Coatron A4

Operator's Manual

	Operator's Manual	Software	Date	
	Version	Version	Date	
	10	1.03.30	05/2006	
	11	1.05.00	02/2009	
	12	1.05.02	05/2009	
	14	1.06.01	10/2010	
	15	1.06.02	05/2011	
	16	1.06.04	10/2011	
	17	1.06.04 SW3	3/2012	
	18	1.06.06	2/2013	
	19	1.06.08SW2	12/2013	
	20	1.07.01SW3	6/2014	
	21	1.07.01SW4	12/2014	
	22	1.07.02	10/2015	
ם ד ע נ	permission from Teco G The software for Teco property of Teco Gmbl usage of the software acquires rights of use fo	GmbH. GmbH products H, which company e. The purchaser or this software	s is the intelle retains all right of a COATRO	ectual hts to ∙N A4
Trademarks C r r	COATRON A4 is a trademark of Teco GmbH.Other product names used in this Operator's Manual are trademarks of the respective companies.			
Manufacturer	Instrument is produced by			
T [[(TECO GmbH Dieselstrasse. 1 D-84088 Neufahrn Germany			

Updates

Phone:	+49 (0)8773 70780-0
Fax:	+49 (0)8773 70780-29
Internet:	http://www.teco-gmbh.com

1.	Intro	oduction	7
	1.1	Symbols	7
	1.2	Safety information	8
	1.2.1	1 Intended use	8
	1.2.2	2 Safety information for operation	8
	1.2.3	3 Safety information for MATERIALS	9
	1.2.4	4 Safety information regarding risk of health	9
	1.2.5	5 Safety information for cleaning, maintenance and servicing	. 10
	1.2.6	6 Electrical safety	. 11
2.	Insta	allation of the COATRON A4	. 12
	2.1	Scope of delivery	. 12
	2.2	Laboratory Requirement	. 13
	2.3	Unpacking the COATRON A4	. 13
	2.4	Removal of the transport retainer elements	. 13
	2.5	Switching ON and off the COATRON A4	. 14
	2.6	Installation of Components	. 16
	2.7	Installation of TECAM software	. 17
3.	Desc	cription of the COATRON A4	. 18
	3.1	Short introduction	. 18
	3.2	Views of the device	. 20
	3.2.1	1 Front view	. 20
	3.2.2	2 Rear view	.21
	3.2.3	3 Side view	. 22
	3.2.4	4 Sample rack	. 22
	3.2.5	5 Working Positions	. 23
	3.2.6	б Кеураd	. 24
	3.2.7	7 Screen segments	. 24
	3.3	Measurement principle	. 25
	3.3.1	1 Mathematical principles	. 25
	3.3.2	2 Units	. 25
	3.3.3	3 Clotting method	. 26
	3.3.4	4 Derived fibrinogen	. 26
	3.3.5	5 Chromogenic, endpoint and immunoturbidimetric method	. 27
	3.4	Test overview	. 28
4.	Rout	tine measurement (Typical use case)	. 29
	4.1	Preparation	. 29
	4.2	New list input	. 30

	4.3	Interrupt or exit measurement	32
	4.4	Out of liquid or cuvette during measurement	32
	4.5	Continous loading of samples	33
	4.6	Measuring the emergency samples	34
	4.7	Quality control measurement	35
5.	Softv	ware description	36
	5.1	Main menu Analysis	37
	5.1.1	Submenu New List	37
	5.1.2	2 Submenu Continue	43
	5.1.3	Submenu Repeat	43
	5.1.4	Submenu Stat	43
	5.1.5	Submenu Overview	44
	5.1.6	5 Submenu Print Option	46
	5.1.7	' Submenu System Activation	46
	5.1.8	Submenu Cuvette Activation	47
	5.1.9	Submenu Reagent Activation	47
	5.1.1	.0 Reflex testing	48
	5.1.1	1 Display during measurement	49
	5.1.1	2 Result warning messages	49
	5.1.1	.3 Printout of results	50
	5.1.1	4 Host communication	50
	5.2	Main menu Test Setup	51
	5.2.1	Using of reagent barcode	51
	5.2.2	Performance Test Selection	51
	5.2.3	Submenu "Set Data"	52
	5.2.4	Test Calibration	53
	5.2.5	Submenu Normal Range	56
	5.2.6	Submenu QC Range	56
	5.2.7	' Storing of test data	57
	5.2.8	Submenu Test Printout	57
	5.2.9	Submenu Test Overview	58
	5.2.1	.0 Setup of test protocol	58
	5.3	Main menu System Setup	61
	5.3.1	Language	61
	5.3.2	Date	61
	5.3.3	5 Time	61
	5.3.4	Signal	61
	5.3.5	Contrast	61
	5.3.6	Mixer	62
	5.3.7	' Simulator	62
	5.4	Main Menu SERVICE	63
	5.4.1	System report	64

5.4.2	2 Adjust XYZ	65
5.4.3	3 Check Temperature	66
5.4.4	4 Check Optics	67
5.4.	5 Check Robot	68
5.4.0 5.4	7 Clean Needle	68
5.4.	8 Replace Rinse tank	68
5.4.9	9 Replace Needle	69
5.4.3	10 Replace Syringe	70
5.4.3	11 Adjust Motor	70
5.4.3	12 Cap Piercing	71
5.5	Main menu PIPET STATION	72
6. Rep	lacement of consumables	73
6.1	Disposal	73
6.2	Refill cuvettes	73
6.3	Replace Rinse tank	73
6.4	Replenishing the printer paper	74
7. Clea	ning and maintenance	75
7.1	General cleaning information	75
7.2	Cleaning	75
7.3	Decontamination	75
7.4	Daily activities	75
7.5	Weekly activities	76
7.6	Yearly activities	76
7.7	Regular Replacements	76
7.8	Reset Service Interval	76
7.9	Error messages	77
8. Elim	ination of malfunctions	78
8.1	Device malfunctions	78
8.2	Measurement malfunctions	79
8.3	Packing the COATRON A4 for shipment	80
9. App	endix	81
9.1	Interface to LIS	81
9.1.3	1 Bidirectional communication with TECAM software	81
9.1.2	2 Unidirectional communication	82
9.2	Technical data	83

89
00
le Guideline
al and recycling87
ation of Conformity

Figure 1: COATRON A4, front view	20
Figure 2: COATRON A4, rear view	21
Figure 3: Side view	22
Figure 4: Sample rack	22
Figure 5: Working Positions	23
Figure 6: Keypad	24
Figure 7: Screen segments	24
Figure 8: Determination of turning point in clotting method	
Figure 9: Determination of rise in the kinetic test method	27
Figure 10: Replace Needle	69
Figure 11: Installation of syringe	70
Figure 10: Refill cuvettes	73
Figure 13: Printer cover	74
Figure 14: Replenishing the printer paper	74

1. Introduction

This device left the factory in fault-free condition regarding its safety and engineering functionality. To maintain this condition and ensure risk-free operation, the operator must comply with the safety warnings and information in this Operator's Manual.

1.1 Symbols

The following standard symbols are used in this manual:

Symbol	Meaning	Explanation
Courier	Info	Key on keypad.
CAPS	Info	Screen message.
Q	Read	Indicates important information and tips.
⇒	Info	Describes reaction of COATRON A4 to operator input.
	Warning	Risk of possible health damage or considerable damage to equipment if warning is not heeded.
\bigwedge	Danger	Potential risk to operating personnel or equipment due to electric shock.
	Biohazard	Equipment can be potentially infectious due to the samples and reagents used .
	Laser Radiation	Avoid direct eye exposure

1.2 Safety information

1.2.1 Intended use

- IVD
- The **COATRON A4** is designed to carry out coagulometric tests such as PT, PTT, TT, fibrinogen, single factor tests, chromogenic and immunoturbidimetric tests (for instance Antithrombin, D-dimer etc.).The instrument has to be used for the expected purposes and in perfect technical conditions, by qualified personnel, in working conditions and maintenance operations as described in this manual, according to the SAFETY WARNINGS. This manual contains instructions for professional qualified operators.

Do not use plasma with more than 25mg/dL Bilirubin (428µmol/l) Do not use plasma with more than 1000mg/L Hemoglobin Do not use plasma with more than 25 g/l Triglceride (28.5 mmol/l)

Use only citrated plasma for sample analysis. Mix 9 parts of venous blood with 1 part 3.2% (0.105M) sodium citrate and centrifuge the mixture at 1500g x 15min. Use plasma within 4 hours.

1.2.2 Safety information for operation

Use only the cleaning and rinsing liquids approved by the manufacturer. Failure to do so could result in faulty measurements or malfunctions of the COATRON A4.Prevent reagents from leaking into the Analyzer. Failure to do so may make expensive maintenance work necessary!

Never touch moving parts such as the measurement rotor or pipetting arm during device operation.Never try to pull a cuvette block out of the measurement rotor during test processing operation.Carry out control measurement runs at regular intervals to ensure that the Analyzer continues to function faultlessly.

If instrument is used in a manner not specified by the manufacturer, the protection impairment could be affected!

1.2.3 Safety information for MATERIALS

Important!

Use only organic solvents where specified. The cuvettes are intended as single-use items only. Repeated use may result in false results due to contamination. Follow the instructions in the reagent package circulars. Incorrect handling may result in falsified results.

1.2.4 Safety information regarding risk of health

	Infectious Material Avoid direct contact with samples and sample residues in the used cuvettes. Infectious material such as cuvette waste and liquid waste must be disposed in compliance with local regulations governing for infectious materials. Wear medical infection grade protective gloves for all cleaning and
	and use each pair of gloves once only. Use a hand disinfectant product, e.g. Sterilium [®] , to disinfect your hands after completion of the work.
	Analytical instruments for in vitro diagnostic application involve the
	handling of human samples and controls which should be considered at least potentially infectious. Therefore every part and accessory of the respective
	instrument which may have come into contact with such samples
	must equally be considered as potentially infectious. The BIOHAZARD" warning label must be affixed to instrument prior to
	first use with biological material!
	Laser Kadiation
$\mathbf{\Lambda}$	I ne internal barcode scanner is assigned to
	laserciass $2 - EN6U825-1:2007$.
للسنسك	Avoid direct eye exposure

max. power = 1.7 mW pulse period = $420 \mu s$ wavelength = 655 nm

1.2.5 Safety information for cleaning, maintenance and servicing

About authorized service !

Carry out only the maintenance, repair and replacement measures listed in this Operator's Manual. Improper manipulation of the device will void the manufacturer's liability obligations and may make service calls necessary, payment of which is not covered by warranty.Only the authorized Customer Service may carry out servicing. Only original replacement parts may be used. Before doing any servicing on the instrument it is very important to thoroughly disinfect all possibly contaminated parts

Abount cleaning and decontamination !

Before the instrument is removed from the laboratory for disposal or servicing, it must be decontaminated. The procedure is described in chapter "7 Cleaning and maintenance" and should be performed by authorised well-trained personnel only, observing all necessary safety precautions

Cleaning certificate required !

Instruments to be returned have to be accompanied by a decontamination certificate completed by the responsible laboratory manager. If a decontamination certificate is not supplied, the returning laboratory will be responsible for charges resulting from non-acceptance of the instrument by the servicing centre, or from authority's interventions.

Regard all surfaces and materials which might be in contact with plasma or other biological liquid as potentially contaminated with infectious material.

Avoid any direct contact with decontaminants or disinfections.

1.2.6 Electrical safety

	Precautions:
	 Avoid spilled iquids into system. But in case disconnect system
	from power and clean and dry all contaminated parts.
	 Remove power cord before open the instrument
	 Do not touch any electronic parts during operation.
	 Do not operate system without proper connection to grounding
^	 Never intentionally interrupt protective ground contacts.
<u>/</u>	 Never remove housing elements, protective covers or secured
	structural elements, since so doing could expose parts carrying
	electric current.
	 Make sure surfaces such as the floor and workbench are not moist
	while work is being done on the device.
	 Check electrical equipement regulary. Defective leads or socket
	must be replaced without delay.
	Connect to power:
	Instrument is classified to Class-1 (IEC) and must therefore be reliably
	earthed and professionally installed in accordance with the prevailing
	electrical wiring regulations and the safety standards covered herein.
	 Use only three wire power cord.
$\overline{7}$	 Make sure the operating voltage setting is correct before
	connecting the device to the power mains.
	 Ensure at least 20cm space to power socket and instrument
	power ON/OFF switch for easy and quick access to power cord
	during operation.
	Disconnect from power:
14	 Unplug power cord from wall socket/UPS or from instrument
	power–in

2. Installation of the COATRON A4

Initial startup of the COATRON A4 is carried out by the authorized Customer
 Service of the dealer. A protocol is kept of the first installation which is then sent in to the manufacturer as a basis for processing guarantee claims.

Procedures of first installation:

- Unbox and place instrument in conformity with the laboratory requirements (see below)
- Remove transport retainer
- Switch on
- Install Rinse tank + Rinse waste container
- Install print paper
- Install cuvette + cuvette waste drawer

2.1 Scope of delivery

The scope of delivery can be different from customer to customer and must be read in the document "List of accessories", which is separately included to the operation manual on the first page.

2.2 Laboratory Requirement

- Power Input: 85 264VAC; 45-60Hz ; Class-1 socket (connected to earth)
- Ambient temperature must be 15-30°C
- Rel. humidity < 70%
- Altitude 0 3000m
- A stable, flat surface free of vibrations. Recommended workspace 80x150cm. On rearside a minimum space of 20cm is required.
- No direct sunlight
- Avoid ionizing air conditioner or circulating air
- Surroundings free of moisture and dust

2.3 Unpacking the COATRON A4

e)

Following receipt of the shipment, please inspect the packaging of the COATRON A4 for any visible external damage. If the packaging is damaged, contact the transport company so that any damage to the device or accessories can be assessed. Inspect the COATRON A4 and accessories for any damage. Report any damage found to the dealer without delay. Even if the packaging appears undamaged, check the analyzer and accessories for any transport damage, caused for example by impact, dropping, etc. during transport.

Keep the original packaging material for purposes of later transport

2.4 Removal of the transport retainer elements

- 1. Remove the tape strips on the printer shaft.
- 2. Remove the 3 cable binders on the pipetting arm.
- 3. Remove the foam element between the pipetting arm and protective bar

2.5Switching ON and off the COATRON A4

Switching the COATRON A4 on

- 1. Make sure the COATRON A4 is connected to the power mains.
- 2. Check for sufficient rinsing and cleaning fluid levels.
- 3. Set main switch to on. See rear side, location #18
- 4. Set standby switch to on. See right side, location #22

Location of power and standyby switchMain screen

The following screen appear in this order after the COATRON A4 is switched on.

Coatron A4 V6.07.02 SN-12345 Service: 100000 CUVETTES:1 RINSE: 0 REAGENT: CLOSE

Name of instrument Version of firmware Serialnumber Tests until next service Activated cuvettes Activated rinse tank Reagent system is closed

There is no information about cuvette or Rinse or reagent, if system is configurated as "OPEN DEVICE". Please contact local distributor for more information about open or closed system.

R)

At the end of the initialization phase, the main screen appears:

Main screen

Time= 12:00 Rinse installed = 1055mL LIS = online Temperature at cuvette= 37°C

After about 15 min. of warm-up time (depending on the ambient temperature), the lighting up of the LED (Temp.) on the keypad indicates the system is ready to make measurements.

Switching the COATRON A4 off:

For normal shutdown at the end of the day and for changing the pipetting needle, rinsing solution tank and syringe, switch off the COATRON A4 with the standby switch on the right side of the housing. This will shut off all powerconsuming components of the COATRON A4 except the ventilator. For longer interruptions in operation such as weekends, holiday periods and service activities such as cleaning and maintenance, switch off the mains power switch as well.

> Switching off the device deletes all measurement data. Backup the data as required by means of manual printout or manual transmission to the host

Never switch off the system while processing a worklist to avoid clogging the needle tip with coagulation residues.

2.6 Installation of Components

	1.	Remove a strip of cuvettes from the package.
	2.	Shift the cuvettes as shown from above in
		the guide groove back into the cuvette
		tower.
	3.	Remove the tape off the cuvettes.
	4.	Place a new Rinse tank as shown
	5.	Insert the tube completely
	6.	Fill a reagent container (15 ml) with
		cleaning solution and place it into position
		CLEAN
7 6 5 4	7	Open the print cover
	у. 8	Eeed namer. Device has autofeed function
	9	Set printer to online by shift on arresting
	5.	lever in the direction of the front of the
		housing
		housing.
		housing.
	10.	housing. Plug download cable into left port (19)
	10. 11.	housing. Plug download cable into left port (19) Plug in power cord (18)
	10. 11. 12.	housing. Plug download cable into left port (19) Plug in power cord (18) Connect download cable with PC computer
	10. 11. 12. 13.	housing. Plug download cable into left port (19) Plug in power cord (18) Connect download cable with PC computer Move power switch to ON. (right of 18)
	10. 11. 12. 13. 14.	housing. Plug download cable into left port (19) Plug in power cord (18) Connect download cable with PC computer Move power switch to ON. (right of 18) Move standby switch to ON (22).
	10. 11. 12. 13. 14. 15.	housing. Plug download cable into left port (19) Plug in power cord (18) Connect download cable with PC computer Move power switch to ON. (right of 18) Move standby switch to ON (22). After Bootup start TECAM software

2.7 Installation of TECAM software

TECAM software is a powerful enhancement of the Coatron A4 and allows very easy and flexible to generate orders (including sample continous loading). Results can be reported including the reaction curve and administrate in a database. For further information read the online manual of TECAM software

System requirement

- Operating system: Microsoft Windows XP or 7 32Bit
- 100 MB free hard-disk space
- Grafik: 1280x1024 Pixel
- Interface: RS232 Sub-D9 (if not supported , use USB convertor, commport must be set between com1 com15)
- Cable: 2x Female Sub D9, crosslink. Pin 2 to 3; Pin 3 to 2 and Pin 5 to 5. All other wires should be disconnected.

Install:

- 1. Link instrument left RS232 port to
- 2. Check PC comport number (it must be between 1 to 15)
- 3. Start "SETUP.EXE" from the CD. The Setup will install Smart ,PRO or PROLIS and all required driver for database access.
- 4. Enter fingerprint and activation code

Run TECAM:

- 1. Switch on and bootup instrument
- 2. Start TECAM and enter administrator password (default = blank) or enter "Blank" to login as a restricted user
- 3. Tecam search automatically for any available system and connects.

TECAM is linked to system "15000" over com port 1. No ASTM is active

4. Enter administrator password (default = blank) or enter "Blank" to login as a restricted user

TECAM license can be installed on any PC, but is locked to the serial number of instrument

3. Description of the COATRON A4

N

el)

3.1 Short introduction

The Coatron A4 is a fully automated, stand alone "State of Art" analyzer for the fast and flexible coagulation diagnostic. It is equipped with four optical channels and offers clotting, chromogenic and immunological testing in random acces mode as well as fast processing of STAT samples. All sample dilutions and assay calibration are performed automatically. ID-barcode scanner is on board. CAP Piercing is supported for any primary tube system. The analyzer is also focused on a minimum consumption of consumables and reagents, which makes the analyzer very cost effective. The nearly zero service requirements will ensure a long living device by a minimum of service costs.

Optional the analyser can be linked to powerful LIMS software to give exceptional features like unlimited result traceability by an one click report engine or a unique quality control system with Levey Jennings chart and Westgard rules

Use only citrate plasma for sample analysis. Mix 9 parts of venous blood with 1 part 3.2% (0.105M) sodium citrate and centrifuge the mixture at 1500g x 15min. Use plasma within 4 hours.

Do not use plasma with more than 25mg/dL Bilirubin concentration. Do not use plasma with more than 1000mg/L Hemoglobin concentration.

Based on the optical measurement principle used by this device (transmitted light turbidimetry) with ultraviolet light, a number of coagulation and fibrinolysis parameters can be determined, for example

- Prothrombin time (Quick or Owrens)
- Activated partial thromboplastin time (APTT)
- Fibrinogen (FIB) (Clauss) & derived PT (DFIB)
- Thrombin time (TT)
- Single factor measurements
- Protein C (PC)
- Protein S (PS)
- Lupus Anticoagulant (LA)
- Activated protein C resistance (APCR)
- Heparin (chromogenic)
- ATIII (chromogenic)
- D-dimers (immunoturbidimetric)

Special features:

System

- Ultraviolet light (400 nm). The measurement amplification is adapted to photometric measurement principle with high-resolution 4-channel optics and automatic amplification to any method. Extraneous and scattered light energy is absorbed.
- High-precision XYZ pipetting system with liquid level sensor
- Long living and flexible Cap Piercing needle for primary tubes such as BD Vaccutainer[®] or Sarstedt Monovette[®].
- Integrated ID-barcode reader
- Bi-directional ASTM Interface for PC-Link to LIS.*
- Optional trolley to enlarge the waste management
- Integrated graphical thermal printer
- Heated and cooled positions for reagents
- Integrated drawers for consumables

Software

- Approved and highly accurate detection algorithm based on optical density. The clotting time is defined at the turning point of reaction.
- An intuitive TECO GMBH familiar grafical user interface with "Plug And Go" feeling.
- Multi language dialogue. (english , german, spanish, italian)
- Random access scheduler. Profiles can be performed as batch or selective.
- Positive sample identification (ID and rack position) either manual or with barcode scanner
- Fast and easy processing of STAT samples
- Free programmable test protocols to change or adapt new tests
- Calculation of activity %, INR, ratio, g/L , mg/dL , and more.
- Calibration curve can be identified with up to 6 points per test. The results can be calculated with regression line analysis or linear interpolation.
- Single or double determinations
- Simple firmware update
- ASTM interface to link to any LIS *

Special Functions

- Automatic plasma dilutions upto 1:100
- Automatic cleaning cycles
- Automatic test calibration routines
- Automatic quality control
- Automatic or manual printout
- Automatic test skip, if reagent run out.
- Automatic reflex testing for "+++2 results
- Unlimited result management including also reaction curve *
- Quality control according to Westgard rules *
- Result traceability *
- Patient monitoring for long time periods *

Economic

- Half volume procedures resulting in 50% cost savings.
- Reagent dead volume is below 300 µL
- Very economic consumption of Rinse and cleaning solution.
 - (1L Rinse ~ 1000 det. ; 15mL cleaner is enough for a day work)
- Cuvette with no mixing bars, etc.
- All critical system parameters are monitored and make the instrument nearly free of service.

* only the TECAM PRO software

3.2 Views of the device

3.2.1 Front view

Figure 1: COATRON A4, front view

- 1 Keyboard
- 2 Cuvette waste drawer
- 3 Screen
- 4 Cuvette rotor
- 5 System block
- 6 Rinse solution waste drawer
- 7 Sample racks
- 8 Reagent block
- 9 Protective bar
- 10 Syringe
- 11 Pump unit
- 12 Tube to Rinsing solution tank
- 13 Tube guide for Pipetting needle tube
- 14 Pipetting arm
- 15 Cuvette tower

3.2.2 Rear view

Figure 2: COATRON A4, rear view

- 16 Rinsing solution tank
- 17 Type plate
- 18 Mains switch and power input
- 19 RS232 service interface for updating and data transmission (115K, 8,1,N)
- 20 RS232 debug interface for error analysis (reserved for manufacturer)
- 21 Printer cover

3.2.3 Side view

Stand-by switch

Figure 3: Side view

3.2.4 Sample rack

Figure 4: Sample rack

All commercially available sampling systems with a diameter of 11-13 mm can be used as sample tubes (eg. Sarstedt Monovette[®] or BD Vacutainer[®]).

3.2.5 Working Positions

Figure 5: Working Positions

Pos. 1 - 24		Sample positions	Room temperature
Pos. 25	РТ	Reagent position for PT, magnetic stirring function	37.0 °C
Pos. 26	CaCl	Reagent position for CaCl ₂	37.0 °C
Pos. 27	тст	Reagent position for TCT and PC-2 , APC	37.0 °C
Pos. 28	AT-2	Reagent position for AT-2 (substrate)	37.0 °C
Pos. 29	FIB	Reagent position for FIB	Room temperature
Pos. 30	PC-1	Reagent position for PC-1 (activator)	Room temperature
Pos. 31	PTT	Reagent position for PTT	15.0 °C
Pos. 32	AT-1	Reagent position for AT-1 (thrombin/factor Xa reagent)	15.0 °C
Pos. 33	DP-1	Deficient Plasma 1: for FII, FV , FIIV, FX ,	15.0 °C
Pos. 34	DP-2	Deficient Plasma 2 : for FVIII, FIX, FXI, FXI, PS, APCR, PK, HMWK	15.0 °C
Pos. 35	CP-1	Control plasma 1: for PT, PTT, TCT, FIB, Factors, PC, AT	15.0 °C
Pos. 36	CP-2	Control plasma 2 : for DD, HEP, APCR, LA	15.0 °C
Pos. 37	DD-1	used for DD-1, HEP-1, LA Screen	37.0 °C
Pos. 38	DD-2	used for DD-2, HEP-2, LA Confirm	37.0 °C
Pos. 39	Buffer-1	Owren's Buffer for plasma dilution (FIB, factors)	37.0 °C
Pos. 40	Buffer-2	Working Buffer for chromogenic tests (AT)	37.0 °C
Pos. 41	Clean	Position for cleaning solution	37.0 °C
Pos. 42	Wash	Wash and waste position	37.0 °C
Pos. 43	STAT	Emergency sample position	Room temperature
Pre-heat	Prewarm	3 prewarm positions	~37.0 °C

Reagent adapters are found in the right-hand device drawer for various reagent container or vials.

N

The above test reagent allocations are only valid for the factory default protocols.

3.2.6 Keypad

Figure 6: Keypad

0-9	Numeric value input	ARROW 1	Navigation key
Esc	Leave screen	ARROW↓	Navigation key
LF	Line up, printer paper	$ARROW \leftarrow$	Navigation key
Temp	Display of standby to	$ARROW \rightarrow$	Navigation key
	measure status		
Enter	Input / selection confirmation	า	

Use the arrow keys to change to the screens up, down, right or left. See chap. 5 for an accurate description of software operations.

3.2.7 Screen segments

Title				
Selecti Setup Systen	ion list informat n messa	ion ges		
Time Rinse Host Temp				

Figure 7: Screen segments

There are 3 screen segments:

- The current menu item appears in the title line.
- The main segment displays the selection lists, information and system messages.
- The bottom line contains the current time, volume of Rinse solution, status of host connection and the temperature in the Optic block.

3.3 Measurement principle

The COATRON A4 is equipped with highly sensitive 4-channel LED optics at a wavelength of 400 nm, making precise and reliable measurements possible even with icteric or lipaemic plasmas.

Once a reaction charge has been prepared, the optimum transillumination settings are found using an amplifier that facilitates measurement of both clear and cloudy samples.

Recording of measurement process data is started automatically when the start reagent is added. When coagulation begins, transmission is reduced, which changes the form of the measurement curve. The time from measurement start to this change (turning point) in seconds [s] is the result. The software then converts this datum into other units.

3.3.1 Mathematical principles

The conversion of coagulation time into a specific test unit is one using a linear, hyperbolic, semi-logarithmic or double-logarithmic interpolation of the stored calibration points. The current mathematical model is printed out in "TEST SETUP." Values outside the calibration range are calculated by extrapolation and flagged as " * ".

Unit	Decimal places	Maximum value
S	1	-
%	1	180
U	0	999
INR	2	12
Ratio	2	9
INR+	2	12
mg/dl	0	900
g/l	2	9
U/ml	2	1
mg/l	2	5
µg/ml	1	999
ng/ml	0	5,000
μg/l	0	5,000

3.3.2 Units

Ratio = clotting time / normal time

INR	= Ratio ^{ISI}	(International Normal Ratio)	
-----	------------------------	------------------------------	--

- = International Sensitivity Index (sensitivity of the PT reagent).
 - (The ISI value is listed on the reagent information sheet)

ISI

INR+ = Like INR, except the ISI value is determined for a specific device. This is done using a calibration curve with INR standards.

3.3.3 Clotting method

Figure 8: Determination of turning point in clotting method

The final reaction in the coagulation cascade is the transformation of fibrinogen into fibrin catalyzed by thrombin. Fibrin formation results in clouding (higher turbidimetric level) in the sample, which is measured by the photometer and stored as the extinction. The result in seconds is the time from the start of the reaction to the time of greatest extinction increase (reaction turning point).

3.3.4 Derived fibrinogen

Ŋ

The photometric measurement method facilitates measurement of the prothrombin time (PT) as well as, at the same time, derivation of the relevant fibrinogen concentration.

The optical reaction rise (see figure above) between the start and end of the fibrinogen transformation reaction is linearly proportional to the fibrinogen concentration.

The DFIB method should only be used to select samples. Samples with a fibrinogen concentration outside the normal range must be confirmed using the FIB Clauss method.

3.3.5 Chromogenic, endpoint and immunoturbidimetric method

Figure 9: Determination of rise in the kinetic test method

t1 = deadtime in s t2 = endtime in s

Delta signal dE = E2 - E1Delta time dT = t2 - t1

Result of method "CHROM" = 60 * (dE/dT) [dE/min]

Result of method ,IMMUN = dE/dT

Result of method "POINT " = dE

3.4 Test overview

Test	Name
РТ	Prothrombin Time
DFIB	Fibrinogen, derived
aPTT	Activated Partial Clotting Time
FIB	Fibrinogen, Clauss
AT	Antithrombin
TT	Thrombin Time
DD	D-Dimer
HEP	Heparin
PC	Protein-C
PS	Protein-S
F2	Factor II
F5	Factor V
F7	Factor VII
F8	Factor VIII
F9	Factor IX
F10	Factor X
F11	Factor XI
F12	Factor XII
PLG	Plasminogen
-APC	Activated PC resistance Step1
APCR	Activated PC resistance Step2
LA-S	Lupus Anticoagulants Screen
La-C	Lupus Anticoagulants Confirm
PSF	free Protein S
FDP	Fibrin Degradation Product

Setup off test protocol is described in 5.2.10

Ask local distributor for more information about specific test protocol setup

N

N

4. Routine measurement (Typical use case)

- Run 24 patients with PT + aPTT + FIB
- Scan the barcode of the samples
- Instrument should carry out all measurements in single
- Instrument should skip test, if system is out of reagent
- Instrument should not repeat results automatically
- Instrument should report first samples as soon as possible

4.1 Preparation

- 1. Wait until the COATRON A4 has reached operating temperature.
- 2. Make sure sufficient cuvettes, rinsing liquid and cleaning liquid are available for the testing procedure.
- 3. Supply the reagent positions with the required reagents and buffer solutions.
- 4. Re-enter the calibration curve for the planned tests when new reagents with new lot numbers are used.

See chap. 5.2.2 Submenu Data input for input of a calibration curve

- 5. Wait about 15 min. after supplying the reagent positions before test processing until the reagents have reached the right temperature (37°C in positions 25 28 and room temperature in positions 29 and 30).
- 6. Change to menu ANALYSIS

Select ANALYSIS and confirm with ENTER.

4.2 New list input

- 1. Fill the sample racks with the sample test tubes.
- 2. Remove the sample test tube cover
- 3. Make sure barcode labels are visible in the barcode window of the sample rack.
- 4. In the menu ANALYSIS, go to NEW LIST

CONTINUE:	YES
TECT	DDEI
ILJI.	
DARCODE:	TES
RELFEX:	NO
DOUBLE:	NO
QC-ACTIVE:	NO
AUTOSKIP:	NO
HCT-L:	00 mm
CLEAN:	MIN
SHIELD:	YES
MODE:	CUV

Select YES and press ENTER to continue

-Select PRFL. Later define profile as PT+aPTT+FIB -The samples identifications input by barcode -No automatic test repeat -Single determination -No quality control -Skip test, if out of reagent -Search for plasma until buttom of tube -Standard cleaning procedure -Activate shield protection -Run worklist in cuvette

CONTINUE:	YES	
TEST1: PT TEST2: APTT TEST3: FIB TEST4: -	TEST5: - TEST6: - TEST7: - TEST8: -	

Select YES and press ENTER to continue

Set profile to PT + APTT + FIB

5. Input patient-ID by barcode reader:

BARCODE ENTRY		
RACK 1	RACK2	
0⊅	13	
02	14	
03	15	
04	16	
05	17	
06	18	
07	19	
08	20	
09	21	
10	22	
11	23	
12	24	

Shift the racks separately at an even and moderate speed in front of the barcode scanner. A signal tone is heard for each recognized barcode

In case of reading errors, check correct position of barcode, shift out rack and repeat scanning..

Press ENTER to continue

6. Start measurement By select START and press ENTER

PREPARE SYSTEM	
P 25 800uL P 26 500uL P 29 500uL	Check, if all required reagents are on board and in correct position.
P31 500uL P39 740uL CUVETTES 5	Press ENTER to start measurementStar measurement
CONTINUE >> KEY ENTER	

7. After completion of the measurement, the results and other information on the test are printed out and send to LIS automatically.

4.3 Interrupt or exit measurement

<u>Automatic interrupt of worklist:</u> Instrument will interrupt worklist sautomatically, if it runs out of reagent or cuvette during measurement.

Manual interrupt worklist: Press key ESC:

Robotic will finish current command and moves to home and set measurement to pause and an alarm will be activated. Following actions can be performed during interrupt:

Exit worklist: Press key ESC again: Measurement and worklist will be aborted.

<u>Move robotic: Press key LEFT/RIGHT:</u> Moves robotic to left or right home position.

<u>Contine worklist: Press key ENTER:</u> Continuous measurement

4.4 Out of liquid or cuvette during measurement

System will interrupt worklist automatically, if

OUT	OF	LIQUID	P25

PRESS ENTER

Out of liquid: Replace vial at indicated position within 30sec after alarm and press ENTER to continue worklist. After 30sec system will exit worklist or skip order according to setup of autoskip function.

Out of cuvette: Reload cuvettes and press ENTER to continue worklist

4.5 Continous loading of samples

This feature requires the host software TECAM PRO. The system must be set to "HC", which means host communication is online.

Samples can be loaded during measurement.

- (1) Samples without patient barcode
 - Define new orders with TECAM software and send to instrument
 - Goto instruments and press ESC and wait until robotic is idle
 - Place patient samples into rack according to TECAM order sequence
- (2) Samples with patient barcode
 - Scan patient barcode. System will display rack position and barcode number and interrupt current worklist.
 - Wait until measurement is interrupted. Then place the tube into the required rack position.
 - Scan and place further samples
 - press ENTER to continue worklist
 - New PID are now visible at TECAM software. Add methods and send order to instrument.

Do not access or move patient racks during operation of robotic. Always interrupt measurement before loading reagent, cuvette or samples during measurement. Otherwise system can be damaged !

4.6 Measuring the emergency samples

The emergency sample position (STAT position) makes it possible to interrupt regular test processing without losing the worklist settings or the measurement results up to that point. All current tests are terminated and the current worklist is saved so that the worklist can be continued after the emergency measurement. The STAT position is only designed for individual samples. If several emergency samples are to be measured, either repeat the following steps or start with a new list.

STAT ENTRY			
PID:			
TEST:	PT		
	INFO		
MODE:	MANUAL		
CONTINUE:	YES		

- 1. Interrupt the current worklist with Esc (see chap. 4.4).
- 2. Go to the submenu STAT in the main menu ANALYSIS.
- 3. Either input the PID manually via the numeric keypad or with the barcode scanner as described in chap. 5.1.4.
- 4. Place the emergency sample in the STAT position (position 43).
- 5. Select the test.
- 6. Under INFO you can print out the test SETUP.
- Set the mode. If it is set to Manual, the interrupted worklist must be continued manually after the emergency sample has been measured. In Auto mode this is done automatically.
- 8. Leave the screen with Enter.
- 9. Check the reagents according to the information in the following screen, SYSTEM PREPARATION.
- 10. Start the emergency measurement with Enter.
- 11. After the measurement is completed, the test results are printed out analogously to normal test processing.
- 12. With CONTINUE in the main menu ANALYSIS, processing of the interrupted worklist recommences.

The software "TECAM PRO" features STAT orders, which can be run in regular patient rack and loaded during during operation.

•

el)

4.7 Quality control measurement

The analyser allows to run one control plasma for each test. The specific control range must be entered in the menu "TEST SETUP". No warning flag "Q" is generated, if the control range is defined equal to zero.

There are two internal position for control plasma (CP-1, CP-2). But also rack positions can be used for control plasma. The internal positions CP1/CP2 for each test can be found in the printout of the test setup

The analyser identifies a sample as a control if its position is CP1/CP2 or if its PID is equal to one of the two entered lot-numbers A control result is always marked with flag "C" and in case that it is out of range also with flag "Q". All further results will be flagged with "Q" until a new control result is successfully or the instrument is rebooted.

QC with positions CP-1 and CP-2:

- Define control range in the menu SETUP TEST
- Activate QC-ACTIVE within worklist menu
- Optional: Enter lot-number of control plasma within the worklist menu
- Place control plasma to position CP-1 or CP-2. The corresponding control position is printed with the test setup.

QC with rack position P01 and P02:

- Define control range in the menu SETUP TEST
- Set QC-ACTIVE=NO within worklist menu
- Set BARCODE=YES within worklist menu
- Enter the lot-number of control plasma within the worklist menu
- Place control plasma to position P01 and/or P02 and then all samples
- Enter the PID of the samples manually or by barcode. It is important that the PID number of sample PO1 is equal to lot-number.

The terminal program "TECAM PRO" features quality control processing according to Levey-Jennings graphics and Westgard rules.

e)

5. Software description

Following menu is displayed after start of instrument

1 A	NALYS	IS			
2 S	ETUP 1	EST			
3 SETUP SYSTEM					
4 SERVICE					
5 P	IPET S	TAT	ION		
12:00	1055mL	LIS	37.0°0		

ANALYSIS

Menu to define orders and run patient samples

> SETUP TEST

Menu to calibrate methods

- SETUP SYSTEM
 Menu to change system parameters
- SERVICE Menu to service system
- PIPET STATION Menu to reconstitute reagent and controls

The statusbar shows current information about time, installed RINSE solution, LIS connection and onboard temperature.
5.1 Main menu Analysis

WORKLIST
1 NEW LIST
2 CONTINUE
3 REPEAT
4 STAT
5 VIEW
6 PRINT OPTION
7 SYSTEM ACTIVATION
8 REAGENT ACTIVATION
12:00 1055mL LIS 37.0°C

5.1.1 Submenu New List

Creation and processing of a new list is achieved in 3 consecutive screens, each reached from the previous screen by way of Enter on CONTINUE: YES.

ARROW \uparrow / ARROW \downarrow selects the desired menu item, ARROW \leftarrow / ARROW \rightarrow pages through the options.

With ESC one returns to the previous screen.

Select *CONTINUE* = *YES* to come to the next screen.

Screen: worklist settings

CONTINUE:	YES
TEST:	PRFL
BARCODE:	NO
RELFEX:	NO
DOUBLE:	NO
QC-ACTIVE:	NO
AUTOSKIP:	NO
HCT-L:	00 mm
CLEAN:	MIN
SHIELD:	YES
MODE:	CUV

Possible settings:

> Test:

With ARROW \rightarrow one proceeds to the list of all available tests in which one navigates with the arrow keys, Enter selects the test from the worklist. With Enter on the field INFO an overview of the test settings is printed out (identical with *chap. 5.2.5, Test printout*).

Barcode YES / NO:

Primary tubes are provided with barcode label, which is used to input the patient identification number (PID)

Reflex YES / NO:

Activates reflex testing. The instrument can repeat automatically suspected results like +++ (no clot detected).

Double: YES / NO

Activates the double test. The mean value is automatically used in the results report. If the two individual results differ by 15%, the result is labelled Flag "%."

> QC Active:YES / NO

Carries out control measurements with control plasma before each worklist is started; for this purpose, positions P35 (CP-1) or P36 (CP-2) must be filled with control plasma. The control positions for each test is defined in the Test Setup printout. If the control measurement results are outside the QC range (*see chap. 5.2.4, Submenu QC range*), the results printouts for the worklist will bear the remark "Q."

> Autoskip YES / NO:

The instrument will skip current job or test, if plasma or reagent run out and continue with the next order. Skipped jobs are printed as "SKP". Select "CONTINUE" in the analysis menu to rerun only skipped jobs.

➤ HCT-L: 0 – 63 mm

Determines the height of the coagulum (haematocrit level) measured from buttom of tube.The needle will search for plasma only upto this level. HCT-L must be set to 0, if only plasma is used

CLEAN: Min - Max

Defines how to clean needle after pipetting samples

- MIN: Don't perform a clean cycle from sample to sample. The risk of sample to sample carryover was evaluated with extreme high levels of Heparin and concerned low.
- MAX: Always perform a clean cycle from sample to sample. It required much more Rinse solution and time to carry out a worklis
- SHIELD: Yes No

This setting is only display, if a protection shield is installed.

- YES: System stop immediately operation, if protection shield is opened during worklist.
- No: Deactivate shield detection

Important:

Deactivated shield function may lead to injury and infections cause by piercing needle.

- Mode: BAT / SEL / CUV / EV1 / QC Determines the mode of test processing:
 - Test Batch (BAT): Processes all similar tests in sequence (eg. all PT, than all APTT, ..) Well-suited to time-optimized test processing in routine operation, but complete patient reports are available after end of worklist.
 - Patient selective (SEL): Processes patients in sequence (eg. Patient 1, PT+APTT then next patient). Important: Complete patient reports are available during run, but worklist need more time and Rinse.
 - Cuvette Batch (CUV): This is a combination of BAT and SEL and combines the best of both. (eg. First cuvette PT, second cuvette aPTT,...).
 - Evaluation 1 (EV1): Regardless of how many samples were entered, plasma is only taken from sample position 1. Wellsuited for determination of precision, consumption and throughput volume.
 - QC (QC): This mode is used for quality issues during production of service.

EV1, QC are not suitable for routine processing and should used only for research issues.

P)

CONTINUE:		YES
SAMPL	ES:	24
1.PID:		1000
CP-1:	N123	45678
CP-2:	P234	56789
TEST	1:PT	5: AT
	2:APT	T 6: -
	3:FIB	7: -
	4:TT	8: -

Screen: Test Profil, Control plasma and Autoseries input:

Possible settings:

> Samples:

(only visible of barcode is set to no) Manual input of number of samples.

≻ 1. ID

(only visible of barcode is set to no) Manual input of Identification Number for first sample. The other samples were automatically incremented by 1 (1000, 1001, 1002,.....)

➢ CP-1, CP-2:

Input of lot.-numbers for two control plasma manually or by barcode. If the analyser identify a PID number as a control lot. , the result will flagged with "C" and checked if within control range.

➤ Test 1 – 8:

When a profile is to be measured, you can define the individual tests here once again.

-DFIB requires also PT

-ACPR requires also –APC and reverse -LA requires also LA-C and reverse

Ensure yourself that all reagents for profile can be placed on board. Otherwise the profile will not operate correctly and lead to erratic results.

Input of PID by barcode or manual entry:

(set BARCODE=YES, see screen 1 above)

In this screen you can enter the patient ident numbers by 3 ways:

	BARCODE ENTRY
RACK 1	RACK 2
01>	13
02	14
03	15
04	16
05	17
06	18
07	19
08	20
09	21
10	22
11	23
12	24

• Shift the racks separately at an even and moderate speed in front of the barcode scanner. A signal tone is heard for each recognized barcode

• Use cursor keys to mark the current sample position and scan the sample. Place the sample into current rack position.

• Use cursor keys to mark the current sample position and enter manually the ID number and place the sample into the rack.

N

If a barcode was not recognized, check alignment and rescan. Read detailed information in chapter "Barcode Guideline"

Press *ENTER* to come into the next screen.

In the next screen you can still revise the PID numbers and active tests, which are counted upwards from the PID number of the first sample

POS	PID		12345678	POS	PID		12345678
P01	1001		XXXXXXXX	P01	1000		X X XXXXXXX
P02	1001		XXXXXXXX	P02	1001		X X XXXXXX
P03	1002		X X XXXXXX	P03	1002		X X XXXXXX
P04	1003		X X XXXXXX	 P04	1003		X X XXXXXX
P05	1004		X X XXXXXX	P05	1004		X X XXXXXX
P06	1005		X X XXXXXX	P06	1005		X X XXXXXX
1=P1		2=APTT	3=FIB	1=P1		2⊧APTT	3=FIB
4= T 1	Г	5=AT	6=DD	4=T	Т	5= AT	6=DD
7=F5	5	8=F5		7=F	5	8=F5	

- Select the order record with cursor keys UP/DOWN.
- Select the order items PID or TESTS with cursor keys RIGHT.
- If a PID is highlighted , use numeric keys to change the number and confirm with Enter.
- If a TEST is highlighted, use Enter to (de)activate. Use dot key "." to (de)activate the tests in all orders.
- To come to the next screen, use key RIGHT until the current order is completely highlighted and press Enter.

	WORK	LIST
	<-	START
	TEST:	PRFL
	SAMPLES:	06
	DOUBLE:	NO
	QC-ACTIVE	: NO
	AUTOSKIP:	NO
12	:00 1055mL	H0 37.0°C

When worklist input is complete a further input overview appears.

The COATRON A4 requires the following to process the active worklist:

	F	PREPARE SYSTEM	
P25	800uL		
P26	500uL		
P29	500uL		
P31	500uL		
P39	740uL		
CUVE	ETTES	5	
	CO	NTINUE >> KEY ENTER	

- 800µl reagent in position 25=PT
- 500µl reagent in position 26=CACL
- 500µl reagent in position 29=Fibrinogen
- 500µl reagent in position 31=APTT
- 740µl reagent in position 38=FIB buffer
- 5 cuvette trays

Check once again to make sure all reagents and cuvettes on the device are filled. The worklist is started with Enter.

5.1.2 Submenu Continue

Following a test interruption (e.g. due to a STAT task or discontinuation due to a lack of liquid), routine measurement can be continued here.

5.1.3 Submenu Repeat

Repeats the last worklist.

5.1.4 Submenu Stat

Interrupts the regular processing of the list and selects the emergency sample at position 43 in the system block.

STAT ENTRY		
PID:		
TEST:	PT	
	INFO	
MODE:	MANUAL	
CONTINUE:	YES	

➢ Input of PID:

Enter the Patient Identification Number (PID) manually or just scan it with the barcode scanner. Enter terminates input of the PID. Then place the emergency sample in the STAT position.

Selection of the test:

With ARROW \downarrow one gets to test selection, ARROW \rightarrow opens the list of available tests; then use the navigation keys to select the test and return to STAT INPUT with Enter.

Information on the test:

Confirming the INFO field with Enter prints out the test setup just as in normal measurement.

Setting the mode:

If the mode is set to manual, the interrupted worklist must be continued manually after the emergency sample has been measured. In the Auto mode this is done automatically.

> Activation of emergency measurement:

Go to the field CONTINUE and confirm with YES. The next screen SYSTEM PREPARATION displays the required position in the reagent block, the required amount of reagent and the number of cuvettes required.

After checking the reagent position, the measurement procedure can be initiated with Enter.

5.1.5 Submenu Overview

Displays and prints lists according to given sorting criteria.

	WORKLIST
P01	1000
PT	70,1%
APTT	36,1s
FIB	398 mg/dL
P02	1001
PT	100,0%
APTT	33,5s
FIB	250 mg/dL
OPTIO	NS >> KEY ENTER

Enter calls up options, ARROW \uparrow / ARROW \downarrow pages through the options, Enter executes the operation:

WORKLIST
D01 1000
PRINT REPORT SEND TO HOST STAT
OPTIONS >> KEY ENTER

The following options can be selected:

- Prints report
- Sends to host. Transmit the results from the processed worklist to a PC for further processing. For this function you require the optional software package "TECAM" or similar.
- Displays either the emergency list or the worklist.

5.1.6 Submenu Print Option

	WORKLIS	T	
	TEST SETUP: INFO: PRINT DETAIL: PRINT REPORT:	YES YES YES YES	
20	003/01/01 12:00	37.0°C	2

Determines what information is to be printed automatically:

Test Setup: YES / NO

The Test Setups are printed at the beginning

➢ Info: YES / NO

Information on worklist is printed at the beginning

- Print details: YES / NO
 Detailed results are printed during the measurements
- Print report: YES / NO
 A report is printed after the worklist is processed.

5.1.7 Submenu System Activation

This menu is only visible, if instrument is configurated as closed system

System will stop operating after 999 determinations.

- Skip message with key ESC.
- Scan "Test Activation Key" to activate system.

Barcode will be rejected in case of invalid syntax or if barcode was already scanned before.

Contact your local distributor, if you require a valid barcode.

5.1.8 Submenu Cuvette Activation

This menu is only shown, if instrument is configarated as "Closed to cuvette". Read the barcode, which is provided with the cuvette package.

CUVETTE ACTIVATION
500 CUVETTES ENABLED
READ BARCODE
CONTINUE >> KEY ENTER

Activation barcode can be read only one time and is be checked by serialnumber of instrument.

5.1.9 Submenu Reagent Activation

A test must be activated by barcode, if the instrument is configured as closed to specific reagent. The barcode is normally printed on the label of the vial. The activation can be done in this separate menu or short before starting the worklist.

R2=Thromboplastin at P25 with 100µL)

Activate reagent by scanning the barcodes of certain reagents. The activation is valid until next system reboot.

Reagent and test name is displayed as well as the test protocol (e.g. control plasma at P35 with 50µL and

	TEST ACTIVATION	
PT:	THROMBOPLASTIN POS=25	
=== CP= R2=	=====================================	=

12:00 1055mL H0 37.0°C

Barcodes will be rejected in case of

- invalid syntax of barcode
- date expired
- barcode differs to data stored in the SETUP test

⇒

A new LOT must be first calibrated before it can be used within the Worklist. Refer to chapter 5.2 "TEST SETUP"

5.1.10 Reflex testing

This feature is always enabled. After worklist run, then instrument will validate results and repeat test under following circumstances:

- For clotting tests like PT,aPTT,Factors: If result is "+++", then test is repeated 1x with 60s prolonged maximum reading time.
- For chromogenic tests like AT: If result is "0.000E, then test is repeated 1x.

Repeated results are flagged with "R"

5.1.11 Display during measurement

	WOR	KLIST IN PROCESS
ID1:	1000	
PT		70,1%
ID2 :	1001	
ΡT		x178
ID3 :	1002	
ΡT		x026
ID4 :	1003	
PT		x003
		- HC -
		PROGRESS
		5%

A PT result for sample ID 1000 has already been found in measurement channel 1. On channel 2-4 is a measurement ongoing.

Progress in the worklist is displayed in %. 100% means the worklist has been completely processed.

"HC" indicates that the analyser is linked to HOST.

The above screen appears during measurement.

A rotating bar at the right edge of the screen indicates an incubation (e.g. PTT) in the next cuvette.

A rotating bar in front of a number indicates an ongoing measurement. The number is the current light absorbance in mOD (milli optical density). A pronounced increase in light absorption indicates a coagulation event!

5.1.12 Result warning messages

Results may also be displayed with various additional warning symbols:

- * Result outside calibrated range
- A Result outside normal range
- T Temperature outside 36 38°C range
- Q Quality control outside control range
- C Result is identified as a quality control
- E Reagent is expired
- F Low Fibrinogen level found
- R Result repeated (reflex testing)
- Result not trustful and should be repeated.
- X Double values deviate by more than 15%
- K Measurement skipped, because out of reagent
- SKP Job was skipped due to missing reagent or plasma
- XXX No result was found
- SSS Signal transmission too low.
- +++ No coagulation determined within measurement time
- ??? Result based on strange optical signals (e.g. air bubble, peaks)

5.1.13 Printout of results

Depending on how the print options are set (*see chap. 5.1.6, Submenu Print Options*), the results are automatically printed out as follows. Each report can be identified with a unique worklist-id number.

TASKLIST 18.04.2003 00:34	REPORT OF RESULTS		
TEST: PRFL SAMPLES: 06 BARCODE: NO DOUBLE: NO	Worklist-ID: 1000 TIME: 18.04.2003 00:36		
QC ACTIVE: NO	P01 1000		
P01 1000	PT 70.1% 16.1s		
PT 16.1 s 70.1 %	FIB 398 mg/dl 8.1s		
P02 1001	P02 1001		
PT 16.1 \$ 70.1 %	PT 70.1% 16.1s		
P03 1002 PT 16 1 s 70 1 %	PTT 36.1s FIB 398 mg/dl 8.1s		
P04 1003 PT 16.1 s 70.1 %	P03 1002		
	PT 70.1% 16.1S		
P05 1004 PT 16.1 s 70.1 %	FIB 398 mg/dl 8.1s		
	P04 1003		
	PT 70.1% 16.1s		
· ·	PTT 36.1s		
P05 1004	FIB 398 Hig/di 8.15		
FIB 8.1 s 398 mg/dl	P05 1004		
P06 1005	PT 70.1% 16.1s		
FIB 8.1 s 398 mg/dl	FIR 398 mg/dl 8.1s		
	P06 1005		
	PT 70.1% 16.1s		
	EID 200 ma/dl 9.1c		

Individual results

Report

5.1.14 Host communication

The COATRON A4 has a serial bi-directional interface for data transmission. The terminal program "TECAM PRO" allows to define jobs on the PC surface and send them to the analyser. Once the program has started, all results are automatically sent to the HOST, where they can be graphically presented, including the coagulation curves, and managed in a database. A demo version of TECAM can be downloaded from the distributor's homepage. An active host connection is indicated with "H1" in the screen statusbar and with "HC" in the measurement screen

5.2 Main menu Test Setup

WORKLIST	CHANGE TEST
1 CHANGE TEST	PT DFIB APTT FIB
2 SET DATA 3 NORMAL RANGE	AT TT DD HEP
4 CONTROL RANGE	PC PS F2 F5
5 PRINT TEST	F7 F8 F9 F10
6 PRINT OVERVIEW	F11 F12 PLG -APC
12:00 1055mL H0 37.0°C	APCR LA-S LA-C PSF
	1=INFO

5.2.1 Using of reagent barcode

The internal barcode scanner will be activated by entering the submenu SET DATA. After every barcode event, the Coatron A4 will enter the LOT number and expiry date of the barcode.

SETUP F8						
TEST: F8 LOT: 123456789 EXP.: 01/2004 UNIT: % INCUB.: 180s RUNTIME: 180s ENTRY: MANUAL	-1					
12:00 1055mL H0 37.0°C						

5.2.2 Test Selection

All of the available tests are listed in a table. Navigation within the table is realized with ARROW \uparrow / ARROW \downarrow / ARROW \leftarrow / ARROW \rightarrow . Enter selects a test and returns to the main menu Test Setup. The selected test is displayed in the headline. The following menu items always refer to the current test setting. To carry out several tests on each sample, select the last item, PRFL (profile). In this case, the next menu item DATA INPUT differs from data input in single tests.

5.2.3 Submenu "Set Data"

SETUP F8						
TES LO	БТ: Т:	F8 1234	56789	,		
EX	P.:	01/2	004	-		
	CUB.:	% 180s	5	ŀ		
RU EN	NTIME: TRY:	180s MANU	5 AL			
12:00	1055	nL H() 3	7.0°C		

Single tests:

After replacing the reagents, the lot number (LOT) and expiry date (EXP.) must be re-entered. With ARROW \uparrow / ARROW \downarrow one selects the value to be changed.

> New lot number (LOT):

If the LOT number is inverted, ARROW \rightarrow is used to get to selection of individual digits, numbers and letters and ARROW \uparrow / ARROW \downarrow are used to page through them; numbers can also be entered directly using the numeric keypad.

Input of expiry date (EXP.):

With ARROW \leftarrow / ARROW \rightarrow the month can be changed, with ARROW \downarrow the year is changed analogously to the month.

Expired dates will not be accepted by the COATRON A4

> Selection of unit:

With ARROW \leftarrow / ARROW \rightarrow the units are changed in which the results are displayed with the exception of the basic unit (which depends on the measurement principle). The available units are %, INR, Ratio, INR+ and no further unit (-). Calibration curves can only be entered when a unit has been selected. See *chapter 3.3.2, Units* on the significance and calculation of the units.

Incubation time setting

Define the delay time before start reagent (R2) is added. With ARROW \leftarrow / ARROW \rightarrow the incubation time is changed in 30-second increments from 60 to 450 seconds.

Runtime setting

Define the maximum reading time.

Mode of calibration

Select between

Manual = manual input Auto = automatical test calibration

5.2.4 Test Calibration

The analyser gives the operator the option to calibrate a test manually or automatically.

- Manual Calibration: The operator must prepare the standards and run them like normal samples. He must also enter the results manually
- Auto Calibration with dilutions: The operator must place the reference plasma into rack postion P01 and addionally empty vials in P02 – P06. The analyser will prepare all required plasma dilutions, run the standards and transfer the results into the calibration curve automatically.
- Auto Calibration with fix standards: The operator can place upto 6 plasma standards into rack. The analyser will run the standards and transfer the results into the calibration curve automatically.

> Manual calibration

The operator must prepare the standards and run them like normal samples. He must also enter the results manually

SETUP PT	SET DATA:	PT
TEST: PT LOT: 123456789 EXP.: 01/2004 UNIT: % INCUB.: 0s RUNTIME: 120s ENTRY: MANUAL 12:00 1055mL H0 37.0°	% 100 50 25 12,5 0 0 R ² =0.962	s 12,1 16,2 25,7 36,9 0 0

Select test and unit, set ENTRY to MANUAL and press ENTER.

The calibration curve can be entered or changed now manually. At least 2 value pairs are required upto a maximum of 6 value pairs. List navigation is with the arrow keys and the values are confirmed with Enter. A value pair can be added, deleted or changed at any position. Subsequent data saving automatically sorts the calibration data.

INR Calibration:

The operator can select the unit between

- INR = Ratio ^{ISI} (International Normal Ratio)
- INR+= INR calculated from a INR/sec reference curve

For UNIT=INR the operator must enter a normal value and the reagent ISI value manually. If a PT % calibration is entered, the instrument will calculate and display the 100% value. This value can be used as normal value if there is no laboratory inhouse normal value.

Auto calibration

The COATRON A4 prepares and measures all of the required standard dilutions by itself and enters the mean values in the calibration curve.

SETUP PT				_
TEST: PT LOT: 123456789 EXP.: 01/2004 UNIT: % + INR INCUB.: 0s RUNTIME: 120s ENTRY: AUTO 12:00 1055mL H0 37.0°	1 2 3 4 5	STANDARD STD1: STD2: STD3: STD4: STD5: STD6:	100 % 0 % 0 % 0 % 0 % 0 %	四 汗

Select test and unit, set ENTRY to Auto and press ENTER.

• Autocalibration with serial dilutions

The dilutions are always prepared in following way:

1	2	3	4	5	6
1:1	1:2	1:4	1:8	1:16	1:96

- Enter the calibrator target value in the field "STD1," e.g. 100% for PT calibration, and confirm with Enter.
- 2. Enter the calibrator in position 1 of the sample rack.

6 standards are measured for factor VIII calibration. Therefore the calibrator must be placed in rack position 1 and 5 other empty sample test tubes are required in rack positions 2-6, in which the **COATRON A4** then prepares the necessary dilutions.

3. Additional empty sample test tubes are required in rack positions 2-6. The number of samples corresponds to the

number of sample test tubes and depends on the particular test.

4. Select START, check the reagents and numbers of cuvettes required in the screen SYSTEM PREPARATION and initiate the measurement procedure with Enter.

• Autocalibration with fixed levels

Enter more than one standard value in the fields STD1 – STD6. Enter a reference value. Confirm with ENTER. Select next standard field with key DOWN or press ENTER again to proceed with calibration.

SETUP PT				I	ANALYSE C	URVE	
TEST: PT LOT: 123456789	1	STANDAF			<- S	TART	
EXP.: 01/2004 UNIT: INR+ INCUB.: 0s RUNTIME: 120s ENTRY: AUTO	2 1 3 4 5	STD2: STD3: STD4: STD5: STD6:	2.50 INR 4.00 INR 0.00 INR 0.00 INR 0.00 INR		TEST: SAMPLES: DOUBLE: QC-ACTIVE:	PT 03 YES NO	
12:00 1055mL H0 37.0°C 12:00 1055mL H0 37.0°C							

3 fixed standard levels are measured for PT INR calibration. Place INR calibration plasma STD1,2,3 into rack position P01,02 and 03.

5.2.5 Submenu Normal Range

During a routine, a measurement result is flagged "A" (abnormal) if it is outside the normal range. If the normal range is min=max=0, the results are not checked.

Selection of the upper and lower limits of the normal range for the selected tests is with ARROW \uparrow / ARROW \downarrow . If the value is inverted, use the numeric keypad to enter the new limit directly.

Leave the screen with Esc after all of the parameters to be changed have been entered.

In response to the query SAVE DATA? use ARROW \leftarrow / ARROW \rightarrow to select either YES or NO and confirm with Enter.

5.2.6 Submenu QC Range

Indicates the measurement result range expected in a control measurement. The range depends on the particular control plasma and test. See the reagent sheet for the control range. If the measurement result for a control is outside the QC range it will be flagged "Q." If the QC range is min=max=0, the results are not checked.

5.2.7 Storing of test data

N

Press ESC to return to the main menu "TEST SETUP". If any data was changed, the COATRON A4 will ask for confirmation before storing.

The test data are checked for plausibility when they are saved.

The following rules must be complied with:

- The calibration curve must be valid
- The LOT-Number must be in conformitity with TECO GMBH
- The expiry date must be valid

5.2.8 Submenu Test Printout

Prints out the selected parameters for this test

SETUP FIB	
LOT: 302501299 EXP: 1/2004 LAST CHANGE: 03.04.2003	- expiry date - date of input
1: 80 mg/dl - 27.0 s 2: 120 mg/dl - 18.0 s 3: 240 mg/dl - 12.0 s 4: 480 mg/dl - 7.0 s	- calibration values
R ² = 0,992	- Linearity of the calibration curve (1.000 for a straight line) (R² should be 0.850 – 1.000)
NORMAL RANGE: 0 - 0 mg/dl QC RANGE : 0 - 0 mg/dl	ranges
S-CORR: 0% T-CORR: 0% 0S START: 4S INCUB.: 60S RUNTIME: 120S METHOD: COAG CT-MECH: NO SENS: 0 MIX: 0 CLEAN: 0 DIL.: 1:10	signal correction time correction deadtime incubation time max. runtime test method clottingtime mechanical test sensitivity reagent mixing high cleaning cycle plasma dilution
PAT: VOL= 10uL CP : VOL= 10uL POS=35 BUF: VOL= 90uL R2 : VOL= 50uL POS=29	 Sample volume in µl Control plasma, amount and position Buffer, amount and position Start reagent, amount and position (here 10 µl sample + 90 Owren's buffer + 50 µl fibrinogen reagent)

5.2.9 Submenu Test Overview

Prints out the current protocols of all tests.

TEST	PAT	BUF	CLR	DEF	R1	R2
PT uL	50	0	0	0	0	100
POS	P35	P38	P00	P00	P00	P25
DFIB uL	50	0	0	0	0	100
POS	P35	P38	P00	P00	P00	P25
APTT uL	50	0	0	0	50	50
POS	P35	P38	P00	P00	P31	P26

example test protocol APTT:

- > add 50µL sample (the control plasma position is P35)
- add 50μL aPTT reagent from P31
- add 50μL CaCl from P26

5.2.10 Setup of test protocol

This feature allows you to change or adapt new reagents or tests.

The test protocols are protected. They can be activated or modified by trained and authorized personel only.

Important:

Improper changing can lead to false results. Please contact your local authorized distributor/agent, if there is a need to change the parameters.

TEST:	F8	
UNIT:	3	
METHOD:	COAG	
MATH:	logXY	
CT-MECH:	NO	
START:	15s	
POINTS:	6	
SENS:	1	
MIX:	0	
CLEAN:	0	
VALIDATE:	YES	
S-CORR:	0%	
T-CORR:	0%	
	0s	
миті	NO	

PAT:	10uL	
	P35	
BUF:	40uL	
	P38	
CLR:	0uL	
DP:	50uL	
	P34	
R0:	0uL	
	P00	
R1:	50uL	
	P31	
R2:	50uL	
	P26	

Screen 1 : test protocols

Screen 2 : test protocols

- NAME 4 Charakters for test \triangleright
- UNITS selectable units, decimal code of every bit.
 - (i.e. units=11-> s,%,INR
 - Bit 0 = always (sec or E) •
 - Bit 1 = % •
 - Bit 2 = U
 - Bit 3 = INR
 - Bit 4 = RATIO
 - Bit 5 = INR+ •
 - Bit 6 = INR+%
 - Bit 7 = -
 - Bit 8 = mg/dL
 - Bit 9 = g/L•
 - Bit 10 = IE/mL
 - Bit 11 = mg/L•
 - Bit 12 = ug/mL•
 - Bit 13 = ng/mL
 - Bit 14 = ug/L•
 - Bit 15 = IU/mL
- \geq METHODE

 \triangleright

- COAG.FIB.CHROM.IMMUN \triangleright MATH
- XY-calibration relationship (lin,1/X,logY,logXY) \geq CT-MECH Clotting Time Mechanical. Define clot point at 50% of endpoint
 - YES: Clot at 50% signal
 - NO: Clot at turnpoint of reaction (default)
 - Time when measurements start (deadtime)
 - START data points for auto calibration
- \triangleright POINTS SENS sensitivity of clotting test (Max=3 -> very sensitive)
- \geq \geq MIX After adding of start reagent the robot will mix in the cuvette
- \geq CLEAN needle will be flushed with double Rinse solution
- reagent must will be validated by barcode (eg. lot, expiry). \triangleright VALIDATE \geq
 - signal correction (eg. Caculate FIB signal 10% higher) S-CORR
- ۶ T-CORR % time correction (eg. Calculate PT 10% shorter)
- ⋟ T-CORR s time correction (eg. Calculate PT 2s shorter)
- ⊳ Multi allow sample multi dispensing to increase throughput.
- ⊳ Vol Pat Volume of patient in µL
- Position of Control plasma \triangleright Pos CP
- \triangleright Volume of buffer Vol Buffer
- \triangleright Pos Buffer Position of buffer
- \geq Vol Clr Clear Volume
- \geq Vol DP Volume of deficient plasma in µL
- \triangleright Pos DP Position of deficient plasma
- ⊳ Vol R0 Volume of reagent 0
- ⋟ Position of reagent 0 Pos RO
- \triangleright Vol R1 Volume of reagent 1
- \geq Pos R1 Position of reagent 1
- Volume of reagent 2 = Start reagent \triangleright Vol R2
- \geq Pos R2 Position of reagent 2

Set volume and position to "0" if not required Set volume and position to "0" if not required

J	 Regard the impression of dispensor: Below 4μL: >15% At 5μL: 5% Above 10 μL: <1%
	Concern the clear volume:
Ŋ	A minimum of 75μL must be left in the cuvette. Example instrument pipet 5μL sample and 195μL buffer into cuvette. Then a maximum of 125 μL plasmadilution can be cleared.

e ...

. . . .

5.3 Main menu System Setup

System Setup is used to for basic device settings that are normally only rarely changed.

SYSTE	EM SETUP	Genera	al operation:	
		ARROW	↑/↓ left column	Change item
LANGUAGE: DATE:	ENGLISH 2003/01/01		ARROW \rightarrow change to	right column
TIME: SIGNAL:	14:59:05 ON	ARROW	↑/ \downarrow right column:	Change value
CONTRAST: MIXER:	225 200	Enter	to confirm the value.	
SIMULATOR:	0	ESC	exit menu	

5.3.1 Language

Select between: English - Italian - Spanish - German

5.3.2 Date

The date format is changed in change mode with ARROW \uparrow / ARROW \downarrow :

- European date format (DD.MM.YYYY)
- American date format (YYYY/MM/DD)

Use Enter to get into change mode for day, month and year, use ARROW \uparrow / ARROW \downarrow to change the date elements (day, month, year).

5.3.3 Time

Use Enter to get into change mode for hours, minutes and seconds, use ARROW \uparrow / ARROW \downarrow to change the time elements (hours, minutes and seconds).

5.3.4 Signal

Switches the acoustic signal on or off. Possible settings:

- Signal on
- Signal off

5.3.5 Contrast

Changes screen image contrast.

Continuous settings from 214 to 255; the result can be checked on the screen without delay.

5.3.6 Mixer

Changes the magnetic stirrer speed at position 25 in the reagent block. Continuous settings from 0 to 255, standard setting 200.

5.3.7 Simulator

Facilitates simulation of measurement operation without moving the pipetting arm.

- Simulator = 0: Normal operation; simulator is not active
- Simulator = 1:

Maintenance operation; commands issued to the XYZ robot are not executed. System functions as usual otherwise. This mode is very helpful for maintenance work or while familiarizing oneself with the system.

Simulator = 2:

Demonstration operation; remove the syringe from the pump. Fill all required test and plasma positions with water-filled vessels. Cuvettes are not required. Now start a worklist. This mode is intended for system demonstration.

5.4 Main Menu SERVICE

	SERVICE		
1	PRINT REPORT		
2	ADJUST XYZ		
3	ADJUST TEMPERATURE		
4	CHECK OPTIC		
5	CHECK ROBOTICS		
6	MOVE CUVETTES		
7	CLEAN NEEDLE		
8	REPLACE RINSE TANK		
9	REPLACE NEEDLE		
10	REPLACE SYRINGE		
11	ADJUST MOTOR		

12 CAP PIERC	[NG
--------------	-----

ARROW \uparrow/\downarrow	the desired menu item is selected
Enter	initiates the operation directly.
1-9	select item directly

5.4.1

System report	
Printout of important system data	
SYSTEM - REPORT]
DATE: 2010/25/10 13:59	
SYSTEM: COATRON A4 SERIAL NO.: 1234567 SOFTWARE: 01.06.01	
OPTIC 1: 80 30005 (162) OPTIC 2: 62 29984 (169) OPTIC 3: 85 29766 (153) OPTIC 4: 50 29793 (155)	OPTICS : 80 30 80 = Digital va 30005 = Digital 162 = Amplifica
TEMPERATURE CV:39.2 °C (39.0) 34968 (34970)	Temperature cuve
TEMPERATURE PT:37.1 °C (37.0) 34395 (34398	Temperature reag
CONTRAST: 225 MIXER: 200	Display contrast Reagent mixing s
WASH REAG CUV PAT OFFSET X: 1 -2 0 0 OFFSET Y: 3 1 0 -5 OFFSET Z: 0 13 0 850 OFFSET M: 4 0 -5	Needle Position fr X-Offset = left/ Y-Offset = forw Z-Offset = up/d Motor Adjustmen CAP PIERCING
RINSE INSTALLED: 108 ml NEEDLE TIMER: 2300 SYRINGE TIMER: 32023 STOP-STOP IN: 905 TESTS SERVICE IN 58001 TESTS	Remaining systen Age of needle: nu Age of syringe: m Remaining determ
PT COUNTER: 10000 PTT COUNTER: 10000 FIB COUNTER:5000 TT COUNTER: 1000 DD COUNTER: 1000 ANALYSIS COUNTER: 27000	Number of carried all tests
SYSTEM STATUS SYSTEM = OPEN SERVICE = CLOSE REAGENT = OPEN	System do not rec System requires a System do not rec

0005 (162) lue when LED is off value when LED is on ation factor

ette:current celsisus (target) Current digits (target)

gent PT:current celsisus (target) Current digits (target)

peed

or Wash, Reagent, Cuvette & Patient right /ard/backward lown nt: Offset=4 height

n liquid mber of performed tests umber of up/down cycles nination before system stop operation.

d out tests for counted PT,PTT,FIB or

juire a barcode to run tests barcode to reset service interval uire a barcode before use of reagent

5.4.2 Adjust XYZ

Key 4/6	move needle left/right (X-offset)
Key 2/8	move needle backward/forward (Y-offset)
ARROW \uparrow/\downarrow	move needle up/down (Z-offset)
ENTER	goto next position
ESC	exit adjustment

Ensure yourself, that the needle is straight and correct mounted 115mm in length. Place an empty reagent container to position P27, two empty cuvettes in the tower, an empty plasma tube to position P01 and an unused Sarstedt Monovette[®] or BD Vacutainer[®] in position P02. (only if CAP PIERCING option is required)

Five position must be adjusted

- Wash postion
- Reagent position
- Cuvette position
- Patient position
- Cap piercing height

- 1. First the needle will go to wash position. Center the needle exaktly. The needle tip must be at same level with top of wash position. Press "ENTER" to come to next postion or press "ESC" to quit.
- 2. Second the needle will go to P27 position. Center the needle.The needle tip should be short before touching the vial buttom. Lift vial to determine the distance. Press "ENTER" to come to next postionen or press "ESC" to quit.
- 3. Third the needle will go to cuvette position. Center the needle and afterwards lower the needle until it is short before touching the cuvette. Lift the cuvette to determine the distance. Press "ENTER" to come to next postionen or press "ESC" to quit.

- 4. Forth the needle will go to P01 position. Center the needle.The needle tip should be short before touching the vial buttom. Lift vial to determine the distance. Press "ENTER" to come to next postionen or press "ESC" to quit.
- 5. Fifth the needle will go to PO2 position. Center the needle. The needle tip should be short before touching the cap membrane. Press "ENTER" to test cap piercing or press "ESC" to quit.

C

skip cap piercing if not required. The value P-OFFSET must be 0 to deactivate cap piercing.

Important:

To avoid needle crash the z-offset is set to default, before the needle drives to this position. So even if you didn't change the offset, the z-position must be re-adjusted anytime

5.4.3 Check Temperature

	VARTUNG			
10				
2 JI	TEMPERATUR CV			
3 P	(39) 39,2°C			
4 F				
5 P	TEMPERATUR PT			
6 B	(37) 37.0°C			
7 8	()			
8 ERS	ETZE TANK	1		
9 ERSETZE NADEL				
10 ERSETZE SPRITZE				

Temperature CVTemperTemperature PTTemper(xx)Target txx,xCurrent

Temperature around measurement cuvette. Temperature at reagent position PT (P25) Target temperature in degrees Celsius Current temperature

Setting the temperature:

With ARROW \downarrow / \uparrow the current temperature is changed in 0.1°C increments. Enter selects the temperature ESC returns to the service menu.

 Place an empty cuvette in the measuring cell and fill 300 μl water into all of the 4 measurement positions. Place a standard commercial fever thermometer in one of the cuvette wells. Make sure the cuvette is standing upright.

- 2. Place also an empty reagent container in position "PT" (P25) and fill with 6 7 ml water. Place a standard commercial digital fever thermometer in the water.
- 3. On the keyboard the green Temp. LED should light up.
- 4. Wait for at least 15 minutes. Now read off the temperature on the Thermometer.
- 5. In the cuvette position the temperature should be in the range of +- 0.5°C from target value. Temperature can be increased or decrease by pressing ARROW \downarrow / \uparrow .
- 6. Adjust temperature so often until the temperature shown on display matches the temperature in the cuvette or PT position.
- 7. For"PT" also the target temperature can be adjusted. Lower storage temperature of reagents will significantly increase stability, while results will be nearly unchanged.

Please ask local distributor about change of reagent target temperature.

5.4.4 Check Optics

e)

Remove the cuvette in the measurement optics.

CHECK OPTIK			
	OFF	ON	AMF
1=	78	29851	185
2=	105	29624	192
3=	56	29799	171
4=	78	29851	185
T1=34302			
T2=34429			
CV-STATUS: 0			
SHIELD: 0			

X= Measurement channel 1-4 OFF Digital value when LED is off. Target range <500 Digital value when LED is on. Target range 28000 - 32000 ON AMP Signal amplification, Target range 150 - 300 Digital value temperature CV, Target range 33000 - 36000 T1 Digital value temperature PT, Target range 33500 - 36000 T2 CV-STAT 0=no cuvette 1=if cuvette is detected. Shield 0=closed 1 = open

N

Please contact customer service if the values deviated from the target values.

5.4.5 Check Robot

To check, if XYZ, pump and level sensor is working. Press ESC to abort this test. It is used for service and quality issues. Remove all vials and tubes before continue. Print "FALSE LEVEL" indicates that level detector stops false in air. In this case the insulation block must be replaced.

5.4.6 Move Cuvettes

Turns cuvette rotor for transport of cuvettes until Enter is pressed. It is used to empty the cuvette tower.

5.4.7 Clean Needle

Carries out an intensive needle cleaning cycle. It is used after needle is complete and partial clogged during measurement.

5.4.8 Replace Rinse tank

Barcode activation is only shown if instrument is closed to Rinse solution. Read the barcode, which is provided with the cuvette package.

The current numbers of remaining Rinse tanks and installed volume of Rinse solution is displayed.

- 1. Remove the waste tank r and dispose it according to regulations for infectious material
- 2. Replace the empty rinsing tank with a full one. Ensure that the tube is insert completely into the tank.
- 3. Use the empty Rinse tank as new waste tank !
- 4. Run menu "SERVICE\REPLACE RINSE TANK" to reset the Rinse counter
- 5. If zero tanks are enabled, scan the barcode of the certificate, which is included to each new box of Rinse tanks.

Make sure a full tank is really installed, since otherwise the COATRON A4 will calculate the consumption incorrectly.

el)

The full liquid waste tank may contain infectious substances and must be handled and disposed of as infectious waste. Always wear gloves for infection protection when replacing the liquid waste tank! After this procedure, disinfect your hands with a hand disinfectant, e.g. Sterilium[®].

5.4.9 Replace Needle

Resets the operating time counter of the pipetting needle to zero. This operation must be carried out when the needle is replaced.

- 1. Switch off instrument
- 2. Drive needle manually into wash position and open the tube fitting on valve.
- 3. Wait until needle is complete empty from Rinse solution. Clean and dry needle outside, to avoid any liquid contamination with the insulation block.
- 4. Loosen the screw (see figure below) and remove the needle
- 5. Insert new needle until 115mm is visible and tighten the screw
- 6. Screw thetube fittings to the left valve channel and tighten only by finger
- 7. Switch on instrument and and run menu "SERVICE\REPLACE NEEDLE"

Figure 10: Replace Needle

Any liquid contamination of the insulation block with the needle may malfunction the level sensoring.

The used pipetting needle may contain infectious substances and must be handled and disposed of as infectious waste.

5.4.10 Replace Syringe

Resets the operating time counter of the syringe to zero. This operation must be carried out when the COATRON A4 is when the syringe is replaced.

- 1. Switch off instrument
- 2. Lower the plunger drive manually by pushing down on the carriage assembly until it reaches the bottom of travel.
- 3. Now open the syringe and remove it.
- 4. Insert the new syringe and tighten just with your fingers
- 5. Switch on instrument and and run menu "SERVICE\REPLACE SYRINGE"

Figure 11: Installation of syringe

5.4.11 Adjust Motor

Changes the assignment of the cuvette to the measuring position. The cuvette must be positioned exactly centered to the optic, to ensure accurate results. Fill some water into a container and color the water with a green lightning pen. Remove all cuvettes onboard. Add 150μ L green colored water into every cuvette position and place it into position prewarm. Run menu "ADJUST MOTOR". The system moves now cuvette into optics. If the light beams are not centered, change the offset value, move cuvette back and repeat the procedure until correct adjustment of the cuvette position. The factory default value is "4". An increase of the offset will shift the cuvette to the left.

Important:

False adjustment will reduce the measuring precision.

5.4.12 Cap Piercing

Fill a Sarstedt Monovette[®] or BD Vacutainer[®] or a simular system with 2mL water. Close the cap and place it into rack position P02. Lower the needle until it is just before touching the cap. Then center the needle to the cap.

optimum piercing

Cap piercing function is deactivated , if height P-Offset is set to 0
 Activated cap piercing function allows to operate with open or closed tubes. The throuphput gets a little lower.

Warning!

The system may damaged, if no needle protection is mounted.

Cap piercing requires also a special needle, which is designed for it. Asked your local distributor for further information.

5.5 Main menu PIPET STATION

Menu to reconstitute reagent and controls

PIPET STATION				
IN: OUT: TOTAL:	P26 P25 0 ul			
VOL (uL):	1000			
PIPET >> KEY ENTER ABORT >> KEY ESC				

Fill enough diluent into container and place it to position P26. Open reagent vial and place it to position P25. Change volume with keys UP/DOWN and press ENTER to dispense diluent into reagent vial. Press ENTER again if more diluent is required. The total volume will be updated with each pipeting step. Press ESC to reset total counter and perss ESC again to exit menu.
6. Replacement of consumables

6.1 Disposal

Warning!

The full liquid waste tank and used cuvette may contain infectious substances and must be handled and disposed of as infectious waste. Always wear gloves for infection protection when replacing the liquid waste tank! After this procedure, disinfect your hands with a hand disinfectant, e.g. Sterilium[®].

6.2 Refill cuvettes

Cuvette trays are disposable articles, reuse is not permissible for reasons related to hygiene and measurement technology!

Figure 12: Refill cuvettes

6.3 Replace Rinse tank

Follow instruction from chapter 5.4.8

- Remove a row of cuvettes from the package
 Hold the row by the tape and
 - insert the cuvettes as shown, from above and with the guide groove to the rear, into the cuvette tower.
 - 3. Pull the tape off the cuvettes

6.4 Replenishing the printer paper

Figure 13: Printer cover

Figure 14: Replenishing the printer paper

- 1. Open the printer cover as shown at the back of the housing.
- 2. Remove the printer shaft from the mount (3).
- 3. Pull the empty printer paper roll off the printer shaft
- 4. Insert the printer shaft 2) through the new printing paper roll (1) and place the printer shaft on the mounts as shown (3), so that the paper is pulled into the rubber roller (5) from below.
- 5. Move the arresting lever (6) in the direction of the back wall of the housing to release it.
- 6. As shown, insert the printer paper under the rubber roller and turn the transport wheel (7) to the left until the printer paper sticks out of the gap between the rubber roller and the metal cover (6) by about 5 cm.
- 7. Secure the arresting lever 6) by moving it towards the front of the housing.
- 8. Hold the printer paper towards the front of the housing and close the cover.

7. Cleaning and maintenance

Maintenance must be performed on a regular basis in order to maintain accuracy and precision. The schedule below outlines the proper intervals to check or replace components of the instrument.

7.1 General cleaning information

- Use detergent and water and 10% diluted bleach or commercial decontaminant for daily cleaning
- Use 30% diluted bleach and commercial disinfectant (e.g. Bacillol®AF) for weekly decontamination
- Clean with a lint free cotton cloth or stick
- Never pure any liquid into optic or working area
- Keep the device free of dust and moisture.
- If the device is soiled with liquids, remove the soiling with an absorbent cloth.
- If a liquid has accidentally been spilt or pipetted into a measurement channel, remove it immediately with a pipette and clean the measurement channel with a lint-free cloth. Check the function of the optics in the menu SERVICE

Regard all surfaces and materials which might be in contact with plasma or other biological liquid as potentially contaminated with infectious material.

Avoid any direct contact with decontaminants or disinfections.

7.2 Cleaning

- Use detergent and water and 10% diluted bleach or commercial decontaminant
- Clean and wipe up all spills around the working area or needle pump system with detergent and water.

7.3 Decontamination

- Use 30% diluted bleach and commercial disinfectant (e.g. Bacillol®AF)
- Decontaminate working area, needle area, patient racks, keyboard, LCD screen, front casings, printer and waste drawers

7.4 Daily activities

• Clean and wipe up all spills around the working area or needle pump system

with a 10% diluted bleach.

- Inspect level of Rinse and waste container
- Empty cuvette drawer and fill tower
- Inspect tube system for any leaks and correct immediately

7.5 Weekly activities

• Decontaminate system with bleach and ethanol as described above

7.6 Yearly activities

- Clean and decontaminate equipment
- A yearly service check according to TECO test specification QMV-07-10 must be carried out by the authorized and qualified technician

7.7 Regular Replacements

Every 100.000 tests following parts must be replaced

- 1. Replace needle
- 2. Replace syringe seal
- 3. Replace tubing
- 4. Replace insulation block
- 5. Replace cleaning position
- 6. After 5 year replace battery of the mainboard (Li-Mn CR 2430)

7.8 Reset Service Interval

• After 100.000 tests the message "SERVICE" will be shown. The reset of the service interval is protected by barcode. Contact local distributor for more information.

7.9 Error messages

Error message	Possible cause	Action
Service	Service interval is expired	Service instrument and reset
	after 100.000 tests	interval with barcode
		certificate.
Replace Rinse tank	Rinsing solution tank empty	Replace rinsing solution tank
		(chap. 6.1)
Error pump	Needle clogged	Check needle and tube system
Error robot	No connection to pipetting	Consult the customer service of
(system error 2-28)	arm	your dealer
	Needle crash	Reboot the system
Activate System	System interval is expired	Scan barcode "Test Activation
		Key"
Activate Reagent	Reagent mut be validated	Refill cuvettes (chap. 6.3)
Adjust XYZ	Replacement of needle	XYZ adjustment of pipetting
		arm (<i>chap. 5.4.2</i>)
Adjust Motor	Replacement of main-board or	adjustment of cuvette (chap.
	software update	5.4.11)
No liquid	No liquid in current position of	Refill liquid at current needle
	pipetting needle	position.
	Z-offset false	XYZ adjustment of pipetting
		arm (<i>chap. 5.4.2</i>)
Check printer	No printer paper	Replenish printer paper (chap.
		6.7)
	Arresting lever in offline	Change arresting lever position
	position	(cnap. 6.7)
	No printer connected	Consult customer service
Check temperature	Temperature in system block	Check temperature and adjust
	too nigh or too low	(cnap. 5.4.2)
Clean needle	Pipetting needle was replaced	Carry out needle cleaning cycle
		(Chup. 5.4.7)
Check waste	Every 80 cuvette or every new	Check cuvette waste drawer
	Rinse tank the instrument do	and also Rinse waste tank
	a reminder to check also the	
	waste.	Then just confirm message.

8. Elimination of malfunctions

8.1 Device malfunctions

Malfunction / Error	Possible cause	Measures
No print on printout	Paper installed in wrong	Turn paper roll around
	position	(chap. 6.7)
Needle does not pipette	Tube system leaky	Replace the tube system
	Needle clogged	Place the needle in COATRON A4 Cleaner for 30 min, then run the wash cycle.
Poor reproducibility	Needle-tube system	Replace the needle, tube system and syringe.
	Motor is not adjusted	Check the adjustment of the cuvette to the optic (<i>chap. 5.4.11</i>)
Cuvette assumes false position	Wrong cuvette	Use only original COATRON A4 cuvettes
	Motor is not adjusted	Check the adjustment of the cuvette to the optic (chap. 5.4.11)
	Defective cuvette motor or microswitch for cuvette recognition	Consult customer service of your dealer
Optics not within target value range	Cuvette is in measurement position during optics check	Remove the cuvette and repeat the optics check
	Soiling or liquid in measurement channel	Optics must be cleaned. Consult customer service
	LED does not light up.	Customer service will replace optics

8.2 Measurement malfunctions

Malfunction / Error	Possible cause	Measures
Control measurements do not	False calibration data	Consult customer service of
supply expected results		your dealer
	Motor is not adjusted	Check the adjustment of the
	5	cuvette to the optic
		(chap. 5.4.11)
False measurement results	Reagent	Check TEST SETUP
	Temperature	Check temperature (chap.
		5.4.3)
	Optics	Check optics (chap. 5.4.4.)
	Motor is not adjusted	Check the adjustment of the
		cuvette to the optic
		(chap. 5.4.11)
Results flagged "*"	Result outside calibration	
	range	
Flagged "A"	Result outside normal range	
Flagged "T"	Temperature outside 36 – 38°C	
	range	
Flagged "E"	Reagent is expired	
Flagged "Q"	Quality control outside control	
51 1101	range	
Flagged "S"	Envirement light too bright (
	low >/50digits)	Avoid direct sunlight or
Elaggod "E"	Low fibringgon	other ov sources
(only test PT)	Low hormogen.	Run test FIB to confirm
Flagged "B"	Result repeated Max Buntime	
	too short or problems with	
	level sensor	
Flagged "!"	Result not trustful.	
(only test DD)		Dilute sample and repeat.
Flagged "X"	Double values deviate by more	
	than 15%	
Flagged "+++"	No coagulation seen with	
	measurement time	
Flagged "???"	Coagulation time	
	indeterminate; course of	
	reaction does not correspond	
	to the criteria of the evaluation	
	algorithm (e.g. turbidity due to	
	air bubbles or coagulation	
	begins before dead time)	
Flagged "SSS"	Low signal. Light transmission	Check optics (chap. 5.4.4)
	is not enougn.	
Flagged "K"	Sample, Lest is skipped	
	because out of reagent.	

8.3 Packing the COATRON A4 for shipment

If the COATRON A4 is to be shipped, e.g. to the Technical Service, please include the following information in an accompanying letter:

- Complete address of owner.
- Name of dealer from whom the Analyzer was purchased.
- Exact designation of the Analyzer and serial number (on type plate).
- A useful description of the reason why the equipment is being sent in (error / malfunction description).

You should use the original packaging material to avoid transport damage. If the original packaging is no longer available, contact your dealer.

Preparation of the Analyzer for transport:

- 1. Remove the power cord from the socket and from the Analyzer.
- 2. Immobilize all moving parts such as sample racks printer shaft, etc. with tape.
- 3. Remove the needles place them in the drawer for the waste tank.
- 4. Fix the robot in the resting position (seen from the front—right, rear) with tape or cable binders to the protective bar.
- 5. Push the Analyzer to the edge of the table; then two persons must lift it by the short sides.
- 6. Life the Analyzer carefully into the packaging.

9. Appendix

9.1 Interface to LIS

The instrument support two serial RS232 ports to connect with laboratory information system (LIS) .

9.1.1 Bidirectional communication with TECAM software

TECAM software is a perfect and user friendly tool to combine laboratory data management, quality control and research purpose in one. The worklist management allows defining orders much faster and flexible then on the instrument itself. Powerful filter functions will help to create any report. Levey-Jennings graph and Westgard analysis are used for quality control monitoring. An ASTM interface is included, which allows to link with the laboratory information system (LIMS) over LAN network or RS232. The TECAM database can be saved central on a server and accessed simultanousely. This will allow to unify different Coatron analyser into one database.

Interface:	115200 Baud , no parity , 8 bit . 1 stop bit
Instrument port: location	"19" – see picture above
Cable:	2x Female Sub D9, crosslink. Pin 2 to 3 ; Pin 3 to 2 and Pin 5 to 5. All other wires should be disconnected

⇒

Contact your local distributor for further information about TECAM software.

9.1.2 Unidirectional communication

Interface: Instrumer	it port:		115200 Baud , n location "20" – s	o parity , see page	8 bit . : 7	1 stop bit	
Cable:		2x Female Sub D9, crosslink. Pin 2 to 3 ; Pin 3 to 2 and Pin 5 to 5. All other wires should be disconnected					
Handshak	e:		No				
Establishing:		Not required. The	ne instrun	nent se	nds results information a	utomatically	
Protocol &	k synta:	x:	TECAM V5.30				
S	тх	start of	ransmission	asc(2)	ETX	end of transmission	asc(3)
Т	AB	vertical	tabulator	asc(9)	LF	line feed	asc(10)
C	R	carriage	return	asc(13)			

STX+TYPE | RID | STYP| SN | Kanal | Position | PID | LOT | Test-ID | Test-Name | Date | Time | status | result1 | scale1 | flag | result2 | scale2 | result3 | scale3 | progress | worklist-id | ETX

All fields are separated with vertical tabulator. No TAB is placed after STX or ETX !

STX:	Start of Transmission
Туре:	Always "R" = Result Record
RID:	Record ID. Unique record number
SID:	Anaylser ID . Here always "1800"
SN:	Serial number of the analyzer
Channel:	optic channel 1-4. Here always "0".
Position :	Rack position of the sample tube (1 – 24). Here always "0".
PID:	Patient ID (max 13 characters)
LOT:	Lotnumber of the Reagent
TEST-ID :	ID Number of the Test (for ex. Test PT = 0 -> look at analyser's manual)
TEST-Name:	Name of the test, for example "PT"
Date:	Date of result. Always in format "yyyy/mm/dd".
Date Time:	Timee of result. Always in format "hh:mm:ss"
Status:	Status of measuring "T" = temperature error , "Q" = Quality Control out of range,
	"%" = big difference by double-measuring ; "A" = abnormal ; "C" = Control
	plasma; example: "TAQ%" is possible
Result1:	Result of the standard scale (mostly sec);always in format "12.5" ;
Scale1:	Scale of result1 ;ie. "s" for second
Flag:	Information about the result2;
	">" "<" Value smaller, bigger than
	"*" result out of calibration
	",+" no clotting detected
	"-" clotting before dead time
Result2: Result i	in the second scale ; f ex: in % : "100"
Scale2:	Scale of Result2 , ie. "%"
Result3: Result i	in the third scale ; ie. INR : "1.23"
Scale3:	Scale of Result3 , ie. "INR"
Progress:	Progress of worklist. 0% = Start, 100%=End
Worklist-ID	Unique ID-number of current worklist
ETX:	End of Transmission
CRLF:	Carriage Return , LineFeed

9.2 Technical data

Analyzer	
Measurement system	4 independent measurement channels wavelength of LED 400 nm
Measurement timer	Max. 600 s, error < 0.1 s
Cuvette	4 channel cuvette for optical detection capacity: 150 – 1000 μl
Calibration	Automatic calibration or manual input of up to a max. of 6 calibration curve points for each test method
Positions	4 reagent positions at 36.5 – 37.5 °C 2 reagent positions at RT (~25°C) 6 reagent positions at 12.0 – 16.0°C 3 park positions, preheating (33-38°C) 2x12 sampe primary tubes 1 emergency STAT positions
Reaction volumes	Minimum total volume is 150 μl
Approvals	CE
XYZ Robotics	
Movement	X = 383mm, 1714 steps, v = 894mm/s Y = 150mm, 1054 steps, v = 569mm/s Z = 167mm, 3400 steps, v = 181mm/s
Level Sensor	Yes , capacity change detection with Aldium sensor
Neddle	-Capacity for 4880 μL -Inner hydrophob cermamic coating -Livetime for 50000 determination
pump	1000 μl syringe with 1000 step resolution Lifetime of syringe is 250.000 cycles
imprecision	15% at 3μL 5% at 5μL 1% > 10μl

Barcode scanner	
	Laserclass 2 – EN60825-1:2007
	max. power = 1.7 mW
	pulse period = 420 μs
	wavelength = 655 nm
Accepted codec	Code 39, Codabar, Interleaved 2 of 5, Code 128 , EAN 128 and Code 93
Power supply	
Power input	85 – 264 VAC , Class-1 socket
	at 45 – 60 Hz
Power consumption	Max. 250 VA
Approvals	EN 60950-1
	UL 60950-1
	IEC 60950-1
	CSA 22.2 No. 60950-1
Dimensions	
Size (W x D x H)	650 x 102 x 630 mm
Weight	approx. 55 kg (incl. packaging)
Size (W X D x H) on palette	650 x 1065 x 765 mm
Weight (with palette)	approx. 62 kg
Ambient conditions	
Operating Temperature	15 – 30 °C no direct sunlight
Storage and transport temperature	-20 to 60 °C
Humidity	Max. <70% rel. humidity. not
	condensing
Elevation above NN sea level	0 – 3,000 m
Impact resistance	according to IEC/EN 61010-1, 8.2.2
Noise output	
Operating noise	max. 65 dBA
Graphic user interface / software	
Interface	RS 232 (serial interface) for commu-
	nication with PC for software updates.
	service functions, PC evaluation
LCD display	128 x 128 items, 70 x 70 mm
	backlit, adjustable contrast
Language	German, English, Italian, Spanish

Specimen Collection	
analyte	Fresh or frozen human plasma;
	Use within 4 hours
centrifugation	1500g x 10-15 min
anticoagulant	Sodium citrate 3.2% (0.105M)
	Mix 1 part citrate with 9 part venous
	blood
max. bilirubin concentration	25 mg/dL
max. hemoglobin concentration	1000 mg/L
max. triglyceride concentration	25 g/L

Typical performance data at system speed = high				
Test	CV.	Range	Throughput	
РТ	<3%	0-30INR	108/h	
APTT	<3%	15 – 420s	59/h	
FIB	<7%	50-999mg/dL	65/h	

R	Contact local distributor or manufacturer for detailed performance data
V	(throuput, consumption, precision and accuracy.

9.3 Declaration of Conformity

9.4 Disposal and recycling

Please comply with the following points when disposing of the COATRON A4:

- The housing is made of polystyrene.
- The mechanical parts are mainly aluminium.
- Electronic parts must be disposed of in accordance with currently valid regulations for their disposal.

Important!

You must disinfect the COATRON A4 prior to disposal to prevent cases of infection at the disposal company!

9.5 Barcode Guideline

Accepted codes:

- Code 128	3 – 13 characters , use checksum without sh	ow
- EAN 128	3 – 13 characters, use checksum without show	
- Code 39	4 – 13 characters, no checksum	
- Code 93	4 – 13 characters, no checksum	

- 4 13 characters, no checksum
- 2/5 interleaved 8 - 12 characters, no checksum

Index

+	
+++	

Α

Activity	
Adjust Motor	
Adjust XYZ	66
Administrator	
Ambient conditions	
Anticoagulant	
Approvals	
Arresting lever	75
Autoskip	

В

Barcode	
Barcode scanner	
BAT	
Bilirubin	

С

Calibration,auto	Calibration	
Calibration,INR	Calibration,auto	
Calibration,manualCap piercingCentrifugationCentrifugationCleanRinse TankCLEANINGClosed System	Calibration,INR	
Cap piercing Centrifugation Clean Rinse Tank. CLEANING. Closed System	Calibration, manual	54
Centrifugation	Cap piercing	72
Clean Rinse Tank CLEANING Closed System Conformity declaration Conformity declaration Control measurement CP-1 36, CP-2 Customer service Cuvette 69, 74, Cuvette Activation Cuvette rotor	Centrifugation	
Rinse Tank CLEANING Closed System Conformity declaration Contrast Control measurement CP-1 Ger-2 Customer service Cuvette Cuvette Cuvette Cuvette rotor	Clean	40
CLEANING	Rinse Tank	69
Closed System 47, Clotting Conformity declaration Contrast. Control measurement CP-1 36, CP-2 36, Customer service 67, CUV. Cuvette Cuvette 69, 74, Cuvette rotor Cuvette rotor	CLEANING	76
Clotting Conformity declaration Contrast. Control measurement CP-1	Closed System	
Conformity declaration Contrast Control measurement	Clotting	
ContrastControl measurement	Conformity declaration	
Control measurement	Contrast	
CP-1 36, CP-2 36, Customer service 67, CUV. 67, Cuvette 69, 74, Cuvette Activation Cuvette rotor	Control measurement	8
CP-2	CP-1	
Customer service	CP-2	
CUV	Customer service	
Cuvette	CUV	40
Cuvette Activation Cuvette rotor	Cuvette	
Cuvette rotor	Cuvette Activation	
	Cuvette rotor	20
Cuvette tower	Cuvette tower	

D

Date	62
Decontamination	
DFIB	

Е

Error messages	
EV1	
Expiry date	

F

Fibrinogen	
Flag, summary	
Flag '!'	
Flag '*'	
Flag '???'	
Flag '+++'	
Flag 'A'	
Flag 'C'	

Flag 'E'	50, 80
Flag 'F'	
Flag 'K'	
Flag 'Q'	
flag 'R'	
Flag 'R'	
Flag 'S'	80
Flag 'SSS'	80
Flag 'T'	
Flag 'X'	
Front view	

н

Haematocrit	
HC50, 51	
HCT-L	
Hemoglobin	
Host	

I

Immunoturbidimetric	
Imprecision	
Incubation time	
Infection	9
Infectious Material	9
INR	
INR+	
Intended Use	
Interrupt worklist	
Interruption	
ISI 27	

κ

Keypad	
Kinetic	

L

Language	
Laser	
Laserclass	
Liquid waste tank	
Lot No.	

М

Mains switch	
Maintenance	
Mean	39
Measurement principle	
measurement screen	50
Measurement start	44
Mixer	63
mOD	50

Ν

Needle	. 69
Normal range	. 57

ο

Optic	
ORDER	
Out of cuvette	
Out of liquid	

Ρ

PID	
PIPET STATION	
Pipetting arm	
Pipetting needle	70
P-Offset	72
Precision	
PRFL	41
Print out	51, 58, 59, 65
Protective bar	
Pump	
1	

Q

QC40	
QC-Active	
Quality control	19, 36, 39
Quality control range	

R

Ratio	19
Reagent activation	
Reagent block	20
Reagent position	66
Rear view	
reflex testing	49
Reflex Testing	
Report of all tests	
Report of result	
Report of system	65
Report of test	
reproducibility	
Robot	69
R\$232	
Rubber roll	75
Runtime	53

s

Safety information	
Sample rack	
Sample test tubes	
Scope of delivery	
Screen	
SEL	
Serial-No	
Setup System	
Shield	
Side view	

Signal	
Simulator	63
Single factor measurements	
SKP	
Software	
Software Update	
SSS	50
Standby-switch	
STAT	
Switching off	
Symbols	7
SYNCHRONIZE	
Syringe	
System Activation	
System block	
System status	
•	

т

Tank	69
Tecam	21, 36, 51
TECAM	
Test overview	
test procedure	59
test protocols	59
Thermal printer paper	
Thrombin	
Thrombin Time	
Throughput	40, 72
Time	
Transmission	
Transport	81
Triglyceride	
Tube system	
Type plate	21, 81

U

Units

w

Warm-up time	
Wavelength	84
Work list	39
Working Positions	
Worklist-ID	

Х

XXX
