Package	Toolkit	will	use	a	gpg	key	to	sign	the	package	when	creating	the	spk	file.
Please	refer	to	Package	Signature	for	more	details	about	package	signatures.

If	you	have	your	own	GPG	key	(without	a	passphrase)	already,	you	will	need	to	put	the	private	key	in	/root/.gnupg	under	each
platform	(/toolkit/build_env/ds.${platform}-6.0/root/.gnupg/).

Generate	the	GPG	key

Requirement:	gpg,	gpg-agent

gpg	--gen-key

>	Please	select	what	kind	of	key	you	want:

			(1)	RSA	and	RSA	(default)

>	choose	key	size	and	enter	your	name,	email

>	enter	a	passphrase:	just	press	Enter	without	typing	any	character

WARNING:	Please	make	sure	that	you	do	not	type	any	characters	in	the	passphrase	field,	otherwise	the	build	process	will
FAIL.

After	completing	the	steps	above,	the	key	will	be	generated	under	~/.gnupg.	Move	them	with	the	chroot	environment.

cp	~/.gnupg/*	/toolkit/build_env/ds.${platform}-6.0/root/.gnupg/

You	can	also	use	the	following	commands	to	verify	whether	the	key	was	successfully	imported	or	not.

cd	/toolkit/build_env/ds.${platform}-6.0/

chroot	.

gpg	-K

The	output	may	produce	the	following	message.

/root/.gnupg/secring.gpg

sec			2048R/145E0AFD	2015-12-21

uid																		Synology	Inc.	<synology_inc@synology.com>

ssb			2048R/E0C20F11	2015-12-21

Synology	DSM6.0	Developer	Guide

11Prepare	GPG	Key

Hello	World	Package
We	use	the	front-end	script	PkgCreate.py	to	help	us	compile	source	code	and	pack	a	Synology	Package	or	a	SPK	file.
SPK	is	the	file	format	used	by	Synology	Package	Center	to	properly	install	your	application.	For	more	details	about	the	structural
format	of	an	SPK	file,	you	may	refer	to	Synology	Package.

In	the	following	sections,	we	will	guide	you	on	how	to	create	a	simple	utility	program	that	can	print	out	system	memory,	and	pack	it
into	an	SPK	file	by	using	PkgCreate.py.

For	more	complicated	cases,	you	can	refer	to	the	following	examples	provided:

Compile	Open	Source	Project:	tmux:	If	you	are	interested	in	porting	an	open	source	project	to	DSM	system	using	tmux	or	setting
up	any	advanced	configurations,	you	may	refer	to	this	section.
Compile	Open	Source	Project:	nmap:	If	you	are	interested	in	porting	an	open	source	project	to	DSM	system	using	nmap	or	setting
up	any	advanced	configurations,	you	may	refer	to	this	section.
Compile	Kernel	Module:	If	you	are	interested	in	installing	more	kernel	modules	to	your	DSM	system,	you	may	refer	to	this
section.

Create	Package	Workflow:

There	are	two	stages	in	the	PkgCreate.py	package	creation	process,	the	Build	Stage	and	the	Pack	Stage.

In	the	Build	Stage,	PkgCreate.py	will	compile	your	project	and	all	dependent	projects	in	the	correct	order.	In	the	Pack	Stage,
PkgCreate.py	will	pack	your	project	into	an	SPK	file.	

To	create	your	SPK	file	with	PkgCreate.py	properly,	you	will	need	to	provide	additional	configuration	files	and	build	scripts	to	describe
how	to	build	your	project.	These	files	are	put	in	a	folder	named	“SynoBuildConf”	under	your	project.	These	files	and	their	purpose	are
listed	in	below.

SynoBuildConf/depends:	defines	the	dependency	of	your	project.	For	further	details,	please	refer	to	Build	Stage
SynoBuildConf/build:	specifies	PkgCreate.py	on	how	to	compile	your	project.	For	further	details,	please	refer	to	Build	Stage
SynoBuildConf/install:	specifies	PkgCreate.py	on	how	to	pack	your	SPK	file.	For	further	details,	please	refer	to	Pack	Stage
SynoBuildConf/install-dev:	similar	to	SynoBuildConf/install,	but	this	will	pack	your	SPK	file	in	chroot	environment	rather	than
general	DSM	system.	For	further	details,	please	refer	to	Compile	Open	Source	Project:	nmap.

For	more	details	about	these	configuration	files,	please	refer	to	Build	Stage	and	Pack	Stage.	The	following	figure	shows	the	work	flow
of	these	two	stages.

Synology	DSM6.0	Developer	Guide

12Hello	World	Package

You	can	use	the	following	commands	to	tell	PkgCreate.py	how	to	run	through	both	stages.

cd	/toolkit

pkgscripts/PkgCreate.py	-x0	-c	${project}

The		-c		option	tells	PkgCreate.py	to	build,	pack,	and	sign	your	project.	The		-x0		option	is	meant	to	traverse	and	build	all	dependent
projects	in	the	correct	order.	Each	project	is	built	according	to	their	own	SynoBuildConf/build.

Note:	PkgCreate.py	compiles	source	code	and	packs	your	package	under	chroot	environment.	Therefore,	you	must	run	all
commands	with	root	permission	or	with	sudo.

PkgCreate.py	has	many	other	options	to	control	the	build	flow.	The	following	subsections	will	explore	deeper	into	those	options	or	you
may	directly	refer	to	the	Advanced	section	for	more	details.

Source	Code	Layout:
In	Build	Stage,	PkgCreate.py	will	try	to	link	all	the	projects	to	the	build	environment.	As	a	result,	your	project	source	code	must	be	put
in	a	folder	(we	call	it	a	“project”)	under	/toolkit/source.	The	following	figure	shows	the	whole	working	directory	as	an	example.

Synology	DSM6.0	Developer	Guide

13Hello	World	Package

toolkit/

├──	build_env/

│			└──	ds.${platform}-${version}/

│							└──	/usr/syno/

│											├──	bin

│											├──	include

│											└──	lib

├──	pkgscripts/

└──	source/

				└──minimalPkg/

								├──	minimalPkg.c

								├──	INFO.sh

								├──	Makefile

								├──	PACKAGE_ICON.PNG

								├──	PACKAGE_ICON_256.PNG

								├──	scripts/

								│			├──	postinst

								│			├──	postuninst

								│			├──	postupgrade

								│			├──	preinst

								│			├──	preuninst

								│			├──	preupgrade

								│			└──	start-stop-status

								└──	SynoBuildConf/

												├──	build

												├──	depends

												└──	install

Note:	You	may	organize	the	source	code	in	any	structure	you	like	as	long	as	SynoBuildConf	is	edited	correctly.	The	following
sections	will	explain	this	in	detail.

Below	is	some	sample	code	that	we	will	use	as	an	example.

//	Copyright	(c)	2000-2016	Synology	Inc.	All	rights	reserved.

#include	<sys/sysinfo.h>

#include	<syslog.h>

#include	<stdio.h>

int	main(int	argc,	char**	argv)	{

				struct	sysinfo	info;

				int	ret;

				if	(ret	!=	0)	{

								syslog(LOG_SYSLOG,	"Failed	to	get	info\n");

								return	-1;

				}

				syslog(LOG_SYSLOG,	"[MinimalPkg]	%s	sample	package	...",	argv[1]);

				syslog(LOG_SYSLOG,	"[MinimalPkg]	Total	Ram:	%u\n",	(unsigned	int)info.totalram);

				syslog(LOG_SYSLOG,	"[MinimalPkg]	Free	RAM:	%u\n",	(unsigned	int)info.freeram);

				return	0;

}

Environment	Variables	in	Build	and	Install	Script
Front-end	scripts	will	pass	some	environment	variables	to	SynoBuildConf/build	and	SynoBuildConf/install.	You	can	utilize	them	to
build	and	install	your	projects.	You	can	also	find	most	of	them	in	/toolkit/build_env/ds.${platform}-
${version}/{env.mak,env32/64.mak}.	Some	of	the	environment	variables	are	listed	in	below.

CC:	path	of	gcc	cross	compiler.
CXX:	path	of	g++	cross	compiler.
LD:	path	of	cross	compiler	linker.

Synology	DSM6.0	Developer	Guide

14Hello	World	Package

CFLAGS:	global	cflags	includes.
AR:	path	of	cross	compiler	ar.
NM:	path	of	cross	compiler	nm.
STRIP:	path	of	cross	compiler	strip.
RANLIB:	path	of	cross	compiler	ranlib.
OBJDUMP:	path	of	cross	compiler	objdump.
LDFLAGS:	global	ldflags	includes.
ConfigOpt:	options	for	configure.
ARCH:	processor	architecture.
SYNO_PLATFORM:	Synology	platform.
DSM_SHLIB_MAJOR:	major	number	of	DSM	(integer).
DSM_SHLIB_MINOR:	minor	number	of	DSM	(integer).
DSM_SHLIB_NUM:	build	number	of	DSM	(integer).
ToolChainSysRoot:	cross	compiler	sysroot	path.
SysRootPrefix:	cross	compiler	sysroot	concat	with	prefix	/usr.
SysRootInclude:	cross	compiler	sysroot	concat	with	include_dir	/usr/include.
SysRootLib:	cross	compiler	sysroot	concat	with	lib_dir	/usr/lib.

Synology	DSM6.0	Developer	Guide

15Hello	World	Package

Build	Stage:
In	the	Build	Stage,	PkgCreate.py	will	compile	the	project	and	its	dependent	projects.	Please	note	that	in	this	stage,	PkgCreate.py
depends	on	two	build	scripts	(SynoBuildConf/build	and	SynoBuildConf/depend)	to	get	the	necessary	information.	

PkgCreate.py	${project}	#	build	project

Build	Stage	Workflow:

The	workflow	of	the	Build	Stage	is	as	follows.

1.	 Based	on	your	SynoBuildConf/depend,	PkgCreate.py	will	locate	the	target	DSM	version	from	[default]	section.
2.	 PkgCreate.py	will	resolve	the	projects	you	depend	on.
3.	 Your	project	and	the	dependent	projects	which	are	placed	under	/toolkit/source	will	be	hard-linked	to

/toolkit/build_env/ds.${platform}/source.
4.	 Their	SynoBuildConf/build	will	be	executed	in	order	according	to	their	dependency	based	on	each	SynoBuildConf/depend.
5.	 If	your	project	is	needed	by	other	project	for	cross	compiling,	you	may	add	SynoBuildConf/install-dev	script.	install-dev	script

will	install	cross	compiled	product	into	platform	chroot.

Note:	SynoBuildConf/build	is	executed	under	chroot	environment	/toolkit/build_env/ds.${platform}.

SynoBuildConf/depends

PkgCreate.py	will	resolve	your	dependency	according	to	this	configuration	file.	You	need	to	specify	your	project	dependency	and	the
build	environment	of	your	project	in	this	file.	For	example:

Synology	DSM6.0	Developer	Guide

16Build	Stage

[BuildDependent]

#	each	line	here	is	a	dependent	project

[ReferenceOnly]

#	each	line	here	is	a	project	for	reference	only	but	no	need	to	be	built

[default]

all="6.0"			#	toolkit	environment	version	of	specific	platform.	(all	platform	use	6.0	toolkit	environment)

There	are	three	fields	in	SynoBuildConf/depends.

BuildDependent:	Describes	other	projects	which	are	dependent	on	this	project.	For	further	details	about	this	field,	please	refer	to
Compile	Open	Source	Project:	nmap.
ReferenceOnly:	Describes	other	projects	which	are	referred	by	this	project,	without	the	build	process.
default:	Describes	the	toolkit	environment.	This	section	is	a	necessary	field.	It	indicates	each	platform	to	build	against	some	DSM
version	and	the	key	"all"	means	all	platform	use	this	version	by	default.

You	can	use	ProjDepends.py	front-end	scripts	to	see	whether	the	dependency	order	of	your	projects	is	correct.	Option		-x0		will
traverse	all	dependent	projects	of	${project}.

cd	/toolkit/pkgscripts

./ProjDepends.py	-x0	${project}

If	your	application	contains	more	than	one	project,	put	them	in	/toolkit/source	and	edit	SynoBuildConf	accordingly	for	each	of	them.

For	more	advanced	usage	of	this	file,	you	may	refer	to	Compile	Open	Source	Project	and	Advanced.

SynoBuildConf/build

SynoBuildConf/build	is	a	shell	script	that	tells	PkgCreate.py	how	to	compile	your	project.	The	current	working	directory	of	this	shell
script	is	located	in	/source/${project}	under	chroot	environment.

All	pre-built	binaries,	headers,	and	libraries	are	under	cross	compiler	sysroot	in	chroot	environment.	Since	sysroot	is	the	default	search
path	of	cross	compiler,	you	do	not	need	to	provide		-I		or		-L		to		CFLAGS		or		LDFLAGS	.

Variables:

All	variable	you	can	use	in		SynoBuildConf/build	:

CC:	path	of	gcc	cross	compiler.
CXX:	path	of	g++	cross	compiler.
LD:	path	of	cross	compiler	linker.
CFLAGS:	global	cflags	includes.
AR:	path	of	cross	compiler	ar.
NM:	path	of	cross	compiler	nm.
STRIP:	path	of	cross	compiler	strip.
RANLIB:	path	of	cross	compiler	ranlib.
OBJDUMP:	path	of	cross	compiler	objdump.
LDFLAGS:	global	ldflags	includes.
ConfigOpt:	options	for	configure.
ARCH:	processor	architecture.
SYNO_PLATFORM:	Synology	platform.
DSM_SHLIB_MAJOR:	major	number	of	DSM	(integer).
DSM_SHLIB_MINOR:	minor	number	of	DSM	(integer).
DSM_SHLIB_NUM:	build	number	of	DSM	(integer).
ToolChainSysRoot:	cross	compiler	sysroot	path.

Synology	DSM6.0	Developer	Guide

17Build	Stage

SysRootPrefix:	cross	compiler	sysroot	concat	with	prefix	/usr.
SysRootInclude:	cross	compiler	sysroot	concat	with	include_dir	/usr/include.
SysRootLib:	cross	compiler	sysroot	concat	with	lib_dir	/usr/lib.

The	example	build	scripts	is	like:

#	SynoBuildConf/build

case	${MakeClean}	in

							[Yy][Ee][Ss])

															make	distclean

															;;

esac

make	${MAKE_FLAGS}

The	above	example	calls	the		make		command	and	compiles	your	project	according	to	your	Makefile	located	in		/source/${project}	.

Synology	toolkit	environment	has	included	selected	prebuild	projects.	You	can	enter	the	chroot	and	use	following	command	to	check	if
needed	header	or	project	is	provided	by	toolkit.

##	inner	chroot

dpkg	-l		#	list	all	dpkg	projects.

dpkg	-L	{project	dev}	#	list	project	install	files

dpkg	-S	{header/library	pattern}	#	search	header/library	pattern.

For	example,	the	project	needs		zlib.h		and		libz.so		in	the	build	stage.	Use	following	command	to	check	if	zlib	and	its	component
are	installed	in	chroot.

chroot	/tookit/build_env/ds.x64-6.0/

##	inner	chroot	

>>	dpkg	-l	|	grep	zlib

ii		zlib-1.x-x64-dev								6.0-7274							all													Synology	build-time	library

>>	dpkg	-L	zlib-1.x-x64-dev

/.

/usr

/usr/local

/usr/local/x86_64-pc-linux-gnu

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.a

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/pkgconfig

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/pkgconfig/zlib.pc

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so.1

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so.1.2.8

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/include

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/include/zconf.h

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/include/zlib.h

>>	dpkg	-S	zlib.so

zlib-1.x-x64-dev:	/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so

zlib-1.x-x64-dev:	/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so.1.2.8

zlib-1.x-x64-dev:	/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so.1

All	file	has	been	installed	into	sysroot,	cross	gcc	can	find	zlib.h	and	libz.so	directly.

Some	open	source	require	to	use	other	projects'	cross	compiled	product	while	building	their	own	.	For	example,		python		needs
	libffi		and		zlib		while	configure,	we	need	to	provide	those	two	project	before	build		python	.	You	can	install	the	cross	compiled
product	into	the	destination	you	want	in	build	script.	Please	refer	to	Compile	Open	Source	Project:	nmap	for	more	information.

Synology	DSM6.0	Developer	Guide

18Build	Stage

Makefile

The	following	example	shows	a	Makefile.	Most	of	the	content	contains	typical	makefile	rules.	Note	that	when	writing	your	project
Makefile,	you	can	utilize	pre-defined	variables	in	/env.mak.

#	Copyright	(c)	2000-2016	Synology	Inc.	All	rights	reserved.

##	You	can	use	CC	CFALGS	LD	LDFLAGS	CXX	CXXFLAGS	AR	RANLIB	READELF	STRIP	after	include	env.mak

include	/env.mak

EXEC=	minimalPkg

OBJS=	minimalPkg.o

all:	$(EXEC)

$(EXEC):	$(OBJS)

				$(CC)	$(CFLAGS)	$<	-o	$@	$(LDFLAGS)

install:	$(EXEC)

				mkdir	-p	$(DESTDIR)/usr/bin/

				install	$<	$(DESTDIR)/usr/bin/

clean:

				rm	-rf	*.o	$(EXEC)

For	more	detailed	descriptions	about	makefile,	please	refer	to	here.
For	a	full	list	of	environment	variables	that	are	provided	by	/env.mak,	please	refer	to	Create	Package.

Synology	DSM6.0	Developer	Guide

19Build	Stage

https://www.gnu.org/software/make/manual/html_node/Makefiles.html

Pack	Stage:
In	the	Pack	Stage,	PkgCreate.py	packs	all	the	necessary	files	according	to	your	metadata	and	creates	a	final	Synology	Package	in	the
result_spk	folder.	If	you	want	PkgCreate.py	to	enter	the	Pack	Stage	without	the	Build	Stage,	simply	run	PkgCreate.py	with	the	-i	
option.	

For	example,	the	following	command	will	execute	${project}/SynoBuildConf/install	without	signing	and	putting	the	final	package
SPK	file	(if	any)	to	/toolkit/result_spk.

cd	/toolkit

pkgscripts/PkgCreate.py	-i	--no-sign	${project}

Pack	Stage	Work	Flow:

The	workflow	of	the	Pack	Stage	is	as	follows.

1.	 PkgCreate.py	will	execute	the	build	script	SynoBuildConf/install.
i.	 Create	INFO	file	by	using	INFO.sh.
ii.	 Move	necessary	files	to	a	temporary	folder,	/tmp/_install,	for	instance,	and	create	package	tgz.
iii.	 Move	necessary	metadata	and	resources	to	the	temporary	folder,	/tmp/_pkg,	for	instance,	and	create	the	final	Synology

Package.
2.	 PkgCreate.py	will	sign	the	newly	created	Synology	Package	file	with	a	gpg	key	which	is	placed	under	/root/.

The	following	figure	shows	the	work	flow	of	the	Pack	Stage.

SynoBuildConf/install

Synology	DSM6.0	Developer	Guide

20Pack	Stage

This	file	must	be	written	in	bash	and	indicates	the	front-end	script	on	how	to	pack	your	project.	The	current	working	directory	is
/source/${project}	under	chroot	environment.	If	this	is	the	top	project	of	your	package,	this	file	will	define	how	to	create	the	final
package	SPK	file,	including	directory	structure	and	the	INFO	file	in	your	SPK.	(Please	refer	to	INFO	chapter)

Define	SynoBuildConf/install	for	installation	metadata,	resource	files	and	packing	your	package.

#!/bin/bash

#	Copyright	(C)	2000-2016	Synology	Inc.	All	rights	reserved.

###	Use	PKG_DIR	as	working	directory.

PKG_DIR=/tmp/_test_spk

rm	-rf	$PKG_DIR

mkdir	-p	$PKG_DIR

###	get	spk	packing	functions

source	/pkgscripts/include/pkg_util.sh

create_inner_tarball()	{

				local	inner_tarball_dir=/tmp/_inner_tarball

				###	clear	destination	directory

				rm	-rf	$inner_tarball_dir	&&	mkdir	-p	$inner_tarball_dir

				###	install	needed	file	into	PKG_DIR

				make	install	DESTDIR="$inner_tarball_dir"

				###	create	package.txz:	$1=source_dir,	$2=dest_dir

				pkg_make_inner_tarball	$inner_tarball_dir	"${PKG_DIR}"

}

create_spk(){

				local	scripts_dir=$PKG_DIR/scripts

				###	Copy	Package	Center	scripts	to	PKG_DIR

				mkdir	-p	$scripts_dir

				cp	-av	scripts/*	$scripts_dir

				###	Copy	package	icon

				cp	-av	PACKAGE_ICON*.PNG	$PKG_DIR

				###	Generate	INFO	file

				./INFO.sh	>	INFO

				cp	INFO	$PKG_DIR/INFO

				###	Create	the	final	spk.

				#	pkg_make_spk	<source	path>	<dest	path>	<spk	file	name>

				#	Please	put	the	result	spk	into	/image/packages

				#	spk	name	functions:	pkg_get_spk_name	pkg_get_spk_unified_name	pkg_get_spk_family_name

				mkdir	-p	/image/packages

				pkg_make_spk	${PKG_DIR}	"/image/packages"	$(pkg_get_spk_family_name)

}

create_inner_tarball

create_spk

We	will	briefly	explain	the	scripts	above.

In	the	beginning,	the	script	will	call	the	PrepareDirs	function	which	will	prepare	the	necessary	folder	for	the	project.

After	creating	the	folder,	the	script	called	SetupPackageFiles	will	move	the	necessary	resource	files	to	$INST_DIR	and	$PKG_DIR.
In	this	step,	we	have	called	the	INFO.sh	file	to	create	the	INFO	file.	Although	you	may	put	the	codes	that	will	generate	the	INFO	file	in
the	SynoBuildConf/install	script,	we	highly	recommend	that	you	create	the	INFO	seperately.	Generally,	we	name	it	INFO.sh.	You	can
see	how	to	write	INFO.sh	in	the	following	subsections.

INFO
scripts
binary

Synology	DSM6.0	Developer	Guide

21Pack	Stage

After	moving	the	resource	file	to	the	proper	location,	we	will	call	the	MakePackage	function	to	create	the	package	for	us.	We	have
included/sourced	a	helper	script	called	pkg_util.sh	which	is	located	in	/pkgscripts/include.	This	script	creates	the	final	package	SPK	file
in	the	correct	format.	The	pkg_make_package	and	pkg_make_spk,	which	are	defined	in	*pkg_util.sh,	create	the	Synology	Package.
You	can	see	how	to	use	this	helper	function	below.

pkg_make_inner_tarball	$1	$2:	Create	$2/packages.tgz	from	files	in	$1.
pkg_make_spk	$1	$2:	Create	$2/spk	from	files	in	$1.

INFO.sh

As	mentioned	earlier,	INFO.sh	is	just	an	optional	script.	You	can	create	the	INFO	file	by	hand	or	move	the	code	to
SynoBuildConf/install.	However,	we	strongly	recommend	that	you	utilize	INFO.sh	so	that	you	can	create	the	INFO	file	separately
from	SynoBuildConf/install.

#!/bin/bash

#	Copyright	(c)	2000-2016	Synology	Inc.	All	rights	reserved.

source	/pkgscripts/include/pkg_util.sh

package="minimalPkg"

version="1.0.0000"

displayname="Minimal	Package"

maintainer="Synology	Inc."

arch="$(pkg_get_unified_platform)"

description="this	is	a	minimal	package"

["$(caller)"	!=	"0	NULL"]	&&	return	0

pkg_dump_info

Note:	The	above	code	is	just	an	example	to	show	some	important	variables	for	pkg_dump_info.	If	you	want	to	know	more
details	about	the	INFO	file	and	each	of	the	fields,	please	refer	to	INFO.

Similar	to	SynoBuildConf/install,	we	must	first	include	pkg_util.sh.	After	that,	we	can	set	up	the	proper	variables	and	call	the
pkg_dump_info	to	create	the	INFO	file	correctly.

As	you	may	have	noticed,	we	used	another	helper	function	called	pkg_get_platform	to	set	the	arch	variable.	This	variable	indicates	the
current	platform	we	are	building.

The	following	statements	indicate	how	to	use	the	helper	functions.

pkg_get_spk_platform:	Return	platform	for	“arch”	in	INFO.
pkg_dump_info:	Dump	INFO	according	to	given	variables.

After	creating	the	INFO.sh	file,	remember	to	add	executable	bit	in	INFO.sh.

chmod	+x	INFO.sh

Pack	util	functions

Synology	package	framework	provides	several	functions	and	and	increases	efficiency	of	packing	packages.	The	functions	such	as
generating	arch	information	in	the	INFO	file,	separating	spk	name	and	creating	spk	will	be	enable	after	executing
/pkgscripts/include/pkg_util.sh	undefined.

Platform	functions

A	spk	can	be	installed	on	one	or	more	platforms.	You	can	decide	which	platforms	can	install	this	spk	via	spk	INFO	file.

Synology	DSM6.0	Developer	Guide

22Pack	Stage

function	name Values Description

(No	function) noarch Package	only	contain	scripts.	spk	can	be	run	on	all	synology	models.

pkg_get_platform_family
(DSM6.0	only)

x86_64	i686	armv7
armv5	ppc...

Unify	platforms	with	same	kernel	into	a		platform	family	.	spk	can
run	on	same	family	synology	models.

pkg_get_spk_platform bromolow	cedarview
qoriq	armadaxp...

Directly	output	the	platform	where	the	toolkit	environment	is	used.
spk	only	can	be	run	on	the	specific	platform.

First,	if	your	package	doesn't	have	any	binary,	you	can	use	noarch	as	the	platfrom	and	write	the	scripts	for	your	package.	Package
with		arch=noarch		can	be	installed	onto	any	synology	model.
Second,	if	your	package	doesn’t	have	any	kernel	related	functions,	the	package	can	run	on	the	same	architecture	platforms.	Use
function		pkg_get_platform_family		to	get	platform	family.	Package	can	be	installed	on	the	models	which	are	included	in	the	same
platform	family.	For	example,	package	with		arch=x86_64		can	be	install	onto		bromolow	x64	cedarview	dockerx64	broadwell	
models.	Please	refer	to	the	platform	family	map	at	github.	(Note:	Platform	family	only	support	DSM6.0	or	upper	version)
Third,	if	your	package	contain	kernel	related	functions,	every	platforms	will	need	a	specific	spk.	Please	use	function
	pkg_get_spk_platform		to	get	the	platform(s)	which	be	compatiable	with	your	toolkit	environment.

spk	name	functions

After	spk	generated,	we	need	to	distinguish	spk	name	from	platform.	We	can	use	spk	name	functions:

Function	name Corresponding
platform	function Example Description

pkg_get_spk_name pkg_get_spk_platform

minimalPkg-
bromolow-
1.0.0000.spk	/
minimalPkg-
cedarview-
1.0.0000.spk	...

spk	name	depend	on	which	toolkit
environment	is	using.

pkg_get_spk_name noarch minimalPkg-
1.0.0000.spk

If	package	platform="noarch",	this
function	will	output	spk	name	without
platforn	info.

pkg_get_spk_family_name pkg_get_platform_family
minimalPkg-
x86_64-
1.0.0000.spk

spk	name	will	be	unified	into	platform
family.	The	same	platform	family	will
geneate	same	spk	name.	i.e	bromolow
and	x64	will	has	same	spk	name.

You	need	to	input	INFO	path	as	argument.	If	no	path	input,	the	function	will	get	INFO	file	from		$PKG_DIR/INFO		automatically
without	inputting	INFO	path.

Create	spk	function

Developer	can	use		pkg_make_spk		to	create	spk.

Usage:

pkg_make_spk	$source_path	$dest_path	$spk_name

source_path	is	spk	source	directory.	All	spk	files	must	copy	into	this	direcotry	before	run	pkg_make_spk.

dest_path	is	target	spk	path.

spk_name	is	spk	name	with/without	platform	info.

Example:

pkg_make_spk	/tmp/_test_spk	"/image/packages"	$(pkg_get_spk_family_name)

Synology	DSM6.0	Developer	Guide

23Pack	Stage

https://github.com/SynologyOpenSource/pkgscripts-ng/blob/master/include/pkg_util.sh#L104

Synology	DSM6.0	Developer	Guide

24Pack	Stage

Sign	Package
In	DSM	5.1	and	onward,	the	Package	Center	has	a	built-in	code	sign	mechanism	to	ensure	the	package's	publisher	integrity.	The	toolkit
based	on	DSM	5.0	and	onward	has	the	CodeSign.php	script	to	sign	the	package	with	GnuPG	keys.	If	you	do	not	have	a	GPG	key,	you
will	need	to	generate	one.	Please	refer	to	Prepare	GPG	Key	for	more	information.

If	you	want	PkgCreate.py	to	sign	the	package	automatically,	you	can	use	the	PkgCreate.py	without	the		--no-sign		option.	For
example,	the	following	command	indicates	PkgCreate.py	to	build	and	install	your	project	without	a	signature.

PkgCreate.py	-i	${project}

In	addition,	if	you	want	to	sign	the	package	on	your	own,	you	can	use	the	following	command	to	sign	your	package	manually.

chroot	/toolkit/build_env/ds.${platform}-${version}

php	/pkgscripts/CodeSign.php	[option]	--sign=package-path

Options:

--keydir=keyrings	directory	(default	is	/root/.gnupg)

--keyfpr=key's	fingerprint	(default	is	"".	Under	this	circumstances,	we	will	using	the	first	key	in	the	key	directory	to	sign	the	package)

Examples:

php	/pkgscripts/CodeSign.php	--sign=phpBB-3.0.12-0031.spk

php	/pkgscripts/CodeSign.php	--keydir=/root/.gpg	--keyfpr=C1BF63CD	--sign=phpBB-3.0.12-0031.spk

Synology	DSM6.0	Developer	Guide

25Sign	Package

Essential	Run	Time	Files

Scripts:

The	“scripts”	folder	contains	shell	scripts	which	are	executed	during	the	installation,	uninstallation,	upgrading,	starting,	and	stopping	of
packages.	There	are	seven	script	files	stored	in	the	“scripts”	folder:

postinst
postuninst
postupgrade
preinst
preuninst
preupgrade
start-stop-status

Note:	Even	if	you	do	not	provide	any	of	these	script	files,	the	package	will	be	created	without	any	errors.	However,	when	you	try
to	install	your	package	on	your	DSM	system,	Package	Center	will	not	be	able	to	install	your	package.

For	simplicity,	the	scripts	will	look	like	the	following	example.

#!/bin/sh

exit	0

More	details	about	these	scripts	will	be	explained	in	the	scripts	section.

Icon:

You	can	add	an	icon	to	your	package	so	that	when	Package	Center	shows	the	information	of	your	package,	it	will	use	the	icon	you	have
provided	instead	of	the	default	one.

To	add	an	icon	to	your	package,	put	the	image	your	want	into	your	project	source	folder,	then	slightly	modify	your
SynoBuildConf/install	script.	The	following	is	an	example	of	a	modified	SynoBuildConf/install	from	the	previous	example.	For	further
details	regarding	package	icons,	please	refer	to	the	Package	Structure	section.

The	only	difference	from	the	previous	example	is	that	we	copied	our	image	files	into	the	$PKG_DIR	and	renamed	it	to
PACKAGE_ICON.PNG	and	PACKAGE_ICON_256.PNG.	inside	the	SetupPackageFiles	function.

Note:	Remember	to	rename	your	image	to	PACKAGE_ICON.PNG	and	PACKAGE_ICON_256.PNG	in	all	CAPS;	otherwise,
Package	Center	will	not	render	the	icon	properly.

Synology	DSM6.0	Developer	Guide

26Essential	Run	Time	Files

#!/bin/bash

#	Copyright	(C)	2000-2016	Synology	Inc.	All	rights	reserved.

###	Use	PKG_DIR	as	working	directory.

PKG_DIR=/tmp/_test_spk

rm	-rf	$PKG_DIR

mkdir	-p	$PKG_DIR

###	get	spk	packing	functions

source	/pkgscripts/include/pkg_util.sh

create_inner_tarball()	{

				local	inner_tarball_dir=/tmp/_inner_tarball

				###	clear	destination	directory

				rm	-rf	$inner_tarball_dir	&&	mkdir	-p	$inner_tarball_dir

				###	install	needed	file	into	PKG_DIR

				make	install	DESTDIR="$inner_tarball_dir"

				###	create	package.txz:	$1=source_dir,	$2=dest_dir

				pkg_make_inner_tarball	$inner_tarball_dir	"${PKG_DIR}"

}

create_spk(){

				local	scripts_dir=$PKG_DIR/scripts

				###	Copy	Package	Center	scripts	to	PKG_DIR

				mkdir	-p	$scripts_dir

				cp	-av	scripts/*	$scripts_dir

				###	Copy	package	icon

				cp	-av	PACKAGE_ICON*.PNG	$PKG_DIR

				###	Generate	INFO	file

				./INFO.sh	>	INFO

				cp	INFO	$PKG_DIR/INFO

				###	Create	the	final	spk.

				#	pkg_make_spk	<source	path>	<dest	path>	<spk	file	name>

				#	Please	put	the	result	spk	into	/image/packages

				#	spk	name	functions:	pkg_get_spk_name	pkg_get_spk_unified_name	pkg_get_spk_family_name

				mkdir	-p	/image/packages

				pkg_make_spk	${PKG_DIR}	"/image/packages"	$(pkg_get_spk_family_name)

}

create_inner_tarball

create_spk

Synology	DSM6.0	Developer	Guide

27Essential	Run	Time	Files

Summary
In	previous	sections,	we	learned	how	to	use	Package	Tool	to	compile	and	pack	your	project.	We	will	list	some	important	notes	here.

Source	Code	Layout:

toolkit/

├──	pkgscripts/

├──	build_env/

│			└──	ds.${platform}-${version}

│							└──	/usr/syno

│											├──	lib

│											├──	bin

│											└──	include

├──	result_spk/

│			└──	${package}-${version}/

│							└──	*.spk

└──	source/

				└──	${project}/

								├──	source	code,	Makefile	...

								├──	INFO.sh

								├──	PACKAGE_ICON.PNG

								├──	PACKAGE_ICON_256.PNG

								├──	scripts/

								│			├──	postinst

								│			├──	postuninst

								│			├──	postupgrade

								│			├──	preinst

								│			├──	preuninst

								│			├──	preupgrade

								│			└──	start-stop-status

								└──	SynoBuildConf/

												├──	build

												├──	depends

												└──	install

The	necessary	files	required	by	PkgCreate.py	are	listed	below.

INFO
SynoBuildConf/build
SynoBuildConf/install
SynoBuildConf/depends
scripts/postinst
scripts/postuninst
scripts/postupgrade
scripts/preinst
scripts/preuninst
scripts/preupgrade
scripts/start-stop-status

Walk-Through	of	Create	Package
1.	 Install	Package	Toolkit
2.	 List	Available	Environments
3.	 Create	Building	Environment	using	EnvDeploy
4.	 Create	GPG	key
5.	 Create	SynoBuildConf/build	SynoBuildConf/install	SynoBuildConf/depends

Synology	DSM6.0	Developer	Guide

28Summary

6.	 Create	scripts	folder	and	scripts
7.	 Build	package	with	PkgCreate.py

Command	Walk-Through

#	Install	Package	Toolkit

mkdir	-p	/toolkit

cd	/toolkit

git	clone	https://github.com/SynologyOpenSource/pkgscripts-ng	pkgscripts

#	Make	Build	Environment

./pkgscripts/EnvDeploy	-v	6.0	--list

./pkgscripts/EnvDeploy	-v	6.0	--info	platform

./pkgscripts/EnvDeploy	-v	6.0	-p	x64	#	for	example

#	Prepare	GPG	key

gpg	--gen-key

>	Please	select	what	kind	of	key	you	want:

			(1)	RSA	and	RSA	(default)

>	choose	key	size	and	enter	your	name,	email

>	enter	a	passphrase:	just	press	Enter	without	typing	any	character

cp	~/.gnupg/*	/toolkit/build_env/ds.x64-6.0/root/.gnupg/

#	Prepare	Project	folder

mkdir	-p	./source/${project}

#	add	source	code,	Makefile,	SynoBuildConf	and	scripts

...

#	Compile	and	Build	Synology	Package

./pkgscripts/PkgCreate.py	-x0	-c	${project}

Synology	DSM6.0	Developer	Guide

29Summary

Compile	Open	Source	Project
This	chapter	will	show	you	how	to	build	an	open	source	project	for	your	DSM	system	using	Package	Toolkit.	If	you	wish	to	compile	the
open	source	project	manually,	please	refer	to	Appendix	B:	Compile	Open	Source	Project	Manually.

As	mentioned	in	Create	Package,	you	have	to	create	SynoBuildConf/build,	SynoBuildConf/install,	and	SynoBuildConf/depends	before
using	Package	Toolkit.

Unlike	the	previous	example,	compiling	an	application	on	most	open	source	projects	may	require	executing	the	following	three	steps:

1.	 	configure	
2.	 	make	
3.	 	make	install	

The	configure	script	consists	of	many	lines	which	are	used	to	check	some	details	about	the	machine	where	the	software	is	going	to	be
installed.	This	script	will	also	check	a	lot	of	dependencies	on	your	system.	When	you	run	the	configure	script,	you	will	see	a	lot	of
output	on	the	screen,	each	being	some	sort	of	question	with	a	respective	yes/no	as	a	reply.	If	any	of	the	major	requirements	are	missing
on	your	system,	the	configure	script	will	exit	and	you	will	not	be	able	to	proceed	with	the	installation	until	you	meet	the	required
conditions.	In	most	cases,	compile	applications	on	some	particular	target	machines	will	require	you	to	modify	the	configure	script
manually	to	provide	the	correct	values.

When	running	the	configure	script	to	configure	software	packages	for	cross-compiling,	you	will	need	to	specify	the		CC	,		LD	,
	RANLIB	,		CFLAGS	,		LDFLAGS	,		host	,		target	,	and		build	.

In	this	chapter,	we	will	use	platform	x64	as	our	example.

Preparation:

First	download	the	tmux	source	code	from	the	official	github	site	or	you	can	download	tmux	from	this	link.

Note:	The	archive	file	you've	downloaded	from	the	above	links	is	different	from	the	official	tmux	source	code.	We	have	added
the	necessary	build	scripts.

Project	Layout:

tmux/

				├──	tmux	related	source	code

				├──	INFO.sh

				├──	scripts/

				└──	SynoBuildConf/

								├──	build

								├──	depends

								└──	install

SynoBuildConf/depends:
The	following	is	the	depends	file	for	this	example.	There	is	nothing	special	about	the	depends	file.

[default]

all="6.0"

SynoBuildConf/build:

Synology	DSM6.0	Developer	Guide

30Compile	Open	Source	Project:	tmux

https://github.com/tmux/tmux
https://github.com/SynologyOpenSource/tmux

The	build	script	is	slightly	different	from	the	previous	one.	Here	you	will	have	to	pass	the	following	environment	variables	to	configure:

CC
AR
CFLAGS
LDFLAGS

In	addition,	since	tmux	is	dependent	on	ncurses,	you	will	need	to	use		pkg-config		to	resolve	the	necessary	header	files	and	libraries	for
tmux.

The	following	is	an	example	of	SynoBuildConf/build:

#!/bin/sh

#	Copyright	(c)	2000-2015	Synology	Inc.	All	rights	reserved.

include	/env.mak

case	${MakeClean}	in

				[Yy][Ee][Ss])

								make	distclean

								;;

esac

NCURSES_INCS="`pkg-config	ncurses	--cflags`"

NCURSES_LIBS="`pkg-config	ncurses	--libs`"

CFLAGS+="${CFLAGS}	${NCURSES_INCS}"

LDFLAGS+="${LDFLAGS}	${NCURSES_LIBS}"

env	CC="${CC}"	AR=${AR}	CFLAGS="${CFLAGS}"	LDFLAGS="${LDFLAGS}"	\

./configure	${ConfigOpt}

make	${MAKE_FLAGS}

SynoBuildConf/install

Instead	of	copying	the	binary	to	the	destination	folder,	most	big	projects	will	use		make	install		to	install	the	binaries	and	libraries.
You	can	pass	the	DESTDIR	environment	variable	to	specify	where	you	want	to	install	the	binaries	and	libraries.

Synology	DSM6.0	Developer	Guide

31Compile	Open	Source	Project:	tmux

#!/bin/bash

#	Copyright	(c)	2000-2015	Synology	Inc.	All	rights	reserved.

PKG_NAME="tmux"

INST_DIR="/tmp/_${PKG_NAME}"

PKG_DIR="/tmp/_${PKG_NAME}_pkg"

PKG_DEST="/image/packages"

PrepareDirs()	{

				for	dir	in	$INST_DIR	$PKG_DIR;	do

								rm	-rf	"$dir"

				done

				for	dir	in	$INST_DIR	$PKG_DIR	$PKG_DEST;	do

								mkdir	-p	"$dir"

				done

}

SetupPackageFiles()	{

				DESTDIR="${INST_DIR}"	make	install

				./INFO.sh	>	INFO

				cp	INFO	"${PKG_DIR}"

				cp	-r	scripts/	"${PKG_DIR}"

}

MakePackage()	{

				source	/pkgscripts/include/pkg_util.sh

				pkg_make_package	$INST_DIR	$PKG_DIR

				pkg_make_spk	$PKG_DIR	$PKG_DEST

}

main()	{

				PrepareDirs

				SetupPackageFiles

				MakePackage	

}

main	"$@"

INFO.sh
As	mentioned	before,	we	will	use	INFO.sh	to	generate	the	INFO	file.

#!/bin/sh

#	Copyright	(c)	2000-2015	Synology	Inc.	All	rights	reserved.

.	/pkgscripts/include/pkg_util.sh

package="tmux"

version="1.9-a"

displayname="tmux"

arch="$(pkg_get_platform)	"

maintainer="Synology	Inc."

description="This	package	will	install	tmux	in	your	DSM	system."

["$(caller)"	!=	"0	NULL"]	&&	return	0

pkg_dump_info

Note:	Remember	to	set	the	executable	bit	of	INFO.sh	file.

Build	and	Create	Package:

Run	the	following	commands	to	compile	the	source	code	and	build	the	package.

/toolkit/pkgscripts/PkgCreate.py	-p	x64	-c	tmux

Synology	DSM6.0	Developer	Guide

32Compile	Open	Source	Project:	tmux

After	the	build	process,	you	can	check	the	result	in		/toolkit/result_spk	.

Verify	the	Result

If	the	building	process	was	successful,	you	will	see	that	the	.spk	file	has	been	placed	under	result_spk	folder.	To	test	the	spk	file,	You
can	use	manual	install	in	Package	Center	to	install	your	package.

Warning:	Remember	to	import	your	keys	to	the	DSM	system	or	select	Any	publisher	in	Package	Center->Settings->General-
>Trust	Level.	Otherwise,	the	installation	will	fail.

You	can	then	try	to	connect	to	the	DSM	using	ssh	and	type	the	following	command	to	fully	scan	your	DSM	machine.

cd	/var/packages/"${PKG_NAME}"/target/usr/local/bin

./tmux

Synology	DSM6.0	Developer	Guide

33Compile	Open	Source	Project:	tmux

Compile	Open	Source	Project:	nmap
This	chapter	will	show	you	how	to	build	an	open	source	project	for	your	DSM	system	using	Package	Toolkit.
The	open	source	project	that	we	are	going	to	build	in	this	example	is	nmap,	a	network	scanning	program.	We	will	use	x64	as	our	build
environment	platform.

If	you	wish	to	compile	an	open	source	project	manually,	please	refer	to	Appendix	B:	Compile	Open	Source	Project	Manually.

As	we	have	mentioned	in	Hello	World	Package,	you	have	to	create	the	SynoBuildConf/build,	SynoBuildConf/install,	and
SynoBuildConf/depends	before	using	Package	Toolkit.

Unlike	the	previous	example,	compiling	an	application	on	most	open	source	projects	may	require	executing	the	following	three	steps:

1.	 	configure	
2.	 	make	
3.	 	make	install	

The	configure	script	consists	of	many	lines	which	are	used	to	check	some	details	about	the	machine	where	the	software	is	going	to	be
installed.	This	script	will	also	check	a	lot	of	dependencies	on	your	system.	When	you	run	the	configure	script,	you	will	see	a	lot	of
output	on	the	screen,	each	being	some	sort	of	question	with	a	respective	yes/no	as	a	reply.	If	any	of	the	major	requirements	are	missing
on	your	system,	the	configure	script	will	exit	and	you	will	not	be	able	to	proceed	with	the	installation	until	you	meet	the	required
conditions.	In	most	cases,	compile	applications	on	some	particular	target	machines	will	require	you	to	modify	the	configure	script
manually	to	provide	the	correct	values.

When	running	the	configure	script	to	configure	software	packages	for	cross-compiling,	you	will	need	to	specify	the		CC	,		LD	,
	RANLIB	,		CFLAGS	,		LDFLAGS	,		host	,		target	,	and		build	.

Preparation:

First,	you	will	need	to	download	the	nmap	source	code	from	the	official	github	site.	You	will	also	need	to	download	the	libpcap	source
code	since	nmap	depends	on	libpcap.	The	libpcap	source	code	can	be	found	here.

The	following	commands	will	download	the	source	code	for	libpacp	and	nmap.

wget	https://nmap.org/dist/nmap-7.01.tar.bz2

tar	xvf	nmap-7.01.tar.bz2	-C	/toolkit/source	

mv	/toolkit/source/nmap-7.01	/toolkit/source/nmap

wget	http://www.tcpdump.org/release/libpcap-1.6.2.tar.gz

tar	xvf	libpcap-1.6.2.tar.gz	-C	/toolkit/source

mv	/toolkit/source/libpcap-1.6.2	/toolkit/source/libpcap

Or	use	git	to	download	source	code

cd	/toolkit/source

git	clone	https://github.com/nmap/nmap

git	clone	https://github.com/the-tcpdump-group/libpcap

cd	libpcap

git	checkout	origin/libpcap-1.6

Please	remember	to	upgrade	the	libpacp	to	version	1.6	or	the	build	package	process	will	fail.

Project	Layout:

After	you	download	the	source	code,	your	toolkit	layout	should	look	like	the	following	figure.

Synology	DSM6.0	Developer	Guide

34Compile	Open	Source	Project:	nmap

https://github.com/nmap/nmap
https://github.com/the-tcpdump-group/libpcap

toolkit/

├──	build_env/

│			└──	ds.${platform}-${version}/

│							└──	/usr/syno/

│											├──	bin

│											├──	include

│											└──	lib

├──	pkgscripts/

└──	source/

				├──nmap/

				│			├──	nmap	related	source	code

				│			├──	INFO.sh

				│			├──	Makefile

				│			├──	Synoscripts/	#	nmap	has	it's	own	scripts	folder

				│			└──	SynoBuildConf/

				│							├──	build

				│							├──	depends

				│							└──	install

				└──libpcap/

								├──	libpcap	related	source	code

								├──	Makefile

								└──	SynoBuildConf/

												├──	build

												├──	depends

												├──	install-dev

												└──	install

The	file,	install-dev,	is	a	special	file	which	we	will	be	covered	in	the	following	section.

SynoBuildConf/depends:

The	SynoBuildConf/depends	for	nmap	is	slightly	different	from	the	previous	example.	Since	nmap	depends	on	libpcap,	we	have	to	add
the	value	to	the	BuildDependent	field,	so	that	the	PkgCreate.py	can	resolve	the	dependency	and	compile	the	project	in	the	correct	order.

The	depends	file	for	nmap	is	as	follows.

[BuildDependent]

libpcap

[default]

all="6.0"

However,	the	SynoBuildConf/depends	for	libpcap	is	the	same	as	the	Hello	World	Example.

[BuildDependent]

[default]

all="6.0"

SynoBuildConf/build:

The	SynoBuildConf/build	script	is	also	different	from	the	previous	one.

Here	you	will	have	to	pass	several	environment	variables	to	configure,	so	that	nmap	can	be	compiled	properly

CC
CXX
LD
AR
STRIP
RANLIB

Synology	DSM6.0	Developer	Guide

35Compile	Open	Source	Project:	nmap

NM
CFLAGS
CXXFLAGS
LDFLAGS

Since	nmap	will	be	compiled	with	many	features	by	default,	we	will	need	to	disable	some	of	them	to	make	it	clean.	The	following	list
contains	the	features	that	will	be	disabled:

ndiff
zenmap
nping
ncat
nmap-update
liblua

Note:	If	you	are	interested	in	some	of	the	above	features	and	you	want	to	enable	them,	just	change	the		--without-${feature}	
into		--with-${feature}	.

The	following	is	the	SynoBuildConf/build	for	nmap

#!/bin/sh

#	Copyright	(c)	2000-2015	Synology	Inc.	All	rights	reserved.

include	/env.mak

PKG_NAME=nmap

INST_DIR=/tmp/_${PKG_NAME}

case	${MakeClean}	in

				[Yy][Ee][Ss])

								make	distclean

								;;

esac

env	CC="${CC}"	CXX="${CXX}"	LD="${LD}"	AR=${AR}	STRIP=${STRIP}	RANLIB=${RANLIB}	NM=${NM}	\

				CFLAGS="${CFLAGS}"	CXXFLAGS="$CXXFLAGS	$CFLAGS"	\

				LDFLAGS="${LDFLAGS}	-lnl	-lnl-genl	-ldbus-1"	\

				./configure	${ConfigOpt}	\

				--prefix=${INST_DIR}	\

				--without-ndiff	\

				--without-zenmap	\

				--without-nping	\

				--without-ncat	\

				--without-nmap-update	\

				--without-liblua	\

				--with-libpcap=/usr/local

make	${MAKE_FLAGS}

In	this	example,	--with-libpcap		is	assigned	with	value		/usr/local	.	We	need	to	install	libpcap's	cross	compiled	product	into
"/usr/local"	so	that	nmap's	configure	can	retrieve	libpcap	correctly.

The	following	is	the	SynoBuildConf/build	for	libpcap.

Synology	DSM6.0	Developer	Guide

36Compile	Open	Source	Project:	nmap

#!/bin/bash

#	Copyright	(c)	2000-2012	Synology	Inc.	All	rights	reserved.

case	${MakeClean}	in

				[Yy][Ee][Ss])

								make	distclean

								;;

esac

case	${CleanOnly}	in

				[Yy][Ee][Ss])

								return

								;;

esac

#	prefix	with	/usr/local,	all	files	will	be	installed	into	/usr/local

env	CC="${CC}"	CXX="${CXX}"	LD="${LD}"	AR=${AR}	STRIP=${STRIP}	RANLIB=${RANLIB}	NM=${NM}	\

				CFLAGS="${CFLAGS}	-Os"	CXXFLAGS="${CXXFLAGS}"	LDFLAGS="${LDFLAGS}"	\

				./configure	${ConfigOpt}	\

				--with-pcap=linux	--prefix=/usr/local

make	${MAKE_FLAGS}

make	install

The	above	script	will	install	libpcap	related	files	into		/usr/local/		in	chroot	environment.	After	installing	libpcap,	nmap	can	find
libpcap's	cross	compiled	products	in		/usr/local	.

Synology	toolkit	provides		libpcap		in	chroot.

>	dpkg	-l	|	grep	libpcap

ii		libpcap-x64-dev																		6.0-7274					all								Synology	build-time	library

nmap	can	use	chroot's	libpcap	by	using		${SysRootPrefix}		variable.

--with-libpcap=${SysRootPrefix}

SynoBuildConf/install

Instead	of	copying	the	binary	to	the	destination	folder,	most	big	projects	will	use		make	install		to	install	the	binaries	and	libraries.
Since	we	have	used	the		--prefix		flag	when	configuring	the	nmap	project,	we	can	just	execute	make	install	and	it	will	install	the
nmap	related	files	to	the	folder	specified	by		--prefix	.

Synology	DSM6.0	Developer	Guide

37Compile	Open	Source	Project:	nmap

#!/bin/bash

#	Copyright	(c)	2000-2015	Synology	Inc.	All	rights	reserved.

PKG_NAME="nmap"

INST_DIR="/tmp/_${PKG_NAME}"

PKG_DIR="/tmp/_${PKG_NAME}_pkg"

PKG_DEST="/image/packages"

PrepareDirs()	{

				for	dir	in	$INST_DIR	$PKG_DIR;	do

								rm	-rf	"$dir"

				done

				for	dir	in	$INST_DIR	$PKG_DIR	$PKG_DEST;	do

								mkdir	-p	"$dir"

				done

}

SetupPackageFiles()	{

				make	install

				./INFO.sh	>	INFO

				cp	INFO	"${PKG_DIR}"

				cp	-r	scripts/	"${PKG_DIR}"

}

MakePackage()	{

				source	/pkgscripts/include/pkg_util.sh

				pkg_make_package	$INST_DIR	$PKG_DIR

				pkg_make_spk	$PKG_DIR	$PKG_DEST

}

main()	{

				PrepareDirs

				SetupPackageFiles

				MakePackage	

}

main	"$@"

INFO.sh
As	mentioned	before,	we	will	use	INFO.sh	to	generate	the	INFO	file.

#!/bin/sh

#	Copyright	(c)	2000-2015	Synology	Inc.	All	rights	reserved.

.	/pkgscripts/include/pkg_util.sh

package="nmap"

version="7.01"

displayname="nmap"

arch="$(pkg_get_platform)	"

maintainer="Synology	Inc."

description="This	package	will	install	nmap	in	your	DSM	system."

["$(caller)"	!=	"0	NULL"]	&&	return	0

pkg_dump_info

Note:	Remember	to	set	the	executable	bit	of	INFO.sh	file.

Build	and	Create	Package:

Lastly,	run	the	following	commands	to	compile	the	source	code	and	build	the	package.

/toolkit/pkgscripts/PkgCreate.py	-p	x64	-x0	-c	nmap

Synology	DSM6.0	Developer	Guide

38Compile	Open	Source	Project:	nmap

After	the	build	process,	you	can	check	the	result	in		/toolkit/result_spk	.

Verify	the	Result

If	the	packing	process	was	successful,	you	will	see	an	spk	file	placed	in	the	result_spk	folder.	To	test	the	spk	file,	you	can	use	manual
install	in	DSM	Package	Center	to	install	your	package.

Warning:	Remember	to	import	your	keys	to	the	DSM	system	or	select	Any	publisher	in	Package	Center->Settings->General-
>Trust	Level.	Otherwise,	the	installation	will	fail.

You	can	then	try	to	connect	to	the	DSM	using	ssh	and	type	the	following	command	to	fully	scan	your	DSM	machine.

cd	/var/packages/nmap/target/usr/local/bin

./nmap	-v	-A	localhost

Synology	DSM6.0	Developer	Guide

39Compile	Open	Source	Project:	nmap

Compile	Kernel	Modules
In	this	chapter,	we	will	provide	the	tutorial	of	building	Linux	kernel	modules	for	the	DSM	system	with	Package	Toolkit.

If	you	have	the	requirement	of	compiling	kernel	modules	manually,	please	refer	to	Appendix	B:	Compile	Kernel	Modules	Manually.

Use	toolkit	to	build	kernel	modules

Synology	toolkit	contain	kernel-dev	which	pack	all	kernel	developer	components	in.	You	can	follow	the	directions	in	pkgscripts-ng	to
set	the	environment	up.

Kernel	related	variables

pkgscripts-ng	build	framework	provides	several	variables	which	are	different	between	platforms.

CROSS_COMPILE:	Cross-compiler	toolchain	prefix.
ARCH:	Target	architecture.
KSRC:	The	path	of	the	store	kernel	source	cross-compiled	product.	It	contains	components	for	compiling	the	kernel	modules.

Example:

In	bromolow:

ROSS_COMPILE=/usr/local/x86_64-pc-linux-gnu/bin/x86_64-pc-linux-gnu-

ARCH=x86_64

KSRC=/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/modules/DSM-6.1/build

In	comcerto2k:

CROSS_COMPILE=/usr/local/arm-unknown-linux-gnueabi/bin/arm-unknown-linux-gnueabi-

ARCH=arm

KSRC=/usr/local/arm-unknown-linux-gnueabi/arm-unknown-linux-gnueabi/sysroot/usr/lib/modules/DSM-6.1/build

Usage

make	KSRC="$KSRC"	CROSS_COMPILE="$CROSS_COMPILE"	ARCH="$ARCH"

Sample	package:	HelloKernel

HelloKernel	is	a	sample	package	for	building	kernel	module.	You	can	get	HelloKernel	at	github.

Before	starting

Please	set	up	your	build	environment	by	following	pkgscripts-ng.

Getting	started

First,	preparing	a	simple	kernel	module	which	prints	message	after		insmod	/	rmmod		the	module.

Synology	DSM6.0	Developer	Guide

40Compile	Kernel	Modules

https://github.com/SynologyOpenSource/pkgscripts-ng
https://github.com/SynologyOpenSource/HelloKernel
https://github.com/SynologyOpenSource/pkgscripts-ng

#include	<linux/module.h>

#include	<linux/kernel.h>

int	init_module(void)	{

				printk(KERN_INFO	"Synology	HelloKernel	package	is	installed.\n");

				return	0;

}

void	cleanup_module(void)	{

				printk(KERN_INFO	"Synology	HelloKernel	package	has	been	removed.\n");

}

Then,	creating	the	Makefile	and	using	KSRC	variable	to	assign	kernel	source	directory.

HELLO_KERNEL=	hello_kernel.ko

all:	$(HELLO_KERNEL)

obj-m	:=	hello_kernel.o

$(HELLO_KERNEL):

				make	-C	$(KSRC)	M=$(PWD)	modules

install:	$(HELLO_KERNEL)

				mkdir	-p	$(DESTDIR)/hello_kernel/

				install	$<	$(DESTDIR)/hello_kernel/

clean:

				rm	-rf	*.o	$(HELLO_KERNEL)	*.cmd

In	order	to	be	compatible	with	the	framework	of	Synology	packages,	you	need	to	create	the	build	script(SynoBuildConf/build)	and
assign	kernel-dev	variables	to	Makefile	for	compiling	kernel	modules.

#!/bin/bash

#	Copyright	(C)	2000-2017	Synology	Inc.	All	rights	reserved.

case	${MakeClean}	in

				[Yy][Ee][Ss])

								make	clean

								;;

esac

make	${MAKE_FLAGS}	KSRC=$KSRC	CROSS_COMPILE=$CROSS_COMPILE	ARCH=$ARCH

In	addition,	you	can	use		PkgCreate.py		to	verify	the	build	script.	Please	refer	to	the	example	of	armadaxp	as	follows:

pkgscripts-ng/PkgCreate.py	-p	armadaxp	-I	HelloKernel

After	running		PkgCreate.py	,		hello_kernel.ko		will	genaratedi	(File	path:	build_env/ds.armadaxp-
6.1/source/HelloKernel/hello_kernel.ko).	You	can	run		insmod	hello_kernel.ko		on	armadaxp	series	model	such	as	ds214+...etc.	If
kernel	module	insert	successfully,	the	message		"Hi~	Synology	kernel	package	installed."		will	show	in		dmesg	.

Synology	provide	the	example	programs	on	github[https://github.com/SynologyOpenSource/HelloKernel].	You	can	clone	the
HelloKernel	repo	and	use		PkgCreate.py		to	generate	spk.

pkgscripts-ng/PkgCreate.py	-c	HelloKernel

Synology	DSM6.0	Developer	Guide

41Compile	Kernel	Modules

https://github.com/SynologyOpenSource/HelloKernel

Advanced
This	section	illustrates	advanced	types	of	usage	for	the	Package	Toolkit.

PkgCreate.py	Command	Option	List

The	following	table	lists	some	of	the	PkgCreate.py	commands.

Option
Name Option	Purpose

(default) Run	build	stage	only	which	include	link	and	compile	source	code.	It's	the	same	as	-U	option.

-p Specify	the	platform	you	want	to	pack	your	project.

-x Build	dependent	project	level.

-c Run	both	build	stage	and	pack	stage	which	include	link	source	code,	compile	source	code,	pack	package	and
sign	the	final	spk.

-U Run	build	stage	only	which	includes	link	and	compile	source	code.

-l Run	build	stage	only,	but	will	only	link	your	source	code.

-L Run	build	stage	only,	but	will	compile	your	source	code	only.

-I Run	pack	stage	only,	which	will	pack	and	sign	your	spk.

--no-sign Tells	PkgCreat.py	not	to	sign	your	spk	file.	for	example,	PkgCreat.py	-I	--no-sign	${project}

-z Run	all	platforms	concurrently.

-J Compile	your	project	with	-J	make	command	options.

-S Disable	silent	make.

The	following	table	shows	the	relationship	between	command	options	in	different	stages.	You	can	choose	the	proper	options	based	on
your	needs.	Option		-c		is	enough	for	most	cases.

Stage Action (default) -l -L -U -I	--no-sign -I -c

Build	Stage Link	Source	code Yes Yes No Yes No No Yes

Build	Stage Compile	Source	code Yes No Yes Yes No No Yes

Pack	Stage Pack	Package No No No No Yes Yes Yes

Pack	Stage Sign	Package No No No No No Yes Yes

Platform-Specific	Dependency

Platform-specific	dependency	means	you	can	have	several	dependent	projects	for	different	platforms	by	appending	":${platform}"	to
the	following	sections:	BuildDependent	and	ReferenceOnly.	The	following	example	shows	816x	and	aramda370	projects	that	are	on
libbar-1.0.

Synology	DSM6.0	Developer	Guide

42Advanced

#	SynoBuildConf/depends

[BuildDependent]

libfoo-1.0

[BuildDependent:816x,armada370]		

libfoo-1.0

libbar-1.0

[default]

all="6.0"

Collect	the	SPK	File	in	Your	Own	Way
By	default,	PkgCreate.py	will	move	the	SPK	file	to	/toolkit/result_spk	according	to	/toolkit/build_env/ds.${platform}-
${version}/source/${project}/INFO.	You	can	have	your	own	collect	operation	by	adding	a	hook,	SynoBuildConf/collect.
SynoBuildConf/collect	can	be	any	executable	shell	script	(so	remember	to	chmod	+x)	and	PkgCreate.py	will	pass	the	following
environment	variables	to	it:

SPK_SRC_DIR:	Source	folder	of	target	SPK	file.
SPK_DST_DIR:	Default	destination	folder	to	put	SPK	file.
SPK_VERSION:	Version	of	package	(according	to	INFO).

The	current	working	directory	of	SynoBuildConf/collect	is	/source/${project}	will	be	under	chroot	environment.

Synology	DSM6.0	Developer	Guide

43Advanced

Package	Introduction
In	package,	you	defines	some	scripts	and	metadata	to	control	the	installation,	un-installation,	upgrading,	starting	and	stopping	processes
as	well	as	how	to	communicate	with	Synology	Package	Center	in	DSM.	Synology	Package	Center	provides	user	interface	to	the	end
user	and	automates	the	processes	and	configuring	packages	to	make	the	end	user	install,	un-install,	upgrade,	start	and	stop	your	package
easily.

Synology	DSM6.0	Developer	Guide

44Synology	Package

Package	Structure
A	Synology	package	is	a	SPK	file	in	tar	format,	containing	metadata	and	files	as	in	the	following:

File/Folder	Name Description File/Folder	Type DSM
Requirement

INFO

This	file	contains	the	information	displayed	in
Package	Center	or	to	control	the	flow	of
installation.	(Please	refer	to	INFO	section	for	more
information)

File 2.0-0731

WIZARD_UIFILES

Optional.	This	folder	contains	files	where
descriptions	of	UI	components	are	shown	during
the	installation,	un-installation,	and	upgrading
process.	

(Please	refer	to	WIZARD_UIFILES	section	for
more	information)

Folder	(Contains
install_uifile,
upgrade_uifile,
uninstall_uifile,

...)

3.2-1922

package.tgz

This	is	a	compressed	file,	containing	all	the	files
that	are	required,	such	as	executable	binary,	library,
or	UI	files.	

(Please	refer	to	package.tgz	section	for	more
information)

.tgz	File 2.0-0731

scripts

This	folder	contains	shell	scripts	which	are
executed	during	the	installation,	uninstalling,
upgrading,	starting,	and	stopping	processes.

(Please	see	the	scripts	section	for	more	information)

Folder	(Contains
preinst,	postinst,

preuninst,
postunist,
preupgrade,
postupgrade,

start-stop-status)

2.0-0731

conf

Optional.	This	folder	contains	configurations.

Note:	
1.	In	DSM	4.2	~	DSM	5.2,	if	you	want	to	configure
files	within	it,	the	support_conf_folder	key	in	the
INFO	file	must	be	set	to	"yes".
2.	In	DSM	6.0,	you	don't	need	to	define	the
support_conf_folder	key	in	the	INFO	file.
(Please	refer	to	conf	section	for	more	information)

Folder	(contains
PKG_DEPS,

PKG_CONX,	...)
4.2-3160

LICENSE Optional.	This	file	is	shown	in	the	installation
process,	and	must	be	less	than	1	MB. File 3.2-1922

PACKAGE_ICON.PNG 72	x	72	.png	image	is	shown	in	Package	Center .png	file 3.2-1922

PACKAGE_ICON_120.PNG

(Deprecated)

120	x	120	.png	image	is	shown	in	Package	Center.	

Note:	It	is	not	compatible	with	all	DSM	versions
because	the	icon	will	not	be	installed	in	DSM	4.1	or
older.	If	your	package	can	be	installed	in	DSM	4.1
or	older,	please	refer	to	the	next	section	to	define
package_icon_120	in	the	INFO	file	instead	of
taking	PACKAGE_ICON_120.PNG.

.png	file 4.2-3160	~
4.3-3810

PACKAGE_ICON_256.PNG

256	x	256	.png	image	is	shown	in	Package	Center.

Note:	It	is	not	compatible	with	all	DSM	versions
because	the	icon	will	not	be	installed	in	DSM	4.3	or
older.	If	your	package	can	be	installed	in	DSM	4.3
or	older,	please	refer	next	section	to	define
package_icon_256	in	INFO	file	to	instead	of	taking
PACKAGE_ICON_256.PNG.

.png	file 5.0-4400

Synology	DSM6.0	Developer	Guide

45Package	Structure

Note:

All	words	are	case	sensitive.
You	can	use	PkgCreate.py	and	pkg_make_spk	to	help	you	create	the	package.	For	more	details,	please	refer	to	
Build	and	Create	Package
Pack	Stage:	SynoBuildConf/install

Synology	DSM6.0	Developer	Guide

46Package	Structure

INFO
The	“INFO”	file	is	used	to	describe	the	information	of	the	package.	Package	Center	will	search	for	information	on	how	to	control	the
installation,	un-installation,	upgrading,	starting	and	stopping	processes	and	listings	in	Package	Center.	For	example,	if	you	would	like
the	package	to	be	dependent	on	some	services,	you	can	define	the	key	as	install_dep_services.	If	you	would	like	to	restart	some
services	after	the	installation	process,	you	can	define	the	key	as	instuninst_restart_services.	Package	Center	will	put	the	“INFO”	file
to	/var/packages/[package	identify]/INFO	after	the	package	is	installed.

INFO	Field	Format:

Each	piece	of	information	in	the	INFO	file	is	defined	by	key/value	pairs	separated	by	an	equals	sign	
e.g.	key="value".

Note:	All	words	in	key	and	value	are	case	sensitive.

INFO	Field	List:

There	are	many	fields	in	an	INFO	file.	We	can	divide	them	into	two	groups:

Necessary	fields:	Necessary	Fields
Optional	fields:	Optional	Fields

The	following	are	some	Code	Words	for	the	INFO	field	list:

apache-sys	=	apache	daemon	listening	on	DSM	ports	(e.g.	5000	or	5001)
apache-web	=	apache	daemon	listening	on	Web	Station	ports	(e.g.	80	or	443).
mdns	=	Multicast	DNS	Service	Discovery
db	=	MySQL	and	PostgreSQL
apple	network	=	Apple	Network
nfs	=	NFS
ssh	=	SSH,	Secure	Shell
pgsql	=	PostgreSQL

The	version	of	DSM	requirement	means	key/value	pairs	in	INFO	works	correctly	in	the	minimum	version	of	DSM.

Writing	INFO	File:

Instead	of	writing	the	INFO	file	by	yourself,	we	have	provided	useful	helper	functions	in	Package	Toolkit	that	will	help	you	create	the
INFO	file.	Please	refer	to	Pack	Stage:	INFO.sh.

Synology	DSM6.0	Developer	Guide

47INFO

Field	Name:	package

Description:	Package	identity.	No	more	than	one	version	of	a	package	can	exist	at	the	same	time	in	the	end	user's	DSM;	therefore,
the	identification	is	unique	to	identify	your	package.	Besides,	Package	Center	will	create	a	/var/packages/[package	identity]	folder
to	put	package	files.

Note:	This	value	of	the	key	cannot	contain	any	of	these	special	characters	:,	/,	>,	<,	|	or	=.

Value:	String

Default	Value:	(Empty)

Example:

package="DownloadStation"

DSM	Requirement:	2.0-0731

Field	Name:	displayname
Description:	Package	Center	shows	the	name	of	the	package.

Note:	If	displayname	key	is	empty,	Package	Center	will	display	the	value	of	package	key.

Value:	String
Default	Value:	The	value	of	package	key
Example:	None
DSM	Requirement:	2.3-1118

Field	Name:	version

Description:	Package	version.	End	users	can	identify	the	package	version.

Note:

1.	 Each	version	delimiter	is	only	allowed	to	be	.	-	or	_.
2.	 Each	version	number	which	is	delimited	by	delimiteris	only	allowed	to	be	number

Value:	String

Default	Value:	(Empty)

Example:

version="3.6-3263"

DSM	Requirement:	2.0-0731

Field	Name:	firmware
Description:	Earliest	version	of	DSM	firmware	that	is	required	to	run	the	package.

Note:	Deprecated	after	6.1-14715,	use	os_min_ver	instead.

Value:	X.Y-Z	DSM	major	number,	DSM	minor	number,	DSM	build	number
Default	Value:	(Empty)
Example:	None
DSM	Requirement:	2.3-1118

Synology	DSM6.0	Developer	Guide

48Necessary	Fields

Field	Name:	os_min_ver

Description:	Earliest	version	of	DSM	that	is	required	to	run	the	package.
Value:	X.Y-Z	DSM	major	number,	DSM	minor	number,	DSM	build	number
Default	Value:	None
Example:

os_min_ver="6.1-14715"

DSM	Requirement:	6.1-14715

Field	Name:	description

Description:	Package	Center	shows	a	short	description	of	the	package.

Value:	String

Default	Value:	(Empty)

Example:

description	=	"Download	Station	is	a	web-based	download	application	which	allows	you	to	download	files	from	the	Internet	through	BT,	FTP,	HTTP,	NZB,	Thunder,	FlashGet,	QQDL,	and	eMule,	and	subscribe	to	RSS	feeds	to	keep	you	updated	on	the	hottest	or	latest	BT.	It	offers	the	auto	unzip	service	to	help	you	extract	compressed	files	to	your	Synology	NAS	whenever	files	are	downloaded.	With	Download	Station,	you	can	download	files	from	multiple	file	hosting	sites,	and	search	for	torrent	files	via	system	default	search	engines	as	well	as	self-added	engines	with	the	BT	search	function."

DSM	Requirement:	2.3-1118

DSM	Requirement:	4.2-3160

Field	Name:	arch
Description:	List	the	CPU	architectures	which	can	be	used	to	install	the	package.

Value:	(arch	values	are	separated	with	a	space.	Please	refer	Appendix	A:	Platform	and	Arch	Value	Mapping	Table	to	more
information)

Default	Value:	noarch

Note:

1.	 "noarch"	means	the	package	can	be	installed	and	work	in	any	platform.	For	example,	the	package	is	written	in	PHP	or	shell
script.

2.	 Please	not	pack	all	binary	files	with	different	platforms	to	one	package	spk	file.

Example:

arch="noarch"

or

arch="x86	alpine".

DSM	Requirement:	2.0-0731

Field	Name:	maintainer
Description:	Package	Center	shows	the	developer	of	the	package.

Value:	String

Synology	DSM6.0	Developer	Guide

49Necessary	Fields

Default	Value:	(Empty)

Example:

maintainer="Synology	Inc."

DSM	Requirement:	2.0-0731

Field	Name:	package_icon

Description:	72x72	png	image	data	is	encoded	by	Base64.

Note:

1.	 This	value	will	be	replaced	when	a	PACKAGE_ICON.PNG	file	is	stored	in	the	[package	name].spk.
2.	 If	the	value	is	not	defined	and	no	PACKAGE_ICON.PNG	file	is	in	the	[package	name].spk,	the	package	icon	will

be	the	default	one.
Value:	Base64-encoded	value

Default	Value:	a	default	icon

Example:	None

DSM	Requirement:	3.2-1922

Field	Name:	package_icon_256

Description:	256x256	png	image	data	is	encoded	by	Base64.

Note:

1.	 This	value	will	be	replaced	when	a	PACKAGE_ICON_256.PNG	file	is	stored	in	the	[package	name].spk.	
2.	 If	the	value	is	not	defined	and	no	PACKAGE_ICON_256.PNG	file	is	in	the	[package	name].spk,	a	72x72	icon	will

be	the	default,	and	the	results	will	look	more	pixelated	and	blurry	in	DSM.
Value:	Base64-encoded	value

Default	Value:	a	default	icon

Example:	None

DSM	Requirement:	5.0-4458

Synology	DSM6.0	Developer	Guide

50Necessary	Fields

Field	Name:	displayname_[DSM	language]

Description:	Package	Center	shows	the	name	in	the	DSM	language	set	by	the	end-user.	DSM	supports	the	following	languages:
enu	(English)
cht	(Traditional	Chinese)
chs	(Simplified	Chinese)
krn	(Korean)
ger	(German)
fre	(French)
ita	(Italian)
spn	(Spanish)
jpn	(Japanese)
dan	(Danish)
nor	(Norwegian)
sve	(Swedish)
nld	(Dutch)
rus	(Russian)
plk	(Polish)
ptb	(Brazilian	Portuguese)
ptg	(European	Portuguese)
hun	(Hungarian)
trk	(Turkish)
csy	(Czech)

Value:	String
Default	Value:	package	name
Example:

displayname_enu="Hello	World"

displayname_cht=""

DSM	Requirement:	2.3-1118

Field	Name:	description_[DSM	language]
Description:	Package	Center	shows	a	short	description	in	the	DSM	language	set	by	the	end-user.
DSM	supports	the	following	languages:

enu	(English)
cht	(Traditional	Chinese)
chs	(Simplified	Chinese)
krn	(Korean)
ger	(German)
fre	(French)
ita	(Italian)
spn	(Spanish)
jpn	(Japanese)
dan	(Danish)
nor	(Norwegian)
sve	(Swedish)
nld	(Dutch)
rus	(Russian)

Synology	DSM6.0	Developer	Guide

51Optional	Fields

plk	(Polish)
ptb	(Brazilian	Portuguese)
ptg	(European	Portuguese)
hun	(Hungarian)
trk	(Turkish)
csy	(Czech)

Value:	String

Default	Value:	description
Example:

description_enu="Hello	World"

description_cht=""

DSM	Requirement:	2.3-1118

Field	Name:	maintainer_url
Description:	If	a	package	has	a	developer	webpage,	Package	Center	will	show	a	link	to	let	the	user	open	it.
Value:	String
Default	Value:	(Empty)
Example:

maintainer_url="http://www.synology.com"

DSM	Requirement:	4.2-3160

Field	Name:	distributor
Description:	Package	Center	shows	the	publisher	of	the	package.
Value:	String
Default	Value:	(Empty)
Example:

distributor="Synology	Inc."

DSM	Requirement:	4.2-3160

Field	Name:	distributor_url

Description:	If	a	package	is	installed	and	has	a	distributer	webpage,	Package	Center	will	show	a	link	to	let	the	user	open	it.
Value:	String
Default	Value:	(Empty)
Example:

distributor_url	="http://www.synology.com/enu/apps/3rd-party_application_integration.php"

DSM	Requirement:	4.2-3160

Field	Name:	support_url

Description:	Package	Center	shows	a	support	link	to	allow	users	to	seek	technical	support	when	needed.

Synology	DSM6.0	Developer	Guide

52Optional	Fields

Value:	String

Default	Value:	(Empty)

Example:

support_url="https://myds.synology.com/support/support_form.php".

Field	Name:	support_center
Description:	If	set	to	“yes,”	Package	Center	displays	a	link	to	make	the	end	user	launch	Synology	Support	Center	Application
when	your	package	is	installed.

Note:	If	set	to	“yes,”	the	report_url	link	won’t	show	in	Package	Center.

Value:	"yes"/"no"
Default	Value:	"no"
Example:	None
DSM	Requirement:	5.0-4458

Field	Name:	model

Description:	List	of	models	on	which	packages	can	be	installed	in	spesific	models.	It	is	organized	by	Synology	string,	architecture
and	model	name.
Value:	(models	are	separated	with	a	space,	e.g.	synology_88f6281_209,	synology_cedarview_rs812rp+,	synology_x86_411+II,
synology_bromolow_3612xs,	synology_cedarview_rs812rp+,	…)
Default	Value:	(Empty)
Example:

model="synology_bromolow_3612xs	synology_cedarview_rs812rp+".

DSM	Requirement:	4.0-2219

Field	Name:	exclude_arch
Description:	List	the	CPU	architectures	where	the	package	can't	be	used	to	install	the	package.

Note:	Be	careful	to	use	this	exclude_arch	field.	If	the	package	has	different	exclude_arch	value	in	the	different	versions,
the	end	user	can	install	the	package	in	the	specific	version	without	some	arch	values	of	exclude_arch.

Value:	(arch	values	are	separated	with	a	space.	Please	refer	Appendix	A:	Platform	and	Arch	Value	Mapping	Table	to	more
information)
Default	Value:	(Empty)
Example:	None
DSM	Requirement:	6.0
Example:

exclude_arch="bromolow	cedarview".

Field	Name:	checksum
Description:	Contains	MD5	string	to	verify	the	package.tgz.
Value:	String
Default	Value:	(Empty)

Synology	DSM6.0	Developer	Guide

53Optional	Fields

Example:	None
DSM	Requirement:	3.2-1922

Field	Name:	adminport

Description:	A	package	listens	to	a	specific	port	to	display	its	own	UI.	If	the	package	is	defined	by	a	port,	a	link	will	be	opened
when	the	package	is	started.

Note:	adminprotocol,	adminportand	adminurl	keys	are	combined	to	adminprotocol://ip:adminport/adminurl	link

Value:	0~65536
Default	Value:	80
Example:

adminport="9002"

DSM	Requirement:	2.0-0731

Field	Name:	adminurl
Description:	If	a	package	is	installed	and	has	a	webpage,	a	link	will	be	opened	when	the	package	is	started.

Note:	adminprotocol,	adminportand	adminurl	keys	are	combined	to	adminprotocol://ip:adminport/adminurl	link

Value:	String
Default	Value:	(Empty)
Example:

adminurl="web"

DSM	Requirement:	2.3-1118

Field	Name:	adminprotocol

Description:	A	package	uses	a	specific	protocol	to	display	its	own	UI.	If	a	package	is	installed	and	has	a	webpage,	a	protocol	will
be	opened	when	the	package	is	started.

Note:	adminprotocol,	adminportand	adminurl	keys	are	combined	to	adminprotocol://ip:adminport/adminurl	link

Value:	http	/	https	
(Separated	with	a	space)
Default	Value:	http
Example:

adminprotocol="http"

DSM	Requirement:	3.2-1922

Field	Name:	dsmuidir

Description:	DSM	UI	folder	name	in	package.tgz.	The	UI	folder	of	the	package	in	/var/packges/[packge
name]/target/[dsmuidir]	will	be	automatically	linked	to	the	DSM	UI	folder	in	/usr/syno/synoman/webman/3rdparty/[package
name]	to	show	your	package's	shortcut	in	DSM	after	the	package	is	started.	To	remove	the	link,	after	the	package	is	stopped.

Synology	DSM6.0	Developer	Guide

54Optional	Fields

Note:

1.	 This	key	cannot	contain	:	or	/.
2.	 Please	refer	Integrate	Your	package	into	DSM	for	more	information.

Value:	String
Default	Value:	(Empty)
Example:	None
DSM	Requirement:	3.2-1922

Field	Name:	dsmappname

Description:	The	value	of	each	individual	application	will	be	equal	to	the	unique	property	name	in	DSM’s	config	file	so	as	to	be
integrated	into	Synology	DiskStation.

Note:	Please	refer	Config	in	Integrate	Your	package	into	DSM	chapter	for	more	information.

Value:	(Separated	with	a	space)
Default	Value:	(Empty)
Example:

dsmappname="SYNO.SDS.PhotoStation	SYNO.SDS.PersonalPhotoStation"

DSM	Requirement:	3.2-1922

Field	Name:	checkport

Description:	Check	if	there	is	any	conflict	between	the	adminport	and	the	ports	which	are	reserved	or	are	listening	on	DSM
except	web-service	ports	(e.g.	80,	443)	and	DSM	ports	(e.g.	5000,	5001).
Value:	"yes"/"no"
Default	Value:	"yes"
Example:	None
DSM	Requirement:	3.2-1922

Field	Name:	startable

Description:	When	no	program	in	the	package	provides	the	end-user	with	the	options	to	enable	or	disable	its	function.	This	key	is
set	to	"no"	and	the	end-user	cannot	start	or	stop	the	package	in	Package	Center.

Note:	Deprecated	after	6.1-14907,	use	ctl_stop	instead.	
If	“startable”	is	set	to	“no”,	start-stop-status	script	which	runs	in	bootup	or	shotdown	is	still	required.

Value:	"yes"/"no"
Default	Value:	"yes"
Example:	None
DSM	Requirement:	3.2-1922

Field	Name:	ctl_stop
Description:	When	no	program	in	the	package	provides	the	end-user	with	the	options	to	enable	or	disable	its	function.	This	key	is
set	to	"no"	and	the	end-user	cannot	start	or	stop	the	package	in	Package	Center.

Note:	If	“ctl_stop”	is	set	to	“no”,	start-stop-status	script	which	runs	in	bootup	or	shotdown	is	still	required.

Value:	"yes"/"no"
Default	Value:	"yes"
Example:	None

Synology	DSM6.0	Developer	Guide

55Optional	Fields

DSM	Requirement:	6.1-14907

Field	Name:	ctl_uninstall

Description:	If	this	key	is	set	to	"no",	the	end-user	cannot	uninstall	the	package	in	Package	Center.
Value:	"yes"/"no"
Default	Value:	"yes"
Example:	None
DSM	Requirement:	6.1-14907

Field	Name:	precheckstartstop

Description:	If	set	to	"yes",	let	start-stop-status	with	prestart	or	prestop	argument	run	before	start	or	stop	the	package.	Please	refer
to	start-stop-status	in	scripts	for	more	information.
Value:	"yes"/"no"
Default	Value:	"yes"
Example:	None
DSM	Requirement:	6.0

Field	Name:	helpurl

Description:	If	a	package	is	installed	and	has	a	"help"	webpage,	Package	Center	will	display	a	hyperlink	to	the	user.
Value:	String
Default	Value:	(Empty)
Example:

helpurl="https://www.synology.com/en-global/knowledgebase"

DSM	Requirement:	3.2-1922

Field	Name:	beta

Description:	If	this	package	is	considered	the	beta	version,	the	beta	information	will	be	shown	in	Package	Center.
Value:	"yes"/"no"
Default	Value:	"no"
Example:	None
DSM	Requirement:	6.0

Field	Name:	report_url

Description:	If	a	package	is	a	beta	version	and	has	a	"report"	webpage,	Package	Center	will	display	a	hyperlink.	If	this	package	is
considered	the	beta	version,	the	beta	information	will	be	also	be	shown	in	Package	Center.
Value:	String
Default	Value:	(Empty)
Example:	None
DSM	Requirement:	3.2-1922

Field	Name:	install_reboot

Synology	DSM6.0	Developer	Guide

56Optional	Fields

Description:	Reboot	DiskStation	after	installing	or	upgrading	the	package.
Value:	"yes"/"no"
Default	Value:	"no"
Example:	None
DSM	Requirement:	3.2-1922

Field	Name:	install_dep_packages

Description:	Before	a	package	is	installed	or	upgraded,	these	packages	must	be	installed	first.	In	addition,	the	order	of	starting	or
stopping	packages	is	also	dependent	on	it.	The	format	consists	of	a	package	name.	If	more	than	one	dependent	packages	are
required,	the	package	name	of	the	package(s)	will	be	separated	with	a	colon,	e.g.	install_dep_packages="packageA".	If	a
specific	version	range	is	required,	package	name	will	be	followed	by	one	of	the	special	characters	=,	<,	>,	>=,	<=	and	package
version	which	is	composed	by	number	and	periods,	e.g.	install_dep_packages="packageA>2.2.2:packageB".

Note:	>=	and	<=	operator	only	supported	in	DSM	4.2	or	newer.	Don’t	use	<=	and	>=	if	a	package	can	be	installed	in	DSM
4.1	or	older	because	it	cannot	be	compared	correctly.	Instead,	the	package	version	should	be	set	lower	or	higher.

Value:	Package	names
Note:	Each	package	name	is	separated	with	a	colon.

Default	Value:	(Empty)
Example:

install_dep_packages="packageA"

or

install_dep_packages="packageA>2.2.2:packageB"

DSM	Requirement:	3.2-1922

Field	Name:	install_conflict_packages

Description:	Before	your	package	is	installed	or	upgraded,	these	conflict	packages	cannot	be	installed.	The	format	consists	of	a
package	name,	e.g.	install_conflict_packages="packageA".	If	more	than	one	conflict	packages	are	required	with	the	format,	the
name	of	the	package(s)	will	be	separated	with	a	colon,	e.g.	install_conflict_packages="packageA:packageB".	If	a	specific
version	range	is	required,	package	name	will	be	followed	by	one	of	the	special	characters	=,	<,	>,	>=,	<=	and	package	version
which	is	composed	by	number	and	periods,	e.g.	install_conflict_packages="packageA>2.2.2:packageB".

Note:	>=	and	<=	operator	only	supported	in	DSM	4.2	or	newer.	Do	not	use	<=	and	>=	if	a	package	can	be	installed	in	DSM
4.1	because	it	can’t	be	compared	correctly.	Instead,	the	package	version	should	be	set	lower	or	higher.

Value:	Package	names
Note:	Each	package	name	is	separated	with	a	colon.

Default	Value:	(Empty)
Example:

install_conflict_packages="packageA:packageB"

or

install_conflict_packages="packageA>2.2.2:packageB"

DSM	Requirement:	4.1-2851

Field	Name:	install_break_packages

Description:	After	your	package	is	installed	or	upgraded,	these	to-be-broken	packages	will	be	stopped	and	remain	broken	during
the	existence	of	your	package.	The	format	consists	of	a	package	name,	e.g.	install_break_packages="packageA".	If	more	than
one	to-be-broken	packages	are	required	with	the	format,	the	name	of	the	package(s)	will	be	separated	with	a	colon,	e.g.

Synology	DSM6.0	Developer	Guide

57Optional	Fields

install_break_packages="packageA:packageB".	If	a	specific	version	range	is	required,	package	name	will	be	followed	by	one
of	the	special	characters	=,	<,	>,	>=,	<=	and	package	version	which	is	composed	by	number	and	periods,	e.g.
install_break_packages="packageA>2.2.2:packageB".
Value:	Package	names

Note:	Each	package	name	is	separated	with	a	colon.

Default	Value:	(Empty)
Example:

install_break_packages="packageA:packageB"

or

install_break_packages="packageA>2.2.2:packageB"

DSM	Requirement:	6.1-15117

Field	Name:	install_replace_packages
Description:	After	your	package	is	installed	or	upgraded,	these	to-be-replaced	packages	will	be	removed.	The	format	consists	of	a
package	name,	e.g.	install_replace_packages="packageA".	If	more	than	one	to-be-replaced	packages	are	required	with	the
format,	the	name	of	the	package(s)	will	be	separated	with	a	colon,	e.g.	install_replace_packages="packageA:packageB".	If	a
specific	version	range	is	required,	package	name	will	be	followed	by	one	of	the	special	characters	=,	<,	>,	>=,	<=	and	package
version	which	is	composed	by	number	and	periods,	e.g.	install_replace_packages="packageA>2.2.2:packageB".
Value:	Package	names

Note:	Each	package	name	is	separated	with	a	colon.

Default	Value:	(Empty)
Example:

install_replace_packages="packageA:packageB"

or

install_replace_packages="packageA>2.2.2:packageB"

DSM	Requirement:	6.1-15117

Field	Name:	instuninst_restart_services

Description:	Reload	services	after	installing,	upgrading	and	uninstalling	the	package.
Note:

1.	 If	the	service	is	not	enabled	or	started	by	the	end-user,	services	won't	be	reloaded
2.	 If	the	install_reboot	is	set	to	“yes”,	this	value	is	ignored	in	the	installation	process.

Value:	
DSM	4.3	or	older:	apache-sys,	apache-web,	mdns,	samba,	db,	applenetwork,	cron,	nfs,	firewall
DSM	5.0	~	DSM	5.2:	apache-sys,	apache-web,	mdns,	samba,	applenetwork,	cron,	nfs,	firewall
DSM	6.0:	nginx,	mdns,	samba,	applenetwork,	cron,	nfs,	firewall

Note:	Each	service	is	separated	with	a	space.

Default	Value:	(Empty)
Example:

instuninst_restart_services="apache-sys	apache-web"

DSM	Requirement:	3.2-1922

Field	Name:	startstop_restart_services

Synology	DSM6.0	Developer	Guide

58Optional	Fields

Description:	Reload	services	after	starting	and	stopping	the	package.
Note:

1.	 If	the	service	is	not	enabled	or	started	by	the	end-user,	services	won't	be	reloaded.
2.	 If	startable	is	set	to	“no”,	the	value	is	ignored.

Value:
DSM	4.3	or	older:	apache-sys,	apache-web,	mdns,	samba,	db,	applenetwork,	cron,	nfs,	firewall
DSM	5.0	~	DSM	5.2:	apache-sys,	apache-web,	mdns,	samba,	applenetwork,	cron,	nfs,	firewall
DSM	6.0:	nginx,	mdns,	samba,	applenetwork,	cron,	nfs,	firewall

Note:	Each	service	is	separated	with	a	space.

Default	Value:	(Empty)
Example:

startstop_restart_services="apache-sys	apache-web"

DSM	Requirement:	3.2-1922

Field	Name:	install_dep_services

Description:	Before	the	package	is	installed	or	upgraded,	these	services	must	be	started	or	enabled	by	the	end-user.
Value:	
DSM	4.2	or	older:	apache-web,	mysql,	php_disable_safe_exec_dir
DSM	4.3:	apache-web,	mysql,	php_disable_safe_exec_dir,	ssh
DSM	5.0	~	DSM	5.2:	apache-web,	php_disable_safe_exec_dir,	ssh,	pgsql
DSM	6.0:	ssh,	pgsql

Note:	Each	service	is	separated	with	a	space.

Default	Value:	(Empty)
Example:

install_dep_services="apache-web	ssh"

DSM	Requirement:	3.2-1922

Field	Name:	start_dep_services
Description:	Before	the	package	is	started,	these	services	must	be	started	or	enabled	by	the	end-user.	If	startable	is	set	to	“no”,	this
value	is	ignored.
Value:	
DSM	4.2	or	older:	apache-web,	mysql,	php_disable_safe_exec_dir
DSM	4.3:	apache-web,	mysql,	php_disable_safe_exec_dir,	ssh
DSM	5.0	~	DSM	5.2:	apache-web,	php_disable_safe_exec_dir,	ssh,	pgsql
DSM	6.0:	ssh,	pgsql

Note:	Each	service	is	separated	with	a	space.

Default	Value:	(Empty)
Example:

install_dep_services="apache-web	ssh"

DSM	Requirement:	3.2-1922

Field	Name:	extractsize

Synology	DSM6.0	Developer	Guide

59Optional	Fields

Description:	This	value	indicates	the	minimal	space	to	install	a	package.	It	will	be	used	to	prompt	the	user	if	there	is	enough	free
space	to	install	it.

Note:

1.	 In	DSM	5.2	or	order,	the	size	based	on	byte	unit.
2.	 In	DSM	6.0	or	newer,	the	size	based	on	kilobyte	unit.

Value:	Size	unit
Default	Value:	The	byte	size	of	SPK	file	of	package
Example:

extractsize="253796"

DSM	Requirement:	4.0-2166

Field	Name:	support_conf_folder
Description:	In	DSM	5.2	or	order,	if	you	want	to	use	some	special	configuration	files	within	a	"conf"	folder,	this	value	must	be	set
to	"yes".	More	details	are	given	in	the	"conf"	section.	Howerver,	in	DSM	6.0	or	newer,	you	don't	need	to	define	it	anymore.

Note:	Deprecated	in	DSM	6.0

Value:	"yes"/"no"
Default	Value:	"no"
Example:

support_conf_folder="yes"

DSM	Requirement:	4.2-3160	~	5.2

Field	Name:	install_type

Description:	If	set	to	“system”,	your	package	will	be	installed	in	the	root	file	system,	/usr/local/packages/@appstore/,	even	if
there	is	no	volume.

Note:	Be	careful	when	setting	this,	as	it	may	result	in	the	DiskStation	crashing	if	your	package	runs	out	of	the	space	in	the
root	file	system.

Value:	"system"
Default	Value:	(Empty)
Example:

install_type="system"

DSM	Requirement:	5.0-4458

Field	Name:	silent_install

Description:	If	set	to	“yes”,	your	package	is	allowed	to	be	installed	without	the	package	wizard	in	the	background.	This	allows
CMS	(Central	Management	System)	to	distribute	package	installation	to	other	NAS	connected.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

silent_install="yes"

DSM	Requirement:	5.0-4458

Synology	DSM6.0	Developer	Guide

60Optional	Fields

Field	Name:	silent_upgrade

Description:	If	set	to	“yes”,	your	package	is	allowed	to	be	upgraded	without	the	package	wizard	in	the	background.	End	user
cannot	modify	any	information	for	upgrading.	This	allows	not	only	your	package	to	be	upgraded	automatically	but	also	for	CMS
(Central	Management	System)	to	distribute	package	upgrades	to	other	NAS	connected.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

silent_upgrade="yes"

DSM	Requirement:	5.0-4458

Field	Name:	silent_uninstall
Description:	If	set	to	“yes”,	your	package	is	allowed	to	be	uninstalled	without	the	package	wizard	in	the	background.	This	allows
CMS	(Central	Management	System)	to	distribute	package	uninstallation	to	other	NAS	connected.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

silent_uninstall="yes"

DSM	Requirement:	5.0-4458

Field	Name:	auto_upgrade_from
Description:	It	is	set	to	a	version	of	your	package.	If	your	package	is	set	to	silent_upgrade="yes"	and	the	value	is	set,	Package
Center	only	upgrades	your	package	automatically	from	the	installed	package	with	the	version	or	the	newer	version.	However,	if	the
end	user	install	a	older	version	than	it,	Package	Center	won't	upgrade	it	automatically	and	the	user	must	upgrade	it	by	themself.
Value:	(a	package	version)
Default	Value:	(Empty	string)
Example:

auto_upgrade_from="2.0"

DSM	Requirement:	5.2-5565

Field	Name:	offline_install

Description:	If	set	to	"yes",	after	the	package	is	published	in	synology	server,	it	won't	be	shown	in	the	package	list	of	Package
Center	from	Synology	server.	However,	the	user	can	install	the	package	manually.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

offline_install="yes"

DSM	Requirement:	DSM	6.0

Field	Name:	thirdparty

Synology	DSM6.0	Developer	Guide

61Optional	Fields

Description:	If	set	to	“yes”,	your	package	is	a	third-party	package	and	isn't	developed	by	Synology.	In	Package	Center,	third-pary
pacakges	will	be	shown	in	another	part.

Note:	It's	not	used	in	DSM	5.0	or	newer.

Value:	"yes"/"no"
Default	Value:	"no"
Example:

thirdparty="yes"

DSM	Requirement:	4.0~4.3

Field	Name:	os_max_ver
Description:	Maximum	version	of	DSM	that	is	capable	to	run	the	package.
Value:	X.Y-Z	DSM	major	number,	DSM	minor	number,	DSM	build	number
Default	Value:	None
Example:

os_max_ver="6.1-14715"

DSM	Requirement:	6.1-14715

Synology	DSM6.0	Developer	Guide

62Optional	Fields

package.tgz
The	package.tgz	is	a	compressed	file	containing	all	the	files	you	would	need	when	building	up	your	applications.	For	example,

executable	files
libraries
UI	files
configuration	files

You	can	use	pkg_make_package	function	to	create	the	package.tgz.	For	more	details	about	how	to	create	the	package.tgz,	please	refer
to	
Pack	Stage:	SynoBuildConf/install.

After	you	install	your	package,	Package	Center	will	extract	package.tgz	to	@appstore	folder	(/volume?/@appstore/	with	the	assigned
volume	or	/usr/local/packages/@appstore/).	In	addition,	Package	Center	will	also	create	a	soft	link	in	/var/packages/[package
identity]/target	and	point	to	the	assigned	folder.

Note:	

1.	 In	DSM	5.2	or	older,	package.tgz	must	be	tgz	format.
2.	 In	DSM	6.0	or	newer,	package.tgz	can	be	tgz	or	xz	format,	but	the	file	name	must	be	package.tgz.

Synology	DSM6.0	Developer	Guide

63package.tgz

scripts
This	folder	contains	shell	scripts	which	will	be	executed	during	the	installation,	un-installation,	upgrading,	starting,	and	stopping	of
packages.	Package	Center	will	put	the	scripts	to	/var/packages/[package	identify]/scripts/	after	the	package	is	installed.	There	are
seven	basic	script	files	stored	in	the	scripts	folder.

1.	 preinst:	This	script	is	run	before	the	package	files	are	transferred	to	@appstore.	You	can	check	if	the	installation	requirements
meet	the	DSM	or	package	version,	or	if	some	services	are	enabled	in	this	script.	
For	non-zero	returned	values,	you	can	compile	error	messages	in	the	SYNOPKG_TEMP_LOGFILE	file	to	prompt	the	user	(e.g.
	echo	"Hello!!"	>	$SYNOPKG_TEMP_LOGFILE).	You	can	also	write	messages	in	the	SYNOPKG_TEMP_LOGFILE	file	for	zero
returned	values	which	represent	that	the	process	was	successful.

2.	 postinst:	This	script	is	run	after	the	package	files	are	transferred	to	@appstore.	You	can	change	the	file	permission	and	ownership
in	this	script.	
For	non-zero	returned	values,	you	can	compile	error	messages	in	the	SYNOPKG_TEMP_LOGFILE	file	to	prompt	the	user	(e.g.
	echo	"Hello!!"	>	$SYNOPKG_TEMP_LOGFILE).	You	can	also	write	messages	in	the	SYNOPKG_TEMP_LOGFILE	file	for	zero
returned	values	which	represent	that	the	process	was	successful.

3.	 preuninst:	This	script	is	run	before	the	package	is	removed.	
For	non-zero	returned	values,	you	can	compile	error	messages	in	the	SYNOPKG_TEMP_LOGFILE	file	to	prompt	the	user	(e.g.
	echo	"Hello!!"	>	$SYNOPKG_TEMP_LOGFILE).	You	can	also	write	messages	in	the	SYNOPKG_TEMP_LOGFILE	file	for	zero
returned	values	which	represent	that	the	process	was	successful.

4.	 postuninst:	This	script	is	run	after	the	package	is	removed	from	the	system.	
For	non-zero	returned	values,	you	can	compile	error	messages	in	the	SYNOPKG_TEMP_LOGFILE	file	to	prompt	the	user	(e.g.
	echo	"Hello!!"	>	$SYNOPKG_TEMP_LOGFILE).	You	can	also	write	messages	in	the	SYNOPKG_TEMP_LOGFILE	file	for	zero
returned	values	which	represent	that	the	process	was	successful.

5.	 preupgrade:	Package	Center	will	call	this	script	before	uninstalling	the	old	version	of	your	package.
For	non-zero	returned	values,	you	can	compile	error	messages	in	the	SYNOPKG_TEMP_LOGFILE	file	to	prompt	the	user(e.g.
	echo	"Hello!!"	>	$SYNOPKG_TEMP_LOGFILE).	You	can	also	write	messages	in	the	SYNOPKG_TEMP_LOGFILE	file	for	zero
returned	values	which	represent	that	the	process	was	successful.

6.	 postupgrade:	Package	Center	will	call	this	script	after	installing	the	new	version	of	your	package.	
For	non-zero	returned	values,	you	can	compile	error	messages	in	the	SYNOPKG_TEMP_LOGFILE	file	to	prompt	the	user(e.g.
	echo	"Hello!!"	>	$SYNOPKG_TEMP_LOGFILE).	You	can	also	write	messages	in	the	SYNOPKG_TEMP_LOGFILE	file	for	zero
returned	values	which	represent	that	the	process	was	successful.

7.	 start-stop-status:	This	script	is	used	to	start	and	stop	a	package,	detect	running	status,	and	generate	the	log	file.	Parameters	used
by	the	script	are	listed	in	below:

i.	 start:	When	the	user	clicks	"Run"	to	run	the	package	or	the	NAS	is	turned	on,	the	Package	Center	will	call	this	script	with	the
"start"	parameter.	A	returned	value	will	then	be	acquired.	
For	non-zero	returned	values,	you	can	compile	error	messages	in	the	SYNOPKG_TEMP_LOGFILE	file	to	prompt	the	user
(e.g.		echo	"Start	failed"	>	$SYNOPKG_TEMP_LOGFILE).	You	can	also	write	messages	in	the
SYNOPKG_TEMP_LOGFILE	file	for	zero	returned	values	which	represent	that	the	process	was	successful.

ii.	 stop:	When	the	user	clicks	"Stop"	to	stop	running	the	package	or	the	NAS	is	turned	off,	the	Package	Center	will	call	this
script	with	the	"stop"	parameter.	A	returned	value	will	then	be	acquired.	
For	non-zero	returned	values,	you	can	compile	error	messages	in	the	SYNOPKG_TEMP_LOGFILE	file	to	prompt	the	user
(e.g.		echo	"Stop	failed"	>	$SYNOPKG_TEMP_LOGFILE).	You	can	also	write	messages	in	the	SYNOPKG_TEMP_LOGFILE
file	for	zero	returned	values	which	represent	that	the	process	was	successful.

iii.	 status:	When	Package	Center	is	opened	to	check	package	status,	it	will	send	a	request	to	ask	the	status	of	the	package	using
this	parameter.	The	following	exit	status	codes	should	be	returned:

Synology	DSM6.0	Developer	Guide

64scripts

0:	package	is	running.

1:	program	of	package	is	dead	and	/var/run	pid	file	exists.

2:	program	of	package	is	dead	and	/var/lock	lock	file	exists

3:	package	is	not	running

4:	package	status	is	unknown

150:	package	is	broken	and	should	be	reinstalled.	Please	note,	broken	status	(150)	is	only	supported	by	DSM	4.2	and	later.

iv.	 log:	When	a	log	page	is	opened	in	Package	Center,	Package	Center	will	send	a	request	to	ask	the	log	of	the	package	using	this
parameter.	When	the	log	file	name	is	sent	to	STDOUT,	the	content	of	the	log	file	will	be	displayed.

v.	 prestart:	If	precheckstartstop	in	INFO	is	set	to	"yes",	it	is	run	for	checking	if	it's	allowed	to	the	end	user	to	start	your
package	in	some	situations	or	not.	For	zero	returned	value,	the	end	user	can	start	your	package.	For	non-zero	returned	values,
the	end	user	isn't	allowed	to	start	your	package	and	you	can	compile	error	messages	in	the	SYNOPKG_TEMP_LOGFILE
file	to	prompt	the	user	(e.g.		echo	"Start	failed"	>	$SYNOPKG_TEMP_LOGFILE)

Note:	

i.	 It	only	works	in	DSM	6.0	or	newer.
ii.	 It	won't	run	after	starting	a	package	at	booting	up.

vi.	 prestop:	If	precheckstartstop	in	INFO	is	set	to	"yes",	it	is	run	for	checking	if	it's	allowed	to	the	end	user	to	stop	your
package	in	some	situations	or	not.	For	zero	returned	value,	the	end	user	can	stop	your	package.	For	non-zero	returned	values,
the	end	user	isn't	allowed	to	stop	your	package	and	you	can	compile	error	messages	in	the	SYNOPKG_TEMP_LOGFILE
file	to	prompt	the	user	(e.g.		echo	"Stop	failed"	>	$SYNOPKG_TEMP_LOGFILE)

Note:

i.	 It	only	works	in	DSM	6.0	or	newer.
ii.	 It	won't	run	before	stopping	a	package	at	shutting	down.

To	install	a	package:

preinst
postinst
start-stop-status	with	prestart	argument	if	end	user	chooses	to	start	it	immediately
start-stop-status	with	start	argument	if	end	user	chooses	to	start	it	immediately

To	upgrade	a	package:

start-stop-status	with	prestop	argument	if	it	has	been	started
start-stop-status	with	stop	argument	if	it	has	been	started
preupgrade
preuninst
postuninst
preinst
postinst
postupgrade
start-stop-status	with	prestart	argument	if	it	was	started	before	being	upgraded
start-stop-status	with	start	argument	if	it	was	started	before	being	upgraded

To	uninstall	a	package:

start-stop-status	with	prestop	argument	if	it	has	been	started
start-stop-status	with	stop	argument	if	it	has	been	started
preuninst
postuninst

To	start	a	package:

Synology	DSM6.0	Developer	Guide

65scripts

start-stop-status	with	prestart	argument
start-stop-status	with	start	argument

To	stop	a	package:

start-stop-status	with	prestop	argument
start-stop-status	with	stop	argument

Note:	start-stop-status	with	prestart	or	prestop	argument	is	only	supported	in	DSM	6.0	or	newer.

Synology	DSM6.0	Developer	Guide

66scripts

Script	Environment	Variables
Several	variables	are	exported	by	Package	Center	and	can	be	used	in	the	scripts.	Descriptions	of	the	variables	are	given	as	below:

SYNOPKG_PKGNAME:	Package	identify	which	is	defined	in	INFO.
SYNOPKG_PKGVER:	Package	version	which	is	defined	in	INFO.
SYNOPKG_PKGDEST:	Target	directory	where	the	package	is	stored.
SYNOPKG_PKGDEST_VOL:	Target	volume	where	the	package	is	stored.

Note:	It's	only	available	in	DSM	4.2	or	above.

SYNOPKG_PKGPORT:	adminport	port	which	is	defined	in	INFO.	This	port	will	be	occupied	by	this	package	with	its
management	interface.
SYNOPKG_PKGINST_TEMP_DIR:	The	temporary	directory	where	the	package	are	extracted	when	installing	or	upgrading	it.
SYNOPKG_TEMP_LOGFILE:	A	temporary	file	path	for	a	script	to	log	information	or	error	messages.
SYNOPKG_TEMP_UPGRADE_FOLDER:	The	temporary	directory	when	the	package	is	upgrading.	You	can	move	the	files
from	the	previous	version	of	the	package	to	it	in	preupgrade	script	and	move	them	back	in	postupgrade.

Note:	It's	only	available	in	DSM	6.0	or	above.

SYNOPKG_DSM_LANGUAGE:	End	user's	DSM	language.
SYNOPKG_DSM_VERSION_MAJOR:	End	user’s	major	number	of	DSM	version	which	is	formatted	as	[DSM	major	number].
[DSM	minor	number]-[DSM	build	number].
SYNOPKG_DSM_VERSION_MINOR:	End	user’s	minor	number	of	DSM	version	which	is	formatted	as	[DSM	major	number].
[DSM	minor	number]-[DSM	build	number].
SYNOPKG_DSM_VERSION_BUILD:	End	user’s	DSM	build	number	of	DSM	version	which	is	formatted	as	[DSM	major
number].[DSM	minor	number]-[DSM	build	number].
SYNOPKG_DSM_ARCH:	End	user’s	DSM	CPU	architecture.	Please	refer	Appendix	A:	Platform	and	Arch	Value	Mapping	Table
to	more	information
SYNOPKG_PKG_STATUS:	Package	status	presented	by	these	values:	INSTALL,	UPGRADE,	UNINSTALL,	START,	STOP	or
empty.
1.	 INSTALL	will	be	set	as	the	status	value	in	the	preinst	and	postinst	scripts	while	the	package	is	installing.	If	the	user	chooses

to	“start	after	installation”	at	the	last	step	of	the	installation	wizard,	the	value	will	be	set	to	INSTALL	in	the	start-stop-status
script	when	the	package	is	started.

2.	 UPGRADE	will	be	set	as	the	status	value	in	the	preupgrade,	preuninst,	postunist,	preinst,	postinst	and	postupgrade
scripts	sequentially	while	the	package	is	upgrading.	If	the	package	has	already	started	before	upgrade,	the	value	will	be	set	to
UPGRADE	in	the	start-stop-status	script	when	the	package	is	started	or	stopped.

3.	 UNINSTALL	will	be	set	as	the	status	value	in	the	preuninst	and	postunist	scripts	while	the	package	is	un-installing.	If	the
package	has	already	started	before	un-installation,	the	value	will	be	set	to	UNINSTALL	in	the	start-stop-status	script	when
the	package	is	stopped.

4.	 If	the	user	starts	or	stops	a	package	in	the	Package	Center,	START	or	STOP	will	be	set	as	the	status	value	in	the	start-stop-
status	script.

5.	 When	the	NAS	is	booting	up	or	shutting	down,	its	status	value	will	be	empty.
Note:	SYNOPKG_PKG_STATUS	is	only	available	for	the	start-stop-status	script	in	DSM	4.0	or	above.

SYNOPKG_OLD_PKGVER:	Existing	package	version	which	is	defined	in	INFO	(only	in	preupgrade	script).
SYNOPKG_TEMP_SPKFILE:	The	location	of	package	spk	file	is	temporarily	stored	in	DS	when	the	package	is
installing/upgrading.

Note:	It's	only	available	in	DSM	4.2	or	above.

SYNOPKG_USERNAME:	The	user	name	who	installs,	upgrades,	uninstalls,	starts	or	stops	the	package.	If	the	value	is	empty,	the
action	is	triggered	by	DSM,	not	by	the	end	user.

Note:	It's	only	available	in	DSM	5.2	or	above.

SYNOPKG_PKG_PROGRESS_PATH:	A	temporary	file	path	for	a	script	to	showing	the	progress	in	installing	and	upgrading	a
package.

Synology	DSM6.0	Developer	Guide

67Script	Environment	Variables

Note:	

1.	 The	progress	value	is	between	0	and	1.
2.	 It's	only	available	in	DSM	5.2	or	above.
3.	 Example:

flock	-x	"$SYNOPKG_PKG_PROGRESS_PATH"	-c	echo	0.80	>	"$SYNOPKG_PKG_PROGRESS_PATH"

Once	the	end	user	enters	or	selects	some	values	of	the	UI	components	which	are	configured	in
install_uifile(.sh)/upgrade_uifile(.sh)/uninstall_uifile(.sh)	(Please	refer	to	WIZARD_UIFILES	section	for	more	information),	the
names	and	values	of	the	components	will	be	set	in	the	environment	variables.	Also	note	that	the	names	of	these	components	cannot	be
the	same	as	those	of	the	environment	variables.

Synology	DSM6.0	Developer	Guide

68Script	Environment	Variables

conf
The	“conf”	folder	contains	special	configurations	including	some	information	which	cannot	be	described	in	the	INFO	file	with	key/pair
format.	Package	Center	controls	the	flow	of	installation,	upgrading,	un-installation,	starting,	and	stopping	processes	according	to	these
configurations.

In	DSM	4.2,	there	are	two	configurations,	PKG_DEPS	and	PKG_CONX,	which	are	stored	in	this	folder.	They	are	used	to	define
dependency	or	conflict	between	the	packages.	The	dependency	or	conflict	will	be	checked	according	to	the	end	user’s	DSM	version.	For
example,	Perl	was	built	on	DSM	4.1,	but	it	does	not	exist	on	DSM	4.2.	Therefore,	if	your	package	depends	on	Perl,	the	Perl	package
must	be	installed	on	DSM	4.2	before	your	package	can	be	installed.	You	can	set	the	PKG_DEPS	configuration	to	indicate	that	the
dependency	rule	only	works	on	DSM	4.2	or	later.

The	dependency	or	conflict	is	similar	to	install_dep_packages	and	install_conflict_packages	keys	in	INFO	file,	but	they	do	not	define
the	restriction	according	to	specific	DSM	versions.

PKG_DEPS	and	PKG_CONX	always	have	higher	priority	compared	with	the	keys	in	the	INFO	file.	That	is,	if	you	define	dependency
in	the	PKG_DEPS	file,	then	the	install_dep_packages	key	in	the	INFO	file	will	be	ignored	in	DSM	4.2	or	later.	If	you	define	the
conflict	in	the	PKG_CONX	file,	then	the	install_conflict_packages	key	in	the	INFO	file	will	be	ignored	in	DSM	4.2	or	later.

The	conf	folder	contains	the	following	files:

File/Folder
Name Description File/Folder

Type
DSM

Requirement

PKG_DEPS

Define	dependency	between	packages	with	restrictions	of	DSM	version.
Before	your	package	is	installed	or	upgraded,	these	packages	must	be
installed	first.	Package	Center	controls	the	order	of	start	or	stop	packages
according	to	the	dependency.

File 4.2-3160

PKG_CONX
Define	conflicts	between	packages	with	restrictions	of	DSM	version.
Before	your	package	is	installed	or	upgraded,	these	conflicting	packages
cannot	be	installed.

File 4.2-3160

Note:	All	words	are	case	sensitive.

Each	configuration	file	is	defined	in	standard	.ini	file	format	with	key/value	pairs	and	sessions,	for	example:

[session]

A	session	describes	a	unique	name	of	dependent/conflicting	package.	Each	session	contains	information	about	the	requirements	of
package	versions	and	the	restriction	of	DSM	versions.

Keys	configured	in	PKG_DEPS	file	each	dependent	package	(session)	contains:

Key Description Value

pkg_min_ver Minimum	version	of	dependent	package.	You	must	install	this	dependent
package	with	this	version	or	newer	before	installing	your	package. Package	version

pkg_max_ver Maximum	version	of	dependent	package.	You	must	install	this	dependent
package	with	the	version	or	older	before	installing	your	package. Package	version

dsm_min_ver
Minimum	required	DSM	version.	If	you	have	this	version	or	newer	of

DSM,	this	dependency	will	be	considered,	but	it	will	be	ignored	in	an	older
DSM.

X.Y-Z	
DSM	major	number,	DSM
minor	number,	DSM	build

number

dsm_max_ver
Maximum	required	DSM	version.	If	you	have	this	version	or	older	of

DSM,	this	dependency	will	be	considered,	but	it	will	be	ignored	in	a	newer
DSM.

X.Y-Z	
DSM	major	number,	DSM
minor	number,	DSM	build

number

Synology	DSM6.0	Developer	Guide

69conf

Example:

;	Your	package	depends	on	Package	A	in	any	version

[Package	A]

;	Your	package	depends	on	Package	B	version	2	or	newer

pkg_min_ver=2

;	Your	package	depends	on	Package	C	with	version	2	or	older

[Package	C]

pkg_max_ver=2

;	Your	package	depends	on	Package	D	with	version	2	or	older	but	it	will	be	ignored	when	DSM	version	is	older	than	4.1-2668

[Package	D]

dsm_min_ver=4.1-2668

pkg_min_ver=2

;	Your	package	depends	on	Package	E	with	version	2	or	newer	but	it	will	be	ignored	when	DSM	version	is	newer	than	4.1-2668

[Package	E]

dsm_max_ver=4.1-2668

pkg_min_ver=2

Keys	configured	in	PKG_CONX	file	each	conflicting	package	(session)	contain:

Key Description Value

pkg_min_ver
Minimum	version	of	conflicting	package.	If	end	user	installs	this	conflicting
package	with	the	specified	version	or	newer,	he	will	not	be	able	to	install	your

package.
Package	Version

pkg_max_ver
Maximum	version	of	conflicting	package.	If	end	user	installs	this	conflicting
package	with	the	specified	version	or	older,	he	will	not	be	able	to	install	your

package.
Package	Version

dsm_min_ver
Minimum	requried	DSM	version.	If	end	user	has	the	specified	version	or

newer	of	DSM,	this	conflict	will	be	considered,	but	it	will	be	ignored	in	older
versions	of	DSM.

X.Y-Z	
DSM	major	number,	DSM
minor	number,	DSM	build

number

dsm_max_ver
Maximum	requried	DSM	version.	If	the	end	user	has	the	specified	version	or
older	of	DSM,	this	conflict	will	be	considered,	but	it	will	be	ignored	in	newer

DSM.

X.Y-Z
DSM	major	number,	DSM
minor	number,	DSM	build

number

Example:

;	Your	package	conflicts	with	Package	A	in	any	version

[Package	A]

;	Your	package	conflicts	with	Package	B	version	2	or	newer

[Package	B]

pkg_min_ver=2

;	Your	package	conflicts	with	Package	C	version	2	or	older

[Package	C]

pkg_max_ver=2

;	Your	package	conflicts	with	Package	D	version	2	or	older,	but	it	will	be	ignored	when	DSM	version	is	older	than	4.1-2668

[Package	D]

dsm_min_ver=4.1-2668

pkg_min_ver=2

;	Your	package	conflict	on	Package	E	with	version	2	or	newer	but	it	will	be	ignored	when	DSM	version	is	newer	than	4.1-2668

[Package	E]

dsm_max_ver=4.1-2668

pkg_min_ver=2

Synology	DSM6.0	Developer	Guide

70conf

Synology	DSM6.0	Developer	Guide

71conf

WIZARD_UIFILES
install_uifile,	upgrade_uifile,	and	uninstall_uifile	are	files	which	describe	UI	components	in	JSON	format.	They	are	stored	in	the
“WIZARD_UIFILES”	folder.	During	the	installation,	upgrading,	and	un-installation	processes,	these	UI	components	will	appear	in	the
wizard.	Once	these	components	are	selected,	their	keys	will	be	set	in	the	script	environment	variables	with	true,	false,	or	text	values.

These	files	can	be	regarded	as	user	settings	or	used	to	control	the	flow	of	script	execution.

install_uifile:	Describes	UI	components	for	the	installation	process.	During	the	process	of	the	preinst	and	postinst	scripts,	these
component	keys	and	values	can	be	found	in	the	environment	variables.
upgrade_uifile:	Describes	UI	components	for	the	upgrade	process.	During	the	process	of	the	preupgrade,	postupgrade,
preuninst,	postuninst,	preinst	and	postinst	scripts,	these	component	keys	and	values	can	be	found	in	the	environment	variables.
uninstall_uifile:	Describes	UI	components	for	the	un-installation	process.	During	the	process	of	the	preuninst	and	postuninst
scripts,	these	component	keys	and	values	can	be	found	in	the	environment	variables.

If	you	would	like	to	run	a	script	to	generate	the	wizard	dynamically,	you	can	add	install_uifile.sh,	upgrade_uifile.sh	and
uninstall_uifile.sh	files,	they	are	run	before	installing,	upgrading,	and	uninstalling	a	package	respectively	to	generate	UI	components	in
JSON	format	and	write	to	SYNOPKG_TEMP_LOGFILE.	Script	environment	variables	in	these	scripts	can	be	gotten	in	these	scripts.
Please	refer	to	"Script	Environment	Variables"	for	more	information.

If	you	would	like	to	localize	the	descriptions	of	UI	components,	you	can	add	a	language	abbreviation	suffix	to	the	file
“install_uifile_[DSM	language],”	“upgrade_uifile_[DSM	language]”,	“uninstall_uifile_[DSM	language]”,	“install_uifile_[DSM
language].sh,”	“upgrade_uifile_[DSM	language].sh”	or	“uninstall_uifile_[DSM	language].sh”	in	this	folder.	For	example,	in	order
to	perform	installation	in	Traditional	Chinese,	[DSM	language]	should	be	replaced	with	“cht”	as	follows:	“install_uifile_cht”.

Example	of	the	file	in	JSON	format:

[{

				"step_title":	"Step1",

				"items":	[{

								"type":	"singleselect",

								"desc":	"a	radio	group",

								"subitems":	[{

												"key":	"radio1",

												"desc":	"Radio	button	1",

												"defaultVaule":	false

								},	{

												"key":	"radio2",

												"desc":	"Radio	button	2",

												"defaultVaule":	true

								}]

				}]

},	{

				"step_title":	"Step2",

				"items":	[{

								"type":	"multiselect",

								"desc":	"a	check	group",

								"subitems":	[{

												"key":	"check1",

												"desc":	"Check	button	1"

								},	{

												"key":	"check2",

												"desc":	"Check	button	2",

												"defaultVaule":	true,

												"validator":	{

																"fn":	"{var	v=arguments[0];	if	(!v)	return	'Check	this';return	true;}"

													}

								}]

				},	{

								"type":	"textfield",

								"desc":	"textfield",

								"subitems":	[{

												"key":	"textfield1",

Synology	DSM6.0	Developer	Guide

72WIZARD_UIFILES

												"desc":	"textfield	1",

												"defaultVaule":	"default",

												"validator":	{

																"allowBlank":	false,

																"minLength":	2,

																"maxLength":	10

												}

								},{

												"key":	"textfield2",

												"desc":	"textfield	2",

												"emptyText":	"abc1@cde.com",

												"validator":	{

																"vtype":	"email",

																"regex":	{

																				"expr":	"/[0-9]/i",

																				"errorText":	"Error"

																}

												}

								}]

				}]

},	{

				"step_title"	:	"Step	3",

				"invalid_next_disabled":	true,

				"activeate":	"{console.log('activeate',	arguments);}",

				"deactivate":	"{console.log('deactivate',	arguments);}",

				"items"	:	[{

								"type"	:	"singleselect",

								"desc"	:	"Check	it",

								"subitems":	[{

																"key":	"id1",

																"desc":	"Not	choose	it",

																"defaultValue":	true

												},

												{

																"key":	"id2",

																"desc":	"Choose	it",

																"defaultValue":	false,

																"validator":	{

																				"fn":	"{return	arguments[0];}"

																}

												}]

								}]

}]

Example	of	using	a	script	to	generate	a	file	in	JSON	format:

Synology	DSM6.0	Developer	Guide

73WIZARD_UIFILES

#!/bin/sh

/bin/cat	>	/tmp/wizard.php	<<'EOF'

<?php

$ini_array	=	parse_ini_file("/etc.defaults/synoinfo.conf");

$unique=$ini_array["unique"];

echo		<<<EOF

[{

				"step_title":	"Step	1",

				"items":	[{

								"type":	"textfield",

								"desc":	"model	name",

								"subitems":	[{

												"key":	"pkgwizard_db_name",

												"desc":	"name",

												"defaultValue":"$unique"

								}]

				},	{

								"type":	"combobox",

								"desc":	"Please	select	a	volume",

								"subitems":	[{

												"key":	"volume",

												"desc":	"volume	name",

												"displayField":	"display_name",

												"valueField":	"volume_path",

												"editable":	false,

												"mode":	"remote",

												"api_store":	{

																"api":	"SYNO.Core.Storage.Volume",

																"method":	"list",

																"version":	1,

																"baseParams":	{

																				"limit":	-1,

																				"offset":	0,

																				"location":	"internal"

																},

																"root":	"volumes",

																"idProperty":	"volume_path",

																"fields":	["display_name",	"volume_path"]

												},

												"validator":	{

																"fn":	"{console.log(arguments);return	true;}"

												}

								}]

				}]

}];

EOF;

?>

EOF

/usr/bin/php	-n	/tmp/wizard.php	>	$SYNOPKG_TEMP_LOGFILE

rm	/tmp/wizard.php

exit	0

Here	are	the	properties	for	each	step	in	the	wizard	in	JSON	format:

Synology	DSM6.0	Developer	Guide

74WIZARD_UIFILES

Property Description DSM
Requirement

step_title Optional.	Describes	the	title	of	the	current	step	performed	in	the	wizard. 3.2-1922

items Describes	an	array	containing	the	components	of	“singleselect”,	“multiselect”,
“textfield”,	“password”,	or	“combobox”	type. 3.2-1922

type

Must	be	“singleselect”,	“multiselect”,	“textfield”	“password”	or	“combobox”.	
“singleselect”	type	represents	the	components	in	the	sub-items	which	are	all	radio
buttons.	You	can	select	only	one	radio	box	with	a	unique	key.	
“multiselect”	type	represents	the	components	in	the	sub-items	which	are	all
checkboxes.	You	can	check	more	than	one	checkbox.	
“textfield”	type	represents	the	components	in	the	sub-items	which	are	all	text
fields.	You	can	type	text.	
“password”	type	represents	the	components	in	the	sub-items	which	are	all
password	fields.	You	can	type	passwords.
“combobox”	type	represents	the	components	in	the	sub-items	which	are	all
combobox	fields.	The	user	can	choose	a	item	in	the	combobox	field.
Note:	“combobox”	type	is	only	available	in	DSM	5.2	or	newer.

3.2-1922

desc Optional.	Describe	a	component	in	the	label	text. 3.2-1922

subitems Describe	an	array	containing	radio	buttons,	checkboxes,	text	fields,	or	password
components. 3.2-1922

activeate JSON-style	string	to	describe	a	function	which	is	run	after	the	step	of	the	wizard
has	been	visually	activated. 5.2

deactivate JSON-style	string	to	describe	a	function	which	is	run	after	the	step	of	the	wizard
has	been	visually	deactivated. 5.2

invalid_next_disabled If	set	to	true,	the	next	button	in	the	step	of	the	wizard	will	be	disabled	by	default.	It
will	be	enabled	if	all	items	are	validated	scucuessfully	by	validator	in	this	step. 5.2

Here	are	the	properties	for	components	in	subitems	in	JSON	format:

Property Description DSM
Requirement

key

A	unique	component	key	value	represents	a	UI	component.	If	you	select	a	component,	this
key	will	be	set	in	the	script	environment	variables	of	preinst,	postinst,	preupgrade,
postupgrade,	preuninst,	postuninst,	start-stop-status	(the	string	value	of	the	selected
checkbox	or	radio	button	is	always	“true”.).

3.2-1922

defaultVaule Optional.	true/false	value	to	initialize	“singleselect”	or	“multiselect”	component,	or	a	string
value	to	initialize	“textfield”	or	“password”	component. 4.2-3160

emptyText Optional.	The	prompt	text	to	place	into	an	empty	“textfield”	or	“password”	component	to
prompt	the	user	how	to	fill	in	if	defaultVaule	is	not	set. 4.2-3160

validator
JSON-style	object	to	describe	validation	functions.	If	the	validation	fails	with	the	user's
value,	the	user	cannot	go	to	the	next	step	of	the	wizard.	More	detailed	properties	of
validator	are	given	in	the	validator	table.

4.2-3160

disabled true	to	disable	the	field	(defaults	to	false). 6.0

height The	height	of	this	component	in	pixels. 6.0

hidden true	to	hide	this	component. 6.0

invalidText The	error	text	to	use	when	marking	a	field	invalid	and	no	message	is	provided. 6.0

preventMark true	to	disable	marking	the	field	invalid.	Defaults	to	false. 6.0

width The	width	of	this	component	in	pixels. 6.0

Here	are	the	properties	of	validator:

Synology	DSM6.0	Developer	Guide

75WIZARD_UIFILES

Property Description Value

allowBlank Specify	false	to	validate	that	the	value's	length	of	“textfield”	or	“password”	component	is	>	0 true/false

minLength Minimum	length	of	“textfield”	or	“password”	component Number

maxLength Maximum	length	of	“textfield”	or	“password”	component Number

vtype

Specify	pre-defined	validation	function,
"alpha":	validate	alpha	value
"alphanum":	validate	alphanumeric	value
"email":	validate	email	address
"url":	validate	URL

"alpha",
"alphanum",
"email",
"url"

regex
Describe	validation	function	in	regular	expression	and	invalid	message.	Properties	contain:
"expr":	Javascript	Regular	Expression
"errorText":	invalid	string

JSON-style
object

fn
Describe	the	Javascript	function	which	is	encoded	by	JSON-style	string	with	curly	brackets.	In
this	function,	you	can	use	arguments[0]	to	get	the	value	of	the	component.	In	addition,	this
function	will	return	true	if	the	value	is	valid	or	as	an	invalid	string	if	the	value	is	invalid.

String

Here	are	the	other	properties	for	textfield,	password	or	combobox	component	in	subitems	in	JSON	format:

Property Description DSM	Requirement

blankText The	error	text	to	display	if	the	allowBlank	validation	fails 6.0

grow true	if	this	field	should	automatically	grow	and	shrink	to	its	content 6.0

growMax The	maximum	height	to	allow	when	grow	is	true 6.0

growMin The	minimum	height	to	allow	when	grow	is	true 6.0

htmlEncode false	to	skip	HTML-encoding	the	text	when	rendering	it	(defaults	to	false). 6.0

maxLengthText Error	text	to	display	if	the	maximum	length	validation	using	maxLength	fails. 6.0

minLengthText Error	text	to	display	if	the	minimum	length	validation	using	minLength	fails. 6.0

Here	are	the	properties	for	combobox	component	in	subitems	in	JSON	format:

Property Description DSM
Requirement

api_store

JSON-style	object	to	describe	to	send	a	WebAPI	request	and	store	the	response	in	the
data	strusture	for	combobox	use.	More	detailed	properties	of	api_store	are	given	in	the
store	table.
Example:
	{	

				"api":	"SYNO.Core.XXX",		
				"method":	"list",	
				"version":	1,		
					"baseParams":	{		
							"offset":	0,	
							"limit":-1,	
				},	
				"root":	"items",	
				"idProperty":"name",	
				"fields":	["name"]	
	}	

6.0

autoSelect true	to	select	the	first	result	gathered	by	the	data	store	(defaults	to	true).	A	false	value
would	require	a	manual	selection	from	the	dropdown	list	to	set	the	components	value. 6.0

displayField The	underlying	data	field	name	to	bind	to	this	combobox. 6.0

editable false	to	prevent	the	user	from	typing	text	directly	into	the	field,	the	field	will	only
respond	to	a	click	on	the	trigger	to	set	the	value.	(defaults	to	true). 6.0

forceSelection true	to	restrict	the	selected	value	to	one	of	the	values	in	the	list,	false	to	allow	the	user	to
set	arbitrary	text	into	the	field	(defaults	to	false). 6.0

Synology	DSM6.0	Developer	Guide

76WIZARD_UIFILES

handleHeight The	height	in	pixels	of	the	dropdown	list	resize	handle	if	resizable	is	true. 6.0

listAlign A	valid	anchor	position	value. 6.0

listEmptyText The	empty	text	to	display	in	the	data	view	if	no	items	are	found. 6.0

listWidth The	width	of	the	dropdown	list. 6.0

maxHeight The	maximum	height	in	pixels	of	the	dropdown	list	before	scrollbars	are	shown. 6.0

minChars The	minimum	number	of	characters	the	user	must	type	before	autocomplete	and
typeAhead	activate 6.0

minHeight The	minimum	height	in	pixels	of	the	dropdown	list	when	the	list	is	constrained	by	its
distance	to	the	viewport	edges. 6.0

minListWidth The	minimum	width	of	the	dropdown	list	in	pixels. 6.0

mode

Set	to	'loacl'	to	load	local	store	to	load	local	JSON-array	data.	More	detailed	properties
of	local	store	are	given	in	the	store	table.	
Example:	
	{	

				"mode":	"local",	
				"valueField":	"myId",	
				"displayField":	"displayText",	
				"store":	{	
							"xtype":	"arraystore",	
							"fields":	["myId",	"displayText"],	
							"data":	[[1,	"item1"],	[2,	"item2"]]	
				}	
	}	

6.0

pageSize
If	greater	than	0,	a	paging	toolbar	is	displayed	in	the	footer	of	the	dropdown	list	and	the
filter	queries	will	execute	with	page	start	and	limit	parameters.	Only	applies	when	using
api_store	(defaults	to	0).

6.0

queryDelay The	length	of	time	in	milliseconds	to	delay	between	the	start	of	typing	and	sending	the
query	to	filter	the	dropdown	list. 6.0

resizable true	to	add	a	resize	handle	to	the	bottom	of	the	dropdown	list	(Defaults	to	false). 6.0

selectOnFocus true	to	select	any	existing	text	in	the	field	immediately	on	focus.	Only	applies	when
editable	is	true	(defaults	to	false). 6.0

store

A	data	structure	to	store	data	in	combobox	(defaults	to	undefined).	It	can't	be	used	with
api_store	at	the	same	time.	Acceptable	values	for	this	property	are:
1-dimensional	array	:	e.g.,		["Foo","Bar"]	
2-dimensional	array	:	For	a	2-dimensional	array,	the	value	in	index	0	of	each	item	will
be	assumed	to	be	the	valueField,	while	the	value	at	index	1	is	assumed	to	be	the
displayField,	e.g.,		[["f","Foo"],["b","Bar"]]	.

6.0

title If	supplied,	a	header	element	is	created	containing	this	text	and	added	into	the	top	of	the
dropdown	list 6.0

typeAhead true	to	populate	and	autoselect	the	remainder	of	the	text	being	typed	after	a	configurable
delay	(typeAheadDelay). 6.0

typeAheadDelay The	length	of	time	in	milliseconds	to	wait	until	the	typeahead	text	is	displayed. 6.0

valueField The	underlying	data	value	name	to	bind	to	this	combobox. 6.0

Here	are	the	properties	for	api_store	or	store	data	structure	in	JSON	format:

Synology	DSM6.0	Developer	Guide

77WIZARD_UIFILES

Property Description DSM
Requirement

baseParams An	object	containing	properties	which	are	to	be	sent	as	parameters	for	every	WebAPI
request	in	api_store. 6.0

data An	inline	data	object	readable	by	the	reader	in	local	store	to	load	local	JSON-array	data. 6.0

displayField The	underlying	data	field	name	to	bind	to	this	combobox. 6.0

fields defined	fields	for	the	data	stored	in	this	store	or	api_store. 6.0

idProperty Identity	of	the	property	within	data	that	contains	a	unique	value. 6.0

root The	name	of	the	property	which	contains	the	array	of	data.	Defaults	to	undefined. 6.0

valueField The	underlying	data	value	name	to	bind	to	this	combobox. 6.0

xtype Only	support	arraystore	type	for	local	store	to	load	local	JSON-array	data. 6.0

Note:

1.	 All	words	are	case	sensitive.
2.	 In	DSM	4.0	or	above,	if	both	the	type	and	subitems	properties	are	empty,	text	in	the	desc	property	will	be	displayed	as	one

of	the	steps	of	wizard.
3.	 install_uifile.sh,	upgrade_uifile.sh	,uninstall_uifile.sh	and	*.sh	scripts	to	gernate	the	wizard	dynamically	are	only	supported

in	DSM	5.2	or	newer.

Synology	DSM6.0	Developer	Guide

78WIZARD_UIFILES

Integrate	Your	Package	into	DSM

Synology	DSM6.0	Developer	Guide

79Integrate	Your	Package	into	DSM

Manage	Storage	for	Application	Files
When	a	package	is	installing,	package.tgz	will	be	extracted	to	/var/packages/[package	identity]/target,	which	is	a	symbolic	link
pointing	to	a	folder	in	a	data	volume	selected	by	the	end	user.	/var/packages/[package	identity]/target	is	also	available	at	the
SYNOPKG_PKGDEST	environment	variable,	one	of	the	seven	files	in	the	script	folder.	Please	see	the	"scripts"	for	more	information.

Despite	the	fact	that	the	directory	/var/packages	or	/usr/local	is	reserved	for	3rd-party	applications,	the	storage	space	of	system	volume
is	limited.	If	the	size	of	files	to	be	installed	exceeds	the	capacity	of	the	system	volume,	storage	space	will	run	out.	Hence,	it	is
recommended	that	you	directly	read	or	write	application	files	in	/var/packages/[package	identity]/target	or	another	space	of	the	data
volume.	You	can	also	make	a	symbolic	link	in	/usr/local	to	point	to	/var/packages/[package	identity]/target	or	another	space	when
running	the	postinst	script.	The	path	can	be	accessed	easier	in	a	library	or	a	daemon.	Please	note	that	you	may	need	to	specify	the
correct	prefix	when	running	a	configuration	script	so	that	the	application	can	find	the	correct	path	information	upon	execution.

Synology	releases	DSM	updates	on	a	regular	basis.	Given	that	application	files	might	be	affected	during	the	update	procedure,	it	is
important	that	you	install	your	application	in	the	correct	directory	to	prevent	them	from	being	deleted	when	DSM	is	being	upgraded	in
the	system	partition.

When	DSM	is	being	upgraded,	the	directory	/var/packages/[package	identity]	and	/usr/local	will	be	backed	up	and	restored
automatically.	However,	some	library	files	or	built-in	software	might	be	modified	during	the	upgrade	procedure.	In	other	words,	if	your
application	depends	on	the	files	which	are	subject	to	change,	the	application	may	not	work	afterward.	In	this	case,	you	should	check	the
status	of	these	files	or	re-link	them	in	the	start-stop-status	script	to	repair	them	if	necessary.	Alternatively,	you	can	install	them	directly
to	/var/packages/[package	identity]/target.

Synology	DSM6.0	Developer	Guide

80Manage	Storage	for	Application	Files

Integrate	Your	Package	into	DSM	Web	GUI
With	Synology	DSM	,	integrating	3rd-party	applications	into	your	NAS	is	easy.	When	an	application	is	integrated,	its	icon	will	appear
in	the	Main	Menu	of	DSM.	Users	can	also	use	their	own	customized	icons	for	these	applications.	To	place	an	icon	on	DSM	desktop,
simply	drag	and	drop	it	from	the	Main	Menu	to	the	DSM	desktop.

Synology	DSM6.0	Developer	Guide

81Integrate	Your	Package	into	DSM	Web	GUI

Startup
To	integrate	an	application	into	Synology	DSM	3.0	or	later,	please	follow	the	steps	below:

1.	 Create	a	folder	under	the	directory	/usr/syno/synoman/webman/3rdparty/.
2.	 Create	a	text	file	named	"config"	in	your	folder.
3.	 Under	the	same	directory,	create	a	sub-folder	named	after	your	application,	such	as

/usr/syno/synoman/webman/3rdpaty/[package	name]/.	Put	all	UI	related	components,	such	as	images,	CSS,	and	CGI	in	the
directory.

In	the	INFO	file,	you	can	define	the	key	dsmuidir,	whose	value	is	a	DSM	directory	name	in	the	package.tgz	file.	Package	Center	will
automatically	link/unlink	it	to	/usr/syno/synoman/webman/3rdparty/[package	name]	based	on	the	key	when	you	start/stop	the
package.	You	should	also	define	dsmappname	in	the	INFO	file	to	integrate	the	package	with	DSM	applications.	Please	refer	to
dsmuidir	and	dsmappname	key	in	Optional	Fields	section	for	more	information	to	link	the	folder	automatically.

Next	we	will	discuss	the	details	of	UI	configuration.

Synology	DSM6.0	Developer	Guide

82Startup

Config
The	text	file	“config”	is	used	to	configure	UI	behavior.	The	content	of	config	should	be	in	JSON	format.

For	example:

{

				".url":	{

								"com.company.App1":	{

												"type":	"url",

												"allUsers":	true,

												"title":	"Test	App1",

												"desc":	"Description",

												"icon":	"images/app_{0}.png",

												"url":	"http://www.yahoo.com"

								},

								"com.company.App2":	{

												"type":	"legacy",

												"allUsers":	true,

												"title":	"Test	App2",

												"desc":	"Description	2",

												"icon":	"images/app2_{0}.png",

												"url":	"http://www.synology.com"

								}

				}

}

Details	of	application.cfg	are	stated	in	below.

Synology	DSM6.0	Developer	Guide

83Config

Property Description

com.company.App1
com.company.App2 In	“.url”,	each	object	should	have	a	unique	property	name.

title	(Required) “title”	represents	the	application	name	that	will	be	displayed	in	the	main	menu.

desc “desc”	displays	more	details	about	this	application	upon	mouse-over.

icon	(Required)

“icon”	indicates	the	icon	for	the	application.	It	is	a	template	string.	The	“{0}”	can	be	replaced	by	“16”,
“24”,	“32”,	“48”,	“64”,	“72”,	“256”	depending	on	the	resolution	of	the	icon.	
The	icon	must	be	saved	under	/usr/syno/synoman/webman/3rdparty/xxx/	where	xxx	is	the	directory
name	of	your	package.	
For	example,	if	you	create	a	directory	named	"images"	and	put	the	icon	image	file	“icon.png”	in	it,	the
full	path	for	the	icon	would	be:	
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_16.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_24.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_32.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_48.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_64.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_72.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_256.png		
The	icon	value	should	also	be	set	as	"images/icon_{0}.png"

type	(Required)

When	you	click	the	menu	item,	the	address	you	use	to	connect	to	the	DSM	management	UI	will	be
shown	in	the	right	frame	of	the	management	UI.	However,	you	can	customize	the	address	as	you	wish.	
The	“type”	value	can	be	"url"	or	"legacy".	"url"	means	when	you	click	the	application	icon,	the	URL
will	be	opened	in	a	pop-up	window,	while	"legacy"	implies	that	the	URL	will	be	opened	in	an	iframe
window	application.	
You	can	follow	the	descriptions	below	to	set	up	your	customized	URL.	

url	(Required)
The	following	is	an	example	of	value	setting	for	your	URL	of	the	application:	
“url”:	http://www.synology.com/	
“url”:	“3rdparty/xxx/index.html”

allUsers

This	key	determines	whether	or	not	the	menu	items	can	be	seen	by	users	when	they	log	in	with	an	admin
account.	If	you	would	like	to	have	all	users	see	the	menu	items,	please	set	the	key	value	as	below:	
	"allUsers":	true		
The	default	setting	is	that	only	the	admin	can	find	the	application.

Synology	DSM6.0	Developer	Guide

84Config

http://www.synology.com/

Integrate	Help	Document	into	DSM	Help
To	integrate	a	help	document	of	your	application	into	DSM	Help,	please	do	the	following	steps:

Classify	the	help	documents	according	to	language,	and	put	them	in	the	help	folder	of	your	application.
To	have	consistent	style,	and	our	customized	scroll	bar,	you	should	add	the	following	html	tag:

<!DOCTYPE	html>

<head>

<meta	charset="UTF-8"	/>

<meta	http-equiv="X-UA-Compatible"	content="IE=edge,chrome=1">

<link	href="../../../../help/help.css"	rel="stylesheet"	type="text/css">

<link	href="../../../../help/scrollbar/flexcroll.css"	rel="stylesheet"	type="text/css">

<script	type="text/javascript"	src="../../../../help/scrollbar/flexcroll.js"></script>

<script	type="text/javascript"	src="../../../../help/scrollbar/initFlexcroll.js"></script>

</head>

Note:	The	js	files	are	required	because	the	native	browser	scroll	bar	has	been	disabled.

You	will	need	to	add	a	text	file	"helptoc.conf"	into	your	application.	This	text	file	"helptoc.conf"	is	to	configure	the	structure	of
your	help	document.	The	content	of	helptoc.conf	should	be	in	JSON	format.	For	example:

{

			"app":	"SYNO.App.TestAppInstance",

			"title":	"app_tree:index_title"

			"helpset":	"help",

			"stringset":	"texts",

			"content":	"testapp_index.html",

			"toc":	[{

			"title":	"app_tree:node_1"

			"content":	"testapp_node1.html",

			"nodes":	[{

							"title":	"app_tree:node_1_child"

							"content":	"testapp_node1_child.html"

}]

},	{

			"title":	"app_tree:node_2"

			"content":	"testapp_node2.html"

}]

}

Details	of	helptoc.conf	are	stated	in	below.

Property Description

stringset
(Required) "stringset"	is	the	folder	that	stores	your	application	strings.

app "app"	represents	the	application	instance.

helpset "helpset"	displays	more	details	about	the	application	upon	mouse-over.

title	(Required) "title"	is	the	text	that	will	be	displayed	in	the	DSM	Help	tree.	It	consists	of	two	parts	-	section	and	key,	and	is
separated	by	a	colon.

content
(Required) "content"	represents	the	url	of	the	node.

toc "toc"	are	the	child	nodes	for	your	application.	(use	empty	array	if	your	application	doesn't	have	one)

nodes "nodes"	are	the	child	nodes	of	toc.	(not	necessary	if	there	is	no	child	nodes)

Synology	DSM6.0	Developer	Guide

85Integrate	Help	Document	into	DSM	Help

Add	the	following	content	to	the	resource	specification	file.	Please	refer	to	Index	DB	for	more	detail.

"indexdb":	{

				"app-index"		:	{

								"conf-relpath":	"ui/index.conf",

								"db-relpath":	"indexdb/appindexdb"

				},

				"help-index":	{

								"conf-relpath":	"ui/helptoc.conf",

								"db-relpath":	"indexdb/helpindexdb"

				}

}

Synology	DSM6.0	Developer	Guide

86Integrate	Help	Document	into	DSM	Help

Integrate	with	DSM	Web	Authentication
After	integrating	your	application	into	Synology	DSM,	you	may	want	to	perform	an	authentication	check	to	ensure	only	logged-in	users
can	access	the	page.

To	check	whether	a	user	has	logged	in,	run	the	CGI	command	in	below.

/usr/syno/synoman/webman/modules/authenticate.cgi

The	“authenticate.cgi”	will	output	the	user	name	if	the	user	has	logged	in.	There	will	be	no	output	if	the	user	has	not	been
authenticated.

Below	is	an	example:

Synology	DSM6.0	Developer	Guide

87Integrate	with	DSM	Web	Authentication

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

#include	<strings.h>

/**

	*	Check	whether	user	is	logged	in.	

	*	

	*	If	user	has	logged	in,	put	the	username	into	"user".

	*	

	*	@param	user				The	buffer	for	get	username

	*	@param	bufsize	The	buffer	size	of	user

	*	

	*	@return	0:	User	not	logged	in	or	error

	*									1:	User	logged	in.	The	user	name	is	written	to	given	"user"

	*/

int	IsUserLogin(char	*user,	int	bufsize)

{

				FILE	*fp	=	NULL;

				char	buf[1024];

				int	login	=	0;

				bzero(user,	bufsize);

				fp	=	popen("/usr/syno/synoman/webman/modules/authenticate.cgi",	"r");

				if	(!fp)	{

								return	0;

				}

				bzero(buf,	sizeof(buf));

				fread(buf,	1024,	1,	fp);

				if	(strlen(buf)	>	0)	{

								snprintf(user,	bufsize,	"%s",	buf);

								login	=	1;

				}

				pclose(fp);

				return	login;

}

int	main(int	argc,	char	**argv)

{

				char	user[256];

				printf("Content-type:	text/html\r\n\r\n");

				if	(IsUserLogin(user,	sizeof(user))	==	1)	{

								printf("User	is	authenticated.	Name:	%s\n",	user);

				}	else	{

								printf("User	is	not	authenticated.\n");

				}

				return	0;

}

DSM	might	require	a	random	value	called	SynoToken	to	prevent	a	CSRF(cross-site	request	forgery)	attack	after	4.3.	When	CSRF
protection	is	enabled	in	the	control	panel,	you	must	append	SynoToken	to	the	query	string	or	header	of	the	HTTP	request.

In	the	query	string:

http://192.168.1.1:5000/webman/3rdparty/DownloadStation/webUI/downloadman.cgi?SynoToken=9WuK4Cf50Vw7Q

In	the	request	header:

X-SYNO-TOKEN:9WuK4Cf50Vw7Q

The	value	of	SynoToken	can	be	obtained	from	login.cgi	if	the	user	is	logged	in.

Synology	DSM6.0	Developer	Guide

88Integrate	with	DSM	Web	Authentication

Request:

http://192.168.1.1:5000/webman/login.cgi

Response:

{"SynoToken":	"9WuK4Cf50Vw7Q",	"result":	"success",	"success":	true}

If	your	application	is	based	on	ExtJs	of	DSM,	please	include	dsmtoken.cgi	in	your	header	section.

<header>

	<script	src="/webman/dsmtoken.cgi"	>	</script>

</header>

Once	the	dsmtoken.cgi	is	included,	Ext.Ajax.Request,	Ext.data.Connection,	Ext.form.basicForm	and	Ext.urlAppend	will	append
SynoToken	to	the	HTTP	request	automatically.

<script>

	Ext.Ajax.Request({	…	})	//	add	SynoToken	at	event	'beforerequest'

	Ext.data.Connection({	…	})	//	add	SynoToken	at	event	'beforerequet'

	new	Ext.form.basicForm({	…	})	//	add	SynoToken	at	event	'beforeaction'

//	Ext.urlAppend	will	add	SynoToken	internally

	url	=	Ext.urlAppend('http://192.168.1.1',	Ext.urlEncode({	…	}));

</script>

Synology	DSM6.0	Developer	Guide

89Integrate	with	DSM	Web	Authentication

DSM	Backward	Compatibility
Weak	link	is	a	property	of	Apple’s	development	framework	which	ensures	backward	compatibility.	GCC	has	a	similar	property	called
“weak	symbol.”	We	utilize	this	capability	to	provide	a	weak	link	framework	in	libsynosdk	for	backward	compatibility	as	well.	You	can
find	available	headers	in	usr/syno/include/libsynosdk	under	chroot	environment.	Each	function	prototype	in	synosdk/*_p.h	is	labeled
with	a	macro	telling	you	when	this	function	is	added	into	libsynosdk.	Therefore,	you	can	input	a	function	in	DSM	4.2	as	follows:

/*	DO	NOT	include	*_p.h	directly	*/

#include	<synosdk/user.h>

#include	<synosdk/service.h>

/*	example,	SYNOServiceHomePathCheck	is	available	since	DSM	4.2	*/

if	(SYNOServiceHomePathCheck)	{

				SYNOServiceHomePathCheck(szPath,	TRUE,	TRUE,	&pResult);

}	else	{

				/*	implement	alternative	to	SYNOServiceHomePathCheck	here	*/

}

As	a	result,	when	your	application	runs	in	DSM	4.2	and	later,	function	SYNOServiceHomePathCheck	in	libsynosdk.so	is	invoked.	In
DSM	4.2	and	older,	else-part	will	be	executed	as	a	replacement	to	SYNOServiceHomePathCheck.

Synology	DSM6.0	Developer	Guide

90DSM	Backward	Compatibility

https://developer.apple.com/legacy/library/technotes/tn2064/_index.html#//apple_ref/doc/uid/DTS10003092-CH1-SECTION2

Show	Messages	to	Users
If	you	want	to	prompt	users	with	a	message	before	they	install,	upgrade,	or	un-install	a	package	in	Package	Center,	you	can	write	these
messages	in	the	desc	key	in	install_uifile,	upgrade_uifile,	or	uninstall_uifile.	Please	refer	to	"WIZARD_UIFILES"	for	more
information.

If	you	want	to	send	a	prompt	message	to	users	after	they	install,	upgrade,	un-install,	start,	or	stop	a	package	in	Package	Center,	you	can
implement	them	into	the	$SYNOPKG_TEMP_LOGFILE	variable	in	the	related	scripts.	For	example,

echo	"Hello	World!!"	>	$SYNOPKG_TEMP_LOGFILE

If	you	want	to	prompt	users	in	the	language	specified	in	their	DSM	settings,	you	can	refer	to	the	$SYNOPKG_DSM_LANGUAGE
variable	for	language	abbreviation	as	shown	in	the	scripts	below:

Synology	DSM6.0	Developer	Guide

91Show	Messages	to	Users

case	$SYNOPKG_DSM_LANGUAGE	in

								chs)

												echo	"" 	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								cht)

												echo	"" 	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								csy)

												echo	"Český"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								dan)

												echo	"Dansk"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								enu)

												echo	"English"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								fre)

												echo	"Français"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								ger)

												echo	"Deutsch"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								hun)

												echo	"Magyar"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								ita)

												echo	"Italiano"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								jpn)

												echo	"" 	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								krn)

												echo	"" 	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								nld)

												echo	"Nederlands"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								nor)

												echo	"Norsk"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								plk)

												echo	"Polski"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								ptb)

												echo	"Português	do	Brasil"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								ptg)

												echo	"Português	Europeu"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								rus)

												echo	"Русский"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								spn)

												echo	"Español"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								sve)

												echo	"Svenska"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								trk)

												echo	"Türkçe"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								*)

												echo	"English"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

				esac

Please	see	the	"scripts"	and	"Script	Environment	Variables"	sections	for	more	information.

Otherwise,	you	can	use	/usr/syno/bin/synodsmnotify	to	send	messages	to	DSM	users.	For	example,	the	strings	“title”	and	“messages”
are	sent	to	the	“administrators”	group.

Synology	DSM6.0	Developer	Guide

92Show	Messages	to	Users

synodsmnotify	@administrators	title	messages

Synology	DSM6.0	Developer	Guide

93Show	Messages	to	Users

Create	PHP	Application
Apache/Nginx	and	PHP	engines	which	allow	you	to	develop	web	applications	and	store	files	in	the	web	space	to	build	your	own
website.	Hence,	these	files	should	be	compressed	into	package.tgz.	In	the	start-stop-status	script,	you	should	link	or	copy	them	to	the
web	space	when	starting	a	package.	In	DSM,	the	default	web	space	is	the	web	shared	folder.	You	can	get	the	path	via	/var/services/web
which	is	a	symbolic	link	pointing	to	the	actual	path	in	the	volume.

In	DSM	5.2	or	older,	the	web	application	works	after	the	administrator	enables	Web	Station.	You	can	configure	the
install_dep_services	and	start_dep_services	keys	with	the	apache-web	value	in	the	INFO	file	to	make	sure	Web	Station	is	enabled
before	the	package	installation.	In	DSM	6.0	or	newer,	the	web	application	works	after	the	administrator	installs	and	starts	Web	Station
and	PHP	package.	You	can	configure	the	install_dep_packages	with	"WebStation:PHP5.6"	value	in	the	INFO	file	to	make	sure
these	packages	installed	and	started	before	the	package	installation.

You	can	then	provide	a	URL	in	order	to	access	your	page	to	adminurl	(ex:"/myapp/index.html")	in	INFO	which	will	be	displayed	in
Package	Center	to	tell	the	client	which	URL	to	open.	When	the	package	stops,	this	URL	should	not	be	accessible.	You	can	remove	or
unlink	the	website	folder	in	the	web	space,	or	let	the	web	page	redirect	to	an	error	page.

In	addition,	it	is	recommended	to	add	an	icon	to	DSM’s	main	menu	so	that	users	can	click	the	icon	to	launch	the	application	intuitively.

To	customize	the	config	settings	for	Apache,	Nginx	or	PHP,	please	do	not	modify	any	of	the	config	files	belonging	to	DSM.	Instead,
you	should	create	symbolic	links	for	your	config	files	in	the	corresponding	locations.	For	Apache/Nginx,	link	your	config	to	the	folder
/etc/httpd/sites-enabled-user/your_package_name.conf.	For	PHP,	please	refer	to	PHP	INI	for	more	detail.

In	addition,	add	the	apache-web	in	DSM	5.2	or	order,	or	nginx	in	DSM	6.0	or	newer	to	the	start_stop_restart_services	to	make
Apache/Nginx	reload	config	files.	Otherwise,	these	symbolic	links	should	be	removed	along	with	the	package.

Here	is	an	example	of	apache	config:

<Directory	"/var/services/photo">

								Options	MultiViews

								AllowOverride	None

								Order	allow,deny

								Allow	from	all

</Directory>

Synology	DSM6.0	Developer	Guide

94Create	PHP	Application

Run	Scripts	When	the	System	Boots
If	you	would	like	to	run	scripts	when	the	system	is	booting	up	or	shutting	down,	you	can	write	scripts	in	start-stop-status.	This	script
will	be	executed	with	the	"start"	or	"stop"	parameter,	when	the	package	is	enabled.	If	you	want	to	execute	a	script	during	the	boot-up	or
shut-down	process,	you	can	put	a	start-up	script	in	/usr/local/etc/rc.d/.	Below	are	the	rules	for	the	start-up	script:

1.	 It	must	contain	the	suffix	".sh".	For	example,	"myprog.sh".
2.	 The	permission	must	be	755.
3.	 It	must	contain	the	options	of	"start"	and	"stop".	When	the	system	boots	up,	it	will	call		myprog.sh	start	;	when	it	shuts	down,	it

will	call		myprog.sh	stop	.

Synology	DSM6.0	Developer	Guide

95Run	Scripts	When	the	System	Boots

Locale	Support
DSM	provides	locale	support	after	version	4.3.	You	do	not	need	to	add	or	remove	locale	related	files	on	the	NAS	after	this	version.

Synology	DSM6.0	Developer	Guide

96Locale	Support

Install	Package	Related	Ports	Information	into	DSM
If	your	package	service	uses	specific	ports	for	communication	(e.g.	Surveillance	Station	uses	ports	19997/udp	for	source	port	and
19998/udp	for	destination	port),	you	should	prepare	a	service	configuration	file	for	this	package	to	describe	which	ports	will	be	used.
After	that,	once	the	user	creates	firewall	rules	or	port	forwarding	rules	from	the	build-in	application,	your	package	service	will	also	be
listed	for	selection.

Service	Configure	File	Name

The	file	name	should	follow	the	naming	convention	SYNOPKG.sc	(ex:	SurveillanceStation.sc).	SYNOPKG	should	be	the	package
name	that	is	specified	by	the	key	"package"	in	the	INFO	file,	and	sc	means	Service	Configure	file.

Configure	Format	Template

Please	see	the	following	example:

[service_name]

title="English	title"

desc="English	description"

port_forward="yes"	or	"no"

src.ports="ports/protocols"

dst.ports="ports/protocols"

[service_name2]

…

Section/Key	Descriptions

Please	see	the	following	statements	for	the	strings	and	keys:

Synology	DSM6.0	Developer	Guide

97Install	Package	Related	Ports	Information	into	DSM

Section/Key Description Value Default
Value

DSM
Requirement

service_name

Required	

Usually	a	package	only	has	one	unique	service	name.
If	your	package	needs	more	than	one	port
description,	you	can	define	service_name2,
service_name3,	…	

Note:	service_name	cannot	be	empty	and	can	only
include	characters	“a~z”,	“A~Z”,	“0~9”,	“-”,	“\”,
“.”

Unique	service
name N/A 4.0-2206

title

Required	

English	title	which	will	be	shown	on	field	Protocol
at	firewall	build-in	selection	menu.

English	title N/A 4.0-2206

desc

Required	

English	description	which	will	be	shown	on	field
Applications	at	firewall	build-in	selection	menu.

English
description N/A 4.0-2206

port_forward

Optional	

If	set	to	“yes,”	your	package	service	related	ports
will	be	listed	when	users	set	port	forwarding	rule
from	build-in	applications.	Otherwise	they	will	not
be	listed.

“yes”	or	“no” “no” 4.0-2206

src.ports

Optional	

If	your	package	service	has	specified	source	ports,
you	can	set	them	in	this	key.	The	value	should
contain	at	least	the	port	numbers,	and	a	default
protocol	that	is	tcp	+	udp.	

Ex:	6000,7000:8000/tcp,udp	means	source	ports	are
6000,	7000	to	8000,	all	ports	are	tcp	+	udp.

ports/protocols	
ports:	1~65535	
(separated	by	‘,’
and	use	‘:’	to
represent	port
range)	
protocols:	
tcp,udp	
(separated	by
‘,’)

ports:	
N/A	

protocols:
tcp,udp

4.0-2206

dst.ports

Required	

Each	service	should	have	destination	ports.	The
value	should	contain	at	least	the	port	numbers,	and	a
default	protocol	that	is	tcp	+	udp.	

Ex:	6000,7000:8000/tcp,udp	means	destination	ports
are	6000,	7000	to	8000,	all	ports	are	tcp	+	udp.

ports/protocols	
ports:	1~65535	
(separated	by	‘,’
and	use	‘:’	to
represent	port
range)	
protocols:	
tcp,udp	
(separated	by
‘,’)

ports:	
N/A	

protocols:
tcp,udp

4.0-2206

Please	see	the	following	example	(SurveillanceStation.sc):

[ss_findhostd_port]

title="Search	Surveillance	Station"

desc="Surveillance	Station"

port_forward="yes"

src.ports="19997/udp"

dst.ports="19998/udp"

After	the	service	configuration	file	is	ready,	add	the	following	content	to	the	resource	specification	file.	Please	refer	to	Port	Config	for
more	detail.

"port-config":	{

				"protocol-file":	"port_conf/xxdns.sc"

	}

Synology	DSM6.0	Developer	Guide

98Install	Package	Related	Ports	Information	into	DSM

Synology	DSM6.0	Developer	Guide

99Install	Package	Related	Ports	Information	into	DSM

Lower	Privilege
To	reduce	security	risks,	we	now	provide	a	framework	to	run	packages	with	a	lower	privileged	"package	user"	instead	of	root.	Below	is
a	summary	of	how	to	join	the	framework	and	what	package	center	does	for	you:

1.	 Package	developers	provide	privilege	specification	to	specify	what	privilege	is	needed	during	program	execution.
2.	 During	package	installation,	package	center	creates	corresponding	user	and	group.	See	Package	User	&	Group	for	more	detail.
3.	 According	to	the	privilege	specification,	package	center		chown		files	under	/var/packages/${package}/target.	(The		setuid		and

	setgid		bit	will	be	cleared)
4.	 Package	executables	are	run	with	privilege	(package	user,	system	or	root)	according	to	its	file	owner	and	group.	See	Mechanism

for	more	detail.

With	this	framework,	package	developer	is	capable	of:

Configure	which	executable	should	be	run	with	what	privilege	with	a	simple	privilege	specification	file.
Resource	Acquistion	can	be	used	to	help	maintain	some	chores	that	requires	root	privilege.

Whether	to	lower	the	package's	privilege	and	create	corresponding	user	/	group	is	optional.	The	package	has	to	provide	privilege
specification	to	join	this	framework,	otherwise	the	package	will	still	be	run	with	root	privilege,	and	no	user	/	group	will	be	created.

Synology	DSM6.0	Developer	Guide

100Lower	Privilege

Package	User	&	Group

During	package	installation,	package	center	uses	the	package	name	to	create	a	user	and	group	for	the	package.	And	their	uid	/	gid	will
be	the	same	number,	which	lies	between	100000	and	300000.	Failure	on	user	/	group	creation	will	cause	package	installation	to	abort.	If
a	custom	user	and	group	name	is	preferred,	see	privilege	specification.

User	&	Group	Creation

Newly	created	user	and	group	will	have	the	below	configuration:

#	/etc/passwd

${package}:x:${uid}:${gid}::/var/packages/${package}/target:/sbin/nologin

#	/etc/shadow

${package}:*:10933:0:99999:7:::

#	/etc/group

${package}:x:${gid}:

UI	Behavior

Package	users	and	groups	will	not	appear	on	most	UI	settings.	Including	the	following:

Application	privilege's	permission	viewer
FPT's	chroot	user	selector
File	Stations's

Change	owner
Shared	Links	Manager	->	Enable	secure	sharing

The	only	exceptions	are:

Control	Panel	>	Shared	Folder	>	Edit	>	Permission	>	System	internal	user
ACL	editor

Creation	Policy

When	the	package	user	/	group	name	conflicts	with	a	local	user	/	group,	it	will	be	renamed	by	adding	a	PKG{time}	postfix	at	the	end.
The	renaming	policy	is	showed	below:

Synology	DSM6.0	Developer	Guide

101Package	User	&	Group

Synology	DSM6.0	Developer	Guide

102Package	User	&	Group

Mechanism

A	package	may	contain	multiple	executables,	each	of	them	triggered	in	different	times	by	the	DSM.	For	example,	CGIs	will	be	spawn
by	the	cgi	daemon,	and	control	scripts	(preinst,	start_stop_status...)	will	be	called	by	package	center.	Our	framework	uses	the	owner
user	and	group	of	the	executable	to	decide	what	user	privilege	to	grant.

Suppose	the	owner	user	is	```${package}:

If	the	owner	group	is		system	,	then	use		setresuid(-1,	${package},	-1),	which	gives	the	process	ability	to	change	back
to	root```.
Otherwise,	use		setresuid(${package},	${package},	${package})	,	drop	its	privilege.

A	Summory	of	file	owner	user	/	group	and	granted	privilege	is	shown	below:

run-as owner euid ruid

package ${package}:${package} ${package} ${package}

system ${package}:system ${package} 0

root root:root 0 0

Synology	DSM6.0	Developer	Guide

103Mechanism

Privilege	Specification

During	package	installation,	package	files	will	be		chown		with	${package}:${package}.	As	mentioned	in	Mechanism,	this	results	in
package	executables	to	be	run	as	${package}.	But	some	executables	might	require	higher	privilege.	Here	we	provide	a	Json	config	file
called	privilege	specification,	located	in	the	SPK's	conf/privilege.	This	privilege	specification	specifies	what	kind	of	privilege	the
executables	need.

NOTE	For	packages	that	does	not	support	running	with	lower	privileges,	simply	do	not	supply	this	previlege	specification.	Then
package	center	will	not	apply		chown		on	the	files.

The	content	of	privilege	specification	is	shown	below.	defaults	specifies	the	default	privilege	and	decides	how	to	apply	chown	on
files..		"username"		and		groupname		are	optional,	used	for	custom	user	/	group	name.	The	rest	of	the	key	is	used	to	overwrite	the
	default		setting.

{

		"defaults":{

				"run-as":	"<run-as>"

		},

		"username":	"<username>",

		"groupname":	"<groupname>",

		"ctrl-script":[{

				"action":	"<action>",

				"run-as":	"<run-as>"

		},	...],

		"executable":	[{

				"relpath":	"<relpath>",

				"run-as":	"<run-as>"

		},	...],

		"tool":	[{

				"relpath":	"<relpath>",

				"user":	"<user>",

				"group":	"<group>",

				"permission":	"<mode>"

		},	...]

}

	<run-as>	

Can	be		package	,		system	,	or		root	,	determines	what	privilege	will	the	executable	be	granted:

run-as description

	package	 Run	as	${package}	and	drop	privilege.

	system	 Run	as	${package},	but	preserve	the	ability	to	grant	privilege.

	root	 Run	as	root.

defaults

Use		run-as		to	specify	what	privilege	to	be	granted,	also	decides	how	to	chown.

run-as description

	package	 	chown	-hR	"${package}:${package}"	

	system	 	chown	-hR	"${package}:system"	

	root	 Do	not	chown.

Synology	DSM6.0	Developer	Guide

104Privilege	Specification

Synology	DSM6.0	Developer	Guide

105Privilege	Specification

Categories

In	here	we	introduce	what	categories	privilege	specification	supports	to	overwrite	the	setting	of		defaults	.	After	applying	chown
according	to		defaults	's	settings,	chown	again	with	the	caterogy's	settings:

ctrl-script
executable
tool

Each	category	is	a	key	of	the	privilege	specification	json	object,	and	the	corresponding	value	is	a	json	object	array.	An	object	in	the
array	represents	the	configuration	of	an	executable.

ctrl-script

Control	scripts	(preinst,	post_inst,	start_stop_status...)	are	spawned	by	the	Package	Center:

"ctrl-script":	[{

		"action":	"<action>",

		"run-as":	"<run-as>"

},	...]

Member Since Description

	action	
6.0-
5891

String,	can	only	be	one	of	"preinst",	"postinst",	"preuninst",	"postuninst",	"preupgrade",	"postupgrade",
"start",	"stop,	"status",	"prestart,	"prestop",	or	"log"

	run-as	
6.0-
5891 See	defaults.

executable

Executables	directly	spawned	by	the	DSM	framework	belongs	to	this	category:

"executable":	[{

		"relpath":	"<relpath>",

		"run-as":	"<run-as>"

},	...]

Member Since Description

	relpath	 6.0-5891 String,	the	file's	relative	path	under	/var/packages/${package}/target/.

	run-as	 6.0-5891 See	defaults.

tool

Executables	indirectly	called	by	the	DSM	framework	spawn	belongs	to	this	category	(For	example,	command	line	tool	called	by	a
CGI):

"tool":	[{

		"relpath":	"<relpath>",

		"user":	"<user>",

		"group":	"<group>",

		"permission":	"<mode>"

},	...]

Synology	DSM6.0	Developer	Guide

106Privilege	Specification

Member Since Description

	relpath	 6.0-5891 String,	the	file's	relative	path	under	/var/packages/${package}/target/.

	user	 6.0-5891 String,	file's	owner	user,	can	only	be	"package"	or	"root".

	group	 6.0-5891 String,	file's	owner	group,	can	only	be	"package"	or	"root".

	permission	 6.0-5891 4	digit	number	to	set	file	permission,	for	example:	4750

Synology	DSM6.0	Developer	Guide

107Privilege	Specification

Resource	Acquisition
During	package	installation	and	start-up,	we	often	need	to	install	config	files	(e.g.	php.ini,	apache.conf)	or	register	services	(e.g.	port
config,	data	share)	onto	the	DSM.	After	setting	package	to	run	with	lower	privilege,	you	might	lose	the	ability	to	do	these	job	in	the
control	scripts.	Instead	of	writing	these	jobs	in	the	installation	scripts	(preinst,	postinst...),	we	provide	a	framework	to	simplify	the
process.

The	config	files	and	services	that	needs	to	be	installed	and	registered	are	called	resource.	Each	resource	has	a	corresponding	worker,
which	is	responsible	for	installing	the	resource	onto	the	DSM.	Package	developers	just	need	to	follow	a	predefined	syntax	and	provide
the	resource	specification,	Package	Center	will	then	call	the	correspoding	worker	to	finish	the	job.

NOTE	If	a	package	is	using	this	framework,	please	remember	to	adjust	the	INFO	file's		firmware		to	meet	the	worker's	requirement

Synology	DSM6.0	Developer	Guide

108Resource	Acquisition

Resource	Specification
The	json	file	resource	is	used	to	specify	a	package's	required	resources,	and	it	should	be	placed	in	the	conf	folder.	After	package
installation,	this	file	will	be	located	at	/var/packages/${package}/conf/resource.	The	content	of	the	file	should	be	something	like:

{

		"<resource-id>":	<specification>,

		...

}

	<resource-id>	

String,	represents	the	resource's	ID.
	<specification>	

Json	object,	describes	the	resource	requirements.

Take	the	below	/usr/local	linker	worker	for	example:

{

		"usr-local-linker":	{

				"lib":	["lib/foo"],

				"bin":	["bin/foo"],

				"etc":	["etc/foo"],

		}

}

	"usr-local-linker"		is	the	resource	ID	and	the	correponding	Json	object	is	the	specification,	which	specifies	what	files	should	be
installed	into	the	DSM.

Data	from	Wizard

As	mentioned	in	WIZARD_UIFILES,	installation	scripts	can	optain	user's	input	from	the	UI	wizard,	some	workers	are	also	capable	of
doing	this.	In	the	resource	file,	variables	surrounded	by		{{}}		will	be	replaced	by	the	user	input.

Take	the	below	Data	Share	worker	for	example:

"data-share":	{

		"name":	"{{pkgwizard_share_name}}",

		"permission":	{

				"ro":	["admin"]

		}

}

	{{pkgwizard_share_name}}		will	be	replaced	by	WIZARD_UIFILES/install_uifile's	or	WIZARD_UIFILES/upgrade_uifiles's
	pkgwizard_share_name	

Synology	DSM6.0	Developer	Guide

109Resource	Specification

Timing
Every	worker	acquires	resources	at	certain	timings	and	holds	it	during	an	interval.	For	example,	/usr/local	linker	holds	the	resource
during	the	interval		FROM_ENABLE_TO_DISABLE	,	which	means	it	acquires	resource	at		WHEN_ENABLE		and	releases	it	at		WHEN_DISABLE	.
The	timings	are	listed	and	explained	below:

Synology	DSM6.0	Developer	Guide

110Timing

timing descrioption when	Failure

	WHEN_PREINST	 before	preinst abort	installation,	rollback,	show	alert	message
on	UI

	WHEN_POSTINST	 before	postinst finish	installation,	show	alert	message	on	UI

	WHEN_ENABLE	
before		WHEN_STARTUP	,	won't	process	during
bootup abort	startup,	rollback,	show	alert	message	on	UI

	WHEN_STARTUP	 before	start abort	startup,	rollback,	show	alert	message	on	UI

	WHEN_PREUNINST	 after	preuninst finish	uninstallation,	show	alert	message	on	UI

	WHEN_POSTUNINST	 before	postuninst finish	uninstallation,	show	alert	message	on	UI

	WHEN_DISABLE	
after		WHEN_HALT	,	won't	process	during
shutdown ignore

	WHEN_HALT	 after	stop ignore

NOTE	To	let	the	package	itself	decide	whether	uninstallation	should	continue	or	not,		WHEN_PREUNINST		is	processed	after	the
	preuninst		script.

Synology	DSM6.0	Developer	Guide

111Timing

Config	Update
Some	workers	support	config	update	after	package	installation.	/usr/syno/sbin/synopkgheler	should	be	used	to	accomplish	the	job.
Below	are	the	steps	to	update	the	config:

1.	 Update	the	content	of	config	file	under	/var/packages/${package}/target/.
2.	 Execute	the	command		/usr/syno/sbin/synopkghelper	update	<package>	<resource-id>		to	trigger	the	corresponding	worker	to

update	the	config.

For	example,	suppose	a	package	allows	the	user	to	edit	its	listening	port	and	needs	to	trigger	the	Port	config	worker	for	update:

1.	 Provide	the	user	some	UI	to	input	the	port	number.
2.	 After	receiving	the	new	port	number,	update	the	config	file	under	/var/packages/${package/target/.
3.	 Execute	the	command		/usr/syno/sbin/synopkghelper	update	${package}	protocol_file	,	the	worker	will	re-read	the	config	file

and	reload	firewall	and	portforwarding.

NOTE	Not	all	worker	supports	config	update,	please	refer	to	the	Updatable	section	of	each	worker.

Synology	DSM6.0	Developer	Guide

112Config	Update

Available	Workers
As	mentioned	in	the	section	Resource	Acquisition,	a	worker	is	needed	for	resource	management.	Given	a	Resource	Specification
configuration	file,	the	worker	will	install\/uninstall	the	described	resource	at	certain	time.	This	section	describes	the	available	workers
on	the	DSM.

Synology	DSM6.0	Developer	Guide

113Available	Workers

/usr/local	linker

Description

Package's	executables	and	library	files	should	be	installed	to	/usr/local.	This	worker	link	/	unlink	files	to	/usr/local/{bin,lib,etc}	during
package	start	/	stop.

	Acquire()	:	Create	symbolic	links	under	/usr/local/{bin,lib,etc}/	that	points	to	files	in	/var/packages/${package}/target/.
Files	not	found	under	/var/packages/${package}/target/	will	be	ignored.
If	the	target	file	already	exists	in	/usr/local/{bin,lib,etc},	it	will	be		unlink()		first.
Failure	on	any	file	link	results	in	this	worker	to	abort	and	triggers	rollback.

	Release()	:	Delete	the	links	under	/usr/local/{bin,lib,etc}/.
Ignore	files	that	are	not	found.
Ignore		unlink()		failure.

Provider

DSM

Timing
	FROM_ENABLE_TO_DISABLE	

Environment	Variables

None

Updatable

No

Syntax

"usr-local-linker":	{

		"bin"	["<relpath>",	...],

		"lib"	["<relpath>",	...],

		"etc"	["<relpath>",	...]

}

Member Since Description

	bin	 6.0-5941 String	array,	list	of	files	to	be	linked	under	/usr/local/bin/.

	lib	 6.0-5941 String	array,	list	of	files	to	be	linked	under	/usr/local/lib/.

	etc	 6.0-5941 String	array,	list	of	files	to	be	linked	under	/usr/local/etc/.

	relpath	 6.0-5941 String,	target	file's	relative	path	under	/var/packages/${package}/target/.

Example

"usr-local-linker":	{

		"bin":	["usr/bin/a2p",	"usr/bin/perl"],

		"lib":	["lib/perl5"]

}

Synology	DSM6.0	Developer	Guide

114Available	Workers

The	above	specifications	generates	the	following	symbolic	links	for	the	Perl	package:

root@DS	$	ls	-l	/usr/local/{bin,lib,etc}

/usr/local/bin/:

total	0

lrwxrwxrwx	1	root	root			30	Aug	13	06:32	a2p	->	/var/packages/Perl/target/usr/bin/a2p

lrwxrwxrwx	1	root	root			31	Aug	13	06:32	perl	->	/var/packages/Perl/target/usr/bin/perl

/usr/local/lib/:

total	0

lrwxrwxrwx	1	root	root			28	Aug	13	06:32	perl5	->	/var/packages/Perl/target/lib/perl5

/usr/local/etc/:

total	0

Synology	DSM6.0	Developer	Guide

115Available	Workers

Apache	2.2	Config

Description

Packages	can	carry	sites-enabled/*.conf	files	for	Apache	HTTP	Server	2.2.	This	worker	installs	/	uninstalls	these	config	files	during
package	start	/	stop.

	Acquire()	:	Copy	the	conf	files	to	/usr/local/etc/httpd/sites-enabled/.	Then	reload	Apache	2.2.
The	files	should	have	.conf	extension,	otherwise	it	will	be	ignored
Files	will	be	prefixed	by	${package}.
Existing	files	will	be		unlink()		first.
Failure	on	any	file	copy	results	in	this	worker	to	abort	and	triggers	rollback.

	Release()	:	Delete	previously	created	links
Ignore	files	that	are	not	found.
Ignore		unlink()		failure.

Provider

WebStation

Timing
	FROM_ENABLE_TO_DISABLE	

Environment	Variables

None

Updatable

No

Syntax

"apache22":	{

				"sites-enabled":	[{

								"relpath":	"<conf-relpath>",

				},	...]

}

Member Since Description

	sites-enabled	 WebStation-1.0-0049 Object	array,	list	of	conf	files	to	install.

	relpath	 WebStation-1.0-0049 Target	file's	relative	path	under	/var/packages/${package}/target/.

Example

Synology	DSM6.0	Developer	Guide

116Available	Workers

{

				"apache22":	{

								"sites-enabled":	[{

												"relpath":	"synology_added/test_1.conf"

								},	{

												"relpath":	"synology_added/test_2.conf"

								},	{

												"relpath":	"synology_added/test_3.conf"

								}]

				}

}

Synology	DSM6.0	Developer	Guide

117Available	Workers

Data	Share

Description

This	worker	creates	shared	folder	and	set	its	permission	during	package	startup.	The	share	name	can	be	hard-coded	in	the	specification
or	given	by	user	input	from	the	UI	wizard.	The	shared	folder	will	not	be	removed	after	package	uninstallation,	since	it	might	delete	the
user’s	personal	data	as	well.

	Acquire()	:	Create	shared	folder	and	set	its	permission.
If	the	shared	folder	already	exists,	skip	share	creation	and	set	the	permission.

	Release()	:	Does	nothing.

Provider

DSM

Timing
	FROM_ENABLE_TO_POSTUNINST	

Environment	Variables

None

Updatable

No

Syntax

"data-share":	{

		"shares":	[{

				"name":	"<share-name>",

				"permission":	{

						"ro":	["<user-name>",	...],

						"rw":	["<user-name>",	...]

				},

				"once":	"<once>"

		},	...]

}

Member Since Description

	shares	 6.0-5914 Object	array,	array	of	shares	to	create

	name	 6.0-5914 String,	name	of	the	share,	can	be	obtained	from	the	UI	wizard

	permission	 6.0-5914 Json	object,	permission	of	the	share.	(optional)

	ro	 6.0-5914 String	arrayusers	to	be	assigned	with	read-only	permission.

	rw	 6.0-5914 String	arrayusers	to	be	assigned	with	read	/	write	permission.

	once	 6.0-5914 Boolean,	only	try	to	create	share	on	package's	first	start.	(optional,	default	=		false)

Example

Synology	DSM6.0	Developer	Guide

118Available	Workers

The	following	specification	creates	a	share	music,	and	gives	the	user	AudioStation	read-only	permission.	Since		once		defaults	to
	false	,	the	above	procedure	is	ran	every	time	the	package	starts.

"data-share":	{

		"shares":	[{

				"name":	"music",

				"permission":	{

						"ro":	["AudioStation"]

				}

		}]

}

The	following	specification	reads	the	share	name	from	WIZARD_UIFILES/install_uifile's		pkgwizard_share_name	,	and	gives	the	user
admin	read-only	permission.

"data-share":	{

		"shares":	[{

				"name":	"{{pkgwizard_share_name}}",

				"permission":	{

						"ro":	["admin"]

				}

		}]

}

Synology	DSM6.0	Developer	Guide

119Available	Workers

Index	DB

Description

Index	/	unindex	package	help	and	app	index	during	package	start	/	stop.

For	detailed	description	on	package	app	index	and	help	index,	please	refer	to	Integegrate	Help	Document	into	DSM	Help.

	Acquire()	:	Index	package	help	and	app	content.
	Release()	:	Un-index	package	help	and	app	content.

Provider

DSM

Timing
	FROM_ENABLE_TO_DISABLE	

Environment	Variables

None

Updatable

No

Syntax

"indexdb":	{

				"app-index"		:	{

								"conf-relpath":	"<conf	relpath>",

								"db-relpath":	"<app	db	relpath>"

				},

				"help-index":	{

								"conf-relpath":	"<conf	relpath>",

								"db-relpath":	"<help	db	relpath>"

				}

}

Member Since Description

	app-index	 6.0-5924 Object,	app	index	info.

	help-index	 6.0-5924 Object,	help	index	info.

	conf-relpath	 6.0-5924 String,	config	file's	relative	path	under	/var/packages/${package}/target/.

	db-relpath	 6.0-5924 String,	db	folder's	relative	path	under	/var/packages/${package}/target/.

Example

Synology	DSM6.0	Developer	Guide

120Available	Workers

"indexdb":	{

				"app-index"		:	{

								"conf-relpath":	"app/index.conf",

								"db-relpath":	"indexdb/appindexdb"

				},

				"help-index":	{

								"conf-relpath":	"app/helptoc.conf",

								"db-relpath":	"indexdb/helpindexdb"

				}

}

Synology	DSM6.0	Developer	Guide

121Available	Workers

Maria	DB

Description

Create	/	delete	database	and	db-user	during	package	install	/	uninstall.	The	database	name	can	be	hard-coded,	read	from	config	file	or
given	by	the	user	from	UI	wizard.	Package	developer	can	decide	if	creating	a	corresponding	db-user	is	needed	or	not.

	Acquire()	:	Create	database	and	db-user	accroding	to	resource	specification.
database:	resource	specification	can	specify	what	action	to	take	if	a	database	with	the	same	name	already	exists:
1.	 	drop		:	Delete	the	existing	database.
2.	 	skip		:	Ignore	database	creation,	keep	the	existing	database	and	conitinue	installation.
3.	 	error	:	Return	error	and	rollback.	(Default:		error)

db-user:	Create	db-user	and	grant	access	to	the	database	according	to	the	resource	specification.	The	default	db-user	to	create
is		'${package}'@'localhost'	

	Release()	:	Delete	database	and	db-user	accroding	to	the	resource	specification.	Default	is	to	keep	the	database	and	db-user.
During	package	upgrade,	MariaDB	worker	provides	the	get_key_value	method	to	obtain	previously	create	database's	name,	and
there	will	be	no	create	/	delete	for	database	and	db-user

Provider

MariaDB

Timing
	FROM_PREINST_TO_PREUNINST	

Environment	Variables

Variable Since Description

	SYNOPKG_DB_USER_RAND_PW	 6.0-5920 The	random	password	generated	during	datebase	user	creation.

Updatable

No

Syntax

((*)		required)

Synology	DSM6.0	Developer	Guide

122Available	Workers

"mysql-db":	{

				"info":	{

								"db-name":	"<db	name>",					(*)

								"conf":	"<conf>",

								"key":	"<key>"

				},

				"root-pw":	"<db	password>",	(*)

				"create-db"	:	{

								"char-set":	"<character-set>",

								"collate":	"<collate>",

								"db-collision":	"drop"	|	"skip"	|	"error"

				},

				"grant-user":	{

								"user-name"	:	"<db	username>",

								"host"						:	"<db	user	host>",

								"user-pw"			:	"<user	password>",

								"rand-pw"			:	true	|	false

				},

				"drop-db-uninst":	true	|	false,

				"drop-user-uninst":	true	|	false

}

Synology	DSM6.0	Developer	Guide

123Available	Workers

Member Since Description

	info	
5.5.47-
0062

Object,	info	of	db-name.	The	priority	of	retrieving	database's	name	is		db-name		>		conf	.	Which
means,	if	db-name	is	given,	conf	and	key	will	be	ignored.

	db-name	
5.5.47-
0062 String,	database	name,	can	be	given	by	UI	wizard.

	conf	
5.5.47-
0062 String,	file	containing	the	database	name's	key-value-pair.

	key	
5.5.47-
0062 String,	the	key	in		conf		file	to	look	for	db-name.

	root-pw	
5.5.47-
0062 String,	root	password	of	MariaDB.

	create-db	
5.5.47-
0062 Object,	info	of	database.	If	does	not	exist,	database	will	not	be	created	during		Acquire()	.

	character-

set	

5.5.47-
0062 String,	database's	CHARACTER	SET.	(default	=	utf8)

	collate	
5.5.47-
0062 String,	database's	COLLATE.	(default	=	utf8_unicode_ci)

	db-

collision	

5.5.47-
0062 String,	action	to	take	if	the	database	exists.	Can	be		drop	/	skip	/	error	.

	grant-

user	

5.5.47-
0062 Object,	info	of	db-user.	If	does	not	exist,	db-user	will	not	be	created	during		Acquire()	.

	user-name	
5.5.47-
0062 String,	db-user	name.	(default	=		${package})

	host	
5.5.47-
0062 String,	db-user's	host.	(defaults	=		localhost)

	user-pw	
5.5.47-
0062

String,	db-user's	password.	If	empty	or	null,	db-user's	password	will	not	be	set.	Overrides	existing
user's	password.

	rand-pw	
5.5.47-
0062

Boolean,	whether	to	generate	a	random	password.	If	set	to		true	,	the	db-user	will	be	given	a
random	password	and	be	passed	to	environment	variable		SYNOPKG_DB_USER_RAND_PW	.	If		user-pw	
exists,	this	value	will	be	ignored.

	drop-db-

uninst	

5.5.47-
0062

Boolean,	whether	to	delete	database	during		Release()	.	Can	be	given	by	UI	wizard.	(defaults	=
	false)

	drop-user-

uninst	

5.5.47-
0062

Boolean,	whether	to	delete	db-user	during		Release()	.	Can	be	given	by	UI	wizard.	(defaults	=
	false)

Example

"mysql-db":	{

				"info":	{

								"db-name":	"wordpressblog"

				},

				"root-pw":	"{{pkgwizard_mysql_password}}",

				"create-db"	:	{

								"db-collision":	"skip"

				},

				"grant-user":	{

								"user-name"	:	"wordpress"

				},

				"drop-db-uninst":	"{{pkgwizard_remove_mysql}}",

				"drop-user-uninst":	"{{pkgwizard_remove_mysql}}"

}

Synology	DSM6.0	Developer	Guide

124Available	Workers

Synology	DSM6.0	Developer	Guide

125Available	Workers

PHP	INI

Description

Packages	can	carry	custom	php.ini	and	fpm.conf	files.	This	worker	installs	/	uninstalls	these	config	files	during	package	start	/	stop.

	Acquire()	:	Copy	the	php.ini	and	fpm.conf	files	to	/usr/local/etc/php56/conf.d/	and	/usr/local/etc/php56/fpm.d/.	Then	reload
php56-fpm.

php.ini	/	fpm.conf	files	should	have	.ini	/	.conf	extension,	otherwise	it	will	be	ignored
Files	will	be	prefixed	by	${package}.
Existing	files	will	be		unlink()		first.
Failure	on	any	file	copy	results	in	this	worker	to	abort	and	triggers	rollback.

	Release()	:	Delete	previously	created	links
Ignore	files	that	are	not	found.
Ignore		unlink()		failure.

Provider

PHP5.6

Timing
	FROM_ENABLE_TO_DISABLE	

Environment	Variables

None

Updatable

No

Syntax

"php":	{

					"php-ini":	[{

									"relpath":	"<ini-relpath>",

					},	...],

					"fpm-conf":	[{

									"relpath":	"<conf-relpath>",

					},	...]

	}

Member Since Description

	php-ini	 PHP5.6-5.6.17-0020 Object	array,	list	of	php.ini	files	to	install.

	fpm-conf	 PHP5.6-5.6.17-0020 Object	array,	list	of	fpm.conf	files	to	install.

	relpath	 PHP5.6-5.6.17-0020 Target	file's	relative	path	under	/var/packages/${package}/target/.

Example

Synology	DSM6.0	Developer	Guide

126Available	Workers

{

				"php":	{

								"php-ini":	[{

												"relpath":	"synology_added/etc/php/conf.d/test_1.ini"

								},	{

												"relpath":	"synology_added/etc/php/conf.d/test_2.ini"

								},	{

												"relpath":	"synology_added/etc/php/conf.d/test_3.ini"

								}],

								"fpm-conf":	[{

												"relpath":	"synology_added/etc/php/fpm.d/test_1.conf"

								},	{

												"relpath":	"synology_added/etc/php/fpm.d/test_2.conf"

								},	{

												"relpath":	"synology_added/etc/php/fpm.d/test_3.conf"

								}]

				}

}

Synology	DSM6.0	Developer	Guide

127Available	Workers

Port	Config

Description

Install	/	uninstall	service	port	config	file	during	package	install	/	uninstall.

For	detailed	description	on	what	is	and	how	to	write	a	port	config	file,	please	refer	to	Install	Package	Related	Ports	Information	into
DSM.

	Acquire()	:	copy	the	.sc	file	to	/usr/local/etc/service.d/
If	the	destination	file	exists,	skip	file	copy.

	Release()	:	remove	the	.sc	file	and	reload	the	firewall	and	portforward.
	Update()	:	update	the	.sc	file	and	reload	firewall	and	portforward.

Timing
	FROM_POSTINST_TO_POSTUNINST	

Environment	Variables

None

Updatable

Yes,	please	refer	to	Config	Update	on	how	to	trigger	update.

Syntax

"port-config":	{

				"protocol-file":	<protocol_file>

	}

Member Since Description

	protocol_file	 6.0-5936 .sc	file's	relative	path	under	/var/package/{$package}/target/

Example

"port-config":	{

				"protocol-file":	"port_conf/xxdns.sc"

	}

Synology	DSM6.0	Developer	Guide

128Available	Workers

Syslog	Config

Description

Install	/	uninstall	the	syslog-ng	and	logrotate	config	file	during	package	start	/	stop.

Please	refer	to	syslog-ng	on	how	to	write	the	syslog-ng's	config	file.

	Acquire()	:	Copy	patterndb	/	logratoate	to	/usr/local/etc/syslog-ng/patterndb.d/	/	/usr/local/etc/logrotate.d/.	Then	reload	syslog-
ng.

If	file	exists,		unlink()		it	first.
Failure	on	any	file	copy	results	in	this	worker	to	abort	and	triggers	rollback.

	Release()	:	Delete	the	config	files	and	reload	syslog-ng.
Ignore		unlink()		failure.

Provider

DSM

Timing
	FROM_ENABLE_TO_DISABLE	

Environment	Variables

None

Updatable

No

Syntax

"syslog-config":	{

		"patterndb-relpath":	"<relpath>",

		"logrotate-relpath":	"<relpath>"

}

Member Since Description

	patterndb-

relpath	

6.0-
7145

String,	syslog-ng's	config	file's	relative	path	under	/var/packages/${package}/target/,	ignore	this	if
the	log	is	not	generated	by	syslog-ng	(optional)

	logrotate-

relpath	

6.0-
5911

String,	logrotate's	config	file's	relative	path	under	/var/packages/${package}/target/,	ignore	this	if
log	is	saved	to	database	(optional)

Example

"syslog-config":	{

		"patterndb-relpath":	"etc/syslog-ng.conf",

		"logrotate-relpath":	"etc/logrotate.conf"

}

Synology	DSM6.0	Developer	Guide

129Available	Workers

https://syslog-ng.org/

Synology	DSM6.0	Developer	Guide

130Available	Workers

Publish	Synology	Packages

Synology	DSM6.0	Developer	Guide

131Publish	Synology	Packages

Get	Started	with	Publishing
To	publish	in	Synology	Package	Center	requires	a	few	simple	steps.	Here	is	how	to	do	it:

1.	 Acquire	a	Synology	Checkout	Merchant	Account	via	a	Synology	specialist	(for	more	details	please	contact
	package@synology.com).

2.	 Read	and	accept	the	Developer	Distribution	Agreement.	Note	that	packages	that	you	publish	on	Package	Center	must	comply	with
the	Terms	of	Service	in	Package	Center.

Please	note	that	the	package	quality	directly	influences	the	long-term	success	of	your	package	in	terms	of	installation,	online	reviews,
engagement,	and	user	retention.

Synology	DSM6.0	Developer	Guide

132Get	Started	with	Publishing

http://www.synology.com/company/terms_of_services.php?lang=enu

Submitting	the	Package	for	Approval
Before	you	publish	your	package	in	Package	Center	and	distribute	it	to	users,	you	need	to	get	the	package	(the	SPK	file)	ready,	test	it,
and	prepare	your	promotion	materials	if	needed.	Please	see	the	checklist	below	before	submitting	your	package	to	us.

Confirm	Package	Size

The	overall	size	of	your	package	can	affect	its	design	and	how	you	publish	it	in	Package	Center.	Currently,	the	maximum	size	for	a	SPK
file	published	on	Package	Center	is	100MB.

Free	or	Paid	Package

In	Package	Center,	you	can	publish	free	or	paid	packages.	Free	packages	can	be	downloaded	by	any	user	in	Package	Center.	Paid	apps
can	be	downloaded	only	by	users	who	have	a	registered	Synology	Account.

Deciding	whether	your	package	will	be	free	or	paid	is	important	because	free	packages	must	remain	free.

Once	your	package	is	published	as	a	free	one,	you	cannot	change	it	to	a	paid	package.
If	you	publish	your	package	as	a	paid	one,	you	can	change	it	to	free	at	any	time	(but	cannot	be	changed	back	to	paid).
If	your	package	is	paid,	you	need	to	set	up	a	Synology	Checkout	Merchant	Account	before	the	package	can	be	published.
For	queries	about	the	Synology	Checkout	Merchant	Account,	you	can	contact		package@synology.com	.

Set	a	Price	for	Your	Package
If	you	have	a	paid	package,	Synology	lets	you	set	prices	for	your	package	only	in	US	currency	for	users	in	markets	around	the	world.
Before	you	publish,	consider	how	you	will	price	your	package	and	what	your	price	will	be	in	various	currencies.

Prepare	Screenshots
When	you	publish	in	Package	Center,	you	must	supply	a	variety	of	high-quality	screen-shots	to	showcase	your	package	or	brand.	After
you	publish,	they	will	appear	on	your	package	details	page,	or	elsewhere.	These	screen-shots	are	a	key	part	of	a	successful	package
details	page	that	will	attract	and	engage	users.	Therefore,	you	may	also	consider	hiring	a	professional	to	produce	them	for	you.

Submit	Your	Package
When	you	are	ready	to	publish,	send	an	email	to	a	Synology	specialist		package@synology.com		to	make	your	submission.

Make	sure	that:

You	have	applied	through	Synology	Dev	Center	and	become	an	authorized	developer.
Your	package	is	the	right	version.
You	provide	a	download	link	for	your	package.
You	provide	a	package	description	with	what	it	does.
You	provide	a	change	log	with	what	was	updated	in	this	version.
Package	pricing	is	set	to	be	free	or	paid	(for	the	first	time	submission).
The	link	to	your	website	and	the	support	email	address	is	correct.
You	have	acknowledged	that	your	package	meets	the	Developer	Distribution	Agreement	and	also	the	Terms	of	Service	from
Package	Center.

Synology	DSM6.0	Developer	Guide

133Submitting	the	Package	for	Approval

https://www.synology.com/en-global/support/developer#apply
http://www.synology.com/company/terms_of_services.php?lang=enu

Synology	DSM6.0	Developer	Guide

134Submitting	the	Package	for	Approval

Responding	to	User	Issues
After	you	publish	a	package,	it	it	crucial	for	you	to	offer	support	to	your	customers.	Prompt	and	courteous	support	can	provide	a	better
experience	for	users,	which	can	result	in	more	downloads	and	more	positive	online	reviews	for	your	packages.	Users	are	more	likely	to
be	more	engaged	with	your	package	and	recommend	it	if	you	are	responsive	to	their	needs	and	feedback.

There	are	many	ways	that	you	can	keep	in	touch	with	users	and	offer	them	support.	The	most	common	way	is	to	provide	a	support	email
address	in	your	package	details	page.	You	can	also	provide	support	in	other	ways,	such	as	a	forum	or	a	mailing	list.	The	Synology
technical	support	team	provides	user	support	for	downloading,	installing	and	payments	issues,	but	issues	that	fall	outside	of	these	topics
will	fall	under	your	domain.	Examples	of	issues	you	can	support	include:	feature	requests,	questions	about	using	the	app	and	questions
about	compatibility	settings.

After	publishing,	please	plan	to:

Provide	a	link	to	your	support	resources	and	set	up	any	other	support	outlets	such	as	a	forum.
Provide	an	appropriate	support	email	address	on	your	package	detail	page	and	respond	to	users	when	they	email	you.
Acknowledge	and	fix	issues	with	your	package.	It	helps	to	be	transparent	and	list	known	issues	on	your	package	details	page
regularly.
Publish	updates	frequently,	without	sacrificing	quality	or	annoying	users	with	too-frequent	updates.
With	each	update,	make	sure	you	provide	a	summary	of	what	is	new.	Users	will	read	it	and	appreciate	that	you	are	serious	about
improving	the	quality	of	your	package.

Synology	DSM6.0	Developer	Guide

135Responding	to	User	Issues

Appendix	A:	Platform	and	Arch	Value	Mapping	Table
The	architecture	of	the	NAS	is	developed	upon	various	platforms	on	which	your	package	is	designed	and	needs	to	be	addressed	in	the
INFO	file	in	the	package.

In	the	below	table,	you	will	find	the	string	value	corresponding	to	the	platform	in	question.	For	example,	if	the	platform	of	your	NAS	is
Marvell	Kirkwood,	88F6281,	the	value	that	should	to	be	provided	as	a	pair	of	the	arch	key	is	88f6281.

Please	check	the	platforms	of	the	NAS	to	be	supported	and	refer	to	the	table	below	for	their	corresponding	string	values:

Platform	Name Arch	Value

Marvell	Kirkwood,	88F6281 88f6281

Marvell	Kirkwood,	88F6282 88f6282

Intel	Atom	D410/D510	(Pineview) x86

Intel	Atom	D2700	(Cedarview) cedarview

Intel	SandyBridge,	Intel	IvyBridge,	Intel	Haswell bromolow

Marvell	Armada	370 armada370

Marvell	Armada	375 armada375

Marvell	Armada	XP armadaxp

Annapurnalabs,	Alpine alpine/alpine4k

Mindspeed,	Comcerto,	C2000 comcerto2k

Intel	Atom	CE	SoC evansport

No	platform	dependency noarch

Synology	DSM6.0	Developer	Guide

136Appendix	A:	Platform	and	Arch	Value	Mapping	Table

Revision	History
This	table	describes	the	changes	to	the	Synology	DSM	3rd	Party	Apps	Developer	Guide.

Synology	DSM6.0	Developer	Guide

137Revision	History

Date Note

2008/06/16 1.	Original	release	date	of	document.

2009/02/09 1.	Added	Freescale	8533	tool	chain	information.

2009/03/09 1.	Added	Marvell	6281	tool	chain	information.	
2.	Added	Desktop	Icon	chapter.

2010/05/20

1.	Added	related	information	for	10	models.	
2.	Changed	all	DSM	2.0	&	2.1	to	DSM	2.3.	
3.	New	screenshots	for	desktop	icon	&	DSM	application.	
4.	Changed	configuration	files	and	tool	chains.	
5.	DS1010+	uses	Intel	Atom	D510.

2010/05/28
1.	Revised	Tool	Chain	description	
2.	Revised	88f5182-config	to	88f5281-config	in	Kernel	Module.	
3.	Revised	path	description	of	application.cfg	/	desktop.cfg.

2010/11/29 1.	Renamed	the	document	to	“Synology	DiskStation	Manager	3rd-Party	Apps	Developer	Guide”.	
2.	Added	DSM	3.0	Integration	section.

2011/10/31 1.	Added	Synology	package	creation	section.	
2.	Updated	DSM	tool	chain	information.

2012/03/20 Added	the	guideline	to	application	storage,	web	application	running	on	Apache	and	created	a	shared	folder.

2012/09/19 Added	Freescale	QorIQ	tool	chain	information.

2013/03/11
1.	General	update	for	DSM	4.2	release.	
2.	Added	section	regarding	payment	framework.	
3.	Updated	formatting.

2013/05/06 Added	Marvell	Armada	370	tool	chain	information.

2013/05/29 Added	Marvell	Armada	XP	and	Evansport	tool	chain	information.

2013/06/05 Updated	QorIQ,	Armada	XP,	Armada	370,	Evansport	$CC	variable.

2013/07/09 1.	Updated	install_dep_services	and	start_dep_services	in	INFO	section.	
2.	Added	Locale	Support.

2013/07/25 1.	Updated	Linux	kernel	version.	
2.	Added	CSRF	protection	in	DSM	Web	Authentication	section.

2013/08/29 General	update	on	tool	chain,	tool	kit,	and	GPL	kernel	source	for	DSM	4.3	release.

2014/02/25

1.	Updated	keys	in	INFO	section	for	DSM	5.0.	
2.	Added	DSM	5.0	support	in	platform	chart.	
3.	Updated	Create	PHP	Application	with	DSM	5.0	change.	
4.	Added	Create	User	Account	and	Share	Permission.	
5.	Minor	corrections.

2014/03/26 1.	Added	Appendix	for	Platform	and	Arch	string	mapping	table.	
2.	Added	compilation	instruction	for	DSM	5.0	build.

2014/08/17 1.	Added	code	sign	mechanism	for	packages.

2014/10/29 1.	Added	Chapter:	Quick	Start	Guide.	
2.	Removed	the	duplicated	content.

2015/09/10 1.	Aded	Marvell	Armada	375ANNAPURNALABS,	Alpine	AL212/AL314/AL514	and	MINDSPEED,
Comcerto,	C2000	tool	chain	information.

2016/01/14 1.	Content	revised.	
2.	Changed	to	format	to	Gitbook.

Synology	DSM6.0	Developer	Guide

138Revision	History

Compile	Applications
The	Synology	NAS	employs	embedded	SoC	or	x86-based	CPUs,	implementing	several	platforms	--	such	as	ARM	and	PowerPC	--	on	a
variety	of	Synology	NAS	models.	In	order	to	run	3rd-party	applications	on	the	Synology	NAS,	it	is	necessary	to	compile	applications
into	an	executable	format	for	the	corresponding	platform.

The	table	below	lists	the	CPU,	architecture,	Endianness,	and	Linux	kernel	version	of	each	Synology	NAS	model.	This	information	will
help	you	determine	which	DSM	tool	chain	(please	refer	to	the	“Download	DSM	Tool	Chain”	section)	to	download	for	each	model.

Please	refer	to	What	kind	of	CPU	does	my	NAS	have	Need	to	update	the	hyperlinkfor	a	complete	model	list.

Model	(To	name	a	few) CPU Arch Endianness Linux

DS112j,	DS112,	DS112+,	DS411slim,	DS213,	DS212j Marvell	6281	
Marvell	6282 ARM Little

Endian 2.6.32

DS213j Marvell	Armada	370 ARM Little
Endian 3.2.40

DS214,	DS214+ Marvell	Armada	XP ARM Little
Endian 3.2.40

DS215+,	DS416 Annapurnalabs,	Alpine
AL212 ARM Little

Endian 3.2.40

DS715,	DS1515 Annapurnalabs,	Alpine
AL314 ARM Little

Endian 3.2.40

DS2015xs Annapurnalabs,	Alpine
AL514 ARM Little

Endian 3.2.40

DS115,	DS215j Marvell	Armada	375 ARM Little
Endian 3.2.40

DS414j Mindspeed,	Comcerto,
C2000 ARM Little

Endian 3.2.40

DS712+,	DS2412+,	RS2212+,	DS1512+,	DS1812+,
DS412+,	RS812+ Intel	Atom Intel	x86 Little

Endian 3.2.40

DS3612xs,	RS3412xs,	RS3412RPxs Intel	Core	i3 Intel	x86 Little
Endian 3.2.40

DS214play Intel	SoC Intel	x86 Little
Endian 3.2.40

DS213+,	DS413 Freescale	QorIQ	P1022 PowerPC Big	Endian 2.6.32

To	compile	an	application	for	the	Synology	NAS,	a	compiler	that	runs	on	Linux	PC	is	required	in	order	to	generate	an	executable	file
for	the	Synology	NAS.	This	compiling	procedure	is	called	cross-compiling,	and	the	set	of	compiling	tools	(compiler,	linker,	etc)	used	to
compile	the	application	is	called	a	tool	chain.

Synology	DSM6.0	Developer	Guide

139Appendix	B:	Compile	Applications	Manually

http://forum.synology.com/wiki/index.php/What_kind_of_CPU_does_my_NAS_have

Download	DSM	Tool	Chain
To	download	the	DSM	tool	chain,	please	go	to	SourceForge.	The	table	below	shows	the	file	name	of	tool	chains	for	NAS	with	different
CPUs:

CPU Tool	Chain Linux

Marvell	6281 Marvell	88F628x	Linux	2.6.32 2.6.32

Marvell	Armada	370 Marvell	Armada	370	Linux	3.2.40	3 3.2.40

Marvell	Armada	XP	Marv Marvell	Armada	xp	Linux	3.2.40 3.2.40

Marvell	Armada	375 Marvell	Armada	370	Linux	3.2.40 3.2.40

Annapurnalabs,	Alpine	AL212/AL314/AL514 Annapurnalabs,	Alpine	Linux	3.2.40 3.2.40

Mindspeed,	Comcerto,	C2000 Mindspeed,	Comcerto,	C2000	Linux	3.2.40 3.2.40

Freescale	QorIQ	(P1022) PowerPC	QorIQ	Linux	2.6.32 2.6.32

Intel	Atom Intel	x86	Linux	3.2.40	(Pineview)	
Intel	x86	Linux	3.2.40	(Cedarview) 3.2.40

Intel	Core	i3 Intel	x86	Linux	3.2.40	(Bromolow) 3.2.40

Intel	SoC Intel	x86	Linux	3.2.40	(Evansport) 3.2.40

If	you	are	not	sure	about	which	tool	chain	you	need,	please	execute	the	following	command	on	your	Synology	NAS.

#	uname	-a

Linux	myds	3.2.40	#3503	SMP	Thu	Mar	21	15:17:31	CST	2013	x86_64

GNU/Linux	synology_x86_712+

The	last	“synology_x64_712+”	tells	you	which	tool	chain	is	appropriate.	For	examples,	x86	means	you	need	the	tool	chain	for
Pineview.

After	you	download	the	DSM	tool	chain,	extract	it	to	where	you	want	it	on	your	computer.	For	the	following	instructions	we	will	extract
to	/usr/local/	as	an	example.	You	can	extract	the	tool	chain	by	using	the	following	command:

#	tar	zxpf	gcc343_glibc232_88f5281.tgz	–C	/usr/local/

Please	make	sure	the	tool	chain	is	located	in	the	directory	/usr/local	on	your	computer	to	ensure	proper	integration.

Synology	DSM6.0	Developer	Guide

140Download	DSM	Tool	Chain

http://sourceforge.net/projects/dsgpl/files
http://sourceforge.net/projects/dsgpl/files/DSM%205.2%20Tool%20Chains/Marvell%20Armada%20370%20Linux%203.2.40/
https://sourceforge.net/projects/dsgpl/files/DSM%205.2%20Tool%20Chains/Marvell%20Armada%20370%20Linux%203.2.40/
http://sourceforge.net/projects/dsgpl/files/DSM%205.2%20Tool%20Chains/Marvell%20Armada%20xp%20Linux%203.2.40/
https://sourceforge.net/projects/dsgpl/files/DSM%205.2%20Tool%20Chains/Marvell%20Armada%20xp%20Linux%203.2.40/
http://sourceforge.net/projects/dsgpl/files/DSM%205.2%20Tool%20Chains/PowerPC%20QorIQ%20Linux%202.6.32/
http://sourceforge.net/projects/dsgpl/files/DSM%205.2%20Tool%20Chains/Intel%20x86%20Linux%203.2.40%20%28Pineview%29/
https://sourceforge.net/projects/dsgpl/files/DSM%205.2%20Tool%20Chains/Intel%20x86%20Linux%203.2.40%20%28Cedarview%29/
http://sourceforge.net/projects/dsgpl/files/DSM%205.2%20Tool%20Chains/Intel%20x86%20Linux%203.2.40%20%28Bromolow%29/
https://sourceforge.net/projects/dsgpl/files/DSM%205.2%20Tool%20Chains/Intel%20x86%20Linux%203.2.40%20%28Evansport%29/

Compile
You	can	start	compiling	an	application	called	“minimalPkg.c”,	for	example,	that	looks	like	this:

#include	<sys/sysinfo.h>

int	main()

{

				struct	sysinfo	info;

				int	ret;

				ret	=	sysinfo(&info);

				if	(ret	!=	0)	{

								printf("Failed	to	get	system	information.\n");

								return	-1;

				}

				printf("Total	RAM:	%u\n",	info.totalram);

				printf("Free	RAM:	%u\n",	info.freeram);

				return	0;

}

To	compile	the	application,	run	the	following	command:

/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linux-gnueabigcc	minimalPkg.c	–o	sysinfo

You	can	also	write	a	Makefile	for	it:

EXEC=	sysinfo

OBJS=	sysinfo.o

CC=	/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-gcc

LD=	/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-ld

CFLAGS	+=	-I/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/include

LDFLAGS	+=	-L/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/lib

all:	$(EXEC)

$(EXEC):	$(OBJS)

				$(CC)	$(CFLAGS)	$(OBJS)	-o	$@	$(LDFLAGS)

clean:

				rm	-rf	*.o	$(PROG)	*.core

Synology	DSM6.0	Developer	Guide

141Compile

Compile	Open	Source	Projects
To	compile	an	application	on	most	open	source	projects,	you	will	be	asked	to	execute	the	following	three	steps:

1.	 	configure	
2.	 	make	
3.	 	make	install	

The	configure	script	basically	consists	of	many	lines	which	are	used	to	check	details	about	the	machine	on	where	the	software	is	going
to	be	installed.	The	script	will	check	for	a	lot	of	dependencies	on	your	system.	When	you	run	the	configure	script,	you	will	see	a	lot	of
output	on	the	screen,	each	being	some	sort	of	question	with	a	respective	yes/no	reply.	If	there	are	any	major	requirements	missing	on
your	system,	the	configure	script	will	exit	and	you	will	not	be	able	to	proceed	with	the	installation	until	you	meet	all	the	requirements.
In	most	cases,	compile	applications	on	some	particular	target	machines	will	require	you	to	modify	the	configure	script	manually	to
provide	the	correct	values.

When	running	the	configure	script	to	configure	software	packages	for	cross-compiling,	you	will	need	to	specify	the		CC	,		LD	,
	RANLIB	,		CFLAGS	,		LDFLAGS	,		host	,		target	,	and		build	,	etc.	Some	examples	are	given	below.

For	PowerPC	QorIQ	platform	in	DSM	5.0:

env	CC=/usr/local/powerpc-none-linux-gnuspe/bin/powerpc-none-linuxgnuspe-gcc	\

				LD=/usr/local/powerpc-none-linux-gnuspe/bin/powerpc-none-linuxgnuspe-ld	\

				RANLIB=/usr/local/powerpc-none-linux-gnuspe/bin/powerpc-none-linuxgnuspe-ranlib	\

				CFLAGS="-I/usr/local/powerpc-none-linux-gnuspe/include	-mcpu=8548	-mhard-float	-mfloat-gprs=double"	\

				LDFLAGS="-L/usr/local/powerpc-none-linux-gnuspe/lib"	\

./configure	\

				--host=powerpc-unknown-linux	\

				--target=powerpc-unknown-linux	\

				--build=i686-pc-linux	\

				--prefix=/usr/local

For	Marvell	6281	platform	in	DSM	5.0:

env	CC=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-gcc	\

				LD=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-ld	\

				RANLIB=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-ranlib	\

				CFLAGS="-I/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/include"	\

				LDFLAGS="-L/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/lib"	\

./configure	\

				--host=armle-unknown-linux	\

				--target=armle-unknown-linux	\

				--build=i686-pc-linux	\

				--prefix=/usr/local

For	Marvell	Armada	370	platform	in	DSM	5.0:

env	CC=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-gcc	\

				LD=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-ld	\

				RANLIB=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-ranlib	\

				CFLAGS="-I/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/include	-mhard-float	-mfpu=vfpv3-d16"	\

				LDFLAGS="-L/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/lib"	\

./configure	\

				--host=armle-unknown-linux	\

				--target=armle-unknown-linux	\

				--build=i686-pc-linux"	\

				--prefix=/usr/local

For	Marvell	Armada	375	platform	in	DSM	5.1:

Synology	DSM6.0	Developer	Guide

142Compile	Open	Source	Projects

env	CC=/usr/local/armv7-marvell-linux-gnueabi-hard/bin/arm-marvelllinux-gnueabi-ccache-gcc	\

				LD=/usr/local/armv7-marvell-linux-gnueabi-hard/bin/arm-marvell-linuxgnueabi-ld	\

				RANLIB=/usr/local/armv7-marvell-linux-gnueabi-hard/bin/arm-marvelllinux-gnueabi-ranlib	\

				CFLAGS="-I/usr/local/armv7-marvell-linux-gnueabi-hard/arm-marvelllinux-gnueabi/libc/usr/include	-mhard-float	-mfpu=vfpv3"

				LDFLAGS="-L/usr/local/armv7-marvell-linux-gnueabi-hard/arm-marvelllinux-gnueabi/libc/lib"	\

./configure	\

				--host=armle-unknown-linux	\

				--target=armle-unknown-linux	\

				--build=i686-pc-linux"	\

				--prefix=/usr/local

For	Marvell	Armada	XP	platform	in	DSM	5.0:

env	CC=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-gcc	\

				LD=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-ld	\

				RANLIB=/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-ranlib	\

				CFLAGS="-I/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/include	-mhard-float	-mfpu=vfpv3-d16"	\

				LDFLAGS="-L/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/lib"	\

./configure	\

				--host=armle-unknown-linux	\

				--target=armle-unknown-linux	\

				--build=i686-pc-linux"	\

				--prefix=/usr/local

For	Annapurnalabs,	Alpine	platform	in	DSM	5.1:

env	CC=/usr/local/arm-cortex_a15-linux-gnueabi/bin/arm-cortex_a15-linux-gnueabi-ccache-gcc	\

				LD=/usr/local/arm-cortex_a15-linux-gnueabi/bin/arm-cortex_a15-linuxgnueabi-ld	\

				RANLIB=/usr/local/arm-cortex_a15-linux-gnueabi/bin/arm-cortex_a15-linux-gnueabi-ranlib	\

				CFLAGS="-I/usr/local/arm-cortex_a15-linux-gnueabi/arm-cortex_a15-linux-gnueabi/sysroot/usr/include	-mfloat-abi=hard	-mtune=cortex-a15	-mfpu=neon-vfpv4	-mthumb"

				LDFLAGS="-L/usr/local/arm-cortex_a15-linux-gnueabi/arm-cortex_a15-linux-gnueabi/sysroot/lib"	\

./configure	\

				--host=arm-cortex_a15-linux-gnueabi	\

				--target=arm-cortex_a15-linux-gnueabi	\

				--build=i686-pc-linux"	\

				--prefix=/usr/local

For	Mindspeed,	Comcerto,	C2000	platform	in	DSM	5.0:

env	CC=/usr/local/arm-cortexa9-linux-gnueabi/bin/arm-cortexa9-linuxgnueabi-ccache-gcc	\

				LD=/usr/local/arm-cortexa9-linux-gnueabi/bin/arm-cortexa9-linuxgnueabi-ld	\

				RANLIB=/usr/local/arm-cortexa9-linux-gnueabi/bin/arm-cortexa9-linuxgnueabi-ranlib	\

				CFLAGS="-I/usr/local/arm-cortexa9-linux-gnueabi/arm-cortexa9-linuxgnueabi/sysroot/include	-mcpu=cortex-a9	-march=armv7-a	-mfpu=neon	-mfloat-abi=hard	-mthumb"

				LDFLAGS="-L/usr/local/arm-cortexa9-linux-gnueabi/arm-cortexa9-linuxgnueabi/sysroot/lib"	\

./configure	\

				--host=armle-unknown-linux	\

				--target=armle-unknown-linux	\

				--build=i686-pc-linux"	\

				--prefix=/usr/local

For	Intel	X86	platform	in	DSM	5.0:

Synology	DSM6.0	Developer	Guide

143Compile	Open	Source	Projects

env	CC=/usr/local/i686-pc-linux-gnu/bin/i686-pc-linux-gnu-gcc	\

				LD=/usr/local/i686-pc-linux-gnu/bin/i686-pc-linux-gnu-ld	\

				RANLIB=/usr/local/i686-pc-linux-gnu/bin/i686-pc-linux-gnu-ranlib	\

				CFLAGS="-I/usr/local/i686-pc-linux-gnu/i686-pc-linux-gnu/sysroot/usr/include"	\

				LDFLAGS="-L/usr/local/i686-pc-linux-gnu/i686-pc-linux-gnu/sysroot/lib"	\

./configure	\

				--host=i686-pc-linux-gnu	\

				--target=i686-pc-linux-gnu	\

				--build=i686-pc-linux	\

				--prefix=/usr/local

For	Intel	Atom	Evansport	platform	in	DSM	5.0:

env	CC=/usr/local/i686-pc-linux-gnu/bin/i686-pc-linux-gnu-gcc	\

				LD=/usr/local/i686-pc-linux-gnu/bin/i686-pc-linux-gnu-ld	\

				RANLIB=/usr/local/i686-pc-linux-gnu/bin/i686-pc-linux-gnu-ranlib	\

				CFLAGS="-I/usr/local/i686-pc-linux-gnu/i686-pc-linux-gnu/sysroot/usr/include"	\

				LDFLAGS="-L/usr/local/i686-pc-linux-gnu/i686-pc-linux-gnu/sysroot/lib"	\

./configure	\

				--host=i686-pc-linux-gnu	\

				--target=i686-pc-linux-gnu	\

				--build=i686-pc-linux	\

				--prefix=/usr/local

Synology	DSM6.0	Developer	Guide

144Compile	Open	Source	Projects

Compile	Kernel	Modules
As	mentioned	before,	you	have	to	create	the	SynoBuildConf/build,	SynoBuildConf/install,	and	SynoBuildConf/depends	before	using
Package	Toolkit.

In	this	chapter,	we	will	use	platform	6281	as	our	example.

Preparation:

First,	you	will	need	to	download	the	GPL	source	code	of	your	platform.	You	can	download	the	source	code	from	this	link.

After	downloading	the	Synology	GPL	kernel	source	code,	move	the	file	to	your	toolkit	folder.

SynoBuildConf/depends:
There	is	nothing	special	about	the	depends	file.	The	following	is	the	depends	file	for	the	6281	platform.

[default]

all="6.0"

SynoBuildConf/build:
Before	compiling	the	kernel	modules,	you	will	need	to	set	up	the	config	file	first.

In	the	kernel	source	code,	there	are	configuration	files	for	different	platforms.	The	configuration	files	are	listed	below:

CPU Configuration	File Arch Linux

Marvell	6281	
Marvell	6282 synoconfigs/88f6281 ARM 2.6.32

Marvell	Armada	370 synoconfigs/armada370 ARM 3.2.40

Marvell	Armada	375 synoconfigs/armada375 ARM 3.2.40

Marvell	Armada	XP synoconfigs/armadaxp ARM 3.2.40

Annapurnalabs,	Alpine	AL212/AL314/AL514 synoconfigs/alpine	(DS715,	DS1515,	DS2015xs)	
synoconfigs/alpine4k	(DS215+,	DS416) ARM 3.2.40

Mindspeed,	Comcerto,	C2000 synoconfigs/comcerto2k ARM 3.2.40

Freescale	QorIQ	(P1022) synoconfigs/ppcQorIQ PowerPC 2.6.32

Intel	Atom	D525,	D510,	D410,	D425 synoconfigs/x86_64 x86 3.2.40

Intel	Atom	D2700 synoconfigs/cedarview x86 3.2.40

Intel	SoC	CE5335 synoconfigs/evansport x86 3.2.40

Intel	Core	i3 synoconfigs/bromolow x86 3.2.40

Please	copy	the	proper	configuration	file	to		.config	,	and	run		make	oldconfig		and		make	menuconfig		to	select	your	kernel	modules.
According	to	the	platforms	you	would	like	to	compile,	you	will	have	to	set	the	proper		ARCH		and		CROSS_COMPILE		into	environment
variables.

The	following	is	a	sample	script	that	will	compile	the	linux	kernel	modules	for	the	6281	platform.

Synology	DSM6.0	Developer	Guide

145Compile	Kernel	Modules

http://sourceforge.net/projects/dsgpl/files/Synology%20NAS%20GPL%20Source/7274branch/

#!/bin/bash

#	Copyright	(c)	2000-2015	Synology	Inc.	All	rights	reserved.

#	SynoBuildConf/build

case	${MakeClean}	in

				[Yy][Ee][Ss])

								[-f	Makefile]	&&	make	distclean

								;;

esac

case	${CleanOnly}	in

				[Yy][Ee][Ss])

								return

								;;

esac

#	prepare	config	files

cp	-f	synoconfigs/88f6281	.config

make	ARCH=${ARCH}	CC=${CC}	oldconfig

#	start	compile	kernel	modules

echo	"=====Build	Synology	Linux	kernel	2.6	Modules	====="

make	ARCH=${ARCH}	CC=${CC}	LD="${LD}"	${MAKE_FLAGS}	modules

#	create	table

./scripts/syno_gen_usbmodem_table.sh	create-table

SynoBuildConf/install
Unlike	the	previous	example,	this	example	will	not	pack	the	whole	kernel	module	into	one	single	spk	file.	Instead,	it	will	install	the
kernel	modules	in	/images/modules	under	the	chroot	environment.	As	a	result,	the	installation	script	below	is	slightly	different	from	the
previous	example.

#!/bin/bash

#	Copyright	(c)	2000-2015	Synology	Inc.	All	rights	reserved.

#	SynoBuildConf/install

MODULES_DIR="${ImageDir}/modules"

PrepareDirs()	{

				[-d	"${MODULES_DIR}"]	||	mkdir	-p	${MODULES_DIR}

				rm	-f	${ImageDir}/modules/*

}

InstallModules()	{

				make	ARCH=${ARCH}	CC=${CC}	LD="${LD}"	INSTALL_MOD_PATH=$MODULES_DIR	modules_install	

}

main()	{

				PrepareDirs

				InstallModules

}

main	"$@"

Compile	Kernel	Modules:
Lastly,	run	the	following	commands	to	compile	and	install	the	kernel	modules	to	the	destination	folder.

/toolkit/pkgscripts/PkgCreate.py	-p	6281	-c	linux-2.6.32

After	the	build	process,	you	can	check	the	result	in		/toolkit/ds.6281-6.0/image/modules	.

Synology	DSM6.0	Developer	Guide

146Compile	Kernel	Modules

Verify	the	Result:

You	can	copy	the	kernel	module	you	need	for	your	DSM	system	and	run	the	following	command	to	install	the	module.

insmod	${module_name}

Use	the	following	command	to	verify	that	your	module	has	been	installed	properly.

lsmod	|	grep	${module_name}

Synology	DSM6.0	Developer	Guide

147Compile	Kernel	Modules

	Package Developer Guide
	Getting Started
	System Requirements

	Create Package
	Preparation
	Install Toolkit
	Prepare Build Environment
	Prepare GPG Key

	Hello World Package
	Build Stage
	Pack Stage
	Sign Package
	Essential Run Time Files
	Summary

	Compile Open Source Project: tmux
	Compile Open Source Project: nmap
	Compile Kernel Modules
	Advanced

	Synology Package
	Package Structure
	INFO
	Necessary Fields
	Optional Fields

	package.tgz
	scripts
	Script Environment Variables

	conf
	WIZARD_UIFILES

	Integrate Your Package into DSM
	Manage Storage for Application Files
	Integrate Your Package into DSM Web GUI
	Startup
	Config
	Integrate Help Document into DSM Help
	Integrate with DSM Web Authentication

	DSM Backward Compatibility
	Show Messages to Users
	Create PHP Application
	Run Scripts When the System Boots
	Locale Support
	Install Package Related Ports Information into DSM
	Lower Privilege
	Package User & Group
	Mechanism
	Privilege Specification

	Resource Acquisition
	Resource Specification
	Timing
	Config Update
	Available Workers

	Publish Synology Packages
	Get Started with Publishing
	Submitting the Package for Approval
	Responding to User Issues

	Appendix A: Platform and Arch Value Mapping Table
	Revision History

	Appendix B: Compile Applications Manually
	Download DSM Tool Chain
	Compile
	Compile Open Source Projects
	Compile Kernel Modules

		2020-01-21T09:13:55+0200
	Moldova
	MoldSign Signature

