DNV.GL

KEMA TYPE TEST CERTIFICATE OF COMPLETE TYPE TESTS

Object	Heat sh	rinkable indoor termii	nation	1086-1	6
Туре	MZDNK	-3-15-C			
Rated voltage, U ₀ /U (I Conductor cross-section	J _m) on	8,7/15 (17,5) kV 3 x 185 mm ²	Conductor material Insulation material	Cu XLPE	
Manufacturer	Jiangsu Jiameng Electrical Equipment Co., Ltd. (MELEC), Qidong, China *)				
Client	Jiangsu Jiameng Electrical Equipment Co., Ltd. (MELEC), Qidong, China				
Tested by	KEMA N Arnhem	lederland B.V., , The Netherlands			
Date of tests	16 Nove	ember 2015 to 25 May	y 2016		

The object, constructed in accordance with the description, drawings and photographs incorporated in this Certificate, has been subjected to the series of proving tests in accordance with the complete type test requirements of

IEC 60502-4

This Certificate has been issued by DNV GL following exclusively the STL Guides.

The results are shown in the record of proving tests and the oscillograms attached hereto. The values obtained and the general performance are considered to comply with the above standard(s) and to justify the ratings assigned by the manufacturer as listed on page 5.

This Certificate applies only to the object tested. The responsibility for conformity of any object having the same type references as that tested rests with the Manufacturer.

*) as declared by the manufacturer

This Certificate consists of 75 pages in total.

KEMA Nederland B.V.

MP: Fonteijne Executive Vice President KEMA Laboratories

aboratories Arnhem, 22 June 2016

Copyright: Only integral reproduction of this report is permitted without written permission from DNV GL. Electronic copies as PDF or scan of this report may be available and have the status "for information only". The sealed and bound version of the report is the only valid version.

1

1086-16

INFORMATION SHEET

KEMA Type Test Certificate

A KEMA Type Test Certificate contains a record of a series of (type) tests carried out in accordance with a recognized standard. The object tested has fulfilled the requirements of this standard and the relevant ratings assigned by the manufacturer are endorsed by DNV GL. In addition, the object's technical drawings have been verified and the condition of the object after the tests is assessed and recorded. The Certificate contains the essential drawings and a description of the object tested. A KEMA Type Test Certificate signifies that the object meets all the requirements of the named subclauses of the standard. It can be identified by gold-embossed lettering on the cover and a gold seal on its front sheet.

The Certificate is applicable to the object tested only. DNV GL is responsible for the validity and the contents of the Certificate. The responsibility for conformity of any object having the same type references as the one tested rests with the manufacturer.

Detailed rules on types of certification are given in DNV GL's Certification procedure applicable to KEMA Laboratories.

2 KEMA Report of Performance

A KEMA Report of Performance is issued when an object has successfully completed and passed a subset (but not all) of test programmes in accordance with a recognized standard. In addition, the object's technical drawings have been verified and the condition of the object after the tests is assessed and recorded. The report is applicable to the object tested only. A KEMA Report of Performance signifies that the object meets the requirements of the named subclauses of the standard. It can be identified by silver-embossed lettering on the cover and a silver seal on its front sheet.

The sentence on the front sheet of a KEMA Report of Performance will state that the tests have been carried out in accordance with The object has complied with the relevant requirements.

3 KEMA Test Report

A KEMA Test Report is issued in all other cases. Reasons for issuing a KEMA Test Report could be:

- Tests were performed according to the client's instructions.
- Tests were performed only partially according to the standard.
- No technical drawings were submitted for verification and/or no assessment of the condition of the object after the tests was performed.
- The object failed one or more of the performed tests.

The KEMA Test Report can be identified by the grey-embossed lettering on the cover and grey seal on its front sheet.

In case the number of tests, the test procedure and the test parameters are based on a recognized standard and related to the ratings assigned by the manufacturer, the following sentence will appear on the front sheet. The tests have been carried out in accordance with the client's instructions. Test procedure and test parameters were based on If the object does not pass the tests such behaviour will be mentioned on the front sheet. Verification of the drawings (if submitted) and assessment of the condition after the tests is only done on client's request.

When the tests, test procedure and/or test parameters are not in accordance with a recognized standard, the front sheet will state the tests have been carried out in accordance with client's instructions.

4 Official and uncontrolled test documents

The official test documents of DNV GL are issued in bound form. Uncontrolled copies may be provided as a digital file for convenience of reproduction by the client. The copyright has to be respected at all times.

-3-

TABLE OF CONTENTS

1	Identification of the object tested	5
1.1	Ratings/characteristics of the object tested	5
1.2	Description of the indoor termination	5
1.3	Description of the MV cable	6
1.4	List of documents	8
2	General information	9
2.1	The tests were witnessed by	9
2.2	The tests were carried out by	9
2.3	Reference to other reports	9
2.4	Purpose of test	9
2.5	Measurement uncertainty	9
2.6	Instruments used	9
3	Test sequence table 5 column 1.1 (two indoor terminations)	10
3.1	Test arrangement	10
3.1.1	Determination of the cable conductor temperature	10
3.2	Photograph of test set-up	11
3.3	DC voltage dry test	13
3.4	AC voltage dry test	14
3.5	Partial discharge test at ambient temperature	15
3.6	Impulse voltage test at elevated temperature	16
3.7	Heating cycle voltage tests in air	19
3.8	Partial discharge test at elevated temperature	20
3.9	Partial discharge test at ambient temperature	21
3.10	Impulse voltage at ambient temperature	22
3.11	AC voltage dry test	36
3.12	Examination	37
4	Test sequence table 5 column 1.2 (one indoor termination)	40
4.1	Test arrangement	40
4.1.1	Determination of the cable conductor temperature	40
4.2	DC voltage dry test	41
4.3	AC voltage dry test	42
4.4	Thermal short-circuit test (screen)	43
4.4.1	Test circuit	44
4.4.2	Test results and oscillograms	45
4.5	Thermal short-circuit test (conductor)	47
4.5.1	Test circuit	48
4.5.2	Test results and oscillograms	50

KEMA	Laboratories	-4-	1086-16
4.6	Impulse voltage test at am	bient temperature	53
4.7	AC voltage dry test		60
4.8	Examination		61
5	Test sequence table 5 colu	mn 1.4 (one indoor termination)	63
5.1	Humidity		63
5.2	Examination		66
6	Parts list and installation ir	struction	
7	Measurement uncertainty.		

-5-

1086-16

1 IDENTIFICATION OF THE OBJECT TESTED

1.1 Ratings/characteristics of the object tested

Rated voltage, U ₀ /U (U _m)	8,7/15 (17,5) kV
Rated conductor cross-section	3 x 185 mm ²
Cable type three-core power cable	XLPE
Dynamic short-circuit claimed	No

1.2 Description of the indoor termination

Manufacturer (as stated by the client)	Jiangsu Jiameng Electrical Equipment Co., Ltd. (MELEC), Oidong, China
Туре	MZDNK-3-15-C
Manufacturing year	2015
Rated voltage, U_0/U (U_m)	8,7/15 (17,5) kV
No. of cores	3
Cross section-conductor	185 mm ²
Outer diameter of the insulation cable tested	25,8 mm
Construction	see List of documents
Electric field stress control (core-XLPE) type	yellow semi-conducting tape
Stress control insulation	one heat-shrink tube per phase
Earth screen	one earth screen cable connected with three force springs
Armour screen	earth screen cable for armouring connected with force spring (insulated from earth screen)
Insulation break out	heat shrink three phases breakout
Outer sheath	each phase heat-shrink tube track resistrant tube
Connector type	crimped cable lug
Colour markers	red, yellow, green
Sheds	not applicable
Solid cable lug	DDT185-16
Hydraulic crimping tool	JM-240B, DT25 (crimping die)

-6-

1086-16

1.3 Description of the MV cable

Standard		IEC 60502-2, Clause 5-14			
Manufa	acturer	Jiangsu Far East Cable Co., Ltd., Yixing, China			
Туре		YJV22-8.7/15-3x185			
Manufa	acturing year	2015			
Rated v	voltage, U ₀ /U (U _m)	8,7/15 (17,5) kV			
No. of	cores	3			
Core id	lentification	core 1 = red			
		core 2 = yellow			
		core 3 = green			
Overall	diameter	70,4 mm			
Marking	g on the oversheath	YJVZZ 8,7/15 kV 3x 185 YK06-00038-No 414120303			
Constru	uction	see List of documents			
Condu	ctor				
•	material	copper			
•	cross-section	185 mm ²			
•	nominal diameter	16,1 mm			
•	type	stranded			
•	maximum conductor temperature in normal operation	90 °C			
•	presence and nature of measures to	no			
	achieve longitudinal watertightness				
Condu	ctor screen				
•	material	semi-conducting shielding material			
•	nominal thickness	0,6 mm			
•	material designation	peroxide crosslinking type semi conductive inner shielding material			
•	manufacturer of the material	Jiangsu Dongfang Cable Material Co., Ltd., Yangzhou, China			
Insula	tion				
•	material	XLPE			
•	nominal thickness	4,5 mm			
•	nominal inner diameter of the insulation	16,8 mm			
•	nominal outer diameter of the insulation	25,8 mm			
•	material designation	cross-linked polyethylene			
•	manufacturer of the material	Zhejiang Wanma Macromolecule Material Co., Ltd., Lin'an, China			

KEM	IA Laboratories	-7-	1086-16
Insu	lation (core) screen		
•	material	semi-conducting shielding material	
•	strippable	yes	
•	nominal thickness	0,6 mm	
•	material designation	peroxide crosslinking type semi conductive	inner
		shielding material	
•	manufacturer of the material	Jiangsu Dongfang Cable Material Co., Ltd.,	
		Yangzhou, China	
Inne	r coverings and fillers		
•	material	yes, extruded sheath	
Long	itudinally watertightness		
•	presence and nature of measures to	no	
	achieve longitudinal watertightness		
	along insulation screen		
Meta	l screen		
•	material	copper tape	
•	nominal thickness and width of tape	0,1 x 35 mm (overlap 15%)	
•	cross-sectional area	approx. 8,5 mm ²	
Long	itudinally watertightness		
•	presence and nature of measures to	no	
	achieve longitudinal watertightness		
	along insulation screen		
Inne	r coverings and fillers		
•	material	yes, extruded sheath	
Sepa	ration sheath		
•	material	PVC, (type: ST2)	
•	nominal thickness	1,8 mm	
•	manufacturer of the material	Changshu Zhonglian Photoelectric New Mat	erial Co.,
		Ltd.,	
		Changshu, China	
Meta	l armour		
•	material	two steel tapes	
•	nominal thickness and width of tape	0,5 x 45 mm (overlap: 50%)	
•	manufacturer of the material	Yixing Tongsheng Metal Strip Co., Ltd.,	
		Yixing, China	

KEMA	A Laboratories	-8-	1086-16
Overs	heath		
•	material	PVC, (type: ST2)	
•	nominal thickness	3,3 mm	
•	nominal overall diameter of the cable (D)	70,4 mm	
•	material designation	PVC	
•	manufacturer of the material	Changshu Zhonglian Photoelectric New Materi	al Co.,
		Ltd.,	
		Changshu, China	
•	colour	black	
•	graphite coating applied	no	
Fire re	etardant (according to IEC 60332-1)	no	
Manuf	acturing details insulation system		
•	location of manufacturing	Yixing, China	
•	type of extrusion line	CCV	
•	type of extrusion	triple common extrusion	
•	manufacturer of the extrusion line	Troester GmbH & Co. KG.,	
		Hannover, Germany	
•	curing means	Chemical cross linking	
•	cooling means	nitrogen cooling	
•	manufacturing length (where cable	2000 m	
	sample for testing has been taken from)		
•	length markings on cable sample sent to KEMA	begin: 0 m, end: 800 m	

1.4 List of documents

The manufacturer has guaranteed that the object submitted for tests has been manufactured in accordance with the following drawings and/or documents. KEMA Laboratories has verified that these drawings and/or documents adequately represent the object tested. The manufacturer is responsible for the correctness of these drawings and/or documents and the technical data presented.

The following drawings and/or documents have been included in this Certificate:Drawing no./document no.RevisionT8MZDNK-3-15-C (indoor termination parts list) 2 pages2015-06-25Installation instruction for 15 kV terminations (5 pages)-

Version: 1

-9-

2 GENERAL INFORMATION

2.1 The tests were witnessed by

Name

Company

Kevin Dai (16, 17 November 2015) Zhangjie Tang (25 May 2016) Xuexiang Jiang (25 May 2016) Ivy Cao (25 May 2016) Jiangsu Jiameng Electrical Equipment Co., Ltd. (MELEC), Qidong, China

2.2 The tests were carried out by

Name
John Mooren
Edwin Pultrum
Rutger Hensbroek
Julian Aditya

Company KEMA Nederland B.V., Arnhem, The Netherlands

2.3 Reference to other reports

Report No 1266-16

Tests performed KEMA report of performance Heat shrinkable indoor termination

2.4 Purpose of test

Purpose of the test was to verify whether the material complies with the specified requirements.

2.5 Measurement uncertainty

A table with measurement uncertainties is enclosed in this Certificate. Unless otherwise stated, the measurement uncertainties of the results presented in this Certificate are as indicated in that table.

2.6 Instruments used

A detailed list with instruments used is enclosed in this Certificate.

3 TEST SEQUENCE TABLE 5 COLUMN 1.1 (TWO INDOOR TERMINATIONS)

3.1 Test arrangement

3.1.1 Determination of the cable conductor temperature

Standard

Standard IEC 61442, Subclause 8

For the tests at elevated temperature, a reference loop for temperature control of the conductor was installed and conductor current was used for heating. The reference cable was cut from the total cable length intended for the type test. This reference loop was installed close to the test loop in order to create the same environmental conditions as for the test loop.

The heating currents in the reference loop and the test loop were kept equal at all times, thus the conductor temperature of the reference loop is representative for the conductor temperature of the test loop. Annex A was used as a guide and Annex A, Subclause A.3.3, method 3 was applied.

The tests at elevated temperature are carried out after the conductor temperature has been within the stated limit for at least 2 hours.

1086-16

3.2 Photograph of test set-up

Test set up main loop first 30 cycles.

Test set up main loop joint in water 30 cycles

1086-16

Cable oversheath removed according clause 9.3 of IEC 61442.

Test set up outdoor termination in immersion test 10 cycles

-13-

1086-16

3.3 DC voltage dry test

Standard and date

Standard	IEC 60502-4, table 5, test 1
Test date(s)	16 November 2015

Environmental conditions

Ambient temperature	22	°C
Temperature of test object	22	°C

Testing arrangement		DC voltage applied		Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1, 2 and 3 of test loop 1	Metal screens	4	35	15
Conductor 1, 2 and 3 of test loop 2	Metal screens	4	35	15

Requirement

No breakdown of the insulation shall occur.

Result

-14-

1086-16

3.4 AC voltage dry test

Standard and date

Standard	IEC 60502-4, table 5, test 1
Test date(s)	16 November 2015

Environmental conditions

Ambient temperature	22	°C
Temperature of test object	22	°C

Testing arrangement		Voltage appli	ed, 50 Hz	Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1, 2 and 3 of test loop 1	Metal screens	4,5	39	5
Conductor 1, 2 and 3 of test loop 2	Metal screens	4,5	39	5

Requirement

No breakdown of the insulation shall occur.

Result

-15-

3.5 Partial discharge test at ambient temperature

Standard and date

Standard	IEC 60502-4, table 5, test 2
Test date(s)	17 November 2015

Environmental conditions

Ambient tem	perature	21 °C
		-

Characteristic test data

Temperature of test object	21 °C
Circuit	direct
Calibration	5 pC
Noise level at 1,73 U_0	1 pC
Sensitivity	2 pC
Required sensitivity	≤ 5 pC
Centre frequency	300 kHz
Bandwidth	150-450 kHz
Test frequency	50 Hz
Coupling capacitor	2600 pF

Conductor	Voltage applied, 50 Hz		Duration	Partial discharge level	
	x U ₀	(kV)	(S)	(pC)	
1 of	2,5	22	10	-	
test loop 1	1,73	15	-	not detectable	
2 of	2,5	22	10	-	
Test loop 1	1,73	15	-	not detectable	
3 of	2,5	22	10	-	
test loop 1	1,73	15	-	not detectable	
1 of	2,5	22	10	-	
test loop 2	1,73	15	-	not detectable	
2 of	2,5	22	10	-	
test loop 2	1,73	15	-	not detectable	
3 of	2,5	22	10	-	
test loop 2	1,73	15	-	not detectable	

Requirement

The maximum partial discharge level from the test object at 1,73 U_{0} shall not exceed 10 pC.

Result

The object passed the test.

1086-16

-16-

3.6 Impulse voltage test at elevated temperature

Standard and date

Standard	IEC 60502-4, table 5, test 3
Test date(s)	15 December 2015

Environmental conditions

Ambient temperature	20 °C
---------------------	-------

Characteristic test data

Temperature of test object	97 °C
Specified test voltage	95 kV

Testing arrangement		Polarity	Voltage applied	No. of impulses	See figure on next pages
Voltage applied to	Earthed		(% of test voltage)		
Conductor 1, 2 and 3	Metal screens	Positive	50	1	1 (waveshape)
of test loop 1 and 2			65	1	2
			80	1	2
			100	10	3 and 4
Conductor 1, 2 and 3	Metal screens	Negative	50	1	5 (waveshape)
of test loop 1 and 2			65	1	6
			80	1	6
			100	10	7 and 8

Requirement

Each core of the cable and accessory shall withstand without failure 10 positive and 10 negative voltage impulses.

Result

-18-

-19-

3.7 Heating cycle voltage tests in air

Standard and date

Standard	IEC 60502-4, table 5, test 4
Test date(s)	16 to 27 December 2015 and 11 to 22 January 2016

Environmental conditions

Ambient temperature	20-22 °C

Characteristic test data

Heating method	conductor current
Stabilized temperature	97 °C

No. of heating- cycles	Required steady conductor temperature	Heating current at stable condition	Heating per cycle		Cooling per cycle	Voltage pe	er cycle
			Total duration	Duration of conductor at steady temperature	Total duration	Total voltage duration	Applied voltage 2,5 U ₀
	(°C)	(A)	(hours)	(hours)	(hours)	(hours)	(kV)
60	95-100	approx. 490	5	2	4	9	22

Requirement

No breakdown shall occur.

Result

-20-

3.8 Partial discharge test at elevated temperature

Standard and date

Standard	IEC 60502-4, table 5, test 6
Test date(s)	10 February 2016

Environmental conditions

Ambient temperature	20 °C
---------------------	-------

Characteristic test data

Temperature of test object	97 °C
Circuit	direct
Calibration	20 pC
Noise level at 1,73 U_0	6 pC
Sensitivity	6 pC
Required sensitivity	≤ 5 pC
Centre frequency	172 kHz
Bandwidth	40 kHz
Test frequency	50 Hz
Coupling capacitor	2600 pF

Conductor	Voltage applied	, 50 Hz	Duration	Partial discharge level
	x U ₀	(kV)	(S)	(pC)
Conductor 1, 2 and 3 of test loop 1 and 2	1,73	15	>10	not detectable

Requirement

The maximum partial discharge level from the test object at 1,73 U_0 shall not exceed 10 pC.

Result

-21-

3.9 Partial discharge test at ambient temperature

Standard and date

Standard	IEC 60502-4, table 5, test 6
Test date(s)	17 February 2016

Environmental conditions

Ambiant tomporaturo	20.90
Amplent temperature	20 C

Characteristic test data

Temperature of test object	20 °C
Circuit	direct
Calibration	20 pC
Noise level at 1,73 U_0	2 pC
Sensitivity	4 pC
Required sensitivity	≤ 5 pC
Centre frequency	140 kHz
Bandwidth	90-190 kHz
Test frequency	50 Hz
Coupling capacitor	2600 pF

Conductor	Voltage applied	, 50 Hz	Duration	Partial discharge level
	x U ₀	(kV)	(s)	(pC)
1 of	2,5	22	10	-
test loop 1	1,73	15	-	not detectable
2 of	2,5	22	10	-
Test loop 1	1,73	15	-	not detectable
3 of	2,5	22	10	-
test loop 1	1,73	15	-	not detectable
1 of	2,5	22	10	-
test loop 2	1,73	15	-	not detectable
2 of	2,5	22	10	-
test loop 2	1,73	15	-	not detectable
3 of	2,5	22	10	-
test loop 2	1,73	15	-	not detectable

Requirement

The maximum partial discharge level from the test object at 1,73 U_0 shall not exceed 10 pC.

Result

-22-

1086-16

3.10 Impulse voltage at ambient temperature

Standard and date

Standard	IEC 60502-4, table 5, test 10
Test date(s)	19 February 2016

Environmental conditions

Ambient temperature	20 °C
---------------------	-------

Characteristic test data

Temperature of test object	20 °C	2
Specified test voltage	95 kV	1

Testing arrangement		Polarity	Voltage applied	No. of	See figure on
Voltage applied to	Earthed	(% of test voltage)		impulses	next pages
Conductor 1	Metallic screens	Positive	50	1	1 (waveshape)
test loop 1	and conductors		65	1	2
	2 and 3		80	1	2
			100	10	3 and 4
Conductor 1	Metallic screens	Negative	50	1	5 (waveshape)
test loop 1	and conductors		65	1	6
	2 and 3		80	1	6
			100	10	7 and 8
Conductor 2	Metallic screens	Positive	50	1	9 (waveshape)
test loop 1	and conductors		65	1	10
	1 and 3		80	1	10
			100	10	11 and 12
Conductor 2	Metallic screens	Negative	50	1	13 (waveshape)
test loop 1	and conductors		65	1	14
	1 and 3		80	1	14
			100	10	15 and 16
Conductor 3	Metallic screens	Positive	50	1	17 (waveshape)
test loop 1	and conductors		65	1	18
	1 and 2		80	1	18
			100	10	19 and 20
Conductor 3	Metallic screens	Negative	50	1	21 (waveshape)
test loop 1	and conductors		65	1	22
	1 and 2		80	1	22
			100	10	23 and 24

-23-

1086-16

Testing arrangement		Polarity	Voltage applied	No. of	See figure on
Voltage applied to	Earthed		(% of test voltage)	impulses	next pages
Conductor 1	Metallic screens	Positive	50	1	25 (waveshape)
test loop 2	and conductors		65	1	26
	2 and 3		80	1	26
			100	10	27 and 28
Conductor 1	Metallic screens	Negative	50	1	29 (waveshape)
test loop 2	and conductors		65	1	30
	2 and 3		80	1	30
			100	10	31 and 32
Conductor 2	Metallic screens	Positive	50	1	33 (waveshape)
test loop 2	and conductors		65	1	34
	1 and 3		80	1	34
			100	10	35 and 36
Conductor 2	Metallic screens	Negative	50	1	37 (waveshape)
test loop 2	and conductors		65	1	38
	1 and 3		80	1	38
			100	10	39 and 40
Conductor 3	Metallic screens	Positive	50	1	41 (waveshape)
test loop 2	and conductors		65	1	42
	1 and 2		80	1	42
			100	10	43 and 44
Conductor 3	Metallic screens	Negative	50	1	45 (waveshape)
test loop 2	and conductors		65	1	46
	1 and 2		80	1	46
			100	10	47 and 48

Requirement

Each core of the cable shall withstand without failure 10 positive and 10 negative voltage impulses.

Result

-27-

-36-

1086-16

3.11 AC voltage dry test

Standard and date

Standard	IEC 60502-4, table 5, test 11
Test date(s)	19 February 2016

Environmental conditions

Ambient temperature	20 °C
---------------------	-------

Characteristic test data

Temperature of test object 20 °C

Testing arrangement		Voltage applied, 50 Hz		Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1, 2 and 3 of test loop 1	Metal screens	2,5	22	15
Conductor 1, 2 and 3 of test loop 2	Metal screens	2,5	22	15

Requirement

No breakdown of the insulation shall occur.

Result
-37-

3.12 Examination

Standard and date

Standard	IEC 60502-4, table 5, test 14
Test date(s)	25 May 2016

Environmental conditions

Ambient temperature	20	°C
Temperature of test object	20	°C

Object	Observations
Sample 1	 None of the following has been detected: cracking in the filling material and/or tape or tubing components a moisture path bridging a primary seal corrosion and/or tracking and/or erosion which would, in time, lead to a failure of the accessory leakage of any insulating material
Sample 2	 None of the following has been detected: cracking in the filling material and/or tape or tubing components a moisture path bridging a primary seal corrosion and/or tracking and/or erosion which would, in time, lead to a failure of the accessory leakage of any insulating material

Note

The results are for information only.

1086-16

-38-

1086-16

Photographs

Indoor termination

Removal tube

1086-16

Detail stress control

Two indoor terminations

4 TEST SEQUENCE TABLE 5 COLUMN 1.2 (ONE INDOOR TERMINATION)

4.1 Test arrangement

4.1.1 Determination of the cable conductor temperature

Standard

Standard IEC 61442, Subclause 8

For the tests at elevated temperature, a reference loop for temperature control of the conductor was installed and conductor current was used for heating. The reference cable was cut from the total cable length intended for the type test. This reference loop was installed close to the test loop in order to create the same environmental conditions as for the test loop.

The heating currents in the reference loop and the test loop were kept equal at all times, thus the conductor temperature of the reference loop is representative for the conductor temperature of the test loop. Annex A was used as a guide and Annex A, Subclause A.3.3, method 3 was applied.

The tests at elevated temperature are carried out after the conductor temperature has been within the stated limit for at least 2 hours.

-41-

1086-16

4.2 DC voltage dry test

Standard and date

Standard	IEC 60502-4, table 5, test 1
Test date(s)	16 November 2015

Environmental conditions

Ambient temperature	22	°C
Temperature of test object	22	°C

Testing arrangement		DC voltage applied		Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1, 2 and 3 of test loop 3	Metal screens	4	35	15

Requirement

No breakdown of the insulation shall occur.

Result

-42-

1086-16

4.3 AC voltage dry test

Standard and date

Standard	IEC 60502-4, table 5, test 1
Test date(s)	16 November 2015

Environmental conditions

Ambient temperature	22	°C
Temperature of test object	22	°C

Testing arrangement		Voltage applied, 50 Hz		Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1, 2 and 3 of test loop 3	Metal screens	4,5	39	5

Requirement

No breakdown of the insulation shall occur.

Result

-43-

1086-15

4.4 Thermal short-circuit test (screen)

Standard and date

Standard	IEC 60502-4, table 5, test 7
Test date(s)	25 November 2015

Environmental conditions

Ambient temperature 21 °C

Characteristic test data

Stabilized conductor temperature 97 °C

Conductor heating		
Required conductor	Applied 3-phase	Conductor stable at 97 °C
temperature θ	heating current	before short-circuit application
(°C)	(A)	(h)
$95 \le \theta \le 100$	495	2

Short-circuit application on screen (see figures on the next pages)				
Specified short-circuit current	Frequency	Duration	Number of short-circuit applications	
(kA)	(Hz)	(s)		
2,5	50	1	2	

Procedure

The conductor temperature shall be maintained within the stated temperature limits for at least 2 hours before carrying out the short-circuit test. Between the two short-circuit applications, the cable screen shall be allowed to cool down to a temperature less than 10 K above its temperature prior to the first short-circuit application.

Requirement

No visible deterioration may occur.

Result

-44-

1086-15

4.4.1 Test circuit

Photograph test circuit

-45-

1086-15

4.4.2 Test results and oscillograms

First short-circuit current 2,8 kA during 1,06 s.

Second short-circuit current 2,8 kA during 1,06 s.

-47-

4.5 Thermal short-circuit test (conductor)

Standard and d	ate				
Standard	IEC 60502-4, table 5, test 8				
Test date(s)					
Environmental	conditions				
Ambient tempera	iture	10	°C		
Characteristic t	est data				
Conductor mater	ial	copper			
Cross section cor	nductor	185	mm ²		
Maximum short o	ircuit conductor temperature	250	°C		
First short circu	uit application				
Start temperature of test object (measured value) 18					
Selected duration of short circuit current 1					
Calculated short circuit current 33,8					
Thermal current, three phase 34,5					
Duration 1,05					
Second short ci	rcuit application				
Start temperatur	e of test object (measured value)	27	°C		
Selected duration	n of short circuit current	1	S		
Calculated short circuit current 32,9					
Thermal current, three phase 33,0					
Duration 1,05					

Procedure

Two short-circuits shall be applied to raise the conductor temperature to the maximum permissible short-circuit temperature of the cable within 5 s. Between the two short-circuits, the test loop shall be allowed to cool to a temperature less than 10 K above its temperature prior to the first short-circuit.

Result

The object passed the test.

1086-15

-48-

1086-16

4.5.1 Test circuit

- G = Generator
- MB = Master Breaker
- MS = Make Switch
- L = Reactor
 - I = Current Measurement
 - AB = Auxiliary Breaker

PT = Power Transformer

Supply		
Power	MVA	173
Frequency	Hz	50
Phase(s)		3
Voltage	kV	2.9
Current	kA	34.5
Impedance	Ω	0.049
Power factor		< 0,1
Neutral		not earthed

Load	
Short-circuit point	earthed

-

-49-

1086-16

Photograph before test

"4002" is incorrect, please read "4005".

-50-

1086-16

4.5.2 Test results and oscillograms

Thermal short-circuit test

Remarks:

					U1TO 5.03kV pu
Test number: 151203-4006					U2TO 5.03kV pu
Phase		R	G	Y	
Peak value of current	kA	-52,5	-50,3	51,9	
Symmetrical current, beginning	kA	33,9	34,2	33,3	
Symmetrical current, middle	kA	33,1	33,4	32,5	
Symmetrical current, end	kA	32,8	33,1	32,2	-13TO 80.1kA pu
Symmetrical current, average	kA	33,2	33,7	32,8	
Average current, three phase	kA		33,2		
Current duration	S	1,04	1,04	1,04	
Thermal equivalent		33 kA	during	1,05 s	unit 60
Gas pressure at 20 °C - M	Pa	ŀ	Ambient	tempe	rature 11,3 °C

Remarks:

Version: 1

1086-16

Photograph after test

-53-

4.6 Impulse voltage test at ambient temperature

Standard and date

Standard	IEC 60502-4, table 5, test 10
Test date(s)	4 December 2015

Environmental conditions

Ambient temperature	20 °C
---------------------	-------

Characteristic test data

Temperature of test object	20 °C
Specified test voltage	95 kV

Testing arrangement		Polarity	Voltage applied	No. of	See figure on
Voltage applied to	Earthed		(% of test voltage)	impulses	next pages
Conductor 1	Metallic screens	Positive	50	1	1 (waveshape)
test loop 3	and conductors		65	1	2
	2 and 3		80	1	2
			100	10	3 and 4
Conductor 1	Metallic screens	Negative	50	1	5 (waveshape)
test loop 3	and conductors		65	1	6
	2 and 3		80	1	6
			100	10	7 and 8
Conductor 2	Metallic screens	Positive	50	1	9 (waveshape)
test loop 3	and conductors		65	1	10
	1 and 3		80	1	10
			100	10	11 and 12
Conductor 2	Metallic screens	Negative	50	1	13 (waveshape)
test loop 3	and conductors		65	1	14
	1 and 3		80	1	14
			100	10	15 and 16
Conductor 3	Metallic screens	Positive	50	1	17 (waveshape)
test loop 3	and conductors		65	1	18
	1 and 2		80	1	18
			100	10	19 and 20
Conductor 3	Metallic screens	Negative	50	1	21 (waveshape)
test loop 3	and conductors		65	1	22
	1 and 2		80	1	22
			100	10	23 and 24

Requirement

Each core of the cable shall withstand without failure 10 positive and 10 negative voltage impulses.

Result

50,0 60,0

95,2 kV

50,0

60,0

70,0

95,2 kV

100,0 μs

90,0

2015-12-04 13:34

90,0 100,0 µs

80,0

80,0

30,0

95,2 kV

20,0

Fig. 2: 72124900 SC loop Red 65% and 80% test voltage

10,0 103

95,2 kV

10,0

0,0

13

Fig. 3: 72124900 SC loop Red 100% test voltage

20,0

30,0

0.0

0,0

kV

100,0-80,0 60,0 40,0 20,0 0,0--20,0

40,0

95,2 kV

40,0

kV 95,2 kV 2015-12-04 13:40 95,2 kV 95,2 kV 95,2 kV 95,2 kV 100,0-80,0 60,0 40,0 20,0 0,0 -20,0-40,0 20,0 80,0 90,0 100,0 µs 10,0 30,0 0,0

-54-

30,0

50,0

40,0

60,0

90,0 100,0 µs

80,0

70,0

10,0

-100,0-

0,0

Version: 1

50,0 60,0

50,0 60,0 70,0

80,0

80,0

90,0 100,0 µs

90,0 100,0 µs

2015-12-04 14:11

70,0

Fig. 10: 72124900 SC loop Yellow 65% and 80% test voltage

40,0

20,0

Fig. 12: 72124900 SC loop Yellow 100% test voltage

10,0

1.31

30,0

-20,0

60,0 40,0 20,0 0,0 -20,0-

0,0

-59-

10,0

Fig. 24: 72124900 SC loop Green -100% test voltage

0,0

50,0

70,0

80,0

40,0

3.1

-60-

1086-16

4.7 AC voltage dry test

Standard and date

Standard	IEC 60502-4, table 5, test 11
Test date(s)	4 December 2015

Environmental conditions

Ambient temperature	20 °C
---------------------	-------

Characteristic test data

Temperature of test object 20 °C

Testing arrangement		Voltage applie	Duration	
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1, 2 and 3 of test loop 3	Metal screens	2,5	22	15

Requirement

No breakdown of the insulation shall occur.

Result

-61-

1086-16

4.8 Examination

Standard and date

Standard	IEC 60502-4, table 5, test 14
Test date(s)	25 May 2016

Environmental conditions

Ambient temperature	20	°C
Temperature of test object	20	°C

Object	Observations
Sample 1	None of the following has been detected:
	 cracking in the filling material and/or tape or tubing components
	 a moisture path bridging a primary seal
	 corrosion and/or tracking and/or erosion which would, in time, lead to a
	failure of the accessory
	leakage of any insulating material

Note

The results are for information only.

-62-

1086-16

Photographs

Indoor termination loop 3

Indoor termination loop 3 sample

-63-

1086-16

5 TEST SEQUENCE TABLE 5 COLUMN 1.4 (ONE INDOOR TERMINATION)

5.1 Humidity

Standard and date

Standard	IEC 60502-4, table 5, test 12
Test date(s)	2 to 16 December 2015

Environmental conditions

Ambient temperature	15	°C
Temperature of test object	15	°C

Characteristic test data

Leakage current protection (I_{max})	$1 \pm 0,1$	А
Conductivity	70 ± 10	mS/m
Rate of flow	$0,4 \pm 1$	l/h/m ³

Testing arrangement	esting arrangement		ltage,	Duration	
Voltage applied to conductor	Earth connected to	x U ₀	(kV)	(h)	
1, 2 and 3	Metallic screen	1,25	11	300	

Note

Three core terminations subject to three phase voltage.

Requirement

No breakdown or flashover, no more than 3 trips, no substantial damage of the insulation shall occur (table 14).

Pass/fail criteria	Observation
More than three overcurrent trip-outs	No
Loss of dielectric quality due to tracking	No
Erosion to a depth of 2 mm or 50% of the wall thickness of the insulating material	No
Splitting of the material	No
Puncture of the material	No

Result

-64-

1086-16

Indoor termination after test

Detail indoor termination after test

-65-

1086-16

Detail indoor termination after test

Detail indoor termination after test

-66-

5.2 Examination

Standard and date

Standard	IEC 60502-4, table 5, test 14
Test date(s)	25 May 2016

Environmental conditions

Ambient temperature	20 °C
Temperature of test object	20 °C

Object	Observations
Sample 1	None of the following has been detected:
	 cracking in the filling material and/or tape or tubing components
	 a moisture path bridging a primary seal
	 corrosion and/or tracking and/or erosion which would, in time, lead to a
	failure of the accessory
	leakage of any insulating material

Note

The results are for information only.

1086-16

1086-16

Photographs

Indoor termination humidity sample

Indoor termination humidity sample

-68-

6 PARTS LIST AND INSTALLATION INSTRUCTION

Designed by

Scale

1

Size

A4

唐张杰 2015/06/25

 $\oplus \square$

Sheet 2 of 2 >120

Unit

mm

±3

MZDNK-3-15-C

Drawing No.:T8MZDNK-3-15-C

-69-

1086-16

		Rev.		Change Description		Designed by	Checked by	Approved by
		B1		Original Release	Se la constante	the advert	7347 15.6.2	67the
								201961
No.	Quantity	Unit		Item			Product No)
1	3	pcs		Cable lug			AUS185-12/L8	
2	3	pcs	He	eat shrinkable track-resistant tubing			MWNT-60/21/RD	/0.15M
3	1	pcs		Colorimetric tu	be		M1-50/25/GN/0	0.05M
4	1	pcs		Colorimetric tu	be		M1-50/25/RD/0	.05M
5	1	pcs		Colorimetric tu	be		M1-50/25/YE/0	.05M
6	3	pcs	He	at shrinkable track-res	istant tubing		MWNT-60/21/R	0/0.7M
7	3	pcs	He	at shrinkable stress co	entrol tubing		MSCT-47/18/BK	/0.2M
8	3	pcs		Silicone greas	e		MGZ-295-3	3
9	3	pcs		Stress control tape(yellow)		MYU-1.2X25X1	00YL
10	1	pcs		Semi conducting	tape		MBDD-25X6	00
11	3	pcs		Constant force sp	oring		MTH-D24X0.3X	15X7
12	1	pcs	H	eat shrinkable insulatio	on breakout		MIB3-125/57-55	/20/ B K
13	1	pcs		Triangular wed	ge		XIZM	
14	1	pcs		Copper binding-	wire		MTZX-1.4X10	000
15	1	pcs	Constant force spring			MTH-D45X0.5X	20X7	
16	2	pcs		Void filling tape(black)			MTCJ-3X50X50	00BK
17	1	pcs	Heat shrink	able medium wall tubi	ng (adhesive se	ealing :	MRA2-115/35/BI	(/0.2M
18	9	pcs		Sealing tape(re	ed)		MMFJ-2X30X3	50RD
19	1	pcs		Ground wire			MDX-25X80	0
20	1	pcs		Ground wire	6		MDX-16X80	0
21	1	pcs		Cable lug			JGB35-10/	e)
22	1	pcs		Cable lug			JGB25-10/	-
23	1	pcs		PVC tape			MPJD-20X500	ОВК
24	4	pcs		Sandcloth paper			MSZ-P180X202	(500
25	5	pcs		Sandcloth paper			MSZ-P400X152	(500
26	6	pcs		Cleaner			MQJB	
27	1	pcs		Cleaning cloth			MMB-300X300	mm
28	1	pcs		Glove			MST	
29	1	ea		Installation instructions			GSM-MZDW/MZDWK-15KV	
30	1	ea		Contents			/	
(🧼 М	ELEC			JI ELECTRIC	angsu jiam Tal equipme	eng :nt co.,ltd	
Ma	www. aterial	melec.com.cn		Undefined Tolerance Title:				
Appr	oved by	於海燕 2015/06/25		0~30	±1	15KV HEA	15KV HEAT SHRINKABLE INDOOR TERMINATIO	
ct	elsend has	つ香修 2015/0	C/DE	>30~120 +2		Den du et M	Product No.:	

Installation Instruction For 15KV Terminations

Preparation

1. Check the consistency of contents and

Step 1

- packing list.
- 2. Check tools are complete.

1086-16

Step 4

Install ground wire MDX

1. Wind sealing tape MMFJ 2-3 layer on 50mm down the port of outer sherth of cable, Lift theground when wind the first layer.Wind sealing tape MMFJ on the outer sheath completely, Wrapp The armored ground in them in the following wound. 2. Strech the void filling tape MTCJ by 1/2

width, wind ground wire ,constant force spring, armor layer completely 2-3 laps. 3, As shown on the right, wind heat shrinkable medium wall tubing MRA2 in order of 1,2,3.

Shrink description : 1. Use yellow outer flame of about 100~300mm to heat the heat shrinkable

products. 2. Unless otherwise stated, use flame to heat outer heat shrinkable products

heat outer near shiring be produced uniformly. 3. When heating, keep the flame moving and the local stop time shall not exceed 3 seconds, so as to avoid burning caused by hot parts.

Instructions for combustor:

Adjust voltage stabilizer and combustor: Adjust voltage stabilizer and combustor. When heating, yellow outer flame is suggested. Select a working environment with sound ventilation,so as to avoid the influence on installation caused by smog

Warning: Use gas burner strictly in accordance with instructions provided by suppliers. Check if there is any connection leakage before turned on. Failure to observe the instructions could cause fire or explosion, even critical damage.

Step 5

Install copper shield ground MDX

1. As shown right , hit the triangular wedge MSJX to the cable core and even it with the inner sheath.

2. Sand heat shrinkable medium wall tubing MRA2 3. Use cleaner to clean MRA2 and cable wire.

4.Use constant force ring MTH to fix MDX,

specific operation see Step 3. 5.Wind sealing tape MMFJ on the cable core, inner cover of cable, MRA2 should be winded.

1086-16

KEMA Laboratories

1086-16

step 8

Wind stress control tape MYLJ Wind semi-conduct tape MBD Shrink heat shrinkable stress control tubing MSCT

1. Strech stress control tape MYLI to5-10mm width, and wind the insulation and shield, the mastic should overlap 10mm onto the insulation and shield.

2. Strech the semi-conductive tape MBD to 1/2 width, wind cooper shield, overlap shield and cooper shield 5-10mm each.

3. Apply insulation silicon grease MGZ evenly on the length 100mm from the end of the mastic. 4. Place heat shrinkable stress control tubing MSCT to the position of 20mm under section of cooper shield, then shrink surround uniformly according to the direction of the arrow marked.

PS: 1. When winding stress tape, the gap between the insulation and the shield should be filled entirely. 2. Apply unifomly when applying grease paste,

ensure non-omission. 3. Shrink instructions are required according to

step 4.

step 9

Shrink heat shrinkable track-resistant tubing MWNT

1. Polish the tip of heat shrinkable insulation

 L. Poisn the up of near similation breakout MIB.
 C. Clean tip of MIB and end of lug.
 A. wrap sealing mastic on breakout end
 Place MWNT to the position of 10mm
 beyond the breakout body.Then shrink MWNT
 For the text sealer body. from the bottom up surroundly.

PS: 1. Heat the whole part almost one minute after shrinking finished. 2. Check if the tube shrinked entirely after the

shrink finished.check if the surface of tube smooth, no bump, cool wall, unentirely shrinking.

Shrink instructions are required according to step 4.

KEMA Laboratories

1086-16

KEMA Laboratories

7 MEASUREMENT UNCERTAINTY

The measurement uncertainties in the results presented are as specified below unless otherwise indicated.

Measurement	Measurement uncertainty
Dielectric tests and impulse current tests:	
– peak value	≤ 3%
 time parameters 	≤ 10%
Capacitance measurement	0,3%
Tan δ measurement	\pm 0,5% \pm 5 x 10 ⁻⁵
Partial discharge measurement:	
– < 10 pC	2 pC
– 10 to 100 pC	5 pC
– > 100 pC	20%
Measurement of impedance AC-resistance measurement	≤ 1%
Measurement of losses	≤ 1%
Measurement of insulation resistance	≤ 10%
Measurement of DC resistance:	
– 1 to 5 μΩ	1%
– 5 to 10 μΩ	0,5%
10 to 200 μΩ	0,2%
Radio interference test	2 dB
Calibration of current transformers	2,2 x 10 ⁻⁴ I_{i}/I_{u} and 290 μrad
Calibration of voltage transformers	1,6 x 10 ⁻⁴ U _i /U _u and 510 μrad
Measurement of conductivity	5%
Measurement of temperature:	
– -50 to -40 °C	3 К
– -40 to125 °C	2 К
– 125 to 150 °C	3 К
Tensile test	1%
Sound level measurement	type 1 meter as per IEC 60651 and
	ANSI S1,4,1971
Measurement of voltage ratio	0,1%